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Abstract 
 

The plant hormone ethylene is known to affect various developmental processes including 
dormancy and growth. Yet, little information is available about ethylene’s role during 
paradormancy release in underground adventitious buds of leafy spurge. In this study, we 
examined changes in ethylene evolution and the ethylene biosynthetic enzyme ACC oxidase 
following paradormancy release (growth induction). Our results did not show an obvious 
increase in ethylene during bud growth. However, when buds were incubated with 1 mM ACC, 
ethylene levels were higher in growing than non-growing buds, suggesting that the levels of 
ACC oxidase increased in growing buds. Real-time qPCR indicated that the transcript of a 
Euphorbia esula ACC oxidase (Ee-ACO) increased up to 3-fold following growth induction. In 
addition, a 2.5- to 4-fold increase in ACO activity was observed 4 days after decapitation, and 
the Ee-ACO accounted for as much as 40% of the total ACO activity. Furthermore, immunoblot 
analyses identified a 36-kD Ee-ACO protein that increased in expression during bud growth. 
This protein was highly expressed in leaves, moderately expressed in crown buds, stems and 
meristems, and weakly expressed in roots and flowers. Immunolocalization of Ee-ACO on 
growing bud sections revealed strong labeling of the nucleus and cytoplasm in cells at the shoot 
apical meristem and leaf primordia. An exception to this pattern occurred in cells undergoing 
mitosis, where labeling of Ee-ACO was negligible. Taken together, our results indicate an 
increase in the levels of Ee-ACO during paradormancy release of leafy spurge that was not 
correlated with an increase in ethylene synthesis.  

 
Keywords: ACC oxidase, Dormancy, Ethylene, Euphorbia, Leafy spurge, Pardormancy release, Underground 
adventitious buds 
 
Abbreviations: ACO, ACC oxidase; Ee, Euphorbia esula; GST, glutathione S-transferase; MBP, maltose-binding 
protein 
 

Introduction 
 
Ethylene participates in the regulation of multiple physiological and developmental processes in plants including fruit 
ripening, seed germination, flowering, abscission, senescence, and responses to stress (Bleecker and Kende 2000). 
The ethylene signaling pathway has been well characterized. This signaling pathway is known to interact with other 
phytohormones and signals such as glucose and light (Chen et al. 2005; Stepanova and Alonso 2009). Ethylene affects 
plant growth by acting as an inhibitor or stimulator based on its concentration. Pierik et al. (2006) explained ethylene 
action as “biphasic” in that plant growth is stimulated at low concentrations and inhibited at high concentrations. Many 
key components (receptors, kinases, and transcription factors) of the ethylene signal transduction pathway leading 
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from initial hormone perception to transcriptional regulation were identified based on genetic screens of mutant 
Arabidopsis seedlings (Chen et al. 2005). Ethylene is perceived by a family of membrane bound receptors that are 
negative regulators of ethylene signaling. The ethylene signaling pathways and their regulatory networks have been 
well examined and reported (Kendrick and Chang 2008; Stepanova and Alonso 2009; Zhao and Guo 2011). 
 
Ethylene is synthesized through the production of S-adenosylmethionine (SAM) from the amino acid methionine. 
SAM is then converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase, and ACC is further 
oxidized to ethylene in the presence of ACC oxidase (ACO) (Dorling and McManus 2012). After ACC is released 
from SAM, the methylthio group and the ribose moiety from the remaining methylthioadenosine are recycled to 
replenish methionine levels to sustain high rates of ethylene synthesis through a recycling pathway known as the Yang 
Cycle (Bradford 2008). 
 
ACOs are encoded by a small multigene family in many species and have been shown to be differentially expressed 
in various tissues and developmental stages (Barry et al. 1996; Nakatsuka et al. 1998). ACO is a member of the 2-
oxoacid-dependent dioxygenase family of enzymes, and requires Fe2+ and ascorbate for optimal substrate conversion 
in vitro (Prescott 1993). It also requires CO2 as an essential cofactor (Dong et al. 1992). ACO is important in regulating 
ethylene synthesis; down-regulation of endogenous ACO expression in transgenic tomato reduced ethylene synthesis 
and hindered fruit ripening (Picton et al. 1993). 
 
We are interested in the involvement of ethylene during development and growth of underground adventitious buds 
of leafy spurge, a perennial weed. Leafy spurge has numerous underground adventitious shoot buds that form on the 
crown and roots (commonly referred to as crown and root buds). These buds undergo well-defined phases of dormancy 
throughout the year (Anderson et al. 2005; Chao et al. 2006). In buds, dormancy is subdivided into three categories: 
(i) ecodormancy in which growth cessation is controlled by external environmental factors, (ii) paradormancy or 
correlative inhibition in which growth cessation is controlled by physiological factors external to the affected structure, 
and (iii) endodormacy or innate dormancy in which growth cessation is controlled by internal physiological factors 
(Lang et al. 1987). We found that in leafy spurge, paradormancy inhibits buds from developing into new shoots 
through signals generated from the actively growing aerial portion of the plant, namely auxin and sugars (Horvath 
1998, 1999; Chao et al. 2006) and endodormancy is triggered by cold temperature and short photoperiods (Foley et 
al. 2009; Doğramacı et al. 2013). 
 
