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ABSTRACT

One type of conditionally convergent series that has long been considered by math-

ematicians is the Alternating Harmonic Series and its sum under various types of re-

arrangements. The purpose of this thesis is to introduce results from the classical theory

of rearrangements dating back to the 19th and early 20th century. We will look at results

by mathematicians such as Ohm, Riemann, Schlömilch, Pringsheim, and Sierpiński. In

addition, we show examples of each classical result by applying the Alternating Harmonic

Series under the different types of rearrangements, and also introducing theorems by Lévy

and Steinitz, and Wilczyński, which are modern extensions of the results of Sierpiński.
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4.1 Oscar Schlömilch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



4.3 On Conditionally Converging Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Pringsheim’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Alfred Pringsheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Pringsheim’s Rearrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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1

CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Given a sequence ( fn) of real numbers, and a permutation π : N→ N, the rearrangement

determined by π is the sequence ( fπ(n)) whose nth term is the π(n)th term of the original

sequence. A rearrangement of a series ∑ fn is ∑ fπ(n) for some such permutation π .

We demonstrate this by the following example.

Example 1.1.0.1. Consider the Alternating Harmonic Series (see Section 1.2 below for an

evaluation of the series),

∞

∑
n=1

(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+

1
9
− 1

10
+ · · ·= ln(2).

Now consider another series,

1
2
− 1

4
+

1
6
− 1

8
+

1
10
− 1

12
+

1
14
−·· ·= 1

2
ln(2).

Note that adding 0 between each term will not change the sum of the series. So we get,

0+
1
2
+0+

(
− 1

4

)
+0+

1
6
+0+

(
− 1

8

)
+0+

1
10

+0+
(
− 1

12

)
+0+ · · ·= 1

2
ln(2).
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Now let us add this series to the usual Alternating Harmonic Series, term by term, and we

have

1+0+
1
3
− 1

2
+

1
5
+0+

1
7
− 1

4
+

1
9
+0+

1
11
−·· ·

= 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+

1
13

+
1

15
−·· ·= 3

2
ln(2).

Notice that the resulting series is a rearrangement of the Alternating Harmonic Series, but

converges to another sum.

The goal of this thesis is to present some classical results illustrating the extent of this

phenomenon.

1.2 Background

1.2.1 Evaluation of the Alternating Harmonic Series

Theorem 1.2.1. If ∑ fn converges, then lim
n→∞

fn = 0. In fact, lim
n→∞

∞

∑
k=n+1

fk = 0 and, for any

ε > 0, there is an N such that for all n < m with N < n, we have

|
m

∑
k=n

fk |< ε.

Proof. ∑ fn converges means that the sequence of partial sums (Sk), where

Sk =
k

∑
n=1

fn

converges. In other words, the sequence is Cauchy. So for all ε > 0, there exists an N for
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all n < m (if n > N, then | Sn− Sm |< ε). This is precisely the last statement. The first

statement follows from this by taking m = n+1. The second statement follows by noting

that if ∑ fn = s, then Sn→ S if and only if Sn−S→ 0.

Abel’s Theorem

Taken from [9, pg. 125], we have the following,

Theorem 1.2.2 (Abel (1826) [9]). Suppose
∞

∑
n≥0

fn converges. We then have that

lim
x→1−

∞

∑
n≥0

fnxn =
∞

∑
n≥0

fn.

Even if f (x) = ∑ fnxn has radius of convergence 1, it is still (left) continuous at the

endpoint x = 1.

Proof. [18] Suppose tn = f0 + f1 + f2 + · · ·+ fn and let t−1 = 0. Then, we have that

m

∑
n≥0

fnxn =
m

∑
n≥0

(tn− t−1)xn

= (1− x)
m−1

∑
n≥0

tnxn + tmxm. (1.1)

Now consider | x |< 1 and suppose m→ ∞. We want to show that

∞

∑
n≥0

fnxn = (1− x)
∞

∑
n≥0

tnxn.



4

Since (tn) converges, then it is bounded, meaning there is some value T such that | tn |< T

for each n. Thus, | tmxm |< T | x |m for each m. Since m→ ∞, then tnxm→ 0. Also, by the

fact that | x |m→ 0, then T | x |m→ 0. So from (1.1) we now have

= (1− x)
m−1

∑
n≥0

tnxn +0

which results from taking the limit of both sides as m→ 0. Now, let t = lim
n→∞

tn, and let

ε > 0. Pick an N ∈ N so that n > N implies

| t− tn |<
ε

2
. (1.2)

Since

(1− x)
∞

∑
n≥0

xn = 1 (1.3)

for | x |< 1.

Then, from
∞

∑
n≥0

fnxn = (1− x)
∞

∑
n≥0

tnxn we get

|
∞

∑
n≥0

fnxn− t | = | (1− x)∑
∞
n≥0(tn− t)xn |

≤ (1− x)
N

∑
n≥0
| tn− t || x |n

= (1− x)
N

∑
n≥0
| tn− t || x |n +(1− x)

∞

∑
n≥N+1

| tn− t || x |n .

So by (1.2) and (1.3), we have
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< (1− x)
N

∑
n≥0
| tn− t | ·1n +(1− x)

∞

∑
n≥N+1

ε

2
| x |n

= (1− x)
N

∑
n≥0
| tn− t |+ε

2
(1− x)

∞

∑
n≥N+1

| x |n

≤ (1− x)
N

∑
n≥0
| tn− t |+ε

2
(1− x)

∞

∑
n≥0
| x |n .

Since | x |< 1, then

= (1− x)
N

∑
n≥0
| tn− t |+ε

2
. (1.4)

Let B =
N

∑
n≥0
| tn− t | and let there be some δ =

ε

2B
> 0. If

1−δ < x < 1, (1.5)

then for equation (1.4) we get |
∞

∑
n≥0

fnxn− t |< B(1− x)+
ε

2
, and from δ =

ε

2B
and (1.5),

|
∞

∑
n≥0

fnxn− t |< B ·δ +
ε

2
=

ε

2
+

ε

2
= ε.

This proves that lim
x→1−

∞

∑
≥0

fnxn = t =
∞

∑
n≥0

fn.

Geometric Series

We introduce the following theorem for a general geometric series:
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Theorem 1.2.3 ([18]). If |x|< 1, then
∞

∑
n≥0

xn =
1

1− x
. If |x| ≥ 1, then

∞

∑
n≥0

xn = ∞.

The proof to this theorem can be found in [18, page 61].

Now consider a variation of the geometric series

∞

∑
n≥0

(−1)nxn = 1− x+ x2− x3 + x4−·· ·= 1
1+ x

,

which converges only when |x|< 1, and is divergent for |x| ≥ 1.

Theorem 1.2.4. If |x|< 1, then

∞

∑
n≥0

(−1)nxn =
1

1+ x
.

If |x| ≥ 1, then the series diverges.

Proof. Suppose we start with

∞

∑
n≥0

(−1)nxn = 1− x+ x2− x3 + x4− . . . .

We can rewrite the left side of the equation as

∞

∑
n≥0

(−x)n = 1− x+ x2− x3 + x4− . . . .

Notice that this is similar to the geometric series from Theorem 1.2.3 with −x in place of

x, and so we have

∞

∑
n≥0

(−x)n =
1

1− (−x)
,
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or

∞

∑
n≥0

(−x)n =
1

1− (−x)
=

1
1+ x

such that this series converges for |x|< 1, and diverges for |x| ≥ 1. So,

∞

∑
n≥0

(−1)nxn = 1− x+ x2− x3 + x4−·· ·= 1
1+ x

when | x |< 1, and diverges for | x |≥ 1.

Considering only values of x within the interval of convergence, integrate both sides of

1
1+ x

= 1− x+ x2− x3 + x4− . . .

to get

ln(x+1)+C1 =

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+C2

or

ln(x+1)+C1−C2 = x− x2

2
+

x3

3
− x4

4
+ . . . (1.6)

for some constants C1 and C2. We show term by term that integration gives us
∞

∑
n=0

(−1)nxn:

For |− x|< 1, we have

1
1+ x

=
1

1− (−x)
=

∞

∑
n=0

(−x)n =
∞

∑
n=0

(−1)nxn



8

for |x|< 1. Then,

∫ 1
1+ x

dx =
∫

lim
k→∞

k

∑
n=1

(−1)nxndx = lim
k→∞

∫ k

∑
n=1

(−1)nxndx,

which is a consequence of [18, Theorem 7.16]. So

∫ 1
1+ x

dx =
∞

∑
n=0

(−1)n
∫

xndx =
∞

∑
n=0

(−1)n

n+1
xn+1 +C,

for |x|< 1.

In (1.6), let C =C1−C2. Then, we have

ln(x+1)+C = x− x2

2
+

x3

3
− x4

4
+ . . . (1.7)

To find C, evaluate both sides of (1.7) when x = 0. The result is

0+C = 0−0+0−·· · ,

or C = 0. Therefore,

ln(x+1) = x− x2

2
+

x3

3
− x4

4
+ . . .

for −1 < x < 1.

Now, when x = 1, we have the following power series

1− 1
2
+

1
3
− 1

4
+

1
5
−·· · ,

which we recognize as the Alternating Harmonic Series, and converges due to Leibniz’s
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test.

Leibniz’s Alternating Series Test

Theorem 1.2.5 (Leibniz’s Alternating Series Test [9]). If (an) is a sequence of positive

numbers such that the an monotonically decrease and an converges to 0, then

A =
∞

∑
n=1

(−1)n+1an = a1−a2 +a3−a4 + · · ·

converges.

Proof. Let An be the nth partial sum of A. Since (an) are monotonically decreasing, then

the following inequalities hold true:

a1 ≥ a1−a2 +a3 ≥ a1−a2 +a3−a4 +a5 ≥ ·· · ,

and

a1−a2 ≤ a1−a2 +a3−a4 ≤ a1−a2 +a3−a4 +a5−a6 ≤ ·· · .

We find that (A2n) monotonically increases and is bounded above by A1, and that (A2n+1)

monotonically decreases and is bounded below by A2. Since both sequences are bounded,

they are also convergent being that (a2n) and (a2n+1) both converge to 0, or

lim
n→∞

(A2n+1−A2n) = lim
n→∞

a2n+1 = 0.
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It now follows from Abel’s Theorem 1.2.1 that

x− x2

2
+

x3

3
− x4

4
+ . . . ,

converges to ln(1+ x) for | x |< 1, and also converges to ln(2) when x = 1.

1.3 History

Definition 1.3.1. ∑ fn is a conditionally convergent series if ∑ fn converges but ∑ | fn |

diverges.

Lemma 1.3.2 (pg. 317, [10]). Let ∑ fn be a conditionally convergent series. Let ∑an be

the series of positive terms of ∑ fn and let ∑bn be the series of negative terms of ∑ fn. Then,

both ∑an and ∑bn diverge.

German mathematician Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) [14] came

up with a very important result involving the rearrangement of terms of certain series.

Dirichlet was the first to notice that terms in certain series could be rearranged to a sum

different from the original series (it was later founded by Bernhard Riemann that this was

due to conditionally convergent series). In 1837, Dirichlet published a paper proving that

the sum remains the same when rearranging terms in an absolutely convergent series [5].

We proceed to introduce Dirichlet’s result, which we took from the chapter entitled,

Arbitrary Series and Infinite Products in [7].

Theorem 1.3.3 ([7]). If ∑ fn is absolutely convergent and converges to α , then every

rearrangement of ∑ fn also converges to α .

Proof. Assume ∑ | fn |< ∞, and that ∑ fn = α . Now let ( fπ(n)) be a rearrangement of ( fn).

We need to show that
∞

∑
n=1

fπ(n) = α .



11

Fix ε > 0. We must find N such that for all n > N,

|
n

∑
k=1

fπ(k)−α |< ε.

First find N1 such that for every n≥ N1,

|
n

∑
k=1

fk−α |< ε

2
,

and find N2 such that for every n > N2,

∞

∑
k=n
| fk |<

ε

2
.

We may assume that N2 ≥ N1.

Finally, let there be some N3 large enough so that {1,2,3, . . . ,N2} ⊆ {π(1),π(2),π(3),

. . . ,π(N3)}. We claim that N = N3 works. To see this, note that if n > N3, then
n

∑
k=1

fπ(k) =

N2

∑
k=1

fk + ∑
j∈A

f j, where A = {π(1),π(2),π(3), . . . ,π(n)}\{1,2,3, . . . ,N2}.

Therefore,

|
n

∑
k=1

fπ(k)−α | ≤ |
N2

∑
k=1

fk−α |+ | ∑
j∈A

f j |

<
ε

2
+ ∑

j∈A
| f j |

≤ ε

2
+

∞

∑
j=N2+1

| f j | <
ε

2
+

ε

2
= ε.
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In 1839, a German mathematician by the name of Martin Ohm [1] came up with the

following rearrangement theorem.

Theorem 1.3.4 ([11]). For p and q positive integers, rearrange

∞

∑
n≥1

(−1)n−1

n

by taking the first p positive terms, then the first q negative terms, then the next p positive

terms, the next q negative terms, and so on. The rearranged series converges to

ln(2)+
1
2

ln
(

p
q

)
. (1.8)

First, we introduce some notation:

Denote by A(p,q) the series resulting from this rearrangement. Let Sk be the partial

sums of A(p,q) where specifically S′k = S′k(p,q) denotes the kth partial sum of A(p,q), and

let Cn =Cn(p,q) be the partial sum of A(p,q), which is the result in S from precisely adding

n blocks, where each block consists of p positive terms and q negative terms, consecutively.

Denote Sn to be the partial sums of the usual alternating series, where n denotes the

terms. Call Cn as Cn = S f (n)+Rn for some f (n) and some “remainder” Rn.

In Chapter 2, we analyze Ohm’s rearrangement theorem by splitting up the proof

into two parts. In part (1), we look at three possible cases that could happen in the

rearrangement: when p = q, p < q, and p > q. We do this by first providing an example for

each case, and then proving its generalization. In part (2), we show Sn and Cn = S f (n)+Rn

converge to ln(2)+ 1
2 ln( p

q ) for each of the three possible cases.

