Document Type


Publication Date



Global energy demand is projected to continue to grow over the next two decades, especially in developing economies. An emerging energy technology with distinct advantages for growing economies is small modular nuclear reactors (SMRs). Their smaller size makes them suitable for areas with limited grid capacities and dispersed populations while enabling flexibility in generating capacity and fuel sources. They have the ability to pair well with renewable energy sources, the major source of increased energy capacity for many developing economies. Further advantages include their passive safety features, lower capital requirements, and reduced construction times. As a result, SMRs have potential for overcoming energy poverty issues for growing economies without increasing carbon emissions.

This study reviews the features and viability of SMRs to meet increasing energy capacity needs and develops a decision support framework to evaluate the market conditions for SMR deployment to emerging economies. The focus is on identifying countries best suited for domestic deployment of SMRs rather than vendor countries with ongoing or future SMR development programs for export. We begin by examining the characteristics of over two hundred countries and identifying those that satisfy several necessary economic, electrical grid capacity, and nuclear security conditions. Countries satisfying these necessary conditions are then evaluated using the Analytical Hierarchy Process (AHP) using criteria related to the economic and financial conditions, infrastructure and technological framework, and governmental policies within each country. The results find that countries with increasing GDP and energy demand that possess a robust infrastructure, energy production from high GHG sources, and governmental policies favorable to foreign investment are well-suited for future SMR deployment.

Copyright Statement

NOTICE: This is the author’s version of a work that was accepted for publication in the Renewable and Sustainable Energy Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Renewable and Sustainable Energy Reviews, 43, (2014). doi: 10.1016/j.rser.2014.11.011

Included in

Economics Commons