Although the role of ethylene in the development of bud dormancy is not well understood, this molecule appears to 
be important based on studies in various plant species. For example, Suttle (1998) showed that endogenous ethylene 
is critical for the development of adequate endodormancy in potato microtubers, where ethylene involvement is 
restricted to the initial phase of endodormancy induction. Similarly, in birch, ethylene signaling facilitates short day-
induced terminal bud formation and normal endodormancy development (Ruonala et al. 2006) based on observations 
made in ethylene-insensitive birch trees. In response to short days, these trees showed delayed endodormancy 
development, did not accumulate abscisic acid (ABA) in apical buds, and exhibited a bush-like appearance due to 
reduced apical dominance. These results suggest that ethylene signals interact with the ABA and auxin signaling 
pathways during endodormancy development (Ruonala et al. 2006). 
 
While the above results argue for a role of ethylene in inducing endodormancy, other observations indicate that 
increases in ethylene synthesis may also lead to dormancy release and growth promotion. For example in grapes (Vitis 
vinifera), bud dormancy break can be induced with hydrogen cyanamide and heat shock (Dokoozlian et al. 1995). 
These treatments resulted in up-regulation of genes involved in ethylene signaling and biosynthesis, including ACC 
oxidase, which led to an increase in ethylene levels (Ophir et al. 2009). Furthermore, exogenous ethylene accelerated 
bud break in grapes, while this process was completely inhibited by the ethylene signaling inhibitor 2, 5-norbornadiene 
(Ophir et al. 2009). A role for ethylene in promoting dormancy release and/or promoting germination is also being 
increasingly recognized in seeds (Matilla and Matilla-Vázquez 2008; Bogatek and Gniazdowska 2012). In this organ, 
ethylene acts in conjunction with gibberellins as an antagonist of ABA facilitating endosperm weakening, and 
increasing embryo growth potential and radicle emergence (Matilla and Matilla-Vázquez  2008;  Linkies and Leubner-
Metzger 2012). Other well-known condition where an increase in ethylene is linked to growth promotion is 
submergence. Submerged tissues accumulate ethylene, which triggers various responses including shoot elongation 
(Fukao and Bailey-Serres 2008). 
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Given that ethylene can promote growth at various stages of development and under different environmental 
conditions, we hypothesized that this hormone may also be involved in growth of leafy spurge buds, particularly after 
paradormancy release (growth induction) following removal of the aerial portion of the plant (decapitation). To 
explore this hypothesis, we examined ethylene production and the expression and activity of the ACC oxidase. A 
cDNA encoding a Euphorbia esula ACC oxidase (Ee-ACO) was cloned and the protein expressed from this clone was 
used to generate a polyclonal antibody against this enzyme. This study reports the expression, activity, and localization 
of the Ee-ACO enzyme during bud growth induction. 
 

Materials and methods 
 
Plant materials 
 
Leafy spurge (Euphorbia esula L.) plants were started from shoot cuttings using plant material that originated from a 
wild population in North Dakota (Biotype 1984-ND-001) and have been maintained by clonal propagation in a 
greenhouse. Shoot cuttings from greenhouse-grown plants were placed in Sunshine I potting mix inside Ray Leach 
Cone-tainers and grown in a greenhouse under a 16:8 hr day:night photoperiod at 28 ± 4oC for 3 to 4 months. Daylight 
was supplemented with 400W high-pressure sodium lamps, which provided light fluencies of about 350 µmol m-2s-1. 
Prior to the collection of adventitious buds, plants were left intact (control) or the entire plant above the base of the 
crown was excised; growth-induced buds were collected from these decapitated plants. The time of excision was 
scheduled so that the buds were harvested between 10 a.m. -12 p.m. to minimize circadian effects on gene expression. 
 
Gene expression analysis using real-time qPCR 
 
Primer pairs were designed from an Ee-ACO gene obtained from a leafy spurge EST-database (Anderson et al. 2007). 
Primers (20-24 nucleotides) were designed using Lasergene (DNASTAR, Inc., Madison, WI, USA) sequence analysis 
software. Expression of this gene was examined using total RNA prepared from underground adventitious buds of 
growth-induced samples. Growth-induced bud samples were harvested from greenhouse-grown plants 0 h, 2 h, 4 h, 8 
h, 16 h, 1 d, 2 d, 3 d, 4 d, and 5 d after shoot removal (decapitation). Two biological replicates, Rep 1 and Rep 2, of 
control and growth-induced bud samples were collected in April and June of 2006, respectively. 
 
