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ABSTRACT 

Soil inorganic carbon (SIC) constitutes approximately 40% of terrestrial soil 

carbon and is an integral part of the global carbon cycle; however, the controls on the 

storage and flux of inorganic carbon are poorly understood. Soil forming factors 

controlling SIC storage and flux include climate, organisms, relief, parent material, and 

time (Jenny, 1941). Rainfall is a primary factor controlling SIC accumulation in arid and 

semi-arid regions, but the hierarchy of controls on SIC development is complex. The 

Reynolds Creek Experimental Watershed in southwestern Idaho is an ideal location to 

study factors influencing SIC, as the carbon pool transitions from predominately 

inorganic carbon in the lower elevations, to organic carbon at higher elevations. This 

study builds upon fundamental studies in soil science that define and describe 

precipitation controls on the ópedocalô (calcic) to ópedalferô (non-calcic) soil transition 

(e.g. Marbut, 1935; Jenny, 1941) by both defining the precipitation boundary in Reynolds 

Creek, and quantifying the amount of carbon storage within calcic soils.   

We collected soil samples from soils developed under a wide range of soil-

forming regimes:  1) along a precipitation gradient, 2) within different vegetation 

communities (sagebrush species (Artimesia spp), bitterbrush (Purshia tridentata), 

greasewood (Sarcobatus vermiculatus), and juniper (Juniperus occidentalis)) 3) from 

different parent materials (granite, basalt, other volcanics, and alluvium) and 4) from 

terrace surfaces of different ages. Our results show SIC does not accumulate above a 

threshold of ~500 mm mean annual precipitation, and variability in SIC below that value 
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is significant. Soil inorganic carbon content from ~1 m deep soil pits and cores at 71 sites 

shows that 64 sites contained less than 10 kg/m2 SIC, 5 sites contained between 10-20 

kg/m2, and 2 sites had between 24 and 29 kg/m2. Random forest modeling and multiple 

linear regression of the environmental controls on SIC indicate that precipitation is the 

primary control on SIC accumulation, where increased precipitation correlates with lower 

amounts of SIC. Elevation is an effective predictor of SIC, as it is strongly auto-

correlated with precipitation and vegetation. Parent material consistently ranks as an 

important predictor in random forest analysis; however, we were unable to quantify the 

importance of wind-blown dust in the soil profiles, which we believe plays a vital role in 

SIC accumulation.  

Despite a recognition of different stages of carbonate development and 

accumulation rates between gravelly and non-gravelly soils, studies often ignore 

carbonate coatings on gravels in measurements of soil inorganic carbon (SIC). By 

quantifying and differentiating the fine (<2 mm) and coarse (>2 mm) fractions of SIC in 

the Reynolds Creek Experimental Watershed in southwestern Idaho, we show that gravel 

coatings contain up to 44% of total SIC at a given site. Among the 26 soil sites examined 

throughout the watershed, an average of 13% of the total SIC is stored as carbonate 

coasts within in the gravel fraction. We measured a high level of pedon-scale field 

variability (up to 220%) among the three faces of 1 m3 soil pits. Analytical error 

associated with the modified pressure calcimeter (0.001-0.014%), is considerably less 

than naturally occurring heterogeneities in SIC within the soil profile. This work 

highlights and quantifies two sources of uncertainty in studies of SIC needed to inform 

future research. First, in gravelly sites, the >2 mm portion of soils may store a large 
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percentage of SIC. Second, SIC varies considerably at the pedon-scale, so studies 

attempting to quantify carbon storage over landscape scales need to consider this 

variability. This study creates a framework for understanding SIC in Reynolds Creek that 

may be applied to future work. 
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CHAPTER ONE: QUANTIFYING STORAGE OF INORGANIC SOIL CARBON ON 

GRAVELS AND DETERMINING PEDON-SCALE VARIABILITY  

1. Introduction   

Soil is the third largest global pool of carbon; as such, data on soil carbon storage 

and its fluxes are essential components for global climate models. Although most 

research on soil carbon has focused on soil organic carbon, soil inorganic carbon (SIC) 

constitutes approximately 40% of soil carbon globally and in semi-arid and arid regions 

is the dominant form of carbon storage (Batjes, 1996; Eswaran et al., 2000).  

Soils have very heterogeneous properties, but little work has quantified the range 

of variation in SIC accumulation. Frequently, studies measuring SIC concentrations 

derive their results from single measurements at a single soil site (Batjes, 1996; 

Rasmussen, 2006; Hirmas et al., 2010). Soil properties are highly variable even at the 

pedon-scale and we hypothesize that this heterogeneity extends to SIC accumulation 

within RCEW. Taking a single profile as representative of a location can lead to 

considerable under- or overestimation of SIC amounts. 

The precipitation of pedogenic carbonate minerals stores SIC within the soil. As 

SIC accumulates within the soil, there are differences in both the rates and characteristics 

of development between SIC forming around fine soil particles (<2 mm) and gravel clasts 

(>2 mm) (e.g. Gile et al., 1966; Machette, 1985; Treadwell-Steitz and McFadden, 2000). 

However, many previous studies measuring the SIC pool have removed the gravel 

fraction before SIC analysis (e.g. Sobecki and Wilding, 1983; Slate et al., 1991; Vincent 
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et al., 1994; Treadwell-Steitz and McFadden, 2000; Rasmussen, 2006; Kunkel et al., 

2011; Ramnarine et al., 2012; Washbourne et al., 2012; Austreng, 2012), Other studies 

(e.g. Schlesinger, 1985; Reheis et al., 1992; Grinand et al., 2012) have included gravels, 

but have processed the soil and gravels together. When studies of SIC do not analyze the 

gravel fraction, they are either underestimating SIC significantly or are not fully 

exploring its complexities. Quantifying carbonate storage on gravels is difficult and time-

consuming; we hope this work will provide a framework to help calibrate soil carbonate 

studies that do not include the gravel fraction with studies that do include gravels.   

Our study expands the understanding of SIC storage through examination of both 

the carbonate coats on gravel clasts and pedon-scale variability in SIC. We extensively 

sampled soil pits throughout the Reynolds Creek Experimental Watershed (RCEW) in 

southwestern Idaho (Figure 1.1) to collect data on soils with a wide range of gravel 

contents. We sampled multiple profiles at several of our study sites to quantify the pedon-

scale variability present throughout the watershed. By processing replicates of both field 

samples and known standards, we determined the precision of our methods and the 

natural heterogeneity present in soils. We hypothesized that the gravel SIC coatings 

would constitute a significant portion of the total inorganic carbon pool in the soils, and 

that the differences in concentration within a pit would be significant as well. The results 

of this work will highlight the importance of the gravel SIC fraction and quantify the 

range of variation for soils in the RCEW. 
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Figure 1.1 The Reynolds Creek Experimental watershed (RCEW) in southwestern 

Idaho. Soil sample sites used for analysis of gravel SIC are marked in yellow. 

1.1. Background: 

1.1.1. Inorganic carbon formation: 

The precipitation of secondary carbonate minerals (CaCO3 and MgCO3) stores 

soil inorganic carbon within calcic soils. These minerals are commonly found in arid and 

semi-arid soils, where evaporative processes concentrate the dissolved species (Ca2+, 

Mg2+, and carbonate (CO3
2-) ions) within the soil pore water, promoting precipitation of 

carbonate minerals (Birkeland, 1999). Although the amount of dissolved CO2 is one of 
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the largest controls on SIC precipitation (McFadden et al., 1998; McFadden, 2013; 

Zamanian et al., 2016), adequate amounts of water can ultimately prevent carbonate from 

forming (Jenny, 1941; Arkley, 1963; Birkeland, 1999). When precipitation is sufficiently 

high and soil water evaporation is limited, infiltrating water flushes the ionic components 

of carbonate formation from the profile. A high pH (above ~8.2) goes hand-in-hand with 

the presence of calcic soil horizons and the formation of carbonates (Birkeland, 1999). 

The relatively low pH of rainwater, as well as mineral and organic acids forming in soils 

may inhibit the precipitation of these minerals. The presence of carbonate-bearing parent 

material (e.g. limestone or marble) will dramatically increase the potential of forming 

secondary calcic horizons within the associated soils. 

As calcic soils accumulate carbonate over time, they go through a series of stages 

of development that are dependent upon the gravel content of the soil (Figure 1.2). 

Importantly for this study, carbonate accumulates differently in gravelly vs. non-gravelly 

soils. In gravelly soils, carbonates precipitate preferentially on the bottoms of clasts as 

surface tension holds the water to clasts and allows it to evaporate from the underside 

(Gile et al., 1966). Soil progresses through the initial four stages as carbonate covers soil 

particles (stages I-II) and then interstitial pore space is filled (stages III-IV). Studies from 

the southwestern US show gravelly soils reach stage IV more quickly than non-gravelly 

soils (Gile et al., 1966). Since the carbonate coatings preferentially form on clasts, studies 

of gravelly soils with stage I-II development are disproportionally affected by the 

exclusion of >2 mm material. As carbonate precipitates over a greater portion of the soil 

material and fills pore space, the relative importance of gravel SIC diminishes slightly.  
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Figure 1.2 Conceptual sketch of the diagnostic morphology of the stages of carbonate 

development in gravelly and non-gravelly parent materials (modified from Gile et al., 

1966). This sketch highlights the differences in SIC accumulation between gravelly 

and non-gravelly soils. The highest level of carbonate development from this study 

was stage III. 

1.1.2. Gravel SIC in previous studies: 

In a survey of 4353 soil profiles from the World Inventory of Soil Emission 

Potentials (WISE) database, Batjes (1996) found that 79% of the profiles had no data on 

soil gravel at all. Although previous studies measure the SIC content of the combined 

fine and gravel fractions (Schlesinger, 1985; Reheis et al., 1992; Grinand et al., 2012) and 

do ultimately account for the amount of carbonate stored on gravels, other studies that do 

not measure the gravel SIC concentration (Sobecki and Wilding, 1983; Slate et al., 1991; 

Vincent et al., 1994; Treadwell-Steitz and McFadden, 2000; Rasmussen, 2006; Kunkel et 

al., 2011; Ramnarine et al., 2012; Washbourne et al., 2012; Austreng, 2012) may be 

under-estimating soil carbonate storage. One study (Hirmas et al., 2010) measured both 

the fine and gravel SIC fractions and combined the measurements into a single value with 
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no separate examination of the different pools. Other studies do not specify their methods 

used to process and quantify SIC on gravel (Drees and Nordt, 2001). A number of studies 

have addressed the amount of SIC on gravels through other methods. Vincent et al. 

