Crytossystems in ubiquitous commercial use base their security on the difficulty of factoring. Deployment of these schemes necessitate reliable, efficient methods of recognizing the primality of a number. A number that passes a probabilistic test, but is in fact composite is known as a pseudoprime. A pseudoprime that passes such test for any base is known as a Carmichael number. The focus of this research is analysis of types of pseudoprimes that arise from elliptic curves and from group structures derived from Lucas sequences [2]. We extend the Korselt criterion presented in [3] for two important classes of elliptic pseudoprimes and deduce some of their properties. Furthermore, we solve a standing conjecture of [1] and thus characterize a class of pseudoprimes in [3] via anomalous elliptic curves.

Elliptic Pseudoprimes

Elliptic Curves over the Rationals

An elliptic curve \(E/Q : y^2 = x^3 + Ax + B \) over \(Q \) is defined as the set \(E(Q) = \{(x, y) \in Q^2 : y^2 = x^3 + Ax + B\} \cup \{O\} \) where \(\Delta = 4A^3 + 27B^2 \neq 0 \).

The \(L \)-function of an elliptic curve \(E/Q \) is

\[
L(E, s) = \prod_{P} \left(1 - \frac{a_P}{p^s} + \frac{1}{p^{2s}}\right)^{-1} = \sum_{n=0}^{\infty} a_n \frac{1}{n^s}.
\]

Elliptic Pseudoprimes

Let \(N > 0 \) be a composite integer, \(E/Q \) be an elliptic curve with good reduction at every prime dividing \(N \), and \(P \in E \). Then, \(N \) is an elliptic pseudoprime [3] for \((E, P) \) if \((N+1-a_N)P \equiv O \pmod{N} \).

Moreover, \(N \) is an Euler elliptic pseudoprime for \((E, P) \) if \(\left(\frac{N+1-a_N}{2}\right)p \equiv O \pmod{N} \) for \(P = 2Q \) for some \(Q \in E(Z/NZ) \).

Writing \(N+1-a_N = 2t \) where \(t \) is odd, \(N \) is a strong elliptic pseudoprime for \((E, P) \) if

\[
\begin{align*}
&\text{if } (P \equiv O \pmod{N}), \text{ or } \\
&\text{if } (2t^2P \equiv (x, 0) \pmod{N}) \text{ for some } x \in Z/NZ \text{ and integer } 0 < t < \alpha.
\end{align*}
\]

Strong to Elliptic Carmichael Numbers

Elliptic Korselt Criteria

Korselt Number of Type I

\[
\begin{align*}
\text{Elliptic Korselt Number of Type I} &\mid N+1-a_N \quad \text{if } N+1-a_N \text{ is even} \\
&\text{Elliptic Korselt Number of Type I} &\mid N+1-a_N \quad \text{if } N+1-a_N \text{ is odd}
\end{align*}
\]

Product of Strong Elliptic Carmichael Numbers

\[
\begin{align*}
\text{Product of Strong Elliptic Carmichael Numbers} &\mid N+1-a_N \\
&\text{Product of Strong Elliptic Carmichael Numbers} &\mid N+1-a_N
\end{align*}
\]

Anomalous Prime Factors vs. Elliptic Korselt Type of Number I

Let \(M \geq 7 \) be an integer, \(5 \leq p \cdot q \leq M \) be randomly chosen distinct primes, \(N = pq \), and \(E/Q \) be a randomly chosen elliptic curve with good reduction at \(p \) and \(q \). For all \(r > 0 \),

\[
\begin{align*}
Pr(a_p = a_q = 1) &\equiv \Omega(1/M^{r\epsilon}) \quad \text{and} \\
Pr(p+1-a_p, q+1-a_q \mid (N+1-a_N)) &\equiv \Omega(1/M^{r(\epsilon-\epsilon^*)}).
\end{align*}
\]

Density of \(E \) with \(\#E(Z/NZ) = N+1-a_N \) Given a Condition

Let \(M, N, E, p, q \) be as above. If \(p+1-a_p, q+1-a_q \mid (N+1-a_N) \), then

\[
\lim_{M \to \infty} Pr(p+1-a_p)(q+1-a_q) / (N+1-a_N) = 1
\]

Lucas Pseudoprimes

Lucas Groups

Let \(D, N \) be coprime integers. The Lucas group \(L_{2NZ} \) is defined on \(L_{2NZ} = \{(x, y) \in (Z/2ZW)^2 \mid x^2 - dy^2 \equiv 1 \pmod{N}\} \).

Algebraic Structure of Lucas Groups

If \(p \) is a prime and \(D \) is an integer coprime to \(p \), then \(L_{2pZ} \) is a cyclic group of order \(p^{r-1}(p-D/p) \).

Moreover, \(N \) is an Euler Lucas pseudoprime for \((D, P) \) if

\[
\left(\frac{N-D/N}{2}\right)P \equiv O \quad \text{if } P = 2Q \quad \text{for some } Q \in L_{2NZ}.
\]

Writing \(N-D/N = 2t \) where \(t \) is odd, \(N \) is a strong Lucas pseudoprime for \((D, P) \) if

\[
\begin{align*}
&\text{if } (P \equiv O), \text{ or } \\
&\text{if } (2t^2P \equiv (x, 0)) \text{ for some integer } 0 \leq t < s.
\end{align*}
\]

The Nonexistence of Certain Pseudoprimes

Let \(L_{2NZ} \) be a Lucas group. Then there are no numbers that are Euler Lucas or strong Lucas numbers for every \(P \in L_{2NZ} \).

Acknowledgements

This research, conducted at the Complexity Across Disciplines Research Experience for Undergraduates site, was supported by National Science Foundation REU site Grant DMS-1659872 and by Boise State University.