Total RNA was extracted from bud samples, quantified, and used to prepare cDNA template through reverse 
transcription (RT) reactions. The details of cDNA preparation and real-time PCR parameters were previously 
described (Chao 2008). Briefly, the standard comparative CT method (ΔΔCT) was used to determine changes in target 
gene expression in test samples relative to a control sample. Fold difference in gene expression of test vs. control 
sample is 2-ΔΔCT, where ΔΔCT = ΔCT,test - ΔCT,control. Here, ΔCT,test is the CT value of the test sample normalized to the 
endogenous reference gene, and ΔCT,control is the CT value of the control normalized to the same endogenous reference 
gene. A leafy spurge SAND family gene was used as a reference; this gene was verified to be stably expressed during 
growth (Chao et al. 2012). SYBR green chemistry was used to produce the fluorescent signal, and two technical 
replicates were used per sample for the RT-qPCR experiments. The CT value is the average of two technical replicates. 
Passive reference dye, 6-carboxyl-X-rhodamine (ROX), was used to normalize for non-PCR-related fluctuations in 
the fluorescent signal. Changes in gene expression are reported as log2 differences (-ΔΔCT). 
 
Antibody generation 
 
A full-length Ee-ACO cDNA was cloned into two plasmid expression vectors, pMAL-c2X (New England Biolabs, 
Ipswich, MA, USA) and pGEX-4T-1 (Amersham Biosciences, Piscataway, NJ, USA) to generate fusion protein 
constructs using standard cloning methods. pMAL-c2X contains a malE gene which encodes maltose-binding protein 
(MBP) and pGEX-2T contains a glutathione S-transferase (GST) gene. Affinity-purified MBP-ACO was used as the 
antigen to generate a polyclonal ACO antibody. To isolate antibodies that specifically recognize ACO epitopes in 
MBP-ACO, a second ACO fusion protein (GST-ACO) was used to construct a column by coupling the affinity purified 
GST-ACO antigen to AminoLink coupling gel. Column construction and affinity purification of the Ee-ACO antibody 
were performed according to the manufacturer’s instructions (Pierce Biotechnology, Rockford, IL, USA). 
  

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 
Planta, published by Springer-Verlag. Copyright restrictions may apply. DOI: 10.1007/s00425-013-1887-z. 



4 

Confirmation of Ee-ACO antibody 
 
Ee-ACO antibody was confirmed by immunoprecipitation. For immunoprecipitation, proteins were extracted from 
seedlings in a buffer containing 20 mM Tris-HCl (pH 7.4), 5 mM EDTA, 5 mM EGTA, 100 mM NaCl, 0.5% NP-40 
(v/v), 1 mM DTT, 3% protease inhibitor cocktail (v/v) (Sigma P9599), and 1% PVPP (w/v). One ml of seedling protein 
extract was diluted to 1 mg/ml protein and incubated with 2 µg of affinity purified antibody for 2 hr at 4C. 
Subsequently, proteins were immunoprecipitated with 50 µl bed volume of PBS-washed protein G-Sepharose 4B 
(Amersham Biosciences, Piscataway, NJ, USA) and washed three times with PBS.  
 
Determination of protein levels 
 
Protein levels were determined by immunoblot analysis. Protein samples were phenol extracted as described by Wang 
et al. (1992) with some modification in solubilization buffer. Briefly, one gram of material was ground in liquid 
nitrogen and extracted in 10 ml of extraction buffer consisting of 0.7 M sucrose, 0.5 M Tris base, 30 mM HCl, 50 mM 
EDTA, 0.1 M KCl, 2% β-mercaptoethanol, and 2 mM PMSF. The extract was mixed with an equal volume of water-
saturated phenol. After stirring at 4C for 30 min, the phases were separated by centrifugation at 15,000 x g for 10 
min and the phenol phase was extracted. Protein partitioning into the phenol phase were precipitated with five volumes 
of 0.1 M ammonium acetate in methanol at -20C overnight. The precipitate was washed three times with 0.1 M 
ammonium acetate in methanol and once with 100% acetone. The pellet was dried and resuspended in solubilization 
buffer consisting of 8 M urea, 2% (w/v) CHAPS, 25 mM dithiothreitol, 0.2 % BIO-LYTE 1-10, and a trace amount 
of bromophenol blue. SDS-PAGE was carried out according to the method of Laemmli (1970) using a 10% 
polyacrylamide resolving gel and a 4% stacking gel. Mini gels were electrophoresed in the running buffer (25 mM 
Tris base, 192 mM glycine, 0.1% SDS) at 10-15 volts until the dye front reached the bottom of the gel. Immunoblot 
analysis was performed according to the standard procedures using Ee-ACO antibody (0.24 µg/µl) at a 1:1250 dilution. 
Secondary antibodies were anti-rabbit IgG-conjugated with alkaline phosphatase (Sigma, A0418) at 1:10,000 
dilutions. The blots were developed using a SIGMA FASTTM BCIP/NBT kit according to manufacturer’s instructions 
(Sigma-Aldrich, St. Louis, MO, USA). The intensities of the protein bands were measured using a Fluor-S 
MultiImager and Quantity One 4.0 software (BioRad, Hercules, CA, USA). 
 