(1994) measured clast coatings to develop a soil chronosequence. Treadwell-Steitz and 

McFadden (2000) measured the thickness of coatings to understand the relationship 

between clast size, parent material, and the amount of carbonate present. Pustovoytov 

(2003) used similar methods to measure growth rates of carbonate coatings. Reheis et al. 

(1992) used a method of visual inspection to determine the approximate amount of 

carbonate present in samples with limestone parent material. Our study uses a 

quantitative method of measuring SIC on gravel clasts to determine its importance in 

carbon storage in semi-arid soils. 

1.2. Study Area: 

1.2.1. Site description: 

The Reynolds Creek Experimental Watershed has an area of 238 km2 and is 

located approximately 60 km southwest of Boise, Idaho in the Owyhee Mountain range 

(Figure 1.1). Elevations range from ~1100 m to 2245 m, and precipitation closely follows 

the elevation gradient, with the driest location receiving ~240 mm annually and the 

higher elevations receiving over 1170 mm annually (Hanson, 2001). State and federal 

government owns ~75% of the land in the watershed, with the remainder privately owned 

and utilized primarily for cattle grazing.  
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2. Methods: 

2.1. Field methods: 

At each of the 26 sites, we excavated a pit to a depth of ~1 m or refusal due to 

bedrock. The sites were excavated by hand, but at three Agricultural Research Station 

study locations (sites 10, 11, and 14) we excavated to depths of ~ 2 m using a backhoe. 

We collected field observations of soil structure, color, gravel content, root density, and 

horizon characteristics following protocol outlined in Birkeland et al., (1991). A solution 

of 10% hydrochloric acid (HCl) was used to qualitatively measure the concentration of 

SIC present based on the strength of reaction along the soil profile. To determine color 

and field textures of the <2 mm fraction, we collected small samples at each horizon.  

In compliance with the Reynolds Creek Critical Zone Observatory soil sampling 

protocol (McCorkle, 2015), we collected samples at depth increments of 0-5 cm, 5-10 

cm, 10-20 cm and every 10 cm to the bottom of the pit on the center pit face. Although 

we recognize that sampling based on horizon boundaries could better reflect SIC 

accumulation processes, this protocol is designed to ensure uniformity among a variety of 

studies. We removed a volume of approximately 0.2 m3 for each sample and collected all 

rock present within this volume. In cases where a particularly large clast extended beyond 

our collected volume, we left the clast in the profile. Additional profiles were collected 

from different pit faces at 12 of the sites in order to assess pit-scale variability.  

2.2. Lab methods: 

The collected samples were first dried overnight at room temperature, then sieved 

to separate the gravel fraction (>2 mm) and the roots. The <2 mm fraction of soil was 

split into portions of 40-100 g for inorganic carbon analysis and the remainder was 
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archived. For replicate analysis, we split four sub-samples from every sample collected at 

site #23 and archived the remainder of the sample. We further separated the gravel 

fraction using an 8 mm sieve. The largest material not passing the 8 mm sieve was 

crushed using a sledge and sledge plate, and the smaller pieces were crushed using a 

small rock crusher until all material could pass through the 8 mm sieve. We recombined 

the material with the smaller gravel fraction and split out a ~25 g sub-sample. The split 

inorganic carbon samples were dried in an oven at 105 oC overnight to remove moisture. 

2.2.1. Inorganic carbon content: 

The inorganic carbon samples were powdered using a SPEX SamplePrep 8000M 

mill. We weighed 1.00g of each sample (or 0.50g for samples with estimated inorganic 

carbon content greater than 1.8%) into 20mL glass bottles and stored in a desiccator. We 

added 2mL of a 6M HCl solution with 3% FeCl2 by weight to a 0.5-dram vial which was 

placed into each bottle. We capped the bottles with a rubber stopper and aluminum cap 

that was crimped closed. Each bottle was agitated by hand to ensure the acid reacted with 

the entire sample and left to sit for approximately 10 hours (Sherrod et al., 2002). 

A modified pressure calcimeter (Sherrod et al., 2002) measured air pressure as a 

voltage that was converted to a percent carbonate through a calibration curve. We created 

the curve using known standards with carbonate (CaCO3) contents of 0.14%, 0.24%, 

0.6%, 1.2%, 1.8%, 3.6%, 6.0%, 12.0%, and 18.0%. Using the same acid solution, we 

converted the standards from a measured voltage to percent carbonate. Along with the 

standards, several vials containing no samples were run to ensure consistent readings 

throughout the process, and establish the zero concentration point. We measured the 

ambient air pressure and subtracted it from the pressure inside the bottle. We measured 
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the interior pressure by piercing the top of the rubber stopper with a syringe connected by 

tubing to the transducer sensor. We converted the calculated carbonate value to a percent 

inorganic carbon by multiplying the percent mass of carbon in carbonate (Eq. 1). A 

concentration was calculated using the % mass of inorganic carbon (Eq. 2). 

Ϸὅὥὅὕ ϷὛὍὅ                                                                                         (1) 

ϷὛὍὅʍ ὦ
    

   
ὧέὲὧὩὲὸὶὥὸὭέὲ έὪ ὛὍὅ                    (2)  

SIC = soil inorganic carbon 

ɟ = bulk density (kg/m3) 

b = thickness of profile section (m) 

C = concentration (kg/m2) 

2.3. Uncertainty analysis: 

We collected samples from 3 different pit faces at 12 of the sites; in addition, we 

ran replicates of 13 standards and every sample collected for site #23 (Table 1.1). For site 

#23, we split four sub-samples from every collected sample and processed them 

separately. The standard replicates confirmed the accuracy of our standards and allowed 

us to assess the precision of the calcimeter. By determining the uncertainty introduced by 

our methods, we were then able to measure the soilôs natural variability in SIC at the 

pedon-scale. 

3. Results: 

3.1. Soil inorganic carbon storage within the gravel fraction of soils: 

Within the watershed, there is a general trend of increasing soil inorganic carbon 

(SIC) storage on gravels as the total SIC content decreases (Figure 1.3). Although the fine 

fraction of soils is the largest pool of SIC (~87%), gravel clast coatings represent an 
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average of 13% of the total inorganic carbon for the 26 sites in this study (Table 1.1). 

Gravel-poor study sites inherently have less SIC storage on gravels. 

 

Figure 1.3 As the total amount of SIC in a soil profile decreases, the gravels within 

the profile store proportionally more SIC. This trend highlights the importance of 

measuring SIC on gravel coats in stage I to stage II soils.  

Site #13 is one of the highest elevation sites studied, receives 370 mm of 

precipitation annually, and has a welded tuff parent material. Although the SIC 

concentration is relatively low, this site has the highest amount of SIC in the coarse 

fraction with an average of 44% of the total soil SIC stored on the exterior of gravels 

(Table 1.1, Figure 1.4). The presence of gravels and a high clay content from the 

weathering of the tuff characterize this site. We observed that the exterior of clay peds 

have patchy coatings of SIC, but when broken apart had no visible accumulations of SIC 

on the interior of the peds. 
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Figure 1.4 Depth profile from site # 13 showing a large portion of total SIC stored as 

carbonate coats on gravels. Approximately 44% of the total SIC at this site is stored 

as coatings. Each of the three bars at a depth show the values for a sampled profile 

within the soil pit. 

3.2. Analysis of variability: 

Initial lab analysis of site samples showed that there were large variations in SIC 

values for a given depth between the different soil profiles (Figure 1.5). To determine 

whether these differences were due to natural variability at the pedon-scale or uncertainty 

associated with analytical methods, we ran replicates of site #23 samples and of several 

standards. As seen in Figure 1.5, SIC values may be similar between two of the three pit 

faces, but it is rare to find comparable SIC values among all three pit faces. Additionally, 

we calculated the coefficient of variation (CV) for both the fine-grained and gravel 

samples to describe the variation in measurements relative to the mean (Figure 1.6). The 



12 

 

 

 

 

two fractions have similar median values of CV (0.41 for fines and 0.54 for gravels), but 

the gravels have a wider range of values. 

 

Figure 1.5 Analysis of lab uncertainty for the measurements of both the gravel (A) 

and fine (B) fractions at site #23. We collected the three profiles from three walls 

within the same soil pit. The bars at each depth show the values for mean SIC along 

with their standard deviations as determined from the four measured replicates. 
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There is considerable uncertainty in both fractions, but the relative uncertainty in the 

gravel fraction is larger. 

 

Figure 1.6 Comparison of coefficient of variation (CV) between the measured SIC 

from fine-grained samples and gravel samples. CV describes the variation in the 

samples relative to the mean value. The CV is similar between the two fractions, but 

shows a great deal of variance overall with the widest range found in the gravel 

fraction. 

Replicates of standards showed the instrument introduced little uncertainty in the 

measured SIC values (Figure 1.7). Measurements of the standards were consistent down 

to values of 0.016 % SIC. For standards below 0.1% SIC, the average standard deviation 

is 0.003%. Above 0.1%, the average standard deviation is 0.006%. When we compared 

both the absolute and relative magnitude of these standard uncertainties to lab 

measurements of the field samples, we found the uncertainties are negligible relative to 
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the field variability (Figure 1.5). We assume that naturally occurring heterogeneities in 

the soil profile create the large majority of variation in the results. 

 

Figure 1.7 Results of known standard replicate analysis with each standard having at 

least five replicates. A) The image shows the full range of analysis with error bars for 

each standard. Due to the relatively small amount of error, however, the bars are not 

visible. B) The image shows the same data for the low concentration samples. As can 

be seen in both figures, the uncertainty in the measurements was relatively small and 

the results were highly reproducible. 
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Table 1.1: Summary of results of analysis. 

