Document Type
Conference Proceeding
Publication Date
4-1-2009
Abstract
The paper derives the first known numerical shallow water model on the sphere using radial basis function (RBF) spatial discretisation, a novel numerical methodology that does not require any grid or mesh. In order to perform a study with regard to its spatial and temporal errors, two nonlinear test cases with known analytical solutions are considered. The first is global steady-state flow with a compactly supported velocity field while the second is unsteady flow where features in the flow must be kept intact without dis- persion. This behavior is achieved by introducing forcing terms in the shallow water equations. Error and time stability studies are performed both as the number of nodes is uniformly increased and the shape parameter of the RBF is varied, especially in the flat basis function limit. Results show that the RBF method is spectral, giving exceptionally high accuracy for low number of basis functions while being able to take unusually large time-steps. In order to put it in the context of other commonly used global spectral methods on a sphere, comparisons are given with respect to spherical harmonics, double Fourier series, and spectral element methods.
Copyright Statement
This document was originally published by Royal Society in Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences. Copyright restrictions may apply. DOI: 10.1098/rspa.2009.0033
Publication Information
Flyer, Natasha and Wright, Grady. (2009). "A Radial Basis Function Method for the Shallow Water Equations on a Sphere". Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 465(2106), 1949-1976. https://doi.org/10.1098/rspa.2009.0033