Ethylene measurements 
 
Four-month old greenhouse-grown leafy spurge plants were left intact or excised just above the base of the crown 
(cut). For each of these two treatments, buds were removed from five plants at six time periods (2 h, 6 h, 24 h, 48 h, 
72 h, and 96 h). For each treatment and sampling period, buds were incubated in either10 mM MES (-ACC) or 1.0 
mM ACC + 10 mM MES (+ACC) for one hour in the dark at 20°C. The buds were then removed from their respective 
buffer and blotted dry. Per treatment and sampling period, fifteen uniform sized buds were selected and equally 
distributed among three 10 ml syringes. The syringes were then set to a 5 ml headspace volume and sealed with a 
stopper. After two-hour incubation in the dark (20°C), one ml of gas sample was extracted from each syringe. Ethylene 
was determined by gas chromatography on a Varian 3400 gas chromatograph, using a 45-cm-long alumina (60-80 
mesh) column operating at 80oC, with a nitrogen carrier gas flow rate of 30 ml min-1, and injector/detector temperatures 
of 150oC/250oC, respectively (Suttle 2003). A duplicate study was repeated the following week. The data of these two 
studies were combined for the analysis because no significant differences were observed between them. The effects 
of the various treatments on ethylene synthesis were evaluated using the MIXED procedure model in SAS 9.3 (SAS 
Institute Inc., Cary, NC, USA) for a completely randomized design. Fixed factors in the analysis were time of bud 
removal (2, 6, 24, 48, 72, or 96 h), excision treatment (intact or cut), ACC treatment (-/+), and the interactions between 
these factors. Prior to statistical analyses, the ethylene data was Box-Cox transformed to create a normal distribution, 
which was not present in the original data based on the Shapiro-Wilk’s test. Significant differences among treatments 
were determined using Tukey-Kramer least square means test at P < 0.05. 
 
ACO Assay 
 
ACO activity was determined using protein extracts obtained from crown buds of 4.5- or 4-month old greenhouse-
grown leafy spurge plants (designated as Rep 1 and Rep 2, respectively). One gram of crown buds harvested from 
intact (0 d) and growth induced plants (3 d and 4 d) was ground in liquid nitrogen and extracted in 10 ml of ACO 
protein extraction buffer (50 mM Tris pH 7.4, 30 mM Na ascorbate, 2 mM DTT, 1% PVPP, 3% protease inhibitor 
cocktail, and 20% NP-40). The extract was centrifuged at 15,000 x g for 20 min at 4°C and the supernatant filtered 
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through a 0.8 µM syringe filter. The protein concentration of the filtrates was determined (1 µg/µL for Rep 1 and Rep 
2), and the filtrates were used to measure ACO activity. The reaction mixture contained 50 mM Tris pH 7.5, 30 mM 
Na ascorbate, 2 mM DTT, 50 uM FeSO4, 1 mM ACC, 30 mM NaHCO3, and 10% (v/v) glycerol in a sealed 15-ml 
test tube. The reaction was initiated by the addition of 100 µL of the filtrate into the reaction mixture. After incubation 
for 45 min at 30oC in a shaker, a 1-ml gas sample was withdrawn from the tube air space and used for ethylene 
determination (Dong et al. 1992). A “45 min” incubation time was selected based on preliminary tests that showed 
linearity of Ee-ACO activity within the first 60 min of incubation (data not shown). ACO activity was measured in 
control extracts (without antibody) and on extracts that have been incubated with 5, and 10 µg of the Ee-ACO antibody 
to remove Ee-ACO protein. After incubation, antibody-bound Ee-ACO was immunoprecipitated onto Protein G 
sepharose 4 Fast Flow (GE Healthcare). After centrifugation at 4oC and 6,000 rpm for 4 min, the supernatant was used 
to measure ACO activity. In addition to the above measurements of ACO activity in protein extracts, we also 
determined the activity of the GST-ACO fusion protein to ascertain that the Ee-ACO is functional and responsible for 
ethylene synthesis in vivo. For this purpose, the reaction conditions and ethylene determination procedures were the 
same as those described above. Statistical differences on ACO activity after growth induction or following 
immunoprecipitation were evaluated by one-way ANOVA in SAS 9.3. Data were not transformed prior to statistical 
analyses because the data satisfied the assumptions of homoscedasticity and normality based on the Bartlett's and 
Shapiro-Wilk’s test, respectively. 
 
