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Polynomials

Let R be a ring.

and let σ : R → R be a ring isomorphism.

Then the collection of all polynomials with coefficients from R is a
ring.

Denote this ring as

R[x ].
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Polynomials

Let R be a ring.

and let σ : R → R be a ring isomorphism.

A Laurent polynomial is a polynomial which allows negative expo-
nents.

Then the collection of all Laurent polynomials with coefficients from
R is a ring.

Denote this ring as

R[x , x−1].
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Polynomials

Let R be a ring

.

and let σ : R → R be a ring isomorphism.

A skew Laurent polynomial is a Laurent polynomial but with the
extra condition that rx = xrσ.

Then the collection of all skew Laurent polynomials with coefficients
from R is a ring.

Denote this ring as

R[x , x−1; σ].
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Projective Modules

Definition - Free Module

An R-module M is free iff M ∼=
⊕

n R for some cardinal n.

{Free Modules}
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Projective Modules

Definition - Projective Module

An R-module P is projective iff P is a direct summand of a free
module, that is, ∃Q R-module such that P ⊕ Q ∼= Rn.

{Free Modules} ⊆ {Projective Modules}
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Projective Modules

Definition - Stably Free Module

An R-module P is stably free iff there exists natural numbers m, n
such that P ⊕ Rm ∼= Rn.

{Free Modules} ⊆ {Stably Free Modules} ⊆ {Projective Modules}
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Quillen-Suslin Theorem

Projective modules over group algebras play a key role in many
aspects of geometry and topology.
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Quillen-Suslin Theorem

Projective modules over group algebras play a key role in many
aspects of geometry and topology.

Theorem (The Quillen-Suslin Theorem (1976))

Let k be a commutative ring. Then all projective modules over
k[x1, . . . , xn] are free.
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Quillen-Suslin Theorem

Projective modules over group algebras play a key role in many
aspects of geometry and topology.

Theorem (Generalized Quillen-Suslin Theorem (Swan 1978))

Let k be a commutative ring. Then all projective modules over
k[x1, . . . , xn, x

−1
1 , . . . , x−1

n ] are free.
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This is a Klein Bottle

�
y

x ?

-y

x?

•v0

X

We see from the fundamental square, that

π(X , v0) = 〈x , y | x−1yx = y−1〉
= 〈x , y | yx = xy−1〉

Call this group G .
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The Ring ZG

In light of the presentation of G ,

ZG = R[x , x−1;σ]

where
R = Z[y , y−1]

and σ is the isomorphism induced by

σ : y 7−→ y−1.

In particular,
yx = xy−1

as polynomials in ZG .
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Motivation

We note that
〈y , x2〉 6 G ,

〈y , x2〉 ∼= Z× Z,

(
G : 〈y , x2〉

)
= 2.

This tiny bit of noncommutativity guarantees the existence of
nonfree projective modules over the Klein bottle.
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The ZG -module K

Let
r = 1 + y + y3 ∈ ZG ,

and let

s = rσ
−1 ∈ ZG .

Let

K = {f ∈ ZG | rf = (x + s)g , g ∈ kG}
∼= 〈r〉 ∩ 〈x + s〉
∼= 〈1 + y + y3〉 ∩ 〈x + 1 + y−1 + y−3〉
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Some Important Maps

Let f ∈ K . Then ∃g ∈ ZG such that

r f = (x + s)g .

Let θ : K → ZG such that

θ : f 7→ g .

Let i : K → ZG ⊕ ZG as

i : f 7→
(

f
−θ(f )

)
.

Let π : ZG ⊕ ZG → ZG as

π =
(

r x + s
)
.
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K is Stably Free

Theorem

The sequence 0 −→ K
i−−−→ ZG ⊕ ZG

π−−−→ ZG −→ 0 is exact.

(Pf)
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K is Stably Free

Theorem

The sequence 0 −→ K
i−−−→ ZG ⊕ ZG

π−−−→ ZG −→ 0 is exact.

(Pf)
π is surjective.

