Document Type


Publication Date



This qualitative study investigates how biology majors explain energy consumption issues. In particular, we focus on two energy consumption activities that account for about two-thirds of global carbon dioxide emissions in 2011: burning fossil fuels for transportation and using electricity. We conducted in-depth clinical interviews with twenty U.S. students and twenty Chinese students. We compared these two groups of students in terms of two aspects of explanation: 1) naming scientific terms in the explanation, and 2) explaining an energy consumption issue. Regarding naming, we examined the frequency of naming different terms of scientific concepts and principles in students’ explanations. Regarding explaining, we developed a rubric that differentiates three levels of explaining: informal explanations that are based upon intuitive ideas (Level 1), school science explanations that are based on alternative conceptions about matter and energy (Level 2), and scientific explanations that demonstrate the scientific understanding of concepts/principles about matter and energy (Level 3). The results revealed that scientific terms appeared most frequently in scientific explanations (Level 3), but they also appeared in many school science explanations (Level 2) and in some informal explanations (Level 1). We further describe how scientific terms were used in explanations at different levels. We found although Chinese students named scientific terms more frequently and demonstrated a better performance in explaining, they still produced more informal explanations and school science explanations than scientific explanations. In general, the results suggest the importance of promoting students’ abilities to use scientific terms correctly and meaningfully in explaining real-world environmental events in both countries.

Copyright Statement

This document was originally published by iSer, International Society of Educational Research in the International Journal of Environmental & Science Education. This work is provided under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. Details regarding the use of this work can be found at:

Included in

Mathematics Commons