Immunolocalization 
 
For immunolocalization studies, underground adventitious buds were fixed in 4% (w/v) paraformaldehyde in 50 mM 
Pipes (pH 6.9) containing 5 mM MgSO4 and 5 mM EGTA and embedded in 4:1 (v/v) butyl methacrylate to methyl 
methacrylate (Polysciences, Inc., Warrington, PA, USA) as described by Baskin et al. (1992). Samples were sectioned 
at a thickness of 3 m and affixed to slides coated with 3-aminopropyltriethoxysilane. After removal of the 
methacrylate, sections were treated with a blocking buffer (pH 7.4) consisting of 100 mM K-phosphate, 138 mM 
NaCl, 2.7 mM KCl, 0.5% Tween 20 (Pierce Biotechnology) and 10% horse serum (Sigma). The sections were then 
incubated for 2 h with a 1:200 dilution of the Ee-ACO antibody in blocking buffer. After rinsing with blocking buffer, 
bound primary antibody was detected using goat anti-rabbit antibody conjugated to Alexa Fluor 488 (Molecular Probe, 
Eugene, OR). To ascertain the specificity of the antibodies to the sections, we conducted two controls. Some sections 
were incubated with secondary antibody only, while others were incubated with primary antibody preabsorbed with 
the ACO protein at a molar ratio of ACO protein to antibody of 50 to 1. After immunolabeling, propidium iodide was 
used for nuclear counter-staining. 
 

Results 
 
Increase in ethylene levels required the addition of ACO 
 
To examine the effect of growth induction on ethylene synthesis, crown buds were collected from non-growth (intact) 
and growth-induced (cut) plants and incubated with or without 1 mM ACC. The statistical analysis showed significant 
interactions between the factors considered (p < 0.001); which is reflected on the different effects of ACC on intact 
and cut buds, and overtime. Without ACC, ethylene levels did not increase in either intact or cut buds (Fig 1). In 
contrast, ACC addition led to an increase in ethylene synthesis, but only in buds harvested 96 h after growth induction 
(Fig. 1). These buds showed higher ethylene production than those collected earlier. Moreover, no increase in ethylene 
levels was observed for ACC-incubated buds that were collected from intact plants (intact, +ACC), suggesting that 
the levels of the ACC oxidase (ACO) increased in growing buds. 
 
Ee-ACO transcript levels increased after growth induction 
 
To test if the increase in ACC-dependent ethylene production correlates with an increase in ACO transcripts during 
bud growth, a cDNA clone (Ee-ACO) was obtained from our leafy spurge EST-database (Anderson et al. 2007). The 
deduced amino acid sequence of Ee-ACO shared significant sequence identity with ACO from other plant species. 
For example, Ee-ACO shares 88% sequence identity with two Euphorbiaceae species, the para rubber tree (Hevea 
brasiliensis, CAN85571) and cassava (Manihot esculenta, ABK58140), and 88% and 79% sequence identity with 
ACOs from Populus trichocarpa (Pt EEE98802) and  Arabidopsis thaliana (At1G05010), respectively (Fig. 2). Based  
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on KnowPredsite (a knowledge based method to predict protein localization), Ee-ACO is localized in the cytoplasm 
and nucleus with a confidence score of 30.01 and 28.57, respectively. The expression of Ee-ACO transcript was 
examined in two sets of growth-induced (Rep 1 and Rep 2) crown bud samples using qRT-PCR (Fig. 3). The transcript 
of an Ee-ACO was found to increase up to 3-folds after growth induction following decapitation. 
 
To ascertain that this Ee-ACO encodes an endogenous leafy spurge ACO responsible for ethylene synthesis, a GST 
and Ee-ACO fusion protein (GST-ACO) was generated, affinity purified, and its ACO activity determined. Our results 
showed that the GST-ACO protein produced as much as 460 nL ethylene hr-1 g-1 protein (data not shown). 
 
Ee-ACO protein and activity levels increased after growth induction 
 
To further examine the expression and activity of Ee-ACO, a polyclonal antibody was generated from a MBP-Ee-
ACO fusion protein and used for various studies including immunoblot analysis, activity assays, and 
immunolocalization. Immunoblot analyses of crude protein samples from seedlings showed that the Ee-ACO antibody 
identified a major protein with a molecular weight of 36-kD (Fig. 4a, 1st lane). Furthermore, the Ee-ACO antibody 
immunoprecipated the 36 kD protein from a crude protein extract from seedlings (3rd lane). However, this procedure 
did not precipitate all Ee-ACO since the 36-kD protein was also present in the supernatant after immunoprecipitation 
(2nd lane). 
 
Ee-ACO abundance was investigated in crown buds before and after growth induction and in other plant organs and 
tissues. The 36-kD protein was identified in all plant parts examined. Ee-ACO was highly expressed in leaves, 
moderately expressed in crown buds, stems and meristems, and weakly expressed in roots and flowers (Fig. 4b); the 
difference in Ee-ACO abundance among these tissues could be as high as 5-fold. Ee-ACO was present in paradormant 
crown buds, but the levels of this protein progressively increased during the first five days after growth induction (Fig. 
4c). This result correlated well with the expression of Ee-ACO transcript, which showed moderate increase after 
growth induction. 
 