In 1852, German mathematician Bernhard Riemann came up with the explanation for

Peter Lejeune-Dirichlet’s discovery [5] that one can change the sum of a conditionally
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convergent series by rearranging its terms. His explanation was the following theorem.

Theorem 1.3.5 (Riemann’s Rearrangement Theorem [10]). A series ∑ fn is conditionally

convergent if and only if for each real number α , there is a rearrangement of ∑ fn that

converges to α .

In Chapter 3, we analyze Riemann’s Rearrangement Theorem (also known as the Rie-

mann Series Theorem) by first proving the result, then providing an example of the rear-

rangement of the Alternating Harmonic Series the sum of which 3
2 ln(2). We then compare

it to A(2,1) of Ohm’s rearrangement (Chapter 2).

German mathematician Oscar Schlömilch came up with the following result.

Theorem 1.3.6 ([22]). Let f (n) = un be a decreasing and positive function, such that the

asymptotic value lim
n→∞

f (n) = 0. If K = lim
ω→∞

(ωuω) or K = lim
n→∞

(nun), the following holds:

If in a series (see note below),

s = u0−u1 +u2−u3 + · · ·

the terms are rearranged such that always p positive terms are followed by q negative

terms, then the sum of the rearranged series is

S = s+
lim(nun)

2
· log(

p
q
).

[Note: Schlömilch does not state it directly at this point, but the series that satisfies the

theorem must be one of the form s =
∞

∑
n=0

(−1)nun such that un > 0 is strictly decreasing and

lim
n→∞

un = 0, and by the Alternating Series Test it must converge.]

In Chapter 4, we present a translation of Schlömilch’s original paper, and then pro-

ceed the rest of the chapter by providing a few examples. Note that the translation of
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Schlömilch’s result stems from what he addresses as the “well-known theorem,” also known

as the “Mean Value Theorem,” which we also prove. German mathematician Alfred Pring-

sheim came up with a couple of important results in 1889.

First, we define the following:

Definition 1.3.7. Let the number α be the asymptotic density of positive terms in
∞

∑
n=1

fn.

That is,

α = lim
n→∞

pn

n
,

where pn denotes the number of positive terms in the sequence ( fn)
k
n=1.

Theorem 1.3.8 ([2]). The rearrangement
∞

∑
k=1

fn converges to an extended real number if

and only if α , the asymptotic density of positive terms in
∞

∑
k=1

fn exists. Also, the sum of the

rearrangement with asymptotic density α is

ln(2)+
1
2

ln
(

α

1−α

)
.

Theorem 1.3.9 ([2]). Let f1, f2, f3, . . . , fk be a sequence such that each fi ∈ R for i ∈ N. If

| f1 |≥| f2 |≥| f3 |≥ . . . , where

lim
k→∞

fk = 0,

and f2 j−1 > 0 > f2 j for j ∈ N, then the following holds:

1. If lim
k→∞

k· | fk |= ∞ and if S ∈ R, then there exists a rearrangement of
∞

∑
j=1

f j, call

it
∞

∑
j=1

f ∗j , such that
∞

∑
j=1

f ∗j = S, and the asymptotic density of positive terms of the
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rearrangement is 1
2 ,

whose α = 1
2 , and whose sum is S.

2. If lim
k→∞

k · fk = 0 and if
∞

∑
n=1

gn is a rearrangement of
∞

∑
n=1

fn for which the asymptotic

density α exists where 0 < α < 1, then

∞

∑
n=1

gn =
∞

∑
n=1

fn.

In 1911, Wacław Sierpiński came up with the following theorem.

Theorem 1.3.10 ([21]). Let ( fn) be conditionally convergent where U = ∑ fn and V =

∑ fπ(n). If V > U, there exists an explicitly described rearrangement π with the property

that each positive term of fn is left in place (if fn > 0 then π(n) = n). Similarly, if V <U,

there exists an explicitly describe rearrangement π with the property that each negative

term of fn is left in place (if fn < 0, then π(n) = n).

[Note that Theorem 1.3.9 is our version of Sierpiński’s original theorem.]

In Chapter 6, we provide a translation of Sierpiński’s paper [21] along with his original

theorem. Later, we analyze his result by providing a couple examples.

In Chapter 7, we briefly introduce several modern rearrangements by various mathe-

maticians, which extend Sierpiński’s theorem.
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CHAPTER 2

OHM’S THEOREM

2.1 Martin Ohm

Martin Ohm (May 6, 1792 - April 1, 1872) was a German mathematician who earned

his doctorate in 1811 at Friedrich-Alexander-University, Erlangen-Nuremberg, under his

advisor, Karl Christian von Langsdorf [1]. By the early 1800s he became a professor in

the gymnasium at Thorn for mathematics and physics. In 1839, he was was chosen to be a

professor at the University of Berlin, and delivered lectures at the academy of architecture,

and at the school of artillery and engineering [12].

2.2 Ohm’s Rearrangement Theorem

2.2.1 Part I

Theorem 2.2.1 ([11]). For p and q positive integers, rearrange
∞

∑
n≥1

(−1)n−1

n
by taking the

first p positive terms, then the first q negative terms, then the next p positive terms, the next

q negative terms, and so on. The rearranged series converges to

ln(2)+
1
2

ln
(

p
q

)
. (2.1)
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Denote by A(p,q) the series resulting from this rearrangement. Let Sk be the partial

sums of A(p,q) where specifically S′k = S′k(p,q) denotes the kth partial sum of A(p,q), and

let Cn =Cn(p,q) be the partial sum of A(p,q), which is the result in S from precisely adding

n blocks, where each block consists of p positive terms and q negative terms, consecutively.

Denote Sn to be the partial sums of the usual alternating series, where n denotes the

terms. Call Cn as Cn = S f (n)+Rn for some f (n) and some “remainder” Rn.

It suffices to break the proof of Theorem 2.2.1 into the following:

I Verifying the explicit formula of Cn(p,q) for each of the three types of rearrangements:

(a) p = q,

(b) p > q, and

(c) p < q.

II Arguing that Sn and Cn converge to ln(2)+
1
2

ln
( p

q

)
.

Example 2.2.1.1. Consider A(2,2). We want to show that Cn(2,2) = S4n. Note that

C1 = 1+
1
3
− 1

2
− 1

4
= 1− 1

2
+

1
3
− 1

4
= S4 = S4·1

C2 = 1+
1
3
− 1

2
− 1

4
+

[
1
5
+

1
7
− 1

6
− 1

8

]

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
= S8 = S4·2.

Proof. We proceed by induction with the base case shown in Example 2.2.1.1. So suppose

that

Cn(2,2) = 1− 1
2
+

1
3
− 1

4
+ · · ·+ 1

4n−3
− 1

4n−4
+

1
4n−1

− 1
4n

= S4n.
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Then by the inductive hypothesis,

Cn+1(2,2) = Cn(2,2)+
(

1
4n+1

+
1

4n+3

)
−
(

1
4n+2

+
1

4n+4

)

= Cn(2,2)+
1

4n+1
− 1

4n+2
+

1
4n+3

− 1
4n+4

= S4n+4,

as wanted, so f (n) = 4n and Rn = 0.

General Case: A(p,q), p = q.

We now proceed with the more general case:

Theorem 2.2.2. For positive integer p, Cn(p, p) = S2pn for all n.

Proof. Consider A(p, p). We argue that

Cn :=Cn(p, p) = S2pn

by induction. Note that

C1 =

(
1+

1
3
+ · · ·+ 1

2p−1

)
−
(

1
2
+

1
4
+ · · ·+ 1

2p

)

= 1− 1
2
+

1
3
− 1

4
+ · · ·+ 1

2p−1
− 1

2p
= S2p,

C2 =

(
1+

1
3
+ · · ·+ 1

2p−1

)
−
(

1
2
+

1
4
+ · · ·+ 1

2p

)

+

[(
1

2p+1
+

1
2p+3

+ · · ·+ 1
4p−1

)
−
(

1
2p+2

+
1

2p+4
+ · · ·+ 1

4p

)]
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= C1 +
1

2p+1
− 1

2p+2
+

1
2p+3

− 1
2p+4

+ · · ·+ 1
4p−1

− 1
4p

= S2p +
1

2p+1
− 1

2p+2
+

1
2p+3

− 1
2p+4

+ · · ·+ 1
4p−1

− 1
4p

= S4p.

Now suppose that

Cn(p, p) = 1− 1
2
+

1
3
− 1

4
+ · · ·+ 1

2pn−1
+

1
2pn

= S2pn.

By the inductive hypothesis,

Cn+1(p, p) =Cn(p, p) +

(
1

2pn+1
+

1
2pn+3

+ · · ·+ 1
2pn+2p−1

)

−
(

1
2pn+2

+
1

2pn+4
+ · · ·+ 1

2pn+2p

)

=Cn(p, p)+
1

2pn+1
− 1

2pn+2
+

1
2pn+3

− 1
2pn+4

+

· · ·+ 1
2pn+2p−1

− 1
2pn+2p

= S2np +
1

2pn+1
− 1

2pn+2
+

1
2pn+3

− 1
2pn+4

+ · · ·+ 1
2pn+2p−1

− 1
2pn+2p

= S2pn+2p = S2p(n+1)

Therefore, f (n) = 2p(n+1) and Rn = 0.
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Example 2.2.2.1. Consider A(3,1). We have

C1 = 1+
1
3
+

1
5
+

(
− 1

2

)

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

(
1
4
+

1
6

)

= S6 +
1
2

(
1
2
+

1
3

)
= S6·1 +

1
2

(
1
2
+

1
3

)

C2 = 1+
1
3
+

1
5
+

(
− 1

2

)
+

[
1
7
+

1
9
+

1
11

+

(
− 1

4

)]

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+

1
9
− 1

10
+

1
11
− 1

12
+

(
1
6
+

1
8
+

1
10

+
1

12

)

= S12 +
1
2

(
1
3
+

1
4
+

1
5
+

1
6

)
= S6·2 +

1
2

(
1
3
+

1
4
+

1
5
+

1
6

)

We claim from our analysis of C1 and C2 that

Cn(3,1) = S6n +
1
2

(
1

n+1
+

1
n+2

+
1

n+3
+ · · ·+ 1

3n

)
.

So, f (n) = 6n and

Rn =
1
2

(
1

n+1
+

1
n+2

+
1

n+3
+ · · ·+ 1

3n

)
.

We also find that the last block of Cn(3,1) is

1
6n−5

+
1

6n−3
+

1
6n−1

− 1
2n

.
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We proceed to verify this.

Theorem 2.2.3. (1) The last block of Cn(3,1) is
1

6n−5
+

1
6n−3

+
1

6n−1
− 1

2n
, and

(2) Cn(3,1) = S6n +
1
2

(
1

n+1
+

1
n+2

+
1

n+3
+ · · ·+ 1

3n

)
.

Proof. Let us proceed by induction on n. We already have seen that (1) and (2) hold when

n = 1,2. Now suppose that (1) and (2) hold for n. We need to show that (1) and (2) hold

for n+1.

Proof of (1): By the inductive hypothesis, we know that the positive terms added in the

last block of Cn(3,1) are

1
6n−5

+
1

6n−3
+

1
6n−1

.

Hence, the three positive terms in the last block of Cn+1(3,1) that are added together

are

1
6n+1

+
1

6n+3
+

1
6n+5

.

Similarly, by the inductive hypothesis, we know that the term subtracted in the last block

of Cn(3,1) is 1
2n . Hence, then the term subtracted in Cn+1(3,1) must be 1

2n+2 . We continue

to show that these terms added and subtracted in the last block of Cn+1(3,1) by noting that

6(n+1)−5 = 6n+1,6(n+1)−3 = 6n+3,6(n+1)−1 = 6n+5,2(n+1) = 2n+2. This

proves (1) by induction, and we have

Cn+1(3,1) =Cn(3,1)+
1

6n+1
+

1
6n+3

+
1

6n+5
− 1

2n+2
.

Proof of (2): By the inductive hypothesis,
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Cn(3,1) = S6n +
1
2

(
1

n+1
+

1
n+2

+
1

n+3
+ · · ·+ 1

3n

)
.

We want to show that

Cn+1(3,1) = S6(n+1)+
1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+ 1
3(n+1)

)
.

From (1), we have shown that

Cn+1(3,1) =Cn(3,1)+
1

6n+1
+

1
6n+3

+
1

6n+5
− 1

2n+2
.

Or in other words,

Cn+1(3,1)−Cn(3,1) =
1

6n+1
+

1
6n+3

+
1

6n+5
− 1

2n+2
.

So, to prove

Cn+1(3,1) = S6(n+1)+
1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+ 1
3(n+1)

)
,

it is enough to show that

(
S6(n+1) +

1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+ 1
3(n+1)

))

−
(

S6n +
1
2

(
1

n+1
+

1
n+2

+
1

n+3
+ · · ·+ 1

3n

))

=
1

6n+1
+

1
6n+3

+
1

6n+5
− 1

2n+2
.

By definition of Sk, we know that
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S6(n+1)−S6n =
1

6n+1
− 1

6n+2
+

1
6n+3

− 1
6n+4

+
1

6n+5
− 1

6n+6
,

and since the expression we are considering equals

S6(n+1)−S6n +
1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+ 1
3(n+1)

− 1
n+1

− 1
n+2

−·· ·− 1
3n

)
,

we need to prove the identity obtained from substituting the expression S6(n+1)−S6n:

1
6n+1

− 1
6n+2

+
1

6n+3
− 1

6n+4
+

1
6n+5

− 1
6n+6

+
1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+ 1
3(n+1)

− 1
n+1

− 1
n+2

− 1
n+3

−·· ·− 1
3n

)

=
1

6n+1
+

1
6n+3

+
1

6n+5
− 1

2n+2
.