Site ID 
Easting* 

(m) 
Northing 

(m) 
Elevation 

(m) 
Total SIC 
(kg/m2) 

Gravel 
proportion 
by mass 

Proportion 
of SIC on 
gravel by 

mass 

Gravel 
SIC 

(kg/m2) 

30 520369 4784469 1147 3.24 0.101 0.063 0.20 

11 521097 4788320 1148 6.76 0.081 0.061 0.41 

5 520581 4786904 1166 0.35 0.100 0.134 0.05 

29 519653 4785144 1168 24.56 0.000 0.000 0.00 

28 519587 4785291 1171 9.29 0.322 0.075 0.70 

6 520583 4786227 1178 0.08 0.044 0.007 0.00 

10 521920 4788163 1178 9.35 0.055 0.009 0.08 

31 520522 4783679 1193 5.42 0.204 0.037 0.20 

38 517874 4788707 1194 6.91 0.112 0.014 0.10 

24 520258 4783645 1204 28.08 0.111 0.012 0.34 

25 520280 4783627 1207 9.26 0.280 0.150 1.39 

22 521311 4783134 1223 4.81 0.000 0.000 0.00 

2 521543 4784127 1233 2.93 0.360 0.157 0.46 

Site ID 
Easting* 

(m) 
Northing 

(m) 
Elevation 

(m) 
Total SIC 
(kg/m2) 

Gravel 
proportion 
by mass 

Proportion 
of SIC on 
gravel by 

mass 

Gravel 
SIC 

(kg/m2) 

3 521075 4783608 1235 19.18 0.292 0.245 4.70 

1 517124 4789664 1247 6.89 0.389 0.068 0.47 

20 523913 4788905 1288 5.67 0.168 0.112 0.64 

19 523801 4787956 1302 0.44 0.284 0.129 0.06 



 

 

 

 

1
6 

17 519594 4779068 1310 0.89 0.264 0.258 0.23 

16 519792 4778913 1329 1.48 0.320 0.369 0.55 

23 522924 4782230 1345 1.28 0.347 0.164 0.21 

8 515436 4791916 1375 3.26 0.216 0.232 0.76 

18 523312 4779456 1433 7.84 0.253 0.289 2.27 

7 524529 4778012 1583 0.43 0.302 0.181 0.08 

13 521506 4776829 1626 0.60 0.509 0.438 0.26 

4 523628 4777568 1631 12.30 0.403 0.157 1.93 

9 522286 4775021 1813 0.03 0.401 0.002 0.00 

  1 UTM zone 11
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4. Discussion: 

4.1. Gravel inorganic carbon: 

Our analysis of soil inorganic carbon (SIC) stored in gravel coats has implications 

for global estimates of soil carbon storage. Although several studies have quantified SIC, 

their measurements are likely underestimations due to the exclusion of gravels from 

chemical analysis (Sobecki and Wilding, 1983; Slate et al., 1991; Rasmussen, 2006; 

Kunkel et al., 2011; Washbourne et al., 2012, Austreng, 2012). In a meta-analysis of 

collected carbon data, Batjes (1996) found that in the top meter of soil there is 695-748 

Pg of carbon in carbonate minerals globally. In Reynolds Creek, approximately 13% of 

SIC is stored on gravels. Making the (admittedly large) assumption that this amount of 

SIC storage on gravels is representative of soils globally, approximately 90-97 Pg of 

carbon could be unaccounted for in these surveys. 

Obtaining data on the amount of inorganic carbon stored on gravels is resource 

intensive, and can be prohibitive depending on the goals of a given study. It is possible to 

process a few sites in order to establish a relationship between the proportion of gravel 

and amount of SIC, but the greater the range of soil conditions in a study location, the 

less feasible this approach. In non-gravelly soils, this concern is obviously not an issue. 

However, in gravelly soils, inorganic carbon accumulates preferentially on clasts. 

Following the stages of carbonate development (Gile et al., 1966; Machette, 1985), this 

carbon accumulates first on the undersides of clasts as surface tension holds water to the 

bottom. This water evaporates promoting the precipitation of carbonate minerals. As 

carbonate accumulates on the clasts and the surrounding finer material, it then begins to 

fill pore space and cover the remainder of the clasts. For gravelly soils with low amounts 



18 

 

 

 

 

of SIC (stage I-II+), only quantifying the <2 mm fraction of carbonate would ignore a 

large portion of carbon stored in the soil profile. 

Estimating SIC storage in areas characterized by the dissolution and re-

precipitation of carbonate from lithogenic sources is problematic for estimates of carbon 

storage in soils vs. rock (Reheis et al., 1992; Ryskov et al., 2008). It is difficult to 

distinguish the pedogenic and lithogenic pools, but it is possible through isotopic analysis 

(Ryskov et al., 2008). 

4.2. Pedon-scale variability: 

In our initial observations, we noted a large degree of variability between the 

three different profiles within a pit. Replicates of known standards show that our methods 

introduced little uncertainty for both lower and higher concentration standards (Figure 

1.7). The field data also show that there is considerable variability in both the fine and 

gravel fractions of SIC, making it difficult to distinguish the three profiles from each 

other. We compared the coefficients of variation (CV) between the fine-grained and 

gravel SIC fractions (Figure 1.6). While the two fractions have similar median values, the 

variance in gravel is greater. This greater variance is likely due to the patchy nature of the 

SIC gravel coatings, compared with more diffuse and uniform distribution of SIC in the 

soil matrix. These factors, combined with the relatively low total concentration of carbon, 

likely lead to the larger variation in the gravel samples. We are confident that the 

variability seen in our measurements of SIC results from natural heterogeneities in soil 

properties that influence accumulation of pedogenic carbonates. 

The low amount of analytical uncertainty confirms that the initial observations of 

significant pedon-scale variability are naturally occurring. Site #10, for example, has SIC 
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concentrations of 5.8, 9.14, and 13 kg/m2 for its three profiles. Therefore, a single 

measured profile could vary by as much as 7.2 kg/ m2 of SIC depending on the location 

sampled. We considered that different amounts of large clasts between profiles at site #10 

could be responsible for this variability. However, both site #10 and nearby site #11 have 

similarly low gravel contents (<1%) whereas site #2 has, in contrast, some of the lowest 

variability in the watershed with the 3 profiles containing 6.56, 6.76, and 6.96 kg/m2 of 

carbon. The soil at site #4 is 40% gravel by mass and has a relatively narrow range of 

SIC values as well (11.3, 12.3, and 13.2 kg/m2). Therefore, the amount of gravel within a 

given site does not correspond with intra-site variability.  

Variation in a soilôs hydrologic properties likely create these heterogeneities in 

SIC concentrations. Patchy ground cover, macropores and respiration from roots, 

differences in dust accumulation, amount and size of gravel, and depth to bedrock can all 

influence SIC accumulation (Jenny, 1941). The diversity of soil conditions within a given 

study area determines the degree to which this natural variability should be examined. 

The RCEW is a relatively varied location with a range of parent materials, climates, 

relief, and soil. Similarly, studies over relatively large and/or diverse regions will need to 

examine the range of heterogeneity by collecting enough data to represent the different 

environments. Smaller scale studies with homogenous conditions may only require 

sampling a few soil sites to quantify variability. 

5. Conclusions: 

This work contributes to the field of soil science by 1) examining variability in 

soil carbonate storage at the pedon-scale, 2) quantifying analytical and measurement error 

in soil carbonate measurements, and 3) defining the amount of carbonate stored in 
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gravelly vs. non-gravelly soils. Our sample replication and quantification of variability 

shows that while analytical and measurement error is low, considerable variation exists at 

the pedon-scale. Our results show that drawing conclusions from a single measurement at 

a site can lead to considerable over- or underestimation of carbon at a location. Carbonate 

coatings on gravel comprise a significant portion of total soil inorganic carbon in the 

Reynolds Creek Experimental Watershed. Carbonate coats on clasts account for an 

average of 13% of SIC storage in the RCEW study area; some sites contained >40% of 

the total SIC as coats on gravels.   

Future studies providing measurements of SIC storage will need to account for 

gravel carbonate coatings and address the inherent soil variability. However, the 

resources required to process and measure SIC on gravels can be prohibitive. The results 

of this study, along with other future work, can be used to establish relationships between 

gravel percentages and the portion of SIC stored on gravels. Future examination of the 

amount and controls on variability of SIC accumulation at the pedon-scale would provide 

better insight as to how this information should be integrated in other studies.
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CHAPTER TWO: CONTROLS ON THE PRESENCE AND CONCENTRATION OF 

SOIL INORGANIC CARBON IN A SEMI-ARID WATERSHED 

1. Introduction:  

Soil is the worldôs third largest reservoir of carbon (Lal, 2004). Arid and semi-

arid soils store approximately 40% of soil carbon in inorganic minerals (Batjes, 1996; 

Eswaran, 2000). This pedogenic inorganic carbon pool is comprised of carbonate 

minerals, predominately calcium carbonate, which precipitate from the soil solution as it 

evaporates (Dixon et al., 1989). Sufficiently large amounts of rainfall can prevent the 

formation of soil inorganic carbon (SIC) entirely, but the hierarchy of soil development 

controls within areas of SIC accumulation is complex (Jenny, 1941). The need to 

quantify the storage and flux of this carbon pool is becoming more apparent as climate 

continues to change. Between 1750 and 2011, atmospheric concentrations of carbon 

dioxide (CO2) increased 40% globally (Ciais, 2013). Climate projections show that soils 

in xeric climates such as the Reynolds Creek Experimental Watershed (RCEW) in 

southwestern Idaho (Figure 2.1) will be more heavily impacted by the changing climate 

(Settele, 2014); however, the magnitude and even the direction of soil carbon flux are 

highly variable and frequently unknown (Ciais, 2013). Many studies have examined the 

organic soil carbon pool and its fluxes; however, less work has been devoted to 

understanding the inorganic portion of the stored soil carbon. Total global SIC reservoirs 

contain from 695 Pg (Batjes, 1996) to 1,738 Pg (Eswaran et al., 1995) of carbon. With 

estimations of total soil carbon, both organic and inorganic, equaling almost 2,500 Pg of 
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carbon (Batjes, 1996), better quantification of the amount of soil carbon storage is 

increasingly important for global climate studies. 

 

Figure 2.1 Reynolds Creek Experimental Watershed is located in southwestern 

Idaho.  