In addition to the increase in Ee-ACO expression, growth induction caused a rise in apparent ACO activity. Within 
the first four days after decapitation, we observed 2.5 and 4-folds increases in vitro ACO activity in crude protein 
extracts from 4.5- and 4-month-old (Rep 1 and Rep 2) crown buds,  respectively (Fig. 5a). Moreover, an enzyme 
partially responsible for this activity was removed by immunoprecipitation using 5 and 10 µg of the Ee-ACO antibody 
(Fig. 5b). These procedures resulted in 40% reduction in ACO activity with respect to the non-immunoprecipitated 
control (Fig. 5b). 
 
Ee-ACO is localized in the nucleus and cytoplasm of growing buds 
 
To determine Ee-ACO protein expression at the cellular and subcellular levels, sections of control and 4 day growth-
induced crown buds were incubated with the Ee-ACO antibody. No clear differences in antibody labeling were 
observed between these two time points; thus, only the results of 4-day old crown buds are shown (Fig. 6). The green 
fluorescence indicates binding of the Ee-ACO antibody to the sections (f-i) and the red fluorescence reveals staining 
of the nuclei with propidium iodide (c, f-i). Preincubation of the Ee-ACO antibody with the MBP-ACO completely 
inhibited binding of the antibody to the sections (a-c). Strong labeling of Ee-ACO was shown in the nucleus and 
cytoplasm of young cells at the shoot apical meristem and leaf primordia (d-i). Higher magnification showed an 
exception to this pattern; labeling of Ee-ACO was negligible in cells undergoing mitosis (h and i). These observations 
suggest that ethylene is synthesized in cells of growing buds, but only during certain stages of the cell cycle. 
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Discussion 
 
Decapitation increases the expression of ACC oxidase 
 
Our results showed that decapitation of leafy spurge is associated with an increase in the ACO transcript, ACO protein, 
and ACO activity. Increases in the levels of the ACO transcript occurred within the first day after decapitation, while 
increases in ACO protein amount and activity appeared to reach a maximum four days after decapitation. The increase 
in ACO activity was observed in both protein extracts and in bud feeding experiments. However, the time course of 
these changes was different. Protein extracts showed a 2 to 3 fold increase in ACO activity 3 d after decapitation. In 
contrast, the increase in ethylene synthesis was delayed to day 4 (96 h) after decapitation in buds and only occurred if 
buds were supplemented with ACC. 
 
The need for ACC addition to increase ethylene synthesis suggests, that 4 d after decapitation, bud production of this 
hormone was not limited by ACO but rather ACC availability. The conversion of AdoMet to ACC by ACC synthase 
is often a rate-limiting step in ethylene synthesis (Argueso et al. 2007). Perhaps, a similar situation occurs at early 
stages of bud sprouting in leafy spurge. However, further work is needed to determine whether the ACC limitation 
was present in the buds prior to their excision from the plants or developed during the measurement procedure, which 
involved bud excision. A decrease in ACC synthase activity following excision seems unlikely because this event 
requires some wounding that tends to increase ACC synthase expression (Boller and Kende 1980; Argueso et al. 
2007). Nevertheless, ACC may decrease if the growing bud depends on imports from the roots to maintain the Yang 
cycle. 
 
While ACC promoted ethylene synthesis in 4 d buds, it did not have such effect on 3 d buds (Fig. 1). This was 
somewhat unexpected because protein extracts from growth-induced 3 d buds showed levels of ACO expression and 
activity somewhat similar to 4 d buds and clearly higher than the 0 d controls (cf. Fig. 4c and 5b). In addition to ACC, 
ACO requires O2 as a substrate, ascorbate as co-substrate, and Fe2+ and CO2 as cofactors (Dong et al. 1992). Inadequate 
levels of any of these molecules could have limited ACO activity despite the increase in ACO expression (Yip et al. 
1988; Sanders and de Wild 2003; Zechmann 2011). At least in excised buds, the results suggest sequential changes in 
the factors limiting ACO activity after growth induction, with perhaps cofactors limiting at day 3 and ACC at day 4. 
 
Although the ACO protein and ACO activity increased after decapitation, the magnitude of this increase was different. 
In general, the increase in ACO activity was higher than the increase in ACO protein accumulation. This suggests that 
some type of post-translational modification could occur to this enzyme after growth induction. Alternatively, Ee-
ACO activity was only a fraction of the total ACO activity in these buds and, like Ee-ACO, related ACOs might 
increase after decapitation. The immunoprecipitation experiment using 5 and 10 µg of the Ee-ACO antibody supports 
this notion. Immunoprecipitation resulted in 40% reduction in the total ACO activity (Fig. 5b). This suggests that 60% 
of the total ACO activity was attributed to related ACOs that were not immunoprecipitated by the Ee-ACO antibody. 
Still, there was a possibility that a fraction of Ee-ACO could not be precipitated by Ee-ACO antibody, and thus 60% 
of the total ACO activity was attributed to both non-precipitated Ee-ACO and related ACOs; this would underestimate 
the total Ee-ACO activity. Thus, our work showed that Ee-ACO is one of the major enzymes responsible for ethylene 
production in buds, but most likely not the only one. 
 