Notice that the terms
1

6n+1
,

1
6n+3

,
1

6n+5
get canceled out and we are left with

− 1
6n+2

− 1
6n+4

− 1
6n+6

+
1
2

(
1

(n+1)+1
+

1
(n+1)+2

+ · · ·+

1
3(n+1)

− 1
n+1

− 1
n+2

− 1
n+3

−·· ·− 1
3n

)
=− 1

2n+2
.

Expanding and simplifying the left side of the equation, we need to show,

− 1
6n+2

− 1
6n+4

− 1
6n+6

+
1
2

(
1

n+2
+

1
n+3

+
1

n+4
+ · · ·+ 1

2n
+

1
2n+1

+ . . .

+
1

3n
+

1
3n+1

+
1

3n+2
+

1
3n+3

− 1
n+1

− 1
n+2

− 1
n+3

− 1
n+4

− . . .
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− 1
2n
− 1

2n+1
− 1

2n+2
− 1

2n+3
− 1

2n+4
−·· ·− 1

3n

)
=− 1

2n+2
,

or

− 1
6n+2

− 1
6n+4

− 1
6n+6

+
1
2

(
1

3n+1
+

1
3n+2

+
1

3n+3
− 1

n+1

)
=− 1

2n+2

=− 1
6n+2

− 1
6n+4

− 1
6n+6

+
1

6n+2
+

1
6n+4

+
1

6n+6
− 1

2n+2
=− 1

2n+2
,

which simplifies to − 1
2n+2

=− 1
2n+2

, and so (2) follows.
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General Case: A(p,q), p > q.

Theorem 2.2.4. Suppose that p > q. (1) The last block of Cn(p,q) is(
1

2np−2p+1
+

1
2np−2p+3

+ · · ·+ 1
2np−1

)
−
(

1
2nq−2q+2

+
1

2nq−2q+4
+ . . .

+
1

2nq

)
, and

(2) Cn(p,q) = S2np +

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
.

Proof. We proceed by induction. Note first that

C1 =

(
1+

1
3
+ · · ·+ 1

2p−1

)
−
(

1
2
+

1
4
+ · · ·+ 1

2q

)

=

(
1− 1

2
+

1
3
− 1

4
+ · · ·+ 1

2p−1
− 1

2p

)
+

(
1

2q+2
+

1
2q+4

+ · · ·+ 1
2p

)

= S2p +

(
1

2q+2
+

1
2q+4

+ · · ·+ 1
2p

)
= S2·1·p +

(
1

2q+2
+

1
2q+4

+ · · ·+ 1
2p

)

C2 = C1 +

[(
1

2p+1
+

1
2p+3

+ · · ·+ 1
4p−1

)
−
(

1
2q+2

+
1

2q+4
+ · · ·+ 1

4q

)]

=

(
1− 1

2
+

1
3
− 1

4
+ · · ·+ 1

4p−1
− 1

4p

)
+

(
1

4q+2
+

1
4q+4

+ · · ·+ 1
4p

)

= S4p +

(
1

4q+2
+

1
4q+4

+ · · ·+ 1
4p

)
= S2·2·p +

(
1

4q+2
+

1
4q+4

+ · · ·+ 1
4p

)
.

This shows that (1) and (2) hold when n = 1,2.

Now suppose that (1) and (2) hold for n. We need to show that (1) and (2) hold for

n+1.
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Proof of (1): By the inductive hypothesis, we know that the positive terms added in the

last block of Cn(p,q) are

(
1

2np−2p+1
+

1
2np−2p+3

+ · · ·+ 1
2np−1

)
.

Hence, the p positive terms in the last block of Cn+1(p,q) that are added together are

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p+1
.

Similarly, by the inductive hypothesis, we know that the q terms subtracted in the last block

of Cn(p,q) are
1

2nq−2q+2
+

1
2nq−2q+4

+ · · ·+ 1
2nq

.

Hence, the terms subtracted in Cn+1(p,q) must be
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2nq+2q

.

This proves (1) by noting that

2(n+1)p−2p+1 = 2np+1,

2(n+1)p−2p+3 = 2np+3, . . . ,2(n+1)p−1 = 2np+2p−1

2(n+1)q−2q+2 = 2nq+2,

2(n+1)q−2q+4 = 2nq+4, . . . ,2(n+1)q = 2nq+2q.

Note also that

Cn+1(p,q) =Cn(p,q) +

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.
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Proof of (2): By the inductive hypothesis,

Cn(p,q) = S2np +

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
.

We want to show that

Cn+1(p,q) = S2(n+1)p +

(
1

2(n+1)q+2
+

1
2(n+1)q+4

+ · · ·+ 1
2(n+1)p

)
.

From (1), we have already shown that

Cn+1(p,q) =Cn(p,q) +

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Since

Cn+1(p,q) =Cn(p,q) +

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+

1
2nq+2q

)
,

it is enough to show that

Cn+1(p,q) =
(

S2np +

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

))

+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)
−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

By definition of Sk, we have that
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S2(n+1)p−S2np =

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)

−
(

1
2np+2

+
1

2np+4
+ · · ·+ 1

2np+2p

)

=
1

2np+1
− 1

2np+2
+

1
2np+3

− 1
2np+4

+ · · ·+ 1
2np+2p−1

− 1
2np+2p

=
1

2np+1
− 1

2np+2
+

1
2np+3

−·· ·− 1
2np+2p

.

Notice that S2np can be written as

S2np =

(
S2(n+1)p−

(
1

2np+1
− 1

2np+2
+

1
2np+3

−·· ·− 1
2np+2p

))
.

So substituting S2np into our expression for Cn+1(p,q), we get

Cn+1(p,q) =
(

S2(n+1)p−
(

1
2np+1

− 1
2np+2

+
1

2np+3
−·· ·− 1

2np+2p

))

+

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Rewriting this so that the positive and negative terms in

(
1

2np+1
− 1

2np+2
+

1
2np+3

−·· ·− 1
2np+2p

)

are grouped together, we have
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Cn+1(p,q) =
(

S2(n+1)p−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p−1

)

+

(
1

2np+2
+

1
2np+4

+ · · ·+ 1
2np+2p

))
+

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)

+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np+2p−1

)
−

(
1

2nq+2 +
1

2nq+4 + · · ·+
1

2nq+2q

)
.

Simplifying we have,

Cn+1(p,q) =
(

S2(n+1)p +

(
1

2np+2
+

1
2np+4

+ · · ·+ 1
2np+2p

))

+

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Notice by expansion and simplification we get

Cn+1(p,q) = S2(n+1)p +

(
1

2nq+2q+2
+

1
2nq+2q+4

+ · · ·+ 1
2np+2p

)

= S2(n+1)p +

(
1

2(n+1)q+2
+

1
2(n+1)q+4

+ · · ·+ 1
2(n+1)p

)
,

which is what we wanted.
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Example 2.2.4.1. Consider A(2,3). We have

C1 = 1+
1
3
− 1

2
− 1

4
− 1

6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
−
(

1
5

)

= S6−
(

1
5

)
= S6·1−

(
1
5

)

C2 = 1+
1
3
− 1

2
− 1

4
− 1

6
+

[
1
5
+

1
7
− 1

8
− 1

10
− 1

12

]

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+

1
9
− 1

10
+

1
11
− 1

12
−
(

1
9
+

1
11

)

= S12−
(

1
9
+

1
11

)
= S6·2−

(
1
9
+

1
11

)
.

This leads us to claim general formulas for Cn(2,3), which we proceed to show:

Theorem 2.2.5. Cn(2,3) is (1) the last block of Cn(2,3) is
1

4n−3
+

1
4n−1

− 1
6n−4

−
1

6n−2
− 1

6n
, and (2) Cn(2,3) = S6n +−

(
1

4n+1
+

1
4n+3

+ · · ·+ 1
6n−1

)
.

Proof. Let us proceed by induction on n. We already have seen that (1) and (2) hold when

n = 1,2. Now suppose that (1) and (2) hold for n. We need to show that (1) and (2) hold

for n+1.

Proof of (1): By the inductive hypothesis, we know that the positive terms added in the

last block of Cn(2,3) are 1
4n−3 and 1

4n−1 . Since we know we need to add two positive terms,

then the positive terms added in the last block of Cn+1(2,3) are 1
4n+1 and 1

4n+3 . Similarly,
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by the inductive hypothesis, the three terms subtracted in the last block of Cn(2,3), which

are, respectively, 1
6n−4 ,

1
6n−2 , and 1

6n . So, the three negative terms subtracted in Cn+1(2,3)

are 1
6n+2 ,

1
6n+4 , and 1

6n+6 . (1) follows from noting that 4(n+1)−3 = 4n+1,4(n+1)−1 =

4n+3,6(n+1)−4 = 6n+2,6(n+1)−2 = 6n+4,6(n+1) = 6n+6.

Also,

Cn+1(2,3) =Cn(2,3)+
1

4n+1
+

1
4n+3

− 1
6n+2

− 1
6n+4

− 1
6n+6

.

Proof of (2): By the inductive hypothesis,

Cn(2,3) = S6n +−
(

1
4n+1

+
1

4n+3
+ · · ·+ 1

6n−1

)
.

We want to show that

Cn+1(2,3) = S6(n+1)+−
(

1
4n+5

+
1

4n+7
+ · · ·+ 1

6n+5

)
.

From (1), we have shown that

Cn+1(2,3) =Cn(2,3)+
1

4n+1
+

1
4n+3

− 1
6n+2

− 1
6n+4

− 1
6n+6

or

Cn+1(1,2)−Cn(2,3) =
1

4n+1
+

1
4n+3

− 1
6n+2

− 1
6n+4

− 1
6n+6

.

To prove Cn+1(2,3) = S6(n+1)+−
(

1
4n+5

+
1

4n+7
+ · · ·+ 1

6n+5

)
, it is enough to show
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(
S6(n+1) + −

(
1

4n+5
+

1
4n+7

+ · · ·+ 1
6n+5

))

−
(

S6n +−
(

1
4n+1

+
1

4n+3
+ · · ·+ 1

6n−1

))

=
1

2n+1
− 1

4n+2
− 1

4n+4
.

By definition of Sk, we know that

S6(n+1)−S6n =
1

6n+1
− 1

6n+2
+

1
6n+3

− 1
6n+4

+
1

6n+5
− 1

6n+6
,

and since the expression we are considering equals

S6(n+1)−S6n +−
(

1
4n+5

+
1

4n+7
+ · · ·+ 1

6n+5
− 1

4n+1
− 1

4n+3
−·· ·− 1

6n−1

)
,

we need to prove the identity obtained from substituting the expression S6(n+1)−S6n:

1
6n+1

− 1
6n+2

+
1

6n+3
− 1

6n+4
+

1
6n+5

− 1
6n+6

+

−
(

1
4n+5

+
1

4n+7
+ · · ·+ 1

6n+5
− 1

4n+1
− 1

4n+3
−·· ·− 1

6n−1

)

=
1

4n+1
+

1
4n+3

− 1
6n+2

− 1
6n+4

− 1
6n+6

,

or,

1
6n+1

− 1
6n+2

+
1

6n+3
− 1

6n+4
+

1
6n+5

− 1
6n+6

− 1
4n+5

− 1
4n+7

−
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. . . − 1
6n+5

+
1

4n+1
+

1
4n+3

+ · · ·+ 1
6n−1

=
1

4n+1
+

1
4n+3

− 1
6n+2

− 1
6n+4

− 1
6n+6

.

Notice that the terms− 1
6n+2

,− 1
6n+4

, and− 1
6n+6

get canceled out and we are left with

1
6n+1

+
1

6n+3
+

1
6n+5

− 1
4n+5

− 1
4n+7

− . . .

− 1
6n+5

+
1

4n+1
+

1
4n+3

+ · · ·+ 1
6n−1

=
1

4n+1
+

1
4n+3

.

Expanding and simplifying the left side, we need to show

1
6n+1

+
1

6n+3
+

1
6n+5

− 1
4n+5

− 1
4n+7

−·· ·− 1
6n−1

− 1
6n+1

− 1
6n+3

− 1
6n+5

+
1

4n+1
+

1
4n+3

+
1

4n+5
+

1
4n+7

+ · · ·+ 1
6n−1

=
1

4n+1
+

1
4n+3

.

This reduces to
1

4n+1
+

1
4n+3

=
1

4n+1
+

1
4n+3

.

General Case: A(p,q), p < q.

Thus, we come up with the following theorem.



34

Theorem 2.2.6. Suppose that p < q. (1) The last block of Cn(p,q) is
(

1
2np−2p+1

+

1
2np−2p+3

+ · · ·+ 1
2np−1

)
−
(

1
2nq−2q+2

+
1

2nq−2q+4
+ · · ·+ 1

2nq

)
, and

Cn(p,q) = S2nq +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
.

Proof. We proceed by induction. Note first that

C1 =

(
1+

1
3
+ · · ·+ 1

2p−1

)
−
(

1
2
+

1
4
+ · · ·+ 1

2q

)

=

(
1− 1

2
+

1
3
− 1

4
+ · · ·+ 1

2q−1
− 1

2q

)
+−

(
1

2p+1
+

1
2p+3

+ · · ·+ 1
2q−1

)

= S2q +−
(

1
2p+1

+
1

2p+3
+ · · ·+ 1

2q−1

)

= S2·1·q +−
(

1
2p+1 +

1
2p+3 + · · ·+

1
2q−1

)

C2 = C1 +

[(
1

2p+1
+

1
2p+3

+ · · ·+ 1
4p−1

)
−
(

1
2q+2

+
1

2q+4
+ · · ·+ 1

4q

)]

=

(
1− 1

2
+

1
3
− 1

4
+ · · ·+ 1

4q−1
− 1

4q

)
+−

(
1

4p+1
+

1
4p+3

+ · · ·+ 1
4q−1

)

= S4q +−
(

1
4p+1

+
1

4p+3
+ · · ·+ 1

4q−1

)

= S2·2·q +−
(

1
4p+1

+
1

4p+3
+ · · ·+ 1

4q−1

)
.

This shows that (1) and (2) hold when n = 1,2. Suppose that (1) and (2) hold for n.