π

(
(sx−2)

(x−1 − rx−2)

)
= r(sx−2) + (x + s)(x−1 − rx−2)

= r(rσ
−1

x−2) + (x + rσ
−1

)(x−1 − rx−2)

= 1.
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K is Stably Free

Theorem

The sequence 0 −→ K
i−−−→ ZG ⊕ ZG

π−−−→ ZG −→ 0 is exact.

Now, the above sequence is exact. But ZG is projective. Thus,
∃�� : ZG → ZG 2 such that

π�� = 1ZG .

Corollary

K is a stably free ZG-module, that is, K ⊕ ZG ∼= ZG ⊕ ZG.
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�� =

(
sx−2

x−1 − rx−2

)
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π−−−→ ZG −→ 0 is exact.

Define �� : ZG → ZG ⊕ ZG as
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x−1 − rx−2

)
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K is a stably free ZG-module, that is, K ⊕ ZG ∼= ZG ⊕ ZG.
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Presentation of K

Define p : ZG ⊕ ZG → K as

p : ~m 7→ i−1(~m − ��π~m).

Theorem

The sequence 0 −→ ZG
��−−−→ ZG ⊕ ZG

p−−−→ K −→ 0 is exact.

Hence, we see the following diagram with exactness in both
directions.

0 // Koo

i
((
ZG 2

p

gg

π
((
ZG

��

ii
// 0oo
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p =
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)
.

Theorem

The sequence 0 −→ ZG
��−−−→ ZG ⊕ ZG
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Hence, we see the following diagram with exactness in both
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Presentation of K

0 −→ ZG
��−−−→ ZG ⊕ ZG

p−−−→ K −→ 0

K ∼= ZG 2/ im ��

K = 〈e1, e2 | ��(1)〉

K = 〈e1, e2 | e1s + e2(x − r)〉

K =
〈
e1, e2

∣∣ e1(1 + y−1 + y−3) + e2(x − 1− y − y3)
〉
.
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p−−−→ K −→ 0

K ∼= ZG 2/ im ��
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Constructing a Stably Free Module

Applications to the Klein Bottle

Generators of K

p : ZG 2 −→ K is a surjective map.

K = 〈p(e1), p(e2)〉

K =
〈
x2 − (1 + y−1 + y−3)(1 + y + y3),

x(1 + y + y3) + (1 + y−1 + y−3)2
〉

K =
〈
x2 − y3 − y2 − y − 3− y−1 − y−2 − y−3,

xy3 + xy + x + 1 + 2y−1 + y−2 + 2y−3 + 2y−4 + y−6
〉
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)

r = 1 + y + y3 is not a unit since r is not a monomial.
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)
{r , x + s} generates ZG since π is surjective.
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)

srσ =
(
1 + y−1 + y−3

)2
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)
srσ = 1 + 2y−1 + y−2 + 2y−3 + 2y−4 + y−6
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)
srσ = (y6 + 2y5 + y4 + 2y3 + 2y2 + 1)y6
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

(Pf)

(1 + y + y3) 6 | (y6 + 2y5 + y4 + 2y3 + 2y2 + 1)
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K is Not Free

Theorem (Stafford (1985))

Let R be a commutative Noetherian domain. Suppose
S = R[x , x−1;σ] is a skew Laurent extension of R with elements
r , s ∈ R such that

1 r is not a unit in S,

2 rS + (x + s)S = S,

3 srσ /∈ rS.

Then the S-module K = {f ∈ S | rf ∈ (x + s)S} is a non-free,
stably free right ideal of S, satisfying K ⊕ S ∼= S ⊕ S.

Hence, K is a non-free, stably free module over ZG .�
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(G , 2)-Complexes

Definition

Let G be a group. A (G , 2)-complex is a 2-dimensional
CW-complex with fundamental group G .

Let X be the CW-complex of the Klein Bottle. Thus, X is a
(G , 2)-complex with G = π1(X , v0).

•v0

X

A

�
y

x
?

-y

x
?
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Euler Characteristic

Definition

Let Y be a finite 2-dimensional CW-complex. Then the Euler
Characteristic of Y , denoted χ(Y ), is the alternating sum∑2

k=0 (−1)kci where ck is the number of k-cells in Y .