This study defines the boundaries and hierarchies of controls on SIC 

accumulation within a sage-steppe dominated experimental watershed. Intensive field-

based measurements of soil characteristics show the threshold of SIC accumulation in 

Reynolds Creek is at ~500 mm of precipitation. Within this zone of SIC accumulation (< 

500 mm of precipitation), the parent material of the soil is the next most important 

predictor of SIC concentration. The threshold of SIC accumulation at 500 mm 

precipitation matches prior studies in the western USA (Malde, 1955; Birkeland et al., 
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1996; Royer, 1999; Retallack, 2005; Zamanian et al., 2016) which show the boundary of 

carbonate bearing soils and carbonate leached soils (pedocals and pedalfers respectively) 

ranges from 460-650 mm of precipitation.  

1.1. Background: 

1.1.1. Inorganic carbon formation: 

Calcic soils store SIC through precipitation of secondary carbonate minerals 

(CaCO3 and MgCO3). Evaporative processes are significant drivers in the formation of 

these carbonate minerals in arid and semi-arid soils as dissolved species (Ca2+, Mg2+, and 

carbonate (CO3
2-) ions) are concentrated within the soil pore water (Birkeland, 1999). 

However, previous work by Dixon et al. (1989) established that there is considerably less 

MgCO3 than CaCO3 in pedogenic carbonates so we assume that the concentration of 

MgCO3 is negligible in our analyses. The dissolved CO2 concentration is one of the 

largest controls on SIC precipitation (Mayer et al., 1988; McFadden et al., 1998; 

Retallack, 2005; McFadden, 2013; Zamanian et al., 2016), but sufficiently high amounts 

of water prevents the formation of carbonate minerals entirely (Jenny, 1941; Malde, 

1955; Arkley, 1963; Birkeland, 1999; Royer, 1999; Retallack, 2005). High precipitation 

and low evapotranspiration flush the dissolved ions (Ca+2, Mg+2) from the soil profile 

with infiltrating water. Pedogenic carbonate formation is highly correlated with a soil pH 

greater than 8.0 (Birkeland, 1999). Naturally occurring acids within the soil and low pH 

rainwater hinder the formation of SIC. Limestones and other carbonate-rich parent 

materials, in contrast, will obviously promote the formation of secondary calcic deposits 

with a soil due to the dissolution and re-precipitation of carbonate minerals. 
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Researchers Gile et al. (1966) and Machette (1985) sought to better understand the 

development of SIC in arid soils. They found that the carbonate minerals have distinct 

levels of development and that these characteristics, along with the amount of 

accumulated SIC, are dependent on the age of the soil and the input of Ca2+ ions (Gile et 

al., 1966; Machette, 1985). The stages of carbonate development (Gile et al., 1966; 

Machette, 1985) provide widely-used indicators of soil development and soil age in semi-

arid and arid environments. Prior to advances in radiometric dating techniques, stages of 

carbonate development were a field indicator used for chronosequences and dating of 

geomorphic surfaces (e.g. Pierce and Scott, 1982; Reheis et al., 1992; Vincent et al., 

1994; Birkeland et al., 1996). Gravelly soils and non-gravelly soils accumulate SIC 

differently, since carbonate precipitates and accumulates on the bottom of gravel clasts 

preferentially (e.g. Gile et al., 1966; Machette, 1985).  

Researchers have presented a number of different models of carbonate formation: 

per descensum, per ascensum, in situ, and biogenic (Monger, 2002). Per ascensum 

describes the formation of SIC through the capillary rise of moisture from the water table 

upward through the soil profile. SIC precipitates as the soil solution evaporates with the 

greatest accumulations occurring in the upper parts of the profile (Sobecki, 1983; 

Monger, 2002). For this model of formation to work, the groundwater must be 

sufficiently close to the surface and contain high concentrations of Ca2+. Additionally, 

there must be a texture regime that can support this movement of moisture (Machette, 

1985). We do not consider per ascensum, in situ, and biogenic models to be the dominant 

processes of SIC accumulation in the RCEW though it is likely they play a small role in 
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carbonate formation. Per ascensum conditions occur in a small portion of the watershed 

where there are near-surface springs.  

In situ formation involves the weathering and re-precipitation of calcareous parent 

material (Rabenhorst, 1986; Monger, 2002). This model most often involves in situ 

weathering of marine carbonates. It can also involve rocks with high concentrations of 

other calcium rich minerals such as plagioclase. No limestones or dolostones are present 

in RCEW. Although there are basaltic rocks in the watershed with higher concentrations 

of calcium rich minerals (McIntyre, 1972), the concentrations are unlikely to be high 

enough to explain all of the SIC present. Additionally, these rocks weather more slowly 

in arid conditions due to lower amounts of moisture (Machette, 1985; Birkeland, 1999). 

Biogenic formation of SIC occurs through the processes of microscopic organisms. SIC 

accumulates as organisms create mucilaginous sheaths composed of carbonates, which 

amass in the profile after the organismsô death (Monger et al., 1991). We assumed that 

this process accounts for a negligible portion of SIC in our study area. 

The per descensum model is the most widely accepted view for the development 

of SIC (Machette, 1985). This model describes the downward movement of water as 

carrying the necessary components for the formation of carbonates. As the moisture 

evaporates, the minerals accumulate within the soil profile. By incorporating the input of 

meteorological sources of Ca2+ into the soil profile, this model has successfully 

accounted for the concentrations of SIC measured at locations where calcareous parent 

material is less abundant or absent (Machette, 1985). 
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1.1.2. Soil inorganic carbon in arid and semi-arid soils: 

Arid and semi-arid soils contain approximately 92% of all inorganic carbon 

(Eswaran et al., 2000). However, there is considerable uncertainty in quantifying the 

amounts of SIC as they are the result of heterogeneous processes and soil characteristics 

on small pedon-scales that are difficult to scale up to landscapes (Eswaran et al., 1995). 

There have been efforts to map SIC concentrations over scales ranging from small 

watersheds to thousands of square kilometers. Even when precipitation is the main 

predictor for the SIC distribution models, there is recognition that other soil variables can 

play a large role in SIC accumulation. Rasmussen (2006) used the dominant 

biome/vegetation type as a proxy for SIC. The use of biomes alone limited his results and 

he specified the importance of incorporating soil taxonomy data in future work. Hirmas et 

al. (2010) used data on hydrologic and geomorphic characteristics of a watershed related 

to runoff to create a process-based model. They state their results could be improved by 

incorporating the effects of carbonate accumulation on water holding capacity and the 

effects of roughness and vegetation on dust accumulation. Grinand, et al. (2012) 

examined a relationship between SIC and mid-infrared reflectance spectroscopy to 

predict SIC concentrations throughout France. However, the study is of limited 

applicability to many arid and semi-arid regions as it was only able to predict inorganic 

carbon in the top 30 cm and the peak accumulations frequently occur at greater depths. 

Early work in arid and semi-arid soils focused on understanding soil development and the 

role of dust in soil formation. Traditionally, researchers described soil development as a 

óbottom upô process where rock weathers into regolith and finally the mineral component 

of soil. Arid soils frequently have characteristics that do not match this model of soil 
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development. Instead, researchers proposed that these soils also formed from the ótop 

downô as dust was deposited on the surface. This inflationary model describes soils in 

semiarid climates growing from the input of a new parent material, wind-blown dust 

(McFadden, 2013). The characteristics of the soil are influenced by the composition and 

rate of dust input. Gile et al. (1966) noted that all soils in their study area, regardless of 

underlying geology, have calcareous parent material due to the high influx of dust.  

1.2. Study Area: 

1.2.1. Site description: 

Reynolds Creek Experimental Watershed is located in the Owyhee Mountains 

southwest of Boise, Idaho and has an area of 238 km2 (Figure 2.1). The elevation within 

the watershed ranges from approximately 1100 m to 2240 m. About 25% of the land is 

privately owned and utilized for cattle ranching; state and federal governments own the 

remainder. The Agricultural Research Service (ARS) of the United States Department of 

Agriculture (USDA) has an established research station in the watershed with over 50 

years of data collection. The ARS has developed large sets of hydrological and 

meteorological data during this time (Watershed, 2016). 

Mean annual precipitation (MAP) ranges from ~240 mm at lower elevations to 

1170 mm at higher elevations (Hanson, 2001). The RCEW receives the majority of its 

precipitation between November and May in this xeric precipitation regime, with most 

precipitation (76%) falling as snow at high elevations and mixed rain and snow (20%) at 

lower elevations (Hanson, 2001). The study area has a mean annual temperature ranging 

from 4.7 oC to 11 oC and both precipitation and temperature closely follow the elevation 

gradient (Seyfried et al., 2011). Potential evaporation exceeds precipitation throughout 
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the watershed except at the highest elevations; this deficit is partially offset by the strong 

seasonality of precipitation in the RCEW (Seyfried, et al. 2011).  

Mixed sagebrush (Artemisia tridentate subsp. wyomingensis) and greasewood 

(Sarcobatus vermiculatus) dominate landscapes in the low elevations. At high elevations, 

mixed grasses, low sagebrush (Artemisia arbuscula), and bitterbrush (Purshia tridentate) 

become more common and eventually give way to mountain big sagebrush (Artemisia 

tridentate subsp. vaseyana), Douglas fir (Pseudotsuga menziesii), and aspen (Populus 

tremuloides; Seyfried et al., 2011). Locations in mid-to-high elevations exhibit aspect 

driven differences in vegetation type and abundance as well. Cooler northeastern facing 

sites have larger amounts of vegetation which increase the thickness of both the A-

horizon and the total soil profile.  

Approximately 85% of soils in the RCEW are classified as Mollisols (Stephenson, 

n.d.). Aridisols comprise ~13% of soils in RCEW, and are found exclusively in the 

lowest elevations of the watershed receiving < 350 mm of precipitation. Vertisols, 

Entisols, and Inceptisols comprise about 2% of the remaining soils. 

Cretaceous granite from the Idaho Batholith underlies Reynolds Creek and is 

exposed as rounded corestones throughout the watershed. Miocene volcanism deposited 

basalts and andesites over the batholith, followed by additional episodes of late 

Miocene/early Pliocene volcanism, which deposited basalts, latites, and welded tuffs over 

large portions of the southern watershed (McIntyre, 1972). Soils developed over volcanic 

parent material within the watershed are typically thin, poorly developed, and rocky. 