We need to show that (1) and (2) hold for n+1.
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Proof of (1): By the inductive hypothesis, we know that the positive terms added in the

last block of Cn(p,q) are

1
2np−2p+1

+
1

2np−2p+3
+ · · ·+ 1

2np−1
.

Since we need to add p positive terms, then the p positive terms in the last block of

Cn+1(p,q) that are added together are

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p−1
.

Similarly, by the inductive hypothesis, we know that the q terms subtracted in the last block

of Cn(p,q) are

1
2nq−2q+2

+
1

2nq−2q+4
+ · · ·+ 1

2nq
,

and therefore the new terms subtracted in Cn+1(p,q) must be

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q
.

(1) follows from noting that 2(n+ 1)p− 2p+ 1 = 2np+ 1, 2(n+ 1)p− 2p+ 3 = 2np+

3, . . . ,2(n+ 1)p− 1 = 2np+ 2p− 1, 2(n+ 1)q− 2q+ 2 = 2nq+ 2, 2(n+ 1)q− 2q+ 4 =

2nq+4, . . . ,2(n+1)q = 2nq+2q. Also,

Cn+1(p,q) =Cn(p,q)+
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.
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Proof of (2): By the inductive hypothesis,

Cn(p,q) = S2nq +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
.

We want to show that

Cn+1(p,q) = S2(n+1)q +−
(

1
2(n+1)p+1

+
1

2(n+1)p+3
+ · · ·+ 1

2(n+1)q−1

)
.

From (1), we have already shown

Cn+1(p,q) =Cn(p,q)+
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Since

Cn+1(p,q) =Cn(p,q)+
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2np+2p−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
,

It suffices to show that

Cn+1(p,q) =
(

S2nq +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)

+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np−1

)
−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

))
.

By definition of Sk, we have that
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S2(n+1)q−S2nq =

(
1

2nq+1
+

1
2nq+3

+ · · ·+ 1
2nq+2q−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Notice that S2nq can be written as

S2nq = S2(n+1)q−
(

1
2nq+1

− 1
2nq+2

+
1

2nq+3
−·· ·− 1

2nq+2q

)
.

So, substituting S2nq into our expression for Cn+1(p,q), we have that

Cn+1(p,q) = S2(n+1)q−
(

1
2nq+1

− 1
2nq+2

+
1

2nq+3
−·· ·− 1

2nq+2q

)

−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np−1

)

−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.

Rewriting this so that the positive and negative terms in
(

1
2nq+1

− 1
2nq+2

+
1

2nq+3
−

·· ·− 1
2nq+2q

)
are grouped together,

Cn+1(p,q) = S2(n+1)q−
(

1
2nq+1

− 1
2n+3

+ · · ·+ 1
2nq+2q−1

)

+

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2nq+2q

)
−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)

+

(
1

2np+1 +
1

2np+3 + · · ·+
1

2np−1

)
−
(

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2nq+2q

)
.
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Simplifying,

Cn+1(p,q) = S2(n+1)q +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq+2q−1

)

+

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2np−1

)
.

By expansion and again simplification,

Cn+1(p,q) = S2(n+1)q +−
(

1
2np+2p+1

+
1

2np+2p+3
+ · · ·+ 1

2nq+2q−1

)

= S2(n+1)q +−
(

1
2(n+1)p+1

+
1

2(n+1)p+3
+ · · ·+ 1

2(n+1)q−1

)
.

2.2.2 Part II

Recall Cn =Cn(p,q) to be the partial sum of A(p,q), which is the result in S from precisely

adding n blocks, where each block consists of p positive terms and q negative terms,

consecutively. Also, recall Sn to be the partial sums of the usual alternating series, where n

denotes the terms. Call Cn as Cn = S f (n)+Rn for some f (n) and some “remainder” Rn.

We aim to show that Sn and Cn = S f (n) + Rn for some f (n) converging to ln(2) +
1
2

ln(
p
q
). For our argument, we begin by splitting up the proof for each of the three cases.

In our argument, we label each case as 1,2, and 3, respectively.

Proof. 1. Consider Cn(p, p) = S2np, where f (n) = 2np and Rn = 0.



39

We show that S f (n) converges to ln(2) as n→ ∞, and that for each S′k, if n is defined by

n(p+q)≤ k < (n+1)(p+q),

then letting rk = S′k−Cn, we have rk → 0 as k→ ∞. Note that n→ ∞ if k→ ∞, and so

S′k→ ln(2).

First, rk consists of a sum of x1 + x2 + · · · , which is at most p+ p− 1 = 2p− 1 terms

where each term is

| xi |≤
1

2np+1
.

So, letting n be such that 2np≤ k < 2(n+1)p. Then,

| x1 + x2 + · · · |≤
2p−1
2np+1

.

But taking the limit of
2p−1

2np+1
, we have

lim
n→∞

2p−1
2np+1

= 0,

which means that these extra terms are negligible. Now, since Sk is defined as the partial

sums of the usual Alternating Harmonic Series, we know that

lim
n→∞

Sn = ln(2).

By the fact that S2np are the partial sums of the usual alternating series up to 2np terms,

then
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lim
n→∞

S2np = ln(2).

2. Consider

Cn(p,q) = S2np +

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
,

where f (n) = 2np and

Rn =

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
.

We have already shown from 1. that S2np converges to ln(2) as n→ ∞. Now we want to

show both that

lim
n→∞

Rn = lim
n→∞

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)
=

1
2

ln
(

p
q

)

and that for each S′k, if n is defined by n(p+ q) ≤ k < (n+ 1)(p+ q), then, letting rk =

S′k−Cn, we have that rk→ 0 as k→ ∞. But n→ ∞ if k→ ∞, and so S′k→ ln(2).

First, notice that rk consists of a sum of x1 + x2 + · · · , which is at most p+q−1 terms

where each term is

| xi |≤
1

2nq+2

terms. So, for all k, there exists an n such that n(p+q)≤ k < (n+1)(p+q), which means

| x1 + x2 + · · · |≤
p+q−1
2nq+2

.



41

But taking the limit of
p+q−1
2nq+2

, we have

lim
n→∞

p+q−1
2nq+2

= 0.

Therefore, the size of rk is 0. In other words, rk is so small we can consider these terms to

be negligible. Now,

1
2

ln
(

p
q

)
=

1
2

ln
(

np
nq

)
=

1
2

(
ln(np)− ln(nq)

)
=

1
2

∫ np

nq

1
x

dx

where
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

<
1
2

∫ np

nq

1
x

dx.

Also,

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2np
>

1
2

∫ np+1

nq+1

1
x

dx =
1
2

(
ln(np+1)− ln(nq+1)

)

=
1
2

ln
(

np+1
nq+1

)
.

Thus,
1
2

∫ np+1

nq+1

1
x

dx <
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

<
1
2

∫ np

nq

1
x

dx,

or
1
2

ln
(

np+1
nq+1

)
<

1
2nq+2

+
1

2nq+4
+ · · ·+ 1

2np
<

1
2

ln
(

np
nq

)
.

Now taking the limit of the left and right side, applying L’Hopitals rule, we get

1
2

lim
n→∞

ln
(

np+1
nq+1

)
=

1
2

ln
(

p
q

)
and

1
2

lim
n→∞

ln
(

np
nq

)
=

1
2

ln
(

p
q

)
.
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Therefore,

1
2

lim
n→∞

ln
(

np+1
nq+1

)
=

1
2

ln
(

p
q

)

≤ lim
n→∞

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)

≤ 1
2

lim
n→∞

ln
(

np
nq

)

=
1
2

ln
(

p
q

)
.

Since both limits converge to
1
2

ln
(

p
q

)
as n→ ∞, then it is true that

lim
n→∞

Rn = lim
n→∞

[
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

]

=
1
2

ln
(

p
q

)
.

We conclude that

lim
n→∞

Cn(p,q) = lim
n→∞

[
S2np +

(
1

2nq+2
+

1
2nq+4

+ · · ·+ 1
2np

)]

= ln(2)+
1
2

ln
(

p
q

)

(by properties of convergent sequences).
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3. Consider

Cn(p,q) = S2nq +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
,

where f (n) = 2nq and

Rn =−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
.

We have already shown from 1. that since Sn is defined as the partial sums of the usual

Alternating Harmonic Series, then S2nq are the partial sums of the usual series up to 2nq

terms, converging to ln(2) as n→ ∞. Now we want to show both that

limn→∞ Rn = lim
n→∞
−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)

=
1
2

ln
(

p
q

)
,

and that for each S′k, if n is defined by n(p+ q) ≤ k < (n+ 1)(p+ q), then, letting rk =

S′k−Cn, we have that rk→ 0 as k→ ∞. (Note that n→ ∞ if k→ ∞, and so S′k→ ln(2) as

well.) First, notice that rk consists of a sum of x1 + x2 + · · · , which is at most p+ q− 1

terms where each term is | xi |≤
1

2np+1
terms. So, for all k, there exists an n such that

n(p+ q) ≤ k < (n+ 1)(p+ q), which means that | x1 + x2 + · · · |≤
p+q−1
2np+1

. But taking

the limit of
p+q−1
2np+1

, we have

lim
n→∞

p+q−1
2np+1

= 0.

Therefore, the size of rk is 0, which means that these extra terms are negligible, and so do
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not converge to any value. Note that

1
2

ln
(

p
q

)
=

1
2

ln
(

np
nq

)
=

1
2

(
ln(np)− ln(nq)

)
=

1
2

∫ np

nq

1
x

dx,

where

−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
>

1
2

∫ np

nq

1
x

dx.

Also

−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
<

1
2

∫ np+1

nq+1

1
x

dx

=
1
2

(
ln(np+1)− ln(nq+1)

)

=
1
2

ln
(

np+1
nq+1

)
.

So,

1
2

∫ np+1

nq+1

1
x

dx >−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)
>

1
2

∫ np

nq

1
x

dx,

or

1
2

ln
(

np+1
nq+1

)
>−

(
1

2np+1
+

1
2np+3

+ · · ·+ 1
2nq−1

)
>

1
2

ln
(

np
nq

)
.

Now taking the limit of the left and right side, applying L’Hopitals rule, we get



45

1
2

lim
n→∞

ln
(

np+1
nq+1

)
=

1
2

ln
(

p
q

)

and

1
2

lim
n→∞

ln
(

np
nq

)
=

1
2

ln
p
q
.

Then, it is true that

1
2

lim
n→∞

ln
(

np+1
nq+1

)
=

1
2

ln
(

p
q

)
≥ lim

n→∞

[
−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)]

≥ 1
2

lim
n→∞

ln
(

np
nq

)
=

1
2

ln
(

p
q

)
.

So, since both limits converge to
1
2

ln
(

p
q

)
as n tends to ∞, then it is true that

Rn =−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)

converges to
1
2

ln
(

p
q

)
as n→ ∞. So we can conclude that

Cn(p,q) = S2nq +−
(

1
2np+1

+
1

2np+3
+ · · ·+ 1

2nq−1

)

converges to ln(2)+
1
2

ln
(

p
q

)
as n→ ∞ (by properties of convergent sequences).
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CHAPTER 3

RIEMANN’S THEOREM

3.1 Bernhard Riemann

Bernhard Riemann (17 September 1826 - 20 July 1866) was a German mathematician. In

1846, he attended the University of Göttingen to study theology as his father had encour-

aged him to do. Eventually, his father gave him permission to study mathematics under

Moritz Stern and Carl Friedrich Gauss. In 1852, Riemann began working on the results of

Dirichlet involving the Fourier series. Dirichlet found that certain types of series could be

rearranged to a sum different from the sum of the original series. Later, Riemann discovered

that this works for any conditionally convergent series. This result became known as

Riemann’s Rearrangement Theorem in his Fourier series paper, “On the Representation

of a Function by a Trigonometric Series,” which he completed in 1853. However, his paper

was not published until after his death [13].

3.2 Riemann’s Rearrangement Theorem

Theorem 3.2.1 ([10]). A series ∑ fn is conditionally convergent if and only if for each real

number α , there is a rearrangement of ∑ fn that converges to α .

Proof. (⇐) Note that this direction follows from Dirichlet’s Theorem 1.3.3, which states

that an absolutely convergent series converges to the same value no matter how it is rear-



47

ranged.

(⇒) Suppose ∑ fn is conditionally convergent. We want to show that there is a rear-

rangement, ( fπ(n)), of ( fn) whose series converges to the real number α .

First, consider the subsequence of positive terms of ( fn), call it (an), and the subse-

quence of negative terms of ( fn), call it (bn). Then, by Lemma 1.3.2, ∑an = +∞ and

∑bn =−∞.

We know that ∑an = ∞. This implies that there exists some natural number N such

that

N

∑
k=1

ak > α.

Now let N1 = N be the least such number, and consider the partial sum S1 =
N1

∑
k=1

ak, so

S1 =
N1

∑
k=1

ak > α,

but

N1−1

∑
k=1

ak ≤ α,

so that

0 < S1−α ≤ aN1.

Now to S1, add just enough terms from (bn) (in order) so that the resulting partial sum
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N1

∑
k=1

ak +
M

∑
i=1

bi

is now less than or equal to α . Note that this is possible since ∑bi =−∞.

Letting M1 be the least such number M, and setting

S2 =
N1

∑
k=1

ak +
M1

∑
i=1

bi,

we get that

0≤ α−S2 <−bM1.

Continuing this process, we get partial sums that alternate between being larger and

smaller than α , and each time choosing the next smallest Nk or Mk, we get the following

rearrangement for ( fn),

a1,a2, . . . ,aN1,b1,b2, . . . ,bM1 ,aN1+1, . . . ,aN2,bM1+1, . . . ,bM2,aN2+1, . . .

Note that for all odd i, we have that | Si−α |≤ aNi , and for all even j, we have that

| S j−α |≤ −bM j . Now, for any n

S2n+1 > S2n+1 +bMn+1 > S2n+1 +bMn+1 +bMn+2 > · · ·> S2n+2−bMn+1 > α

and

S2n+2 < S2n+2 +aNn+1+1 < S2n+2 +aNn+1+2 < · · ·< S2n+3−aNn+2 ≤ α.