There were also differences in the time course and magnitude of ACO activity between the two biological replicates. 
In Rep 1, similar and high levels of activity were measured in days 3 and 4 after decapitation. In contrast in Rep 2, 
there was a significant increase in activity between days 3 and 4. Moreover, the magnitude of ACO activity was 
markedly different between the two replicates. The highest ACO activity was 21.2 nL g-1FW hr-1 for Rep 1, but only 
6.5 nL g-1FW hr-1 for Rep 2. On the other hand, Rep 2 showed a higher fold difference with respect to the 0 d control 
than Rep 1, 4 and 2.5 folds, respectively. These variations in ACO activity could be due to differences in bud age 
since samples for Rep 1 and Rep 2 were from 4.5 and 4 month-old plants, respectively. Also, Rep 1 and Rep 2 were 
harvested at distinct times of the year. This may have resulted in differences in ACO activity, even though the plants 
were grown under similar greenhouse conditions. 
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Does Ee-ACO play a regulatory role in ethylene production and growth? 
 
The rise in ACO activity that occurs as leafy spurge buds exit paradormancy indicates an increase in the bud capacity 
for ethylene synthesis. This increased capacity is likely to eventually enhance ethylene synthesis. However, the 
moment at which the increase in ethylene synthesis takes place is not clear from our measurements. Perhaps, the rise 
in ACO expression is in preparation for increases in ethylene synthesis that occur 5 or more days after decapitation. 
At this time the buds undergo a very rapid elongation to become young shoots. Accumulation of ACO transcripts and 
increases in ethylene synthesis has been correlated with growth promotion in a variety of situations and a similar 
phenomenon may occur in sprouting leafy spurge buds. For example, in deepwater rice accumulation of ethylene as 
result of physical entrapment and increased biosynthesis leads to rapid rates of shoot elongation and carbohydrate 
metabolism (Fukao and Bailey-Serres 2008; Iwamoto et al. 2010). Similarly, Pierik et al. (2004) found that low red to 
far-red ratios enhanced ethylene production and stimulated shade avoidance response in wild-type tobacco, while 
much reduced responses were observed in ethylene-insensitive plants. A growth promoting effect of ethylene has also 
been observed during seed germination. In chick-pea (Cicer arietinum L.) seeds; ethylene levels were elevated in the 
embryonic axis and reached its highest value when radicle emergence occurred. In addition, radicle emergence was 
accompanied by elevated levels of ACC, ACO transcript, and ACO activity (Gómez-Jiménez et al. 2001). Our previous 
studies on seed germination of leafy spurge using microarrays also indicate a role of ethylene signaling in radicle 
emergence. In these studies, the principal small molecule hub of over-represented genes shifted from gibberellic acid 
just prior to germination to ethylene at germination (Chao et al. 2011). Based on all of these findings, the ethylene 
signaling pathway might be an important conduit for growth. However, studies on bud outgrowth following treatments 
that limit ethylene production or signaling would be needed to ascertain a direct requirement for ethylene in bud 
outgrowth. 
 
Ethylene may be synthesized in the cytoplasm and nucleus of young, non-dividing cells 
 
Immunolocalization analysis showed that Ee-ACO is located in both the cytoplasm and nucleus of young cells at the 
shoot apical meristem and leaf primordia (Fig. 6). In addition, a confidence score of ~30 was obtained for both 
cytoplasm and nucleus localization from the predicted amino acid sequences of Ee-ACO, providing additional 
evidence that Ee-ACO is localized in these two cellular compartments. These results were similar to the findings of 
Hudgins and Franceschi (2004) in Douglas fir (Pseudotsuga menziesii), where transmission electron microscopy 
showed clear labeling of the nucleus. In other plant species, ACOs have been observed in the cell wall/apoplast 
(Rombaldi et al. 1994; Gómez-Jiménez et al. 2001) and the cytosol (Chung et al. 2002). Localization in the cell wall 
is particularly intriguing because ACO does not contain a typical N-terminal sequence for transport into the 
endoplasmic reticulum (Chung et al. 2002). Ethylene in the cytoplasm has been postulated to play important roles for 
ethylene signal transduction and the MAPK pathway (Hahn and Harter 2009; Zhao and Guo 2011). Very little is 
known about the role that ACO may play in the nucleus. Nuclear ACO may have a similar function as in the cytoplasm, 
but this remains to be tested. Interestingly, no (or negligible) ACO was identified in young cells undergoing mitosis 
indicating that ACO synthesis and turnover were under complex and tight control at the cellular and sub-cellular 
levels. Unlike the immunoblot analyses (Fig. 4c), no discrete differences in Ee-ACO localization were observed 
between control buds (data not shown) and 4-day growth induced buds. This discrepancy is not surprising because 
immunoblot analysis is more sensitivity than immunolocalization in detecting differences in protein levels, and our 
results clearly indicate that ACO is present at all time points. 
 