Four alluvial terraces parallel Reynolds Creek in its northern reaches, which provide a 

basic chronosequence of relative surface ages. Numerous fine-grained sedimentary 
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arkosic units, comprised primarily of sands and gravels, and one gravel pit exposure 

showing a Gilbert delta sequence are visible along the eastern portion of the RCEW. 

Most of this material is sourced locally from granite exposures, but it is suggested that 

some of the material is external to the watershed (McIntyre, 1972). These deposits 

indicate a lake was at one time present in the Reynolds basin.  The age, origin and extent 

of this lake are not known.  

Soils in the low elevations of the study area have thin A-horizons (less than 10 

cm) underlain by Bw, Bt and/or Bk-horizons. The B-horizon varies in thickness 

considerably depending on the degree of weathering and site stability. Bedrock may be 

present <30 cm below the surface. 

2. Methods: 

2.1. Field methods: 

We selected the sampling sites to represent a range of soil forming factors. These 

locations captured changes in the soil conditions, particularly precipitation, vegetation, 

and parent material. However, we had limited or no access to certain locations due to lack 

of roads and privately owned property.  

We excavated a soil pit at each site to approximately 1 m or refusal. We obtained 

permission to use a backhoe to excavate three sites (#3, #24, and #25) to a depth of about 

2 m. We described the vegetation, geomorphic surface, soil structure, color, gravel 

content, root density, horizon boundaries, and stage of carbonate development, following 

field methods outlined in Birkeland et al. (1991). We used a solution of 10% hydrochloric 

acid (HCl) to measure qualitatively the concentration of soil inorganic carbon (SIC) in 

the field and noted the reaction strength (none, weak, moderate, or strong). Color and 
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field textures were determined using small samples of the fine fraction taken from the 

profile.  

Starting at 0-5 cm, 5-10 cm, 10-20 cm and every 10 cm after, we collected 

samples from the center face of the pit (McCorkle, 2015). This protocol is designed to 

ensure uniformity among a variety of studies, but we recognize that sampling based on 

horizon boundaries could better reflect SIC accumulation processes. We described and 

sampled the left, right, and center faces of soils pits from the first 15 sites to help assess 

pedon-scale variability. We collected additional observations at ten sites to determine the 

simple absence or presence of SIC. We excavated a soil profile to a depth of 1 m or 

rejection, and the 10% HCl acid solution was applied down the profile to qualitatively 

assess SIC concentration. 

2.2. Lab methods: 

 All samples from this project have been archived at the Boise State sample 

storage site and labeled according to the RCEW Critical Zone Observatory protocol 

(McCorkle, 2015).  

Samples were dried at room temperature then sieved to separate out the coarse 

fraction (>2 mm) and roots. The fine fraction (<2 mm) was split into two portions of 40-

100 g each for measuring both inorganic carbon concentration and grain size distribution. 

Clasts not passing through the 2 mm sieve were separated using an 8 mm sieve. The 

largest pieces were crushed using a sledge until small enough to be run through a small 

rock crusher. We combined the crushed pieces with the medium sized gravels (~15 mm) 

to run through the small crusher until all material could pass through the 8 mm sieve. The 
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material was recombined with the smallest gravels to be split into 20-30 g of sample for 

analysis. The split samples were dried at 105 oC in an oven overnight. 

2.2.1. Inorganic carbon content: 

The inorganic carbon samples were powdered in a ball mill. After powdering, 

1.00 g of each sample (or 0.50 g of any sample estimated to contain >1.8% inorganic 

carbon by mass), was placed in 20 mL glass bottles and kept in a desiccator. A 0.5 dram 

vial containing 2 mL of a 6 M HCl solution with 3% FeCl2 was added to each sample 

bottle. A rubber stopper sealed the bottle and an aluminum cap was crimped over the 

stopper. To ensure the acid reacted with the entire sample, each bottle was agitated by 

hand and allowed to react for approximately 10 hours (Sherrod, 2002). 

We used a modified pressure calcimeter (Sherrod, 2002) to measure air pressure 

inside the bottle as a voltage. We converted this voltage to a percent carbonate using a 

calibration curve created by measuring the voltage of known CaCO3 standards (0.14%, 

0.24%, 0.6%, 1.2%, 1.8%, 3.6%, 6.0%, 12.0%, and 18.0%). Additionally, we ran several 

blank samples of the acid solution to monitor for errors in measurements and establish the 

zero concentration point. The air pressure in the lab was measured and subtracted from 

the pressure inside the sample bottles. The interior pressure measurements were taken by 

piercing the top of the rubber stopper with a syringe connected with tubing to the 

transducer sensor. To obtain the percent inorganic carbon, the calculated carbonate value 

was multiplied by the percent mass of carbon in the carbonate molecule (Eq. 1). A 

concentration was calculated using the percent mass of inorganic carbon, soil density, 

thickness of sampled section, and fraction of gravel or fines depending on the fraction 

being measured (Eq. 2). 
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Ϸὅὥὅὕ ϷὛὍὅ                                                                                         (1) 

ϷὛὍὅʍ ὦ
    

   
ὅ                                                            (2)  

SIC = soil inorganic carbon 

ɟ = bulk density (kg/m3) 

b = thickness of profile section (m) 

CSIC = SIC concentration (kg/m2) 

2.2.2. Texture analysis: 

We measured the grain size distribution of 163 site samples from the major 

horizons within 26 soil profiles (McCorkle, 2015). Some samples had soil grains 

cemented together by carbonate minerals, which makes the measured texture appear 

coarser. To remove this cementation, we dissolved the carbonate minerals overnight in a 

solution containing 10 mL of 1M sodium acetate (CH3COONa) and 100 mL of DI water 

in an oven at 60 o C. The supernatant solution was pipetted off the sample the next day, 

100 mL of DI water were added, and the sample was left overnight at 60 oC. Finally, the 

DI water was removed and all texture samples were mixed with 100 mL of a 50 g/L 

solution of sodium hexametaphosphate to disaggregate soil particles and placed on a 

shaker table for several hours. The sample was emptied into a 1000 mL graduated 

cylinder and room temperature DI water was added until there was 1 liter of solution. The 

soil solutions were agitated with a stir rod to distribute material throughout the cylinder 

and allowed to settle for 7 hours. After this time, hydrometer density measurements were 

taken along with the solutionsô temperature. The same measurements were taken with a 

blank cylinder containing 100 mL of the hexametaphosphate solution and 900 mL of DI 

water to account for the solutionôs density. 
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Clay and silt sized particles were removed from the sample by wet-sieving with a 

53 µm sieve after the 7-hour measurement. The remaining sand fraction was dried 

overnight in an oven at 105o C. This dried sand was weighed and placed in a muffle 

furnace at 450o C for 8 hours to remove organic material. This final ashed weight was 

recorded and provided both the weight of sand and a correction to the total sample weight 

after removal of organic material. 

The 7 hour reading provided the density of the soil solution when all soil particles 

larger than clay sized had settled out of suspension. The blank reading is subtracted from 

the sample reading after corrections for temperature had been applied. This corrected 

value was the mass of clay in the sample. The silt fraction was determined by subtracting 

the clay mass and the sand mass from the total sample mass. 

2.3. GIS and data analysis: 

To supplement our analyses, we incorporated data from two soil studies in the 

RCEW (Will and Benner, unpublished results; Seyfried, personal communication). Site 

locations, elevations, parent materials and soil carbonate data from 31 additional soil pits 

augmented our 40 sites to increase the efficacy of our models and improve prediction. 

We used ArcMap software to integrate our data with previously created spatial 

coverages for the RCEW including the following: digital elevation models (DEMs,), 

normalized difference vegetation index (NDVI), precipitation, percent ground cover, 

metrics of vegetation height, and mapped vegetation and geologic unit for the sites. 

Insolation values were calculated using the area solar radiation tool in ArcMap and the 

DEM for the watershed. 
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We established the relative importance and quantitative relationships between the 

different environmental controls and SIC through the use of random forest analysis and 

multiple linear regression (MLR). The random forest analysis used precipitation, 

insolation, different vegetation metrics, aspect, slope, northness (Eq. 3), elevation, and 

geologic unit.  

ὔέὶὸὬὲὩίίÃÏÓὥίὴὩὧὸÓzÉÎ ίὰέὴὩ                                                                        (3) 

We used random forest analyses to examine the importance of different 

environmental controls on the presence, absence, and amount of SIC. The model creates a 

series of decision trees where each of the nodes on the tree tests the effectiveness of a 

predictor variable. A portion of the data are withheld from each run and tested against the 

tree to determine its accuracy. This process is repeated hundreds of times until the most 

powerful predictors are established.  

2.4. Dust collection and analysis: 

 We collected dust deposited in cavities > 2 m above the ground surface 

within exposed basalt, granite, and rhyolite. We assumed that the material was 

transported by wind (e.g. Reynolds et al., 2006). These samples, along with 10 soil 

samples, were analyzed with inductively coupled plasma mass spectrometry (ICPMS) to 

determine the concentrations of major elements within the samples. Additionally, we 

measured the CaCO3 concentration for one of the dust collection sites with the pressure 

calcimeter. 
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3. Results: 

3.1. Variation in Soil Inorganic Carbon with Precipitation: 

Variations in precipitation govern the presence or absence of soil inorganic 

carbon (SIC) within the Reynolds Creek Experimental Watershed (RCEW). Mean annual 

precipitation (MAP) determines whether or not SIC is able to precipitate, but the 

interactions of other soil forming factors are complex making it difficult to establish a 

relationship and a hierarchy of controls. We analyzed 710 samples for inorganic carbon 

content in both the fine and gravel fractions (Table 2.1). Soils at high elevations with 

higher MAP generally do not contain any SIC; low elevation soils contain variable 

amounts of SIC. These lower elevation sites have SIC accumulations ranging from trace 

amounts to a high of 28.08 kg/m2 (Table 2.1). The large majority of sites have less than 

13 kg/m2 of SIC. Soils from areas receiving > 500 mm of precipitation do not contain 

calcic horizons, whereas soils below this 500 mm threshold do accumulate carbonate 

minerals.
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Table 2.1 Summary of site data. 