49

So all the partial sums of the rearrangement ( fπ(n)) between S2n+1 and S2n+2− bMn+1 are

bounded between α and α + aNn+1 , and all partial sums between S2n+2 and S2n+3− aNn+2

are bounded between α +bMn+1 and α .

Since ∑ fn converges, notice that ( fn) converges to 0. Therefore, (aNi) and (bM j) also

converge to 0. Hence, the partial sums of ( fπ(n)) converge to α; that is, ∑ fπ(n) = α , as

wanted.

3.3 Examples

Example 3.3.0.1. Consider the usual Alternating Harmonic Series

∑
(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · · .

We already know that this sum converges to ln(2). However, let us show that this is true

by applying Riemann’s Rearrangement Theorem. So first consider the series of positive

terms of ∑
(−1)n−1

n
, call it ∑an, and the series of negative terms of ∑

(−1)n−1

n
, call it

∑bn.

Now using Riemann’s Rearrangement Theorem, we get the partial sum S1 by adding

just enough terms from ∑an so that S1 > ln(2)≈ .6931:

S1 = 1 > ln(2).

To get S2, we add just enough terms from ∑bn to S1 so that S2 < ln(2):



50

S2 = 1− 1
2
=

1
2
< ln(2).

To get S3, we again add just enough terms from ∑an to S2 so that S3 > ln(2):

S3 = 1− 1
2
+

1
3
≈ .8333 > ln(2),

and likewise, we add just enough terms from ∑bn to S3 to get S4 so that S4 < ln(2):

S4 = 1− 1
2
+

1
3
− 1

4
≈ .5833 < ln(2).

Continuing this process, we get the following partial sums:

S10 ≈ .6456 < ln(2)

S21 ≈ .7164 > ln(2)

S30 ≈ .6768 < ln(2)

S41 ≈ .7052 > ln(2)

S50 ≈ .6832 < ln(2)

S71 ≈ .7018 > ln(2)

S80 ≈ .6886 < ln(2)

S91 ≈ .7002 > ln(2)

S100 ≈ .6898 < ln(2)

S111 ≈ .6993 > ln(2)

S120 ≈ .6906 < ln(2)

S131 ≈ .6986 > ln(2).
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Each time we add just enough negative terms to get the new corresponding partial sum

so that it is less than ln(2), the sum increases and approaches the sum of the Alternating

Harmonic Series. Likewise, each time we add just enough positive terms to get the new

partial sum, the partial sums decrease and approach ln(2). In other words, as k increases,

for all k ∈ N, S2k → ln(2)− (from the left), and as k increases, S2k+1→ ln(2)+ (from the

right).

Example 3.3.0.2. Consider again the Alternating Harmonic Series. Similar to Example

3.3.0.1., we want to show that there exists a rearrangement that converges to α =
3
2

ln(2)≈

1.0397. Applying the formula of Riemann’s Theorem we get the following partial sums:

S1 = 1+
1
3
≈ 1.3333 >

3
2

ln(2)

S2 = 1+
1
3
− 1

2
≈ 0.8333 <

3
2

ln(2)

S3 = 1+
1
3
− 1

2
+

1
5
+

1
7
≈ 1.1762 >

3
2

ln(2)

S4 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
≈ 0.926190476 <

3
2

ln(2)

S5 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
≈ 1.2191 >

3
2

ln(2).

Recall that for every odd partial sum, we are adding just enough positive terms not already

used to make the partial sum larger than
3
2

ln(2), and for every even partial sum, we are

adding just enough negative terms not already used so that the partial sum is less than
3
2

ln(2). Continuing, we get the following partial sums:
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S6 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
≈ 0.9615 <

3
2

ln(2)

S7 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+

1
13

+
1

15
≈ 1.1051 >

3
2

ln(2)

S8 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+

1
13

+
1

15
− 1

8
≈ 0.9801 <

3
2

ln(2)

S9 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+

1
13

+
1

15
− 1

8
+

1
17

+
1
19
≈ 1.0916 >

3
2

ln(2)

S10 = 1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+ · · ·+ 1

17
+

1
19
− 1

10
≈ 0.9916 <

3
2

ln(2)

S35 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
32 +

1
65 +

1
67 −

1
34 +

1
69 +

1
71 ≈ 1.0538 > 3

2 ln(2).

An obvious pattern is found: for every odd partial sum, we need to add the first two positive

terms not already used from ∑an so that the partial sum is greater than
3
2

ln(2), and for

each even partial sum, the first negative term not already used from ∑bn so that the partial

sum is less than
3
2

ln(2).

For clarity, we will show sums S35 to S40:

S36 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
32 +

1
65 +

1
67 −

1
34 +

1
69 +

1
71 −

1
36 ≈ 1.02598 < 3

2 ln(2)

S37 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
34 +

1
69 +

1
71 −

1
36 +

1
73 +

1
75 ≈ 1.05301 > 3

2 ln(2)

S38 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
34 +

1
69 +

1
71 −

1
36 +

1
73 +

1
75 −

1
38 ≈ 1.02669 < 3

2 ln(2)
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S39 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
36 +

1
73 +

1
75 −

1
38 +

1
77 +

1
79 ≈ 1.05234 > 3

2 ln(2)

S40 = 1+ 1
3 −

1
2 +

1
5 +

1
7 + · · ·−

1
36 +

1
73 +

1
75 −

1
38 +

1
77 +

1
79 −

1
40 ≈ 1.02734 < 3

2 ln(2).

Notice that if we continue this process, the partial sums eventually converge to
3
2

ln(2).

Thus, S2 ≤ S4 ≤ S6 ≤ S8 ≤ ·· · ≤
3
2

ln(2)≤ ·· · ≤ S7 ≤ S5 ≤ S3 ≤ S1.

So the rearrangement 1+ 1
3−

1
2 +

1
5 +

1
7 + · · ·−

1
36 +

1
73 +

1
75−

1
38 +

1
77 +

1
79−

1
40 + · · ·=

3
2 ln(2).

Recall Ohm’ Theorem in Chapter 2 and consider A(2,1). Using Ohm’s Theorem to

look at the partial sums A(2,1), we get the following first five partial sums:

C1 = 1+ 1
3 +
(
− 1

2

)
≈ 0.83 = S2 <

3
2 ln(2)

C2 = 1+ 1
3 +
(
− 1

2

)
+
[1

5 +
1
7 +
(
− 1

4

)]
≈ 0.93 = S4 <

3
2 ln(2)

C3 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+
[1

9 +
1

11 +
(
− 1

6

)]
≈ 0.96 = S6 <

3
2 ln(2)

C4 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+ · · ·+

[ 1
13 +

1
15 +

(
− 1

8

)]
≈ 0.98 = S8 <

3
2 ln(2)

C5 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+ · · ·+

[ 1
17 +

1
19 +

(
− 1

10

)]
≈ 0.99 = S10 <

3
2 ln(2).

Observe that each partial sum Cn from Ohm’s Theorem is equal to each even partial

sum S2n from Riemann’s Rearrangement Theorem, and we know that by Ohm’s Theorem,

Cn converges to
3
2

ln(2).
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CHAPTER 4

SCHLÖMILCH’S THEOREM

In Section 4.3, we provide a modern English-language translation of Schlömilch’s paper

[22]. Since the basis of his argument comes from the Mean Value Theorem for Integrals,

which he refers to as the “well-known” theorem, we will provide a few preliminaries in

Section 4.2 by introducing and arguing the following three results: (1) Rolle’s Theorem,

which will be used to prove (2) the Mean Value Theorem, then extend that to (3) the Mean

Value Theorem for Integrals.

4.1 Oscar Schlömilch

Oscar Xavier Schlömilch (13 April 1823 - 7 February 1901) was a German mathematician.

He studied mathematics and physics primarily in Jena, Berlin and Vienna. Most of his

work was strongly influenced by Johann Peter Gustav Lejeune Dirichlet (1805-1859). In

1844, Schlömilch received his doctorate from Friedrich-Schiller-Universität. From 1851 to

1874, he was a professor at Dresden teaching Higher Mathematics and Analytic Mechanics

[13].
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4.2 Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem [18]). Let f : [a,b]→ R be a continuous function such

that f is differentiable on (a,b) where a < b. If f (a) = f (b), then there exists some point

x ∈ (a,b) where f ′(x) = 0.

Proof. Let f (a) = f (b). Since f is continuous on [a,b], then f attains a maximum at some

point t ∈ [a,b] and a minimum at some point s ∈ [a,b].

Suppose first that s, t are both endpoints of [a,b]. Since f (a) = f (b), then the maximum

and the minimum are equivalent, which means f is a constant function on [a,b]. In other

words, f (x) = 0, then for each x ∈ (a,b), f ′(x) = 0, in which case, we are done.

But now consider when (I) s is not an endpoint of [a,b], or when (II) t is not an endpoint

of [a,b].

(I) If s is not an endpoint of [a,b], then s ∈ (a,b), where f has a local maximum at s,

and therefore f ′(s) = 0.

(II) If t is not an endpoint in [a,b], then t ∈ (a,b) and f has a local minimum at t, and

therefore f ′(t) = 0.

We have proved that in all cases for some point x ∈ (a,b), f ′(x) = 0.

Theorem 4.2.2 (Mean Value Theorem [18]). Suppose f : [a,b]→ R be a continuous func-

tion such that f is differentiable on (a,b). Then, there is some point t ∈ (a,b) such that

f (b)− f (a) = f ′(t)(b−a).
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Proof. Let

y(x) =
f (b)− f (a)

b−a
(x−a)+ f (a).

Notice that this is the slope of the secant of the graph of f on [a,b]. Now let

h(x) = f (x)− f (b)− f (a)
b−a

(x−a)− f (a),

and note that

h(a) = h(b) = 0

and h is continuous on [a,b] and differentiable on (a,b). Applying Rolle’s Theorem, there

is some t ∈ (a,b) such that h′(t) = 0. But since

h′(t) = f ′(t)− f (b)− f (a)
b−a

= 0,

then

f ′(t) =
f (b)− f (a)

b−a
.

Theorem 4.2.3 (Mean Value Theorem for Integrals [8]). If f is a continuous function on

the closed interval [a,b], then there exists some number c on (a,b) so that

∫ b

a
f (x)dx = f (c)(b−a).
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Proof. Define f (x) = f (a) for values of x < a and f (x) = f (b) for values of x > b. Then, f

has the integral of F by the Fundamental Theorem of Calculus (see (ii) from [8, pg. 193]).

So there is some point c such that a < c < b where

F ′(c) =
F(b)−F(a)

b−a
.

By the definition of F , we know that F ′(c) = f (c) and

F(a) =
∫ a

a
f (x)dx = 0,

or

F(b)−F(a) =
∫ b

a
f (x)dx.

Thus,

f (c) =
F(b)
b−a

=
1

b−a

∫ b

a
f (x)dx

or

f (c)(b−a) =
∫ b

a
f (x)dx.
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4.3 On Conditionally Converging Series

[Note: This section is a modern English-language translation of Schlömilch’s original paper

[22].]

Dr. Scheibner proved a proposition that a necessary and sufficient condition for absolute

convergence of a series (i.e., the series converges to a number no matter how the terms

are rearranged) is that the series of absolute values of its terms will also converge to that

number.

[In the original paper, Scheibner uses the term “Moduli” to refer to the absolute values

of complex numbers. He is stating that this property also holds for series of complex

numbers. In particular, when a series of complex numbers is rearranged, it will converge to

some limit, and likewise, its absolute value series will also converge to that limit.

Schlömilch points out from the proof of Scheibner’s proposition it is clear that the

condition is not a simplification as long as the notion of absolute convergence is defined by

arbitrarily reordering of its terms. But consider a special condition where you rearrange the

terms only so that p positive terms are always followed by q negative terms. We will see

that this requirement can, without changing the values, be met even if the absolute value

series is not convergent.]

Let f (x) be a decreasing and positive function, such that the asymptotic value lim
x→∞

f (x)=

0 [Schlömilch uses f (∞) = 0 to denote lim
x→∞

f (x) = 0]. Then, we have that the following

corresponding series converges:

f (0)− f (1)+ f (2)− f (3)+ · · · ;

[The series converges because of the Alternating Series Test (Theorem 1.2.5).]

Let f (n) = un [he uses f (x) = ux], and let s be the sum of the original series; for n→∞
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[he uses f (∞) = 0],

s2m = u0−u1 +u2−u3 + · · ·+u2m−2−u2m−1.

Let S denote the sum of the rearranged series defined by n = ∞ [as n goes to ∞] for:

S(p+q)n = u0 +u2 +u4 + · · ·+u2p−2

−u1−u3−u5−·· ·−u2q−1

+u2p +u2p+2 +u2p+4 + · · ·+u4p−2

−u2q+1−u2p+3−u2q+5−·· ·−u4q−1

+u4p +u4p+2−u4q+4 + · · ·+u6p−2

−u4q+1−u4q+3−u4q+5−·· ·−u6q−1

· · · · · · · · · · · ·

+u(2n−2)p +u(2n−2)p+2 + · · ·+u2np−2

−u(2n−2)q+1−u(2n−2)q+3−·· ·−u2nq−1.

[S(p+q)n is the sum of the rearranged series up to (p+q)n terms.]

For m = nq, s2m = s2nq contains all negative terms occurring in S(p+q)n. So we have

S(p+q)n− s2qn = u2nq +u2nq+2 +u2nq+4 + · · ·+u2np−2, (4.1)

[Note that Schlömilch is taking the difference between S(p+q)n and s2qn to compare the

two so as to say something about the convergence of the rearranged series. Also note that

Schlömilch knows s2qn converges since it is an alternating series and we assume that it

passes the Alternating Series Test.] where in the series n(p−q) is the number of terms of

equation (4.1), assuming p > q. Since f (x) is decreasing, we have the following inequality
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1
h

∫ a+rh

a
f (x)dx < f (a)+ f (a+h)+ f (a+2h)+ · · ·+ f (a+[r−1]h)

<
1
h

∫ a+rh

a
f (x)dx+ f (a)− f (a+ rh).

