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Abstract - We describe some recent themes in the nutritional and chemical ecology 

of herbivores and the importance of a broad pharmacological view of plant nutrients 

and chemical defenses that we integrate as “Pharm-ecology”. The central role that 

dose, concentration, and response to plant components (nutrients and secondary 

metabolites) play in herbivore foraging behavior argues for broader application of 

approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore 

systems. We describe how concepts of pharmacokinetics and pharmacodynamics are 

used to better understand the foraging phenotype of herbivores relative to nutrient and 

secondary metabolites in food. Implementing these concepts into the field remains a 

challenge but new modeling approaches that emphasize tradeoffs and the properties of 

individual animals show promise. Throughout we highlight similarities and 

differences between the historic and future applications of pharm-ecological concepts 

in understanding the ecology and evolution of terrestrial and aquatic interactions 

between herbivores and plants.  We offer several pharm-ecology related questions and 

hypotheses that could strengthen our understanding of the nutritional and chemical 

factors that modulate foraging behavior of herbivores across terrestrial and aquatic 

systems. 

 

Key Words – Aquatic, herbivore, nutrient, pharmacology, plant secondary 

metabolite, terrestrial. 
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INTRODUCTION 

For several decades now, a central focus in the field of nutritional ecology has been to 

understand the factors that influence the foraging behavior of terrestrial and aquatic 

herbivores (Choat and Clements, 1998; Clements et al., 2009; Dearing et al., 2005; 

Foley et al., 1999; Raubenheimer et al., 2009; Scriber and Slansky, 1981). There is 

ample evidence from each of these areas that the foraging behavior of herbivores is 

driven by both nutrients and chemical defenses. Variation in macro- and 

micronutrients (e.g., protein, carbohydrates, sodium) in foods coupled with the 

nutritional requirements of herbivores influence intake and food preference (Barboza 

et al., 2009; Behmer, 2009; Clements et al., 2009; Raubenheimer and Simpson, 1997). 

However, the presence of plant secondary (or specialized) metabolites (PSMs), which 

can act as chemical defenses, often constrain intake despite the abundance of critical 

nutrients in those foods (Appel, 1993; Behmer et al., 2002; Dearing et al., 2005; Foley 

and McArthur, 1994; Hay and Fenical, 1988; Palo and Robbins, 1991; Paul et al., 

2006; Raubenheimer and Simpson, 2009). 

 

Although both nutrients and secondary metabolites influence foraging behavior, there 

is a general lack of ability to a priori predict diet selection even when the nutritional 

and chemical profiles of available plants are well documented (Clements et al., 2009; 

Cruz-Rivera and Hay, 2003; Kool, 1992; Sotka et al., 2009; Yeager et al., 1997). 

Reasons for this shortcoming are that herbivores often have different nutritional 

intake targets, and that nutrients and PSMs are too often treated separately (reviewed 

in Behmer, 2009). Another reason is that researchers tend to regard nutrients as 

“therapeutic” components that always result in positive consequences whereas PSMs 

are considered “toxic” components with inevitable negative repercussions. As such, 
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nutrients and PSMs historically have been studied independently despite proposals for 

a unified marriage of these components since the 1970s (for review, Horn, 1989; 

Slansky, 1992).  However, the definition of a nutrient versus a toxin is not necessarily 

clear and is a function of the dose, the herbivore’s homeostatic state (Raubenheimer 

and Simpson, 2009; Raubenheimer et al., 2009) and interactions between nutrients 

and toxins. In some cases, compounds widely perceived as nutrients, such as amino 

acids, may be a feeding deterrent in their free form (DeGabriel et al., 2002; Field et 

al., 2009; Huang et al., 2011; Lokvam et al., 2006). In other cases, animals use PSMs 

in a manner consistent with them being therapeutic (see Forbey et al., 2009).  

Moreover, PSMs can have contrasting effects in that they may be detrimental to some 

herbivores in some contexts, while having positive effects elsewhere.  As an example, 

low levels of diterpene alcohols produced by Dictyotalean seaweeds deter larger 

generalist fish and urchins, but are feeding stimulants to smaller amphipods and 

worms (Hay et al., 1987).  In yet other examples, tannins can reduce availability of 

protein in food for some vertebrate herbivores (Barbehenn and Constabel, 2011; 

Targett and Arnold, 2001) but may also work as antihelminthics (Min et al., 2003) or 

as antiviral agents (Appel and Schultz, 1994; Hunter and Schultz, 1993) in other 

herbivores. 

 

Given that PSMs and nutrients often occur simultaneously in food, there is much to be 

gained from approaches that investigate the mechanisms by which both nutrients and 

PSMs act individually and together to influence the foraging ecology, or foraging 

phenotype, of herbivores. Numerous studies have investigated the relative “value” of 

these factors by herbivores (Behmer, 2009; Behmer et al., 2002; Bernays et al., 1994; 

Simpson and Raubenheimer, 2001). In some cases, nutrients are more important than 
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PSMs (Cruz-Rivera and Hay, 2003; Duffy and Paul, 1992; Felton et al., 2009; Van 

Alstyne et al., 2009), in others, PSMs are more important (Dearing et al., 2000; 

Erhard et al., 2007), and in still other cases, these factors are equally important or act 

synergistically to influence foraging behavior (Duffy and Paul, 1992; Frye et al. in 

press, Simpson and Raubenheimer, 2001).  While approaches, such as the geometric 

framework, have helped researchers study how herbivores regulate nutrient needs in 

variable nutritional and PSM environments (Behmer, 2009), what remains poorly 

understood is why certain species respond to specific thresholds of PSMs or nutrients 

and others do not. If we want to explain and predict variable foraging behavior of 

herbivores, we need to measure mechanisms that set the tolerance and requirements 

for PSMs and nutrients. 

