Document Type

Conference Proceeding

Publication Date

3-31-1998

Abstract

In 1995 and 1996, the Idaho Transportation Department (lTD) conducted a series of ground-penetrating radar (GPR) surveys as a nondestructive testing (NDT) method to evaluate the thickness of asphalt and Portland cement concrete (AC/PCC) pavements in Idaho. GPR surveys employed both air-coupled and combination air and ground coupled systems with their associated equipment and software. A total of 30 miles of AC/PCC pavements were evaluated by GPR surveys. The results obtained were correlated with the site-specific ground-truth data from borings.

Knowledge of pavement layer thickness is needed to predict pavement performance, establish load carrying capacities and develop maintenance and rehabilitation priorities. In addition, for new construction, it is important to ensure that the thickness of materials being placed by the contractor is acceptably close to specification. Core sampling and test pits are destructive to the pavement system, expensive, time consuming and intrusive to traffic. The objective of the lTD study was to evaluate, compare and assess the ability of these two GPR systems to accurately measure the thickness of multiple pavement layers, and document the data nondestructively. This paper reviews the findings of these surveys and provides statistically based data for both AC and PCC pavements.

The overall study has shown that reasonably accurate, dependable determination of pavement thickness can be achieved by using GPR survey for conditions encountered in Idaho.

Copyright Statement

Copyright 1998 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. DOI: 10.1117/12.300095

Share

COinS