[Above, he uses the Integral Test.]

If we set f (n) = un,a = 2nq,h = 2, and r = n(p−q), then the f (a)+ f (a+h)+ f (a+

2h)+ · · ·+ f (a+[r− 1]h), from above, is equal to the right side of equation (4.1). Thus,

we obtain the following inequality [note that a+ rh = 2nq+n(p−q)2 = 2np],

1
2

∫ 2np

2nq
f (x)dx < S(p+q)n− s2qn <

1
2

∫ 2np

2nq
f (x)dx+u2nq−u2np,

using the substitution x = nξ and dx = ndξ ,

1
2

∫ 2p

2q

nξ f (nξ )

ξ
dξ < S(p+q)n− s2qn <

1
2

∫ 2p

2q

nξ f (nξ )

ξ
dξ +u2qn−u2pn.

Recall the Mean Value Theorem for Integrals [he refers to this theorem as the “known”

theorem], when ϕ(ξ ) is finite and continuous, ψ(ξ ) finally becomes constant and positive

for ξ = α and ξ = β [α < µ < β ],

∫
β

α

ϕ(ξ )ψ(ξ )dξ = ϕ(µ)
∫

β

α

ϕ(ξ )ψ(ξ )dξ , α < µ < β ;

and one makes use of this equation [substituting the following values into the equation

above] by applying this theorem with ϕ(ξ ) = nξ f (nξ ), ψ(ξ ) = 1
ξ
,α = 2q,β = 2p, so that

we can arrive at the following inequality:

1
2

nµ · f (nµ) · log(
p
q
)< S(p+q)n− s2qn <

1
2

nµ · f (nµ) · log(
p
q
)+u2qn−u2pn.
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[Schlömilch uses the notation l for log, and . for ·]

Now for n→∞, we have u2qn→ 0 and u2pn→ 0. Also, nµ→∞ since nµ > n2q. Then

lim
ω→∞

f (ω) = K.

[He uses lim[ω f (ω)] = K.] So one obtains from the previous inequality

S− s =
1
2

K · log(
p
q
).

The same result follows when p < q, and we consider the difference is s2qn− S(p+q)n,

by proceeding analogously.

Theorem 4.3.1 ([22]). Let f (n) = un be a decreasing and positive function, such that the

asymptotic value lim
n→∞

f (n) = 0. If K = lim
ω→∞

(ωuω) or K = lim
n→∞

(nun), the following holds:

If in a series (see note below)

s = u0−u1 +u2−u3 + · · ·

the terms are rearranged such that always p positive terms are followed by q negative

terms, then the sum of the rearranged series is

S = s+
lim(nun)

2
· log(

p
q
).

[Note: He does not state it directly at this point, but the series that satisfies the theo-

rem must be one of the form s =
∞

∑
n=0

(−1)nun such that un > 0 is strictly decreasing and

lim
n→∞

un = 0, and by the Alternating Series Test it must converge.]
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Following amongst other things is the Mean Value Theorem for Integrals for the Alter-

nating Harmonic Series.

If lim(nun) = ∞, as for example for

s =
1√
1
− 1√

2
+

1√
3
− 1√

4
+ · · · ,

notice that the new series is divergent.

If lim(nun) = 0, then reordering as above does not change the sum. For an example of

this, consider the series

s =
1

2log2
− 1

3log3
+

1
4log4

−·· · ,

for which Scheibner’s Criterion does not give a result because the absolute values is diver-

gent.
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CHAPTER 5

PRINGSHEIM’S THEOREM

5.1 Alfred Pringsheim

Alfred Pringsheim (2 September 1850 - 25 June 1941) was a German mathematician who

studied mathematics in Berlin, receiving his doctorate in 1872. In 1877, he began teaching

at the University of Munich as a privatdozent. Two years after he married Hedwig Dohm, an

actress from Berlin. The two of them had four sons and one daughter. In 1886, Pringsheim

was promoted as an “extraordinary” professor at the Ludwig-Maximilians University of

Munich. He continued to work there for the rest of his career starting at the Barvarian

Academy of Sciences in 1898. By 1901, he became a full professor, then retired in 1922

[13].

5.2 Pringsheim’s Rearrangement

Let
∞

∑
n=1

fn be a rearrangement of the Alternating Harmonic Series. Let pk denote the number

of positive terms in the sequence ( fn)
k
n=1, and let qk denote the number of negative terms

in ( fn)
k
n=1.

Recall the following definition.

Definition 5.2.1. Let the number α be the asymptotic density of the positive terms in
∞

∑
n=1

fn. That is,
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α = lim
n→∞

pn

n
,

where pn denotes the number of positive terms in the sequence ( fn)
k
n=1.

Note that α = 1
2 for the usual Alternating Harmonic Series.

The following is a generalization of Ohm’s Theorem.

Theorem 5.2.2 ([2]). Let ∑ fn be a rearrangement of the AHS. The rearrangement
∞

∑
k=1

fn

converges to an extended real number if and only if α , the asymptotic density of positive

terms in
∞

∑
k=1

fn exists, and in that case

∞

∑
n=1

fn = ln(2)+
1
2

ln
(

α

1−α

)
.

Proof. Consider
∞

∑
k=1

fk, and let qk = k− pk with

k

∑
k=1

fk =
pk

∑
m=1

1
2m−1

−
qk

∑
m=1

1
2m

.

Then, for each k ∈ N, let

ak =

( k

∑
n=1

1
n

)
− ln(k).

So (ak)
∞
k=1 is a decreasing sequence such that

lim
k→∞

(ak)
∞
k=1 = γ
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(known as Euler’s constant). Then,

qk

∑
m=1

1
2n

=
1
2

qk

∑
m=1

1
m

=
1
2

ln(qk)+
1
2

aqk ,

and
pk

∑
m=1

1
2m−1

=
2pk

∑
m=1

1
m
−

pk

∑
m=1

1
2m

= ln(2pk)+a2pk−
1
2

ln(pk)−
1
2

apk .

Therefore,

lim
k→∞

k

∑
n=1

fn = lim
k→∞

[
ln(2pn)−

1
2

ln(pk)−
1
2

ln(qk)+a2pk−
1
2

apk−
1
2

aqk

]

= ln(2)+ lim
k→∞

1
2

ln
(

pk

qk

)
+ γ− 1

2
γ− 1

2
γ

= ln(2)+
1
2

ln
(

lim
k→∞

pk

qk

)
,

which is what we wanted.

We introduce another important generalization of Pringsheim’s results:

Theorem 5.2.3 ([2]). Let f1, f2, f3, . . . , fk be a sequence such that each fi ∈ R for i ∈ N. If

| f1 |≥| f2 |≥| f3 |≥ . . . , where
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lim
k→∞

fk = 0,

and f2 j−1 > 0 > f2 j for j ∈ N, then the following holds:

1. If lim
k→∞

k· | fk |= ∞ and if S ∈ R, then there exists a rearrangement of
∞

∑
j=1

f j, call

it
∞

∑
j=1

f ∗j , such that
∞

∑
j=1

f ∗j = S, and the asymptotic density of positive terms of the

rearrangement is 1
2 ,

whose α = 1
2 , and whose sum is S.

2. If lim
k→∞

k · fk = 0 and if
∞

∑
n=1

gn is a rearrangement of
∞

∑
n=1

fn for which the asymptotic

density α exists where 0 < α < 1, then

∞

∑
n=1

gn =
∞

∑
n=1

fn.

For the proof, refer to [15].
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CHAPTER 6

SIERPIŃSKI’S THEOREM

In Section 6.2 we will provide a modern English-language translation of Sierpiński’s result.

In Section 6.3 we show some examples that demonstrate his result.

For clarity, we provide our version of Sierpiński’s original theorem (Theorem 6.2.1):

Theorem 6.0.4 ([21]). Let ( fn) be conditionally convergent where U = ∑ fn, and let V 6=U

be a real number. If V > U, there exists an explicitly described rearrangement π with the

property that each positive term of fn is left in place (if fn > 0, then π(n) = n) (as π

is defined in Section 1.1) and ∑ fπ(n) = V . Similarly, if V < U, there exists an explicitly

describe rearrangement π with the property that each negative term of fn is left in place (if

fn < 0, then π(n) = n) and ∑ fπ(n) =V .

6.1 Wacław Sierpiński

Wacław Sierpiński (14 March 1882 - 21 October 1969) was a Polish mathematician who

began his college career in 1899 at the University of Warsaw in the Department of Math-

ematics and Physics. In 1904, Sierpiński received the gold medal in a prize essay con-

test regarding Georgy Fedoseevich Voronoy’s contributions to number theory. In 1904,

Sierpiński graduated from the University of Warsaw, and immediately began working for

some time at an all-girls school in Warsaw teaching mathematics and physics. By 1908,
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he received his doctorate and started working at the University of Lvov. Sierpiński became

very interested in the study of set theory, and so in 1909 he taught the first lecture on pure

set theory [13].

6.2 On a Property of a Non-Absolutely Convergent Series

[Note: This section is a modern English-language translation of Sierpiński’s paper [21].

His paper’s original references come from [16], [20], [19].]

Presented by S. Zaremba in the meeting on March 6, 1911.

After a well-known theorem of Riemann [16], the order of terms under any convergent

series that is not absolutely convergent can always be modified so that the sum of the

series is a value arbitrarily given in principle. It is possible to demonstrate his theorem by

changing appropriately the relative frequency of positive and negative terms in the series

given.

I have demonstrated, in a recent note [20], that we can even produce an arbitrary

variation of the sum of a series that is not absolutely convergent with the aid of a change in

the order of its terms which do not change the disposition of their signs.

We now show that it is enough to modify the order of the terms of a determined sign

to experience a change, in advance, which gives the sum of a series that is not absolutely

convergent.

Theorem 6.2.1 ([21]). Let U be the sum of a non-absolutely convergent series. For the

series to have an arbitrary sum V <U, given in advance, it suffices to modify the order of

the positive terms of the series leaving each negative term in its place. On the other hand,

it suffices to modify the order of the negative terms, leaving each positive term in its place,

for its sum to have a value V >U.
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[Sierpiński’s theorem may be a bit unclear for the reader. He is defining to two proper-

ties that must hold for the rearrangement to occur, but later in his paper he will be defining

the explicit rearrangement that is involved.

At the start of his paper, he simply wants to make two claims before he starts defining

the process: The series is some conditionally convergent series, which we will denote as

∑ui, given that this series converges to U (for ui ∈ R). Then, Claim (i) states that when

the positive terms are rearranged while the negative terms are left in place, the rearranged

series of ∑+ui converges to a sum V ≤ U , and Claim (ii) likewise, when the negative

terms are rearranged while the positive terms are left in place, the rearranged series ∑−ui

converges to some sum V ≥U .]

It is sufficient to establish only the first part of the proposal; in fact,

u1 +u2 +u3 + · · · (6.1)

is a series given which is not absolutely convergent, U its sum, T >U , applying the second

part of the theorem to the series (6.1) and the number V = T is obviously equivalent to the

application of the first part of this theorem to the series

−u2−u2−u3− . . . (6.2)

and the number V =−T .

Let
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u1 +u2 +u3 + · · ·

be a given non-absolutely convergent series, U its sum, V a number <U , given in advance,

and let

a1 +a2 +a3 + · · · (6.3)

be the series of positive consecutive terms of the series (6.1).

Set

U−V = l a1 +a2 +a3 + · · ·+an = An A0 = 0;

we have:

l > 0, lim
n→∞

an = ∞, lim
n→∞

An = 0.

Modifying the order of the terms in the series (6.3), we have a different series

c1 + c2 + c3 + · · · (6.4)

To determine the law of formation of an explicit expression for the terms of (6.4),

suppose we have already determined its n (≥ 0) first terms and set

c1 + c2 + c3 + · · ·+ cn =Cn C0 = 0.

Let n be a positive integer or zero: only one of three following cases may occur:

I. An−Cn ≤ l.
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IIa. An−Cn > l and the term an+1 is not in the sum Cn.

IIb. An−Cn > l and the term an+1 is in the sum Cn.

In case I, we choose the index r to be the smallest, for which ar is not part of the sum Cn,

and such that

ar <
1
2n and ar <

an+1

2
.

Such an index r exists always since

lim
n→∞

an = 0.

We will let

cn+1 = ar.

In case IIa, we set

cn+1 = an+1.

Now consider case IIb. By virtue of

An−Cn > l > 0

we have

An >Cn,
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which shows that the sum Cn cannot contain all the terms of the series An. Let ar be the

first term of the sum An, which does not appear in the sum Cn. We set:

cn+1 = ar.

The conditions presented define perfectly the series (6.4), and clearly each term in the series

(6.3) appears once more in the series (6.4), since we picked cn+1 to be the term of (6.3) not

in Cn. I say that every term in the series (6.3) is in the series (6.4).

Denote by qm the number that expresses how many indices n ≤ m for which we have

case IIb. The sum Cm+1 will obviously contain all the terms of the sum Aqm . If therefore

we show that

lim
m→∞

qm = ∞,

it will follow that (6.4) contains all the terms of the series (6.3).

In the case that the equation

lim
m→∞

qm = ∞

is not satisfied, the number of indices n for which we have the case IIb is finite; v being a

fixed number, we have then for n≥ v the case I or IIa. Suppose there exists an index i≥ v

for which we have the case IIa; we have Ai >Ci. The number of terms of the sums Ai and

Ci being the same, the first may not contain all the terms of the second except in the case

Ai = Ci; hence, the sum Ci contains terms that do not fall within the sum Ai. These terms

belonging to the series (6.3) (as all terms of the series (6.4)) but not included in the sum
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Ai have in the series (6.3) an index > i. The sum Ci contains therefore some terms an for

which n > i. Let j be the smallest index > i for which a j is in the sum Ci. We can easily

demonstrate that for the indices i, i+1, i+2, · · · , j−1 we have case IIa, while the case IIb

will hold for the index j. However, this is inconsistent with the hypothesis that for n ≥ v

we always have case I or case IIa. Now this hypothesis requires that we always have case I

for n≥ v. This being admitted, we have for n≥ v constantly

An−Cn ≤ l and cn+1 <
an+1

2
,

from which for all natural x:

l≥ Av+x−Cv+x > Av−Cv +
av+1 +av+2 + · · ·+av+x

2
.