Site 
ID 

Easting1 
(m) 

Northing 
(m) 

Elev. 
(m) 

SIC  
(kg/m2) 

MAP2  
(mm) 

Vegetation 
Geologic  
unit 

1 517124 4789664 1247 6.89 342 
Wyoming 
Sagebrush 

Boston Ranch unit 
- bedded silicic 
tuff, diatomite and 
lignite 

2 521543 4784127 1233 2.93 275 
Wyoming 
Sagebrush 

Gravel capped 
pediment 
remnants, higher 
level 

3 521075 4783608 1235 19.18 282 
Wyoming 
Sagebrush 

Gravel capped 
pediment 
remnants, higher 
level 

4 523628 4777568 1631 12.3 388 Low Sagebrush 

Toll Gate olivine 
basalt including 
underlying basalt 
tuff 

5 520581 4786904 1166 0.351 252 
Wyoming 
Sagebrush 

Granitic rock, 
quartz monzonite 
in part 

6 520583 4786227 1178 0.079 250 
Wyoming 
Sagebrush 

Arkosic sand, 
granitic gravel and 
silty clay 

7 524529 4778012 1583 0.432 379 Low Sagebrush 
Hoot Nanny 
olivine basalt 

8 515436 4791916 1375 3.26 486 
Wyoming 
Sagebrush 

Salmon Creek 
basalt - andesite 
unit 

9 522286 4775021 1813 0.03 458 
Mountain 
Sagebrush-
Snowberry 

Tuff associated 
with upper latite 
unit 
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10 521920 4788163 1178 9.35 260 
Wyoming 
Sagebrush 

Granitic rock, 
quartz monzonite 
in part 

11 521097 4788320 1148 6.76 261 Greasewood 
Arkosic sand, 
granitic gravel and 
silty clay 

Site 
ID 

Easting1 
(m) 

Northing 
(m) 

Elev. 
(m) 

SIC  
(kg/m2) 

MAP2  
(mm) 

Vegetation 
Geologic  
unit 

12 520965 4770146 1943 0 716 Low Sagebrush 
Granitic rock, 
quartz monzonite 
in part 

13 521506 4776829 1626 0.601 372 Low Sagebrush 
Rhyolitic welded 
tuff, Black Mt. unit 

        

14 514764 4789264 1385 0 522 
Wyoming 
Sagebrush 

Salmon Creek 
basalt - andesite 
unit 

15 516059 4789497 1296 0 414 
Wyoming 
Sagebrush 

Salmon Creek 
basalt - andesite 
unit 

16 519792 4778913 1329 1.48 413 
Wyoming 
Sagebrush 

Boston Ranch 
unit - bedded 
silicic tuff, 
diatomite and 
lignite 

17 519594 4779068 1310 0.893 414 
Wyoming 
Sagebrush 

Boston Ranch 
unit - bedded 
silicic tuff, 
diatomite and 
lignite 

18 523312 4779456 1433 7.84 314 
Wyoming 
Sagebrush 

Hoot Nanny 
olivine basalt 

19 523801 4787956 1302 0.443 263 
Wyoming 
Sagebrush 

Hoot Nanny 
olivine basalt 

20 523913 4788905 1288 5.67 264 
Wyoming 
Sagebrush 

Granitic rock, 
quartz 
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monzonite in 
part 

21 523701 4778341 1558 0 363 Low Sagebrush 
Hoot Nanny 
olivine basalt 

22 521311 4783134 1229 4.81 281 
Wyoming 
Sagebrush 

Boston Ranch 
unit - bedded 
silicic tuff, 
diatomite and 
lignite 

23 522924 4782230 1345 1.28 276 
Wyoming 
Sagebrush 

Hoot Nanny 
olivine basalt 

24 520258 4783645 1204 28.08 286 
Wyoming 
Sagebrush 

Gravel capped 
pediment 
remnants, lower 
level 

25 520280 4783627 1207 9.26 286 
Wyoming 
Sagebrush 

Gravel capped 
pediment 
remnants, lower 
level 

26 522275 4774835 1808 0 472 
Mountain 
Sagebrush-
Snowberry 

Hoot Nanny 
olivine basalt 

27 523138 4776818 1716 0 401 Low Sagebrush 
Hoot Nanny 
olivine basalt 

 

Site 
ID 

Easting1 
(m) 

Northing 
(m) 

Elev. 
(m) 

SIC  
(kg/m2) 

MAP2  
(mm) 

Vegetation 
Geologic  
unit 

28 519587 4785291 1171 9.29 294 
Wyoming 
Sagebrush 

Arkosic sand, 
granitic gravel 
and silty clay 

29 519653 4785144 1168 24.56 292 Greasewood 
Floodplain 
alluvium 

30 520369 4784469 1147 3.24 277 Cultivated 
Floodplain 
alluvium 

31 520522 4783679 1193 5.42 286 
Wyoming 
Sagebrush 

Floodplain 
alluvium 
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32 519003 4776592 1460 0 488 
Wyoming 
Sagebrush 

Granitic rock, 
quartz 
monzonite in 
part 

33 516668 4791703 1306 0 405 
Wyoming 
Sagebrush 

Tuff associated 
with lower latite 
unit 

34 517760 4782044 1315 0 360 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, 
quartz 
monzonite in 
part 

35 517801 4781795 1341 0 377 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, quartz 
monzonite in part 

36 517877 4781830 1313 0 364 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, quartz 
monzonite in part 

37 517853 4781926 1313 0 359 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, quartz 
monzonite in part 

38 517874 4788707 1194 6.91 315 
Wyoming 
Sagebrush 

Boston Ranch unit - 
bedded silicic tuff, 
diatomite and lignite 

39 518736 4776764 1513 0 506 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, quartz 
monzonite in part 

40 516609 4781178 1528 0 525 
Wyoming 
Sagebrush-
Bitterbrush 

Granitic rock, quartz 
monzonite in part 

 
1UTM zone 11 
2Mean annual precipitation
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3.2. Using random forest analysis to determine primary controls on SIC 

When creating a classification tree model that solely focused on presence or 

absence of SIC, we found that precipitation was the strongest determinate followed by 

geologic unit, elevation, and slope. The model was very effective at predicting the 

absence of SIC with an overall success rate of 89%, and had similar but lesser success 

with predicting its presence correctly 82% of the time (Table 2.2). We also used random 

forest analyses to predict SIC accumulation classes (none, low, medium, high, and very 

high) and actual amounts. Each model was respectively less successful in its ability to 

predict, but they provided similar results and highlighted the complexity of SIC 

accumulations below 500 mm of MAP. The accumulation class model was particularly 

successful in predicting locations with no (74% accuracy) and very high SIC (67%), but 

low (23%), medium (33%), and high (28%) sites were more difficult. The regression 

analysis model established a correlation between the predictors and SIC with an R2 of 

0.25. Precipitation was the top predictor in all random forest analyses, and parent 

material, along with site elevation, ranked highly in both the presence/absence and 

accumulation class model (Table 2.2). These models also selected slope and percent 

ground cover, respectively, as their final predictors. In the regression model for 

predicting SIC amounts, max vegetation height and range were the only two predictors 

along with precipitation to be selected. However, these measures of vegetation height 

have much lower predictive ability relative to precipitation.  
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Table 2.2 Output of predictive success with the random forest models 

Model target 
Overall 

Top predictors 
success rate 

Presence/absence 

84.50% 

Precipitation 

  Elevation 

  Geology 

  Slope 

Concentration 

52.10% 

Precipitation 

category Geology 

(none, low, medium, 
high,  

Elevation 

very high) % ground cover 

Concentration 

R2 = 0.25 

Precipitation 

(kg/m2) 
Max vegetation 

height 

  
Range of vegetation 

height 

 

We used the results from the random forest analysis along with the predictors and 

site data to model distributions of SIC throughout the watershed (Figure 2.2). The regions 

predicted to contain SIC are predominately in the center of the RCEW, which also 

correspond to the areas receiving the least precipitation. These low-lying areas are also 

characterized by stable, dry terrace surfaces vegetated primarily by Wyoming sagebrush 

(Figure 2.3). We observe that the greatest concentration of areas with mixed presence and 

absence are found just below the 500 mm precipitation threshold.  
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Figure 2.2 Map of modeled SIC distributions throughout the watershed. The figure 

on the left is the result of modeling the presence or absence of SIC. We grouped the 

sites into categories of SIC accumulation (none, low, moderate, and high) for the 

modeled map on the right. 
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Figure 2.3 Maps showing distribution of SIC and related predictors. SIC rich sites 

are generally concentrated in areas with low precipitation, low elevation, and low 

slope.  

3.3. Predicting soil inorganic carbon using statistical analysis of possible environmental 

factors: 

We used linear regression as an additional method to investigate controls on SIC 

presence and accumulation. Initially through simple linear regression, we found that 

elevation and precipitation were the top two predictors of SIC. Our results from this 

analysis indicate that the threshold of SIC formation is ~500 mm MAP (Figure 2.4). 

Multiple linear regression (MLR) showed that elevation, slope, and certain parent 

materials and vegetation type were important predictors. Although many of the variables 

presented the expected trend with SIC accumulation in MLR (e.g. negative relationship 
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between SIC and precipitation), the correlations were relatively weak. In contrast to the 

random forest analysis, precipitation performed poorly when grouped with other 

variables in MLR. Slope behaved in the opposite fashion, being an ineffective predictor 

by itself but being one of the most important during MLR. These inconsistent results 

between the linear regression methods made it difficult to disentangle the importance and 

significance of auto-correlated factors.  

 

Figure 2.4 Mean annual precipitation for each site with measured SIC concentrations. 

Although precipitation does not have a strong correlation with concentration, there 

is a boundary at about 500 mm of rainfall where SIC accumulation stops.  

To further explore the relationship between parent material and SIC 

accumulation, we examined the mean values of SIC in three of the most prevalent, 

mapped parent materials: basalt, granite and alluvium. Alluvium had by far the largest 

amount of SIC and granite had the least (Figure 2.5). However, precipitation co-varies 

with parent material, since terraces are formed and preserved along the lower reaches of 

Reynolds Creek (Figure 2.3). 
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Figure 2.5 Comparison of measured values of SIC in the three most common parent 

materials. The red boxes show SIC concentration and the blue boxes show 

precipitation. 