Theorem (Harlander and Jensen (2006))

The Klein bottle is the only complex with χ(X ) = 0, which is the
minimum Euler characteristic for any (G , 2)-complex, up to
homotopy.
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Algebraic (G , 2)-complexes

Definition

An algebraic (G , 2)-complex is an exact sequence

C∗ : F2 → F1 → F0 → Z→ 0

where the Fi are finitely generated, free ZG -modules. The Euler
Characteristic of C∗, denoted χ(C∗), is the alternating sum∑2

k=0 (−1)kci where ck is the rank of Fk in C∗.
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Algebraic Complexes of G

Since
X =

∣∣〈x , y | x−1yx = y−1〉
∣∣
,
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Algebraic Complexes of G

Since
X =

∣∣〈x , y | x−1yx = y−1〉
∣∣
,

X has the celluar chain complex

C∗(X ) : Z〈A〉 −→ Z〈x , y〉 −→ Z〈v0〉 → 0.
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Algebraic Complexes of G

Since
X =

∣∣〈x , y | x−1yx = y−1〉
∣∣
,

X has the celluar chain complex

C∗(X ) : Z〈A〉 −→ Z〈x , y〉 −→ Z〈v0〉 → 0.

Then,

C∗(X̃ ) : ZG
∂2−→ ZG ⊕ ZG

∂1−→ ZG
ε−→ Z −→ 0

is an algebraic (G , 2)-complex.
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Algebraic Complexes of G

Since
X1 =

∣∣〈x , y | x−1yx = y−1, 1〉
∣∣ = X ∨ S2,
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Algebraic Complexes of G

Since
X1 =

∣∣〈x , y | x−1yx = y−1, 1〉
∣∣ = X ∨ S2,

X1 has the celluar chain complex

C∗(X1) : Z〈A,S2〉 −→ Z〈x , y〉 −→ Z〈v〉 → 0
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Algebraic Complexes of G

Since
X1 =

∣∣〈x , y | x−1yx = y−1, 1〉
∣∣ = X ∨ S2,

X1 has the celluar chain complex

C∗(X1) : Z〈A,S2〉 −→ Z〈x , y〉 −→ Z〈v〉 → 0

and

C∗(X̃1) : ZG ⊕ ZG
∂2⊕0−−−−−→ ZG ⊕ ZG

∂1−→ ZG
ε−→ Z −→ 0.
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Algebraic Complexes of G

Since
X1 =

∣∣〈x , y | x−1yx = y−1, 1〉
∣∣ = X ∨ S2,

X1 has the celluar chain complex

C∗(X1) : Z〈A,S2〉 −→ Z〈x , y〉 −→ Z〈v〉 → 0

and

C∗(X̃1) : ZG ⊕ ZG
∂2⊕0−−−−−→ ZG ⊕ ZG

∂1−→ ZG
ε−→ Z −→ 0.

Notice that

π2(X1) ∼= H2(X̃1) = ker(∂2 ⊕ 0) = ZG .
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The Algebraic Complex K∗

We now will construct an algebraic (G , 2)-complex with no obvious
geometric interpretation. Let K∗ to be the resolution

K∗ : ZG ⊕ ZG
∂2◦π−−−−−→ ZG ⊕ ZG

∂1−→ ZG
ε−→ Z −→ 0.

But, H2(K∗) = K 6∼= ZG = H2(C∗(X2)).

Therefore,
K∗ 6' C∗(X2).
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Geometric Realization

Theorem

There exist chain-homotopically distinct, algebraic
(G , 2)-complexes with Euler characteristic 1, where G is the
fundamental group of the Klein bottle.

Question

Does K∗ arise as an algebraic complex of some geometric
(G , 2)-complex?

Andrew Misseldine Stably Free Modules over the Klein Bottle



Introduction
Constructing a Stably Free Module

Applications to the Klein Bottle

Geometric Realization

Theorem

There exist chain-homotopically distinct, algebraic
(G , 2)-complexes with Euler characteristic 1, where G is the
fundamental group of the Klein bottle.

Question

Does K∗ arise as an algebraic complex of some geometric
(G , 2)-complex?

Andrew Misseldine Stably Free Modules over the Klein Bottle


	Introduction
	Constructing a Stably Free Module
	Applications to the Klein Bottle