Or:

av+1 +av+2 + · · ·+av+x < 2(l−Av +Cv),

which is inconsistent with the divergence of the series (6.3).

We have therefore shown that

lim
n→∞

qm = ∞.

Moreover we can consider also as demonstrated that the series (6.4) differs from the

series (6.3) only by the order of its terms.

Now denote pm to be the number expressing how many indices n ≤ m there are for

which case I is realized. I say that
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lim
m→∞

pm = ∞.

Suppose this proposal to be inaccurate; v being a fixed number, we then have case II for

all n≥ v. Denote by τn, the number of terms of the sum An not included in the sum Cn. We

obviously have

τn+1 = τn or τn+1 = τn−1,

as case IIa or IIb will take place for the index n. As we have shown above, case IIb is

realized for infinitely many indices; so τn would be negative for sufficiently large values of

n, which is clearly absurd. The equality

lim
m→∞

pm = ∞

is thus established.

The sequence an tends to 0 and the sequence cn differs from the sequence an only by

the order of its terms; we therefore also have

lim
n→∞

cn = 0.

Imagine a number h sufficiently large so that we have

1
2h−1 < ε, (6.5)

ε a positive number given in advance. As we have

lim
n→∞

an = 0 and lim
n→∞

cn = 0
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and as all the terms of the series (6.4) are at the same time the terms of the series (6.3), we

set the number ε to match a number v such that the inequality n> v implies the inequalities:

an < ε , ci < ε (Sierpiński (2))

and that the sum Av contains all the terms of Ch.

On the other hand, as we have

lim
m→∞

pm = ∞, lim
m→∞

qm = ∞

we can match to the number v a number µ such as the inequality m > µ gives:

pm > v and qm > v. (Sierpiński (3))

Now let m be an index > µ . We examine separately the case

Am−Cm ≤ l

and the case

Am−Cm > l.

Suppose, in the first place,

Am−Cm ≤ l. (6.6)

Denote by k the largest index k < m for which we have

Ak−Ck > l. (6.7)
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For n = k+1,k+2, · · · ,m, we evidently have the inequality

An−Cn ≤ l,

which corresponds to case I; by the meaning of the symbols qk and qm, we arrive at the

immediate conclusion: qk = qm. On the other hand, obviously qk ≤ k. We have:

Ak+1−Ck+1 = Ak−Ck−ak+1− ck+1 > Ak−Ck− ck+1 > l− ck+1

by (6.7); and by (3):

k ≥ qk = qm > v,

finally, by (2):

ck+1 < ε

Consequently:

Ak+1−Ck+1 > l− ε. (6.8)

For n = k+1,k+2, · · · ,m, we have case I; consequently,

Am−Cm− (Ak+1−Ck+1)>
ak+2 +ak+3 + · · ·+am

2
> 0,

whence:
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Am−Cm > Ak+1−Ck+1 > l− ε,

by (6.8). Following (6.6), we can write:

−ε < Am−Cm− l≤ 0. (6.9)

Now let

Am−Cm > l. (6.10)

Denote by k the largest index < m for which we have

Ak−Ck ≤ l.

For n = k+ 1,k+ 2, · · · ,m, we have do not case I; therefore, pk = pm; on the other hand,

evidently pk ≤ k. We have:

Ak+1−Ck+1 = Ak−Ck +ak+1− ck+1 < Ak−Ck +ak+1 ≤ l+ak+1;

but by (2): ak+1 < ε since

k ≥ pk = pm > v.

We therefore have

Ak+1−Ck+1 ≤ l+ ε. (6.11)
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Denote by fi (i = 1,2, · · · ,s) the indices included in between k and m for which case IIb

holds; for the other indices n between k and m, we therefore have case IIa. Now:

an+1− cn+1 = 0.

It follows that

Am−Cm− (Ak+1−Ck+1) =
s

∑
i=1

(a fi+1− c fi+1)<
s

∑
i=1

a fi+1. (6.12)

If for an index f we have case IIb, the term a f+1 is included in the sum C f , then we have

a f+1 = cg+1 or g < f .

I say that case I will occur for the index g. Indeed, if we had case II for the index g, it

would set

cg+1 = a j+1 or j ≤ g;

however, we have

cg+1 = a f+1 with f > g.

We therefore have for the index g case I; or

cg+1 <
1
2g .

For f = fi (i = 1,2, · · · ,s), we obviously have fi > k > v and as in the sum Av are included

all the terms of the sum Ch, the term a fi+1, having an index greater than v, cannot be in the

sum Av nor Ch. The index gi +1 of the term

cgi+1 = a fi+1
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is therefore greater than h and it follows that: gi ≥ h. We have case IIb for fi; consequently,

as we have demonstrated above, we have

cgi+1 <
1

2gi
.

Thus, we have:

s

∑
i=1

a ji+1 =
s

∑
i=1

cgi+1 <
s

∑
i=1

1
2gi

; (6.13)

gi (i = 1,2, · · · ,s) represents s different numbers, all ≥ h. From that we conclude,

s

∑
i=1

1
2gi

<
∞

∑
j=h

1
2 j =

1
2h−1 < ε, (6.14)

by (6.5).

We therefore have, by (6.12), (6.13), and (6.14): Hence, by (6.12), (6.13), and (6.14), we

get that,

Am−Cm− (Ak+1−Ck+1)< ε;

Thus, by (6.10) and (6.11):

0 < Am−Cm− l < 2ε. (6.15)

For all m > µ , we therefore have one or the other of the inequalities (6.9) or (6.15); so, for

all m > µ , we have:
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| Am−Cm− l |< 2ε,

from which it follows immediately that

lim
m→∞

(Am−Cm) = l. (6.16)

Now that

−b1−b2−b3−·· ·

be the series of consecutive negative terms of the series (6.1), −Bn the sum of the first n

terms.

We have for all natural numbers n:

Un = Arn−Bsn,

rn and sn being two non-decreasing sequences and such that

lim
n→∞

rn = ∞ and lim
n→∞

sn = ∞. (6.17)

Now form a new series

v1 + v2 + v3 + · · · (6.18)

by replacing each positive term un = arn of the series (6.1) by the term cn = crn , and

maintaining without any modification the negative terms of this series.
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The series (6.18) differs from (6.1) only by the order of its positive terms. Upon

designating by Vn to be the sum of the first n terms of the series (6.18), we evidently have:

Vn =Crn−Bsn =Un− (Arn−Crn).

By (6.16) and (6.17), we have:

lim
n→∞

(Arn−Crn) = l,

Therefore,

lim
n→∞

Vn = lim
n→∞

Un− lim
n→∞

(Arn−Crn) =U− l =V.

Our theorem is thus demonstrated.

Note again that by suitably modifying the order of the terms of a single sign one could

obtain a divergent series starting with a non-absolutely convergent series; this results almost

immediately from the following theorem I demonstrated in a recent publication [19]:

“By changing the order of the terms of a divergent series whose terms are positive and

tend to 0, we can always get a series which diverges more slowly than a divergent series,

given in advance, whose terms are also positive.”

6.3 Examples

Example 6.3.0.1. Consider again the Alternating Harmonic Series
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∑
(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+ · · ·

whose sum is U = ln(2). Suppose V =
ln(2)

2
. Then, l =U−V = ln(2)− ln(2)

2
=

ln(2)
2

.

Now we have that a1 = 1,a2 =
1
3 ,a3 =

1
5 ,a4 =

1
7 ,a5 =

1
9 ,a6 =

1
11 , . . . .

Given that C0 = 0, and A0 = C0, then A0−C0 = 0 <
ln(2)

2
. So we are in case I and

we choose index r to be the smallest, for which ar is not part of the sum C0, and such that

ar <
1
20 = 1 and ar <

a1
2 = 1

2 . Set c1 = ar. Since ar =
1
3 , then c1 =

1
3 .

Now consider A1 = 1 and C1 =
1
3 . Then, A1−C1 =

2
3 > ln(2)

2 , and since a2 =
1
3 is in the

sum C1, then we are in case IIb. So let ar be the first term of the sum An, which is not in

the sum C1. We set ar = c2. Since ar = 1, then c2 = 1.

Now

A2 = 1+
1
3
=

4
3

and

C2 =
1
3
+1 =

4
3
.

So

A2−C2 =
4
3
− 4

3
= 0 <

ln(2)
2

.
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So we are in case I. Thus, we choose r to the smallest for which ar is not part of the sum

C2, and ar <
1
22 =

1
4 and ar <

a3
2 = 1

10 . Since 1 and 1
3 are in the sum C2, then ar =

1
11 , which

means c3 =
1

11 .

Then

A3 = 1+
1
3
+

1
5
=

4
3
+

1
5
=

23
15

and

C3 =
1
3
+1+

1
11

=
47
33

.

So

A3−C3 =
23
15
− 47

33
=

6
55

,

so we are in case I, which means we will choose r to be the smallest for which ar is not part

of the sum Cn, and such that ar <
1
23 = 1

8 , and ar <
a4
2 = 1

14 . So let c3 = ar. Since ar =
1

15 ,

then c4 =
1
15 .

Next, we have

A4 = 1+
1
3
+

1
5
+

1
7

and
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C4 =
1
3
+1+

1
11

+
1

15
.

Hence, we are in case I again. So choose r to be the smallest for which ar is not part of the

sum Cn, and such that ar <
1

16 and ar <
a5
2 = 1

18 . Let c5 = ar, which means c5 =
1
19 .

Note we are in case I until n= 7 (or C7). For the sake of time, we will skip the evaluation

of c6 and c7, but do note that c6 =
1
23 and c7 =

1
65 .

Thus,

A7 = 1+
1
3
+

1
5
+

1
7
+

1
9
+

1
11

+
1
13

,

and

C7 =
1
3
+1+

1
11

+
1

15
+

1
19

+
1

23
+

1
65

.

Notice we have

A7−C7 >
ln(2)

2
,

and that a8 =
1
15 is in the sum C7. So we are in case IIb. Now let ar be the first term of A7

not in the sum C7. Set c8 = ar. Since ar =
1
5 , then c8 =

1
5 .

So

A8−C8 >
ln(2)

2
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and a9 = 1
17 is not in the sum C8. So we are in case IIa, thus since we let c9 = a9, then

c9 =
1

17 .

Now

A9−C9 <
ln(2)

2
,

which means we are in case I. So we choose ar to be the smallest, for which it is not in C9

and ar <
1
29 =

1
512 and ar <

a10

2
=

1
38

. Since ar =
1

513 , then c10 =
1

513 .

We note that case I continues again for a while before it switches to another case.

Nonetheless, the process for the formation of the rearrangement is the same.

Taking the c1,c2,c3,c4, . . . terms we found and using them to replace the positive terms

of the original series, respectively, we get the following new series:

1
3
− 1

2
+1− 1

4
+

1
11
− 1

6
+

1
15
− 1

8
+

1
19
− 1

10
+ · · ·+ 1

17
− 1

16
+

1
513
− 1

18
+

1
1025

− 1
20

+ · · ·

.

Example 6.3.0.2. Consider the series,

∑(−1)n 1√
n
=

1√
2
− 1√

3
+

1√
4
− 1√

5
+

1√
6
− 1√

7
+ · · · ,

where a1 =
1√
2
,a2 =

1√
4
,a3 =

1√
6
,a4 =

1√
8
, . . . .

Consider again that V = ln(2)
2 . Given that C0 = 0 and A0 = 0, then
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A0−C0 <
ln(2)

2
.

So we are in case I. Let us choose r to be the smallest index, for which ar is not part of the

sum C0, and ar <
1
20 = 1 and ar <

a1
2 = 1

2
√

2
. Since ar =

1√
10

, then c1 =
1√
10

.

Since A1 =
1√
2

and C1 =
1√
10

, then A1−C1 >
ln(2)

2 , and because a2 =
1√
4

is not in C1,

then we are in case IIa. Let c2 = a2. Since a2 =
1√
4
, then c2 =

1√
4
.

Next, we have that

A2 =
1√
2
+

1√
4

and

C2 =
1√
10

+
1√
4
.

Then, we get that

A2−C2 >
ln(2)

2
,

and a3 =
1√
6

is not in C2. Hence, we are in case IIa again. Since a3 =
1√
6
, then c3 =

1√
6
.

Then

A3 =
1√
2
+

1√
4
+

1√
6

and
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C3 =
1√
10

+
1√
4
+

1√
6
.

Since

A3−C3 >
ln(2)

2
,

and a4 =
1√
8

is not in C3, then we are in case IIa. So we have that a4 = c4 =
1√
8
.

Now notice that

A4−C4 >
ln(2)

2

and a5 =
1√
10

, which is in C4. Thus, we are in case IIb. So we choose ar to be the first term

in An that is not in C4. Let ar = c5. Since ar =
1√
2
, then c5 =

1√
2
.

Since

A5 =
1√
2
+

1√
4
+

1√
6
+

1√
8
+

1√
10

and

C5 =
1√
10

+
1√
4
+

1√
6
+

1√
8
+

1√
2
,

then it is easy to see that

A5−C5 = 0 <
ln(2)

2
.
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So we are in case I. We pick the index r to be the smallest for which ar is not in C5, and

ar <
1
25 =

1
32 and ar <

a6
2 = 1

2
√

12
. Let c6 = ar. Since ar =

1√
1020

, then c6 =
1√

1020
.

Note that we stay in case I for a while. Continuing, the process for the formation of the

new rearranged series is the same. Then, taking the c1,c2,c3,c4, . . . terms and replacing

them with all the positive terms of the original series, we get the following rearrangement:

1√
10
− 1√

3
+

1√
4
− 1√

5
+

1√
6
− 1√

7
+

1√
8
− 1√

9
+

1√
2
− 1√

11
+

1√
1020

−·· ·= ln2
2

.