3.4. Changes in carbon storage with soil depth 

Soils in the RCEW typically have thin A-horizons from 1-10 cm thick. Bw or Bt-

horizons follow the A-horizon and are ~10 cm to over 40 cm thick. SIC accumulation 

occurs primarily in the Bk-horizon, which typically begins 40 cm or more below the 

surface. The highest peaks in SIC accumulations often appear below 50 cm as can be 

seen at sites #2 and #24 (Figure 2.6). At site #24, we also observed a second larger peak 

in SIC around 170 cm. This observation implies that there are potentially considerable 

stores of SIC below the depths sampled at many of the sites. As bedrock impeded 
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excavation at several of the sites, however, it is difficult to ascertain how accurate this 

assumption is in the watershed.  

 

Figure 2.6 SIC profiles of site #24 (top) and #2 (bottom). Note the large increase in 

SIC at depth for both sites and the range of variability at the pedon-scale for site #2. 

Site #24 also highlights the large amounts of carbon stored at depths most pits did not 

reach. 

We found through lab analysis of the samples that many of the sites had large 

differences in SIC values at a given depth between the different soil profiles (Figure 2.6). 

To determine whether these differences were due to natural variability at the pedon-scale 

or uncertainty associated with analysis methods, we ran replicates of each sample 
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collected at site #23 and ran several replicates of standards. We found that our analytical 

methods introduce very little uncertainty (0.001-0.014% SIC), but the observed 

variability between soil profiles was up to 220% (Stanbery et al., in review). 

Additionally, we compared the field measurement of maximum carbonate stage 

(Gile et al., 1966; Machette, 1985) at a site to the actual measured concentration (Figure 

2.7). The field method proved to be mostly reliable with there being a general increase in 

SIC with higher, observed stages of development. However, there were some issues with 

sites containing a maximum stage of II+, which had the highest SIC concentration of all 

stages. Two of the sites in this category have almost continuous accumulations of 

carbonate throughout the profile creating very high concentrations even though the 

carbonate is less well developed (Stanbery et al., in review). 

 

Figure 2.7 Comparison of field measurements of the stage of carbonate development 

and values measured in lab analysis. There are sites in the stage II+ category with 

exceptionally high concentrations due to SIC accumulation throughout the profile but 

no stage III characteristics. 
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3.5. Soil texture and soil inorganic carbon storage within the gravel fraction of soils: 

Silt and sand dominate the grain size distribution within the RCEW soils, with 

little clay at most sites (Figure 2.8). Wind-blown dust is likely an important component of 

many soils in this semi-arid watershed. Many of the more stable soil profiles studied, 

particularly sites # 24, 28, and 29, have relatively large amounts of silt-sized particles in 

the upper portions of the profiles. However, there are no clear correlations among texture, 

elevation, and carbonate content in soils. There are varying amounts of SIC on gravels in 

the soils studied but clast coatings represent, on average, about 13% of the total inorganic 

carbon at a site. Site #13 has the highest amount of SIC in the gravel-sized fraction with 

over 40% of the carbonates forming on the exterior of rocks and hard clay-rich peds 

(Stanbery et al., in review). This analysis highlights the importance of including 

carbonate coats on gravels when estimating total SIC content in soils, especially when 

working in gravelly soils.  
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Figure 2.8 Grain size distribution for several of the study sites. The sites are listed in 

order of increasing elevation. 

3.6. Chemical analysis of dust: 

We collected dust deposited in natural cavities > 2 m above the ground surface 

within exposed basalt, granite, and rhyolite, and assumed that the fine-grained material 

we collected from these vugs was primarily wind-blown (Reynolds et al., 2006). The dust 

from the three different rock exposures (granite, basalt, and rhyolite) have very similar 

compositions with CaO ranging from 2.3-3.2% by mass (Figure 2.9). Most of the soil 

samples showed similar concentrations as well. However, soil samples from site #23 

showed much higher concentrations (11.3-12.1%). We also found the dust sample from 

the rhyolite site to contain 5.6% carbonate by mass. 
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Figure 2.9 Measured CaO values from the collected dust samples and soil samples. 

We collected dust samples from vugs or concavities in rhyolite (R), granite (G) and 

basalt (B). The dust and soil composition are similar with the exception of samples 

from site #23. This particular site contains relatively large amounts of basalt clasts in 

varying stages of weathering which might account for the elevated levels of CaO. For 

the soil samples, darker bars indicate greater concentrations of SIC. 

4. Discussion: 

Soil scientists have long recognized that precipitation is a first order control on 

soil inorganic carbon (SIC) accumulation (Marbut, 1935; Baldwin, et al., 1938; Jenny, 

1941; Arkley, 1963; Gile et al., 1966; Machette, 1985; Royer, 1999; Retallack, 2005; 

Hirmas et al., 2010). We confirmed this observation for the Reynolds Creek 

Experimental Watershed (RCEW) by demonstrating that precipitation was the top ranked 

predictor in all random forest analyses (Table 2.2). Our investigations into the expected 

relationship between SIC and precipitation provided two key insights: First, SIC does not 

form in the top 1 m of sites receiving more than 500 mm of rainfall, and amounts of SIC 

in the top 1 m rapidly drop as this threshold is approached (Figure 2.4). Second, within 

the zone of SIC accumulation, SIC storage does not linearly increase with decreasing 

precipitation, highlighting the influence of other soil forming factors. 
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Early work by American soil scientist Curtis Marbut (1935), classified soils at 

their highest level into two great groups: the ópedocalsô and the ópedalfers.ô Pedocals are 

distinguished by the accumulation of calcium and magnesium carbonates throughout all 

or a part of the soil profile, while pedalfers are distinguished by the absence of carbonate 

accumulation and usually by an accumulation of iron and aluminum compounds 

(Baldwin et al., 1938). Marbut recognized the relationship of these great soil groups to 

the climatic zones, where pedocals typified the subhumid, semiarid, and arid regions, 

while pedalfers typified the humid regions (Baldwin et al., 1938). 

Earlier work in soils found that the boundary between pedocals and pedalfers is a 

function of an areaôs precipitation (Marbut, 1935; Baldwin et al., 1938; Jenny, 1941; 

Malde 1955). Machette (1985) described the pedocal and pedalfer boundary not only as a 

function of the amount of precipitation but also the input of Ca2+. 

Our study builds on this prior work by Marbut (1935) and Jenny (1941) by 

precisely quantifying not only the precipitation threshold for carbonate, but the amount of 

carbonate present within the upper meter of soil within the zone of carbonate 

precipitation. In an extensive study of soils from Colorado to Missouri, Jenny found the 

depth to carbonate bearing horizons can vary up to 1 m for a given rainfall value (Figure 

2.10). Carbonate accumulation begins at 1 m or deeper in soils receiving 500-800 mm of 

precipitation, which matches well with our results. However, since the RCEW soils are 

on the drier end of this spectrum, we hypothesize that SIC formation is limited by Ca2+ 

input. Arkley (1963) discovered that data on the soilôs water holding capacity helped to 

improve prediction of depth to carbonate. Based on rainfall alone, however, he 

determined that ~630 mm will push calcic horizons below 1 m. Although we do not have 
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data on the sources and amounts of Ca2+ in the RCEW, we were able to use data on 

rainfall to determine the precipitation threshold between calcic and non-calcic soils. 

 

Figure 2.10 Hans Jennyôs (1941) plot of depth to the calcic horizon as a function of 

precipitation. At a given amount of rainfall, there is a wide range of depths to 

carbonate accumulations. The soils in RCEW are on the driest end of the depth 

spectrum with our calcic horizons forming at 1 m or deeper at 500 mm of 

precipitation. This boundary implies that carbonate formation is limited by the 

amount of Ca2+. Additionally, l arge amounts of SIC were found below 1 m at the 

deepest sites (#3, #24, and #25). These deep accumulations of SIC are likely relict 

horizons formed during glacial periods with increased precipitation. 

Royer (1999) examined NRCS data along with those from previous studies to 

establish a relationship between the depth to the top of the carbonate horizon and annual 

rainfall. After incorporating 1482 soil profiles into the analysis, Royer found the 

correlation between the two was weak (R2 = 0.31) but that there is a strong relationship 

between areas receiving less than 760 mm of rainfall and the accumulation of SIC. 

Additionally, the relationship Royer established predicted a depth of 1 m to the carbonate 

horizon in areas receiving ~535 mm of precipitation. As most of our sites were excavated 

to a depth of approximately 1 m, Royerôs results agree with our work showing no SIC in 

soils receiving more than 500 mm of rain. Malde (1955) found the pedocal/pedalfer 
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boundary in Rocky Flats, Colorado to be at 460 mm and Zamanian et al. (2016) found 

that the majority of SIC accumulation occurs when precipitation is <500 mm. Retallack 

(2005) conducted a similar study with 675 soils describing the relationship between depth 

to carbonate and precipitation. With Retallackôs results, SIC accumulating more than 1 m 

from the surface occurs in areas receiving >650 mm. Differences in our results could be 

attributed to Retallackôs efforts to reduce the effects of competing environmental factors 

and the limited number of soil profiles studied in our work. Our study continues the work 

of linking precipitation to SIC accumulation. However, our work relates rainfall to the 

amount of SIC accumulated in a profile instead of depth to the calcic horizon, which 

could be incorporated into future work. 

4.1. The role of elevation, slope and vegetation in SIC accumulation 

Elevation is one of the higher-ranking predictors of SIC in our analyses (Table 

2.2). This result is not surprising as elevation, precipitation, and vegetation type are 

strongly correlated within the RCEW (Figure 2.3). Establishing whether elevation was 

important due to its relationship with precipitation and vegetation or as a result of another 

environmental factor (e.g. differential dust deposition, temperature) requires further 

work. We found that as slope increases there is a general trend of decreasing SIC. 

Pedogenic carbonateôs relationship to slope is somewhat complex. Increasing slope tends 

to decrease the residence time of water within the soil, effectively making it drier and 

promoting SIC accumulation. However, high erosion rates on steep slopes can decrease 

soil stability and inhibit SIC formation (Birkeland, 1999). 