In summary, our results revealed that the release from paradormancy in leafy spurge leads to an increase in ACO 
expression and a rise in ACO activity in bud protein extracts. This rise in activity was not limited to the Ee-ACO 
transcript reported, but also seems to reflect the contribution of other ACO enzymes. In the buds, the increase in ACO 
expression was not accompanied by equivalent increases in ethylene synthesis. This indicates that regulation of ACO 
activity in situ may be limited by other factors such as the levels of substrates and cofactors for this enzyme. As judged 
by the differential response of buds to the addition of ACC, changes in factors limiting ACO activity appeared to 
occur between 3 and 4 d following decapitation. The discrepancies between in vitro and in situ ACO activities suggest 
a complex regulation of ethylene synthesis following growth induction of leafy spurge. 
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Legends 
 
Fig. 1 Ethylene production after growth induction. Crown buds of non-growth-induced (intact) and growth-induced 
(cut) plants were incubated with (+ACC) or without (-ACC) 1 mM ACC. Two sets of time point samples (2 h, 6 h, 
24 h, 48 h, 72 h, and 96 h) were used. Vertical bars represent the mean (± SE). The results are combined data of two 
experiments. Means not labeled by the same letter are significantly different (p < 0.05) 
 
Fig. 2 Deduced amino acid sequence comparison among ACO proteins. The deduced ACO sequence of leafy spurge 
(Ee-ACO) was compared with poplar (Pt EEE98802), para rubber tree (CAN85571), cassava (ABK58140), and 
Arabidopsis (At1G05010) 
 
Fig. 3 Transcript levels for Ee-ACO. The expression of Ee-ACO transcript was examined using real-time PCR after 
growth induction. Two sets of growth-induced (Rep 1 and Rep 2) crown bud samples were used. The comparative 
CT method was used to determine changes in transcript expression levels in test samples relative to a control sample. 
The control for growth-induced samples was 0 h buds (0 h), and a leafy spurge SAND family gene was used as a 
reference for data normalization. Differences are expressed as log2 fold values (which are equivalent to -ΔΔCT 
values); symbols represent the mean (± SE).  
 
Fig. 4 Immunoprecipitation and protein expression analysis of Ee-ACO. a The Ee-ACO antibody was used to 
perform immunoprecipitation with Tris-buffer extracted leafy spurge seedling protein. b-c Leafy spurge total 
proteins were phenol-extracted from various tissues (b) as well as growth-induced (c) bud samples. These samples 
were fractionated by SDS-PAGE (10 µg per lane), blotted onto a membrane, and incubated with the Ee-ACO 
antibody. Bud samples were harvested from intact control plants (0) or at various time points (1 through 5 days) 
after growth induction. The 2006 and 2007 sample sets were used as biological replicates. The intensities of Ee-
ACO bands were quantified in b and c. Relative intensities were determined by setting the strongest band from each 
blot equal to 100 
 
Fig. 5 ACO activities after growth induction. a ACO activities were determined after growth induction using 4.5- 
(Rep 1) or 4-month old (Rep 2) crown buds. Time points after growth induction are indicated in days (d). The y-axis 
value at the left side of the chart (0-25) represents the ethylene levels of Rep 1, and the y-axis value at the right side 
of the chart (0-8) represents the ethylene levels of Rep 2. b ACO activities in crown buds of leafy spurge 4 d after 
growth induction, comparison between non-treated protein extracts (control) and treated protein extracts in which a 
fraction of the endogenous Ee-ACO was removed by immunoprecipitation using 5 and 10 µg of the Ee-ACO 
antibody. The activities presented are the average values of three technical replicates and vertical bars represent the 
mean (±SD). Means not labeled by the same letter are significantly different (p < 0.05). In a, the mean comparison 
was made separately for each biological replication 
 
Fig. 6 Immunolocalization of Ee-ACO protein in crown buds of leafy spurge. Sections were prepared from 4 day-
old crown buds. Green label indicates the interaction of Ee-ACO antibody and its antigen, and red label shows the 
nuclei that were stained with propidium iodide (PI). a Ee-ACO antibody preincubated with the MBP-ACO protein. 
b Nuclei stained with PI. c A merged image of a and b. d Young cells at bud tip incubated with anti ACC antibody. 
e Nuclei stained with PI in young cells at the bud tip. f A merged image of d and e. g Cells at the bud shoot apical 
meristem incubated with the anti ACC antibody and PI. h, i Leaf primordia showing cells at different stages of the 
cell cycle incubated with the anti ACC antibody and PI. Bars = 50 µm (a-f), 30 µm (g-i) 
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Fig. 3 
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