89

CHAPTER 7

ADDITIONAL RESULTS

In this chapter, we introduce some modern results complementing the classical theory we

have presented throughout this thesis.

7.1 Lévy and Steinitz

We know that by Riemann’s Theorem a conditionally convergent series of real numbers

can be rearranged to sum to any α ∈ R.

In [17], Rosenthal formulated Riemann’s result another way:

The set of all sums of rearrangements of a given series of real numbers is either empty,

a single point (if the series is absolutely convergent), or spans the entirety of R.

We can extend this idea to complex numbers:

Theorem 7.1.1 ([17]). The set of all sums of rearrangements of a given series of complex

numbers is the empty set, a single point, a line in the complex plane, or the whole complex

plane.

More generally, the Levy-Steinitz Theorem gives a similar result in n dimensions.
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Theorem 7.1.2 (Lévy-Steinitz Theorem [17]). Let ∑T be a given series in Rn. Let R be

the set of all sums of rearrangements of ∑T in Rn. Then, R is either /0 or a translate of a

subspace (that is, R = v+M for some vector v and some linear subspace M).

For a proof, refer to [6, pg. 54-61].

We proceed with a few examples.

Example 7.1.2.1. Consider the following in R2: ∑(
(−1)n−1

n
,0), in which we are consid-

ering the sums of all the rearrangements of this particular series of vectors. Notice that

the every x-coordinate is a sum from a rearrangement of the alternating harmonic series,

which we know to be conditionally convergent.

By Riemann’s Theorem, since we can get rearrangements that converge to any real

number, then the set of all the x-coordinates in this series of vectors is R. Since the y-

coordinate is always 0, then it is easy to see that the set of ∑( (−1)n−1

n ,0) spans all of R

along the x-axis for every y = 0. In other words, ∑( (−1)n−1

n ,0) in R2 is the line y = 0, which

is an affine space1.

Example 7.1.2.2. Now consider the following series in R2: ∑(
(−1)n−1

n
,

1
2n ).

Again, we see that every x-coordinate is a sum from a rearrangement of the AHS. From

the previous example, we have already verified that the set of all the x-coordinates in this

series of vectors is the set R. Notice that the y-coordinates come from ∑
1
2n , where

∑
1
2n =

1
2
+

1
4
+

1
8
+

1
16

+ · · ·= 1.

1An Affine Space is a translation of a subspace. For example, in R2, a line in a one-dimensional subspace
is the line y = mx or the vertical line x = 0, while a one-dimensional affine space is the line y = mx+b or the
line x = b.
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Also note that

∑ |
1
2n | = | 1

2
|+ | 1

4
|+ | 1

8
|+ | 1

16
|+ · · ·

=
1
2
+

1
4
+

1
8
+

1
16

+ · · ·= 1

By definition, ∑
1
2n is absolutely convergent. It follows from Dirichlet’s theorem that

every rearrangement of ∑
1
2n converges to 1. Thus, in R2, ∑(

(−1)n−1

n
,

1
2n ) is the line

y = 1, which is an affine space.

Example 7.1.2.3. Last, take the example ∑(
(−1)n−1

n
,

1
2n −

(−1)n−1

n
). We already know

that the set of all the x-coordinates in this series of vectors spans R. So now consider the

y-coordinates, ∑(
1
2n −

(−1)n−1

n
). Since we know that the sum of every rearrangement of

1
2n is always 1, then the difference

1
2n −

(−1)n−1

n
in the set of sums of all rearrangements

produces the set R. In other words, the y-coordinates spans R, just as the x-coordinates do.

Important to note is that for a chosen rearrangement yielding some particular sum

in the x-coordinate, that same sum is used in the difference of
1
2n −

(−1)n−1

n
of the y-

coordinate. In other words, say we let Vn = (
(−1)n−1

n
,

1
2n −

(−1)n−1

n
), An =

(−1)n−1

n
, and

Bn =
1
2n .

Then, for a permutation π : N→ N,

∑Vπ(n) = ∑(
(−1)n−1

n
,

1
2n −

(−1)n−1

n
)

= (∑Aπ(n),∑Bπ(n)−∑Aπ(n)).

Now let ∑Aπ(n) = S.

Then, we have (S,1−S). So x+ y = 1, which means that ∑(
(−1)n−1

n
,

1
2n −

(−1)n−1

n
)
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is the affine space x+ y = 1.

Lévy and Steinitz also came up with the following rearrangement theorem in terms of

vectors, which serves as an important part in proving the Lévy-Steinitz Theorem.

Theorem 7.1.3 (The Rearrangement Theorem [17]). In Rn, if a subsequence of the se-

quence of partial sums of a series of vectors converges to S, and if the sequence of terms of

the series converges to 0, then there is a rearrangement of the series that sums to S.

For a proof of this, refer to [17, pg. 346].

7.2 Extensions of Pringsheim’s Results

In this section, we will introduce some additional generalization, due to Scheepers [23], of

Pringsheim’s rearrangement results [15].

First recall the definition of asymptotic density from Chapter 5.

Definition 7.2.1. A number α is the asymptotic density of the positive terms in
∞

∑
n=1

fn,

provided that

α = lim
n→∞

Pn

n

where Pn denotes the number of positive terms in the sequence ( fn)
k
n=1.

Let us provide an example to make the concept of asymptotic density more clear to the

reader.
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Example 7.2.1.1. Consider the usual Alternating Harmonic Series. By [2],

∞

∑
n=1

(−1)n−1

n
,

has α = 1
2 . Again, consider the rearrangement A(2,1). We will illustrate that A(2,1) has

α = 2
3 by showing that quotients

P3n

3n
for n≤ 5 actually equals 2

3 :

C1 = 1+ 1
3 +
(
− 1

2

)
⇒ P3

3 = 2
3 ,

C2 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
⇒ P6

6 = 4
6 = 2

3 ,

C3 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+ 1

9 +
1

11 +
(
− 1

6

)
⇒ P9

9 = 6
9 = 2

3 ,

C4 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+ · · ·+ 1

13 +
1
15 +

(
− 1

8

)
⇒ P12

12 = 8
12 = 2

3 ,

C5 = 1+ 1
3 +
(
− 1

2

)
+ 1

5 +
1
7 +
(
− 1

4

)
+ · · ·+ 1

17 +
1
19 +

(
− 1

10

)
⇒ P15

15 = 10
15 = 2

3 .

Next let us bring forth some notation from [23] [Note that some of our notation may be

slightly different]:

Let ∑ f be a conditionally convergent series if it is convergent. Then, both {n : f (n)>

0} and {n : f (n)< 0} are infinite sets.

Let a1,a2,a3, · · · be positive terms of f in the order that they occur, and let−b1,−b2,−b3, · · ·

be the negative terms of f in the order that they occur.

Now suppose f to be signwise monotonic. Suppose S to be an infinite subset of N

where T = N\S is an infinite set. Let fS be such that
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fS(n) =


jth positive term of f if n is the jth element of S,

jthnegative term of f if n is the jth element of T .

So fS is a Riemann (Chapter 3) rearrangement of f . For any set X , let | X | denote the

size of X . Then, for some subset S of N, let πS(n) =| S∩{1,2,3, . . . ,n} | be the pre-density

of S, let d+(S) = limsup
πS(n)

n
be the upper density of S, and let d−(S) = liminf

πS(n)
n

be

the lower density of S.

Note that 0 ≤ d−(S) ≤ d+(S) ≤ 1 [23], and if the equality of d+(S) and d−(S) exists,

then we can let d(S)= d+(S)= d−(S) be the asymptotic density of S. Now suppose that S is

a subset of the natural numbers and for any ∑ fS is a conditionally convergent series. Let R

be a subset of the natural numbers such that for any finitely many n, we have πS(n)< πR(n).

So for each n, pick some kn small enough so that

n−πR(n) = kn−πS(kn).

Then, for each n we have

∑
m≤n

fR(m)− ∑
i≤kn

fS(i) = aπS(n)+1 + · · ·+aπR(n).

Note that ∑ fS and (aπS(kn)+1 + · · ·+ aπR(n)), n ∈ N, determines whether ∑ fR con-

verges, and if the convergence exists, ∑ fS and (aπS(kn)+1 + · · ·+ aπR(n)) also determines

the limit of ∑ fR. Also note that for each n, the nth term of (aπS(kn)+1 + · · ·+ aπR(n)) is

bounded from below by

(πR(n)−πS(kn)−1) ·aπR(n),
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and bounded from above by

(πR(n)−πS(kn)−1) ·aπS(kn).

Next, the following are results (taken from [23]) of Pringsheim, which are extensions

of Schlömilch’s results (Chapter 4) and Ohm’s theorem (Chapter 2).

Let S⊂ N. Define

ω f = {x ∈ (0,1) : (∃S⊂ N)(d(S) = x and ∑ fS(n) converges )}.

Lemma 7.2.2 ([23]). Let f be signwise monotonic. If |ω f |> 1, then for all A,B⊂N where

d(A) = d(B) and ∑ fA converges, ∑ fB converges and

∑ fA = ∑ fB.

Theorem 7.2.3 ([23]). Let f be signwise monotonic, converging to 0. Let 0 < x < 1 be

given. Then, the following are equivalent: 1. x∈ω f (asymptotic density) and limn ·an =∞.

2. For each set B, such that ∑ fB converges, d(B) = x.

Statement 7.2.3.1 (Pringsheim I [23]). Let (n · an), n ∈ N, diverge to ∞. Then ∑ fR con-

verges if and only if (aπS(kn) · (πR(n)−πS(kn)) converges. Also, if

lim(aπA(kn) · (πR(n)−πS(kn)) = a,

then

∑
n<∞

fR(n) = ∑
n<∞

fS(N)+a.

Note: This statement is false. A counterexample is described in [23, pg. 422].
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Theorem 7.2.4 (Pringsheim II [23]). Suppose lim
n→∞

n ·an = 0. If (aπS(kn) · (πR(n)−πS(kn))

is bounded, then

∑
n<∞

fR = ∑
n<∞

fS.

Theorem 7.2.5 (Pringsheim-Schlömilch [23]). Suppose (n ·an)→ t such that t ∈ R\{0}.

Then, ∑ fR converges if and only if (aπS(kn) · (πR(n)−πS(kn)) converges. Also, if

lim
n→∞

aπS(kn) · (πR(n)−πS(kn)) = a,

then

∑
n<∞

fR = ∑
n<∞

fS + t · ln(1+ a
t
).

In summary, mathematicians found: (1) the convergence criteria of ∑ fB when limn ·

an = ∞, (2) the convergence criteria of ∑ fB when limn ·an = 0, and (3) the change in value

of ∑ fB for all B with 0 < d(B)< 1 when limn ·an = t 6= 0 [23].

7.3 Władyslaw Wilczyński

Recall that Riemann’s Rearrangement Theorem states that for each conditionally con-

vergent series ∑ fn (of real numbers) and every real number α , there is a permutation

π : N→ N, such that ∑ fπ(n) = α . A problem addressed in [4, pg. 64] is whether or

not one can extend this result of Riemann by always taking a permutation π so that it only

changes a small set of terms in ∑ fn.

Let us begin by introducing some notation from [4].
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Let | X | be the cardinality of a set X . Let (an)n∈ω be a given sequence and define

a+n = max{an,0} and a−n = min{an,0}. Consider the series ∑
n∈ω

an and A⊂ω , by ∑
n∈A

an we

denote the series ∑
n∈ω

χA(n) ·an.

An ideal on ω is a family I ⊂ P(ω) (P(ω) being the power set of ω) such that it is

closed under taking subsets of finite unions. Assume that all considered ideals are proper

(unless stated otherwise) and contain all finite sets. We are able to talk about ideals on any

countable set by identifying this set with ω in terms of a fixed 1−1 and onto occurrence.

The ideal of all finite sets of natural numbers is denoted Fin. An ideal I is dense if each

A /∈ I has an infinite subset that belongs to the ideal.

The notion of smallness of the set of terms in a series can be considered in terms of

ideals of subsets of N, denoted I. Then, for I ⊂ P(N), where P(N) denotes the powerset

of N, there is a permutation π : N→ N that changes a small set of terms of N when {n ∈

N : π(n) 6= n} ∈ I.

Definition 7.3.1 ([3]). An ideal of the form

I f = {A : ∑
n∈A

f (n)< ∞}

is a summable ideal, where f is some positive function, such that ∑
n

f (n) = ∞.

Now we proceed to introduce two properties introduced in [4].

(R) Property: I ⊂P(N) has the (R) property if for each conditionally convergent series

∑
n

fn and r ∈R, there is a permutation πr : N→N where ∑
n

fπr(n) = r and {n ∈N : πr(n) 6=

n} ∈ I.
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(W ) Property: I ⊂ P(N) has the (W ) property if for each conditionally convergent

series ∑
n

fn there exists an A ∈ I where ∑
n∈A

fn is conditionally convergent.

Now we introduce a couple of applicable theorems by Wilczyński.

Theorem 7.3.2 ([4]). Let I be an ideal in N. Then, I has the (R) property if and only if I

cannot be extended to a summable ideal if and only if I has the (W) property.

Theorem 7.3.3 ([24]). If
∞

∑
n=1

fn in a conditionally convergent series, then there is a set

A⊂N, where the asymptotic density of A is equal to zero and
∞

∑
n=1

χA(n) · fn is conditionally

convergent.

A detailed proof of Theorem 7.3.2 and Theorem 7.3.3 can be found in [24, pg. 80].

Thus, there are many results regarding rearrangements of series.
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[15] Pringsheim, Alfred, Üeber die Werthveränderungen bedingt convergenter Reihen
und Producte. Mathematische Annalen, 22 (1883): 445-503.

[16] Riemann, Bernhard, Gesammelte Mathematische Werke. Leipzig, 1892.

[17] Rosenthal, Peter. The Remarkable Theorem of Lévy and Steinitz. The American
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