Although vegetation characteristics (e.g. ground cover, vegetation height) never 

ranked as a top predictor of SIC in our analyses, some measure of vegetation was present 
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in two of the three random forest models (Table 2.2). Vegetation can directly influence 

SIC precipitation by impacting the amount of water in the soil, its flow path, the 

concentration of dissolved CO2, and the soil solutionôs pH (McFadden, 2013; Zamanian 

et al., 2016). The pH of the soil solution is a strong control on SIC and plants play an 

important role in determining the solutionôs acidity. As roots respire, they release CO2 

and increase the partial pressure of CO2 (pCO2). Larger pCO2 values increase the 

concentration of carbonic acid (H2CO3) and lower the soil solutionôs pH. (Birkeland, 

1999; Appelo, 2010). Vegetation removes soil water through transpiration, which 

increases the relative level of carbonate saturation in the soil solution and promotes 

carbonate mineral precipitation. Plant roots can also create preferential flow paths, 

allowing water to flow through a profile more quickly and limiting evapotranspiration 

(Dingman, 2008). The presence of SIC is correlated with the presence of Wyoming 

sagebrush, but it is a plant that resides almost exclusively in low precipitation areas. 

4.2. The importance of parent material in soil development 

We did find agreement with previous work that parent material (Gile et al, 1966; 

Machette, 1985; McFadden and Tinsley, 1985; Reheis et al., 1992; Birkeland, 1999) and 

measures of relief (Hirmas, 2010) are important factors in SIC accumulation as well.  

Parent material plays a significant role in SIC accumulation (Table 2.2). Alluvial terraces 

contain the highest amounts of SIC in their soils, although the high terrace surfaces are 

also old, stable, and dry (Figure 2.3). The soilsô parent material can impact the 

accumulation of SIC through its influence on soil particle size distributions and 

availability of Ca2+ after weathering. Soil particle size is a control on the movement of 

water through soils with coarser grained soils promoting rapid movement of soil water 
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and clay-rich soils inhibiting the flow (Jenny, 1941; Dingman, 2008). Although there is 

no carbonate bearing bedrock in the watershed, some of the rocks within the RCEW 

contain calcium-rich minerals and are a potential source of Ca2+ cations for the formation 

of SIC (Figure 2.3). There are limited data on the chemical composition of the bedrock in 

the area. McIntyre (1972) performed mineral counts on several rocks throughout the 

watershed and obtained the chemical composition of a single basalt sample. He found 

that the groundmass of the andesite and basalt samples is 50-70% plagioclase by mass. 

The Ca-rich endmember anorthite is the predominant phase of plagioclase in these 

samples. Chemical analysis of the one basalt sample showed a composition of 10.0% 

CaO, 7.1% Ca, by mass. 

It is likely that dust provides much of the Ca2+ in arid soils (Machette, 1985; 

McFadden and Tinsley, 1985). As seen in our elemental analysis of the dust samples, the 

dust and soil have very similar Ca2+ compositions (Figure 2.9). We infer that these results 

show the dust is well mixed within the profiles and is indeed a significant parent material 

within the watershed. However, the elevated Ca2+ concentrations at site #23 warrant 

further investigation. This site is on basalt and the profile contains considerable amounts 

of partially weathered basalt clasts. So it is possible that the weathering of the parent 

material produces the CaO.  

The dust collected from the rhyolite vugs is 5.6% carbonate by mass whereas soil 

samples contain up to 25% carbonate by mass. These elevated levels of carbonate in soils 

relative to dust (Figure 2.9) show a concentration of carbonate and Ca2+ in the deeper 

parts of soil profiles, suggesting the importance of time needed for the concentration of 

carbonate and the development of calcic horizons. Although both dust and weathered 
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bedrock are likely sources of Ca2+, we are unable to differentiate the relative contribution 

from these two sources.  

We anticipated there would be a strong correlation between SIC amounts and the 

grain size distribution of a site. Although we did see a positive trend in SIC accumulation 

with finer textured soils (Figure 2.11) and a negative one with sandier soils, the 

correlations were very weak. We anticipate that more data on the source of this fine 

grained material and the ability to distinguish between wind-blown dust and in situ silt 

sized material will be of great use. We could use these data to better relate dust presence 

to SIC accumulation. 

 

Figure 2.11 Comparison of SIC concentration with the amount of silt sized particles 

in the soil. There is a positive correlation between the two, but silt does not appear to 

have a strong impact on SIC accumulation. 
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4.3. The role of time in soil development  

The importance of time in the development of calcic horizons is well established 

by the substantial body of work on carbonate stages and chronosequences from the 

southwestern USA (e.g. Gile et al., 1966; Machette, 1985). Site #4 has a large amount of 

SIC and it receives approximately 390 mm of rainfall making it one of the wettest sites 

with significant SIC accumulation (Figure 2.12). The profile is well-developed with 

distinct horizons, suggesting an old soil developed on this stable surface. Interestingly, 

site #4 has not only the highest SIC amount in the immediate area but has one of the 

highest amounts of SIC throughout the watershed with 12.27 kg/m2 of SIC. In this 

particular case, the elevated amounts of SIC are likely the result of the site having ample 

time to develop (Figure 2.12). 

 

Figure 2.12 The image on the left shows a portion of the southeastern portion of the 

RCEW highlighting the degree of variability present in SIC concentrations. Site #4 

has a high concentration of SIC but also receives a relatively large amount of 

precipitation. An illustration of the soil pro file at site #4 (Dryden Creek) can be seen 
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on the right. The site is characterized by a distinct and relatively well-developed Bk-

horizon and comparatively large amount of precipitation (390mm) which implies that 

the soil has had ample time to develop. 

We also collected several samples along a soil chronosequence consisting of the 

abandoned terraces of Reynolds Creek. Changes in Reynolds Creekôs base level as 

climate has fluctuated over interglacial timescales, have likely lead to stream incision and 

the creation of these terraces. During interglacial periods over the past 225 ka, relatively 

warm, dry conditions characterized the area of southern Idaho and northern Utah 

(Jiménez-Moreno et al., 2007). For Pleistocene-aged and older soils, carbonate minerals 

accumulate over glacial/interglacial timescales. In the Pacific Northwest, glacial periods 

were cooler and effectively wetter, while interglacial times are marked by more arid 

conditions and greater amounts of dust accumulation, which increases the influx of Ca2+ 

to the soil (McFadden et al., 1986; Chadwick et al., 1995). The increased supply of Ca2+ 

will in turn increase SIC accumulation rates. Wetter conditions and increased vegetation 

characterize glacial periods. These conditions can negatively affect SIC accumulation 

rates, or cause carbonate to be precipitated lower in the soil profile. Additionally, in areas 

that are sufficiently dry, increased precipitation can promote carbonate formation through 

the dissolution of the necessary components (Machette, 1985). In the RCEW, increased 

precipitation would likely push the threshold of formation down in elevation and push the 

carbonate boundary lower in the soils profile. Glacial climates could also potentially 

enhance SIC accumulation rates in the lowest, driest locations. 

The soil pit at site #24 may provide evidence of the influence of glacial climates 

on carbonate precipitation. This 2.2 m pit, one of 3 sites reveals extensive carbonate 

precipitation with peaks in SIC at 80 cm, 160 cm, and 180 cm (Figure 2.6). A well-



59 

 

 

 

 

developed argillic B-horizon with excellent prismatic structure also characterizes this 

site, suggesting the soil formed on this terrace (~12 m above current Reynolds Creek) is 

quite old. From Jennyôs (1941) relationships between depth of carbonate accumulation 

and rainfall (Figure 2.10), significant carbonate precipitation in excess of 1.5 meters 

corresponds with rainfall values between 750-1000 mm. As the current rainfall at this site 

is 285 mm, the site profile suggests this deeper carbonate horizon may have formed 

during glacial intervals characterized by greater effective precipitation. 

Although there were insufficient samples collected in this study to establish 

strong statistical relationships between soil development and soil age, there is a general 

trend in increasing amounts of SIC as the relative age of surface increases. However, we 

see the opposite relationship when comparing sites #28 and #29 as they are on two 

different terraces within 200 m of each other (Figure 2.13). The vegetation community 

and climate are the same, but there is a considerably larger amount of SIC in the pit 

excavated on the younger surface. A possible reason for this difference could be that the 

carbonates were weathered and transported from the older, higher terrace into the 

younger, lower surface. 

 



60 

 

 

 

 

 

Figure 2.13 Comparison of SIC concentrations of different terraces. Site #28 (on the 

left) is located within a short distance of sites #29 (right most figure) but on the next 

youngest terrace surface. 

5. Conclusions: 

We find soil inorganic carbon is governed largely by rainfall; no SIC is found in 

areas receiving more than 500 mm of precipitation. Within the zone of SIC accumulation, 

the amounts of SIC reflect the complex influence of other controls on soil development, 

including parent material, time, and relief. These results support early soil classification 
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work by Marbut (1935) and Jenny (1941). They found within the continental USA, the 

pedocal/pedalfer boundary for the upper 1 meter of soil is found in areas receiving 

between ~450-750 mm of precipitation.  

The soil carbon pool is a critical component of the carbon cycle. Our study 

provides analyses that illuminate the relationships between soil forming factors affecting 

the SIC pool. These analyses provide useful insight on where SIC forms and the controls 

on its accumulation. Here we show that precipitation is the best predictor of the presence 

of SIC within the Reynolds Creek Experimental Watershed (RCEW). Sites located in 

areas that receive over 500 mm of precipitation annually are unlikely to have SIC 

accumulate within the top 1 m. Areas receiving less rainfall, however, see great variation 

in the concentrations present due to the complex interactions of factors controlling the 

balance of Ca2+ and water within the soil column.  

We found that parent material is an important predictor for the presence of SIC in 

the RCEW, but the nature of this control was not well constrained in our study (Table 

2.2). Likely, the materialôs impact on soil hydrology and Ca2+ levels provide the greatest 

controls on SIC. Additional work to better understand the meteorological flux of Ca2+ 

into the soils is needed, as the amount of dust accumulated is likely a large control on the 

amounts of SIC. The elevation and slope of the site are important as well as they impact 

the development of soil and its secondary characteristics. Future work that investigates 

the impact of vegetation on CO2 concentrations within the soil solution, and the role of 

surface age and time of soil development in SIC accumulation would improve 

understanding of the role of soil forming factors in SIC accumulation. As more site-

specific data are collected, we can refine these analyses in order to improve our ability to 
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predict the amount of SIC at a site. Other workers can use this information to help create 

estimates of SIC concentrations throughout a watershed and better inform future models 

of the global carbon cycle.
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