 

We propose that the field of pharmacology should be integrated with chemical and 

nutritional ecology to facilitate the transitions among observations of foraging 

behaviors in the field relative to PSM or nutrient levels (foraging phenotypes) and 

pharmacological mechanisms guiding foraging patterns (pharmacokinetics-

pharmacodynamics, PK-PD, Figure 1), to ultimately predict patterns of foraging 

behavior. This approach, linking observation with mechanism to predict pattern, was 

developed for terrestrial mammals but we argue it can be applied to invertebrate and 

vertebrate herbivores in terrestrial and aquatic habitats.  Although we recognize that 

not all secondary metabolites consumed by herbivores are derived from plants, we use 

PSMs throughout to maintain a consistent language.  

 

Our goal is to provide examples of how and why pharmacology can advance an 

understanding of the interactions between plants and herbivores. Researchers focused 
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on herbivores in one system will benefit from a richer understanding of the 

pharmacological mechanisms that limit or expand tolerance to nutrients and 

chemicals by herbivores in other systems. We begin by describing studies that 

integrate nutritional and chemical ecology to explain herbivore foraging patterns from 

different systems. We then offer practical approaches from pharmacology to answer 

ecological questions – termed Pharm-ecology.  Pharm-ecology is the study of 

mechanisms that limit or expand herbivore diet breadth and are therefore useful in 

predicting foraging patterns.  Throughout, we highlight the nuances of using 

pharmacological approaches in specific systems. However, we emphasize how 

pharmacology can offer a common approach to address questions posed by ecologists 

about diet selection in both terrestrial and aquatic systems. Finally, we demonstrate 

how ecologists can take concepts back into a natural setting to predict foraging 

patterns.  Our hope is to stimulate researchers to perform multi-system comparisons 

that use pharm-ecology to address questions related to the mechanisms influencing 

the foraging ecology of herbivores. 

 

In general, the workflow of a pharm-ecological project has three interacting steps. 

First, the investigator should observe foraging phenotypes that can be compared to 

other phenotypes (Shipley et al., 2009). Examples of foraging phenotypes include 

dietary specialists versus generalists, different diets in populations of the same species 

in different habitats, or diets of animals that shift ontogenetically or seasonally. These 

comparative systems provide excellent opportunities to understand the mechanisms 

underlying foraging patterns. Once foraging phenotypes have been identified, 

behavioral, morphological, physiological, and genetic adaptations that can influence 

what the body does to PSMs and nutrients (i.e., pharmacokinetics, PK) and what 
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PSMs and nutrients can do to the body (i.e., pharmacodynamics, PD) can be 

compared between phenotypes. We recognize that investigating pharmacological 

mechanisms can be daunting. In vivo studies are recommended first to understand 

how the concentration of PSMs or nutrients influences intake and excretion of these 

substrates and their metabolites. If animals differ in intake and excretion of foodstuff, 

there are likely to be mechanisms driving these patterns and more detailed 

pharmacokinetic and pharmacodynamic approaches such as those outlined below are 

warranted. We do not provide the details of such studies, but rather provide a general 

overview of how these pharmacological approaches can be useful in understanding 

and comparing mechanisms driving variation in foraging phenotypes.  

 

Foraging phenotypes: An integrated view of nutrients and toxins. Much of the early 

work on plant-herbivore interactions focused on identifying PSMs that constrained 

intake in herbivores. Specifically, the detoxification limitations hypothesis argued that 

the ability of herbivores to detoxify ingested PSMs largely determined which plants, 

and how much, they could eat (Freeland and Janzen, 1974; Marsh et al., 2006a).  

Although this hypothesis was largely focused on mammalian herbivores, the concepts 

apply to all herbivores.  Threshold intakes of PSMs have been documented in several 

species of terrestrial (Govenor et al., 1997; Simpson and Raubenheimer, 2001; 

Stapley et al., 2000; Torregrossa et al., 2012) and aquatic (Demott, 1999; Gross and 

Bakker, 2012) herbivores.  

 

There are several factors that can influence thresholds to PSMs.  Nutrients may 

interact with PSMs to establish those thresholds. For example, common brushtail 

possums had higher tolerance to diets rich in benzoic acid when they were provided 
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with substrates needed for the detoxification and excretion of benzoates (Marsh et al., 

2005). In addition, supplemental energy and protein may increase the ability of 

herbivores to consume foods that contain diverse PSMs (Nersesian et al., 2012; 

Provenza et al., 2003) by providing the resources needed to pay for high energetic 

costs of detoxification (Foley and McArthur, 1994; Mangione et al., 2004; Sorensen 

et al., 2005c).  

 

Ecological and evolutionary experience with PSMs or nutrients also plays a role in 

shaping foraging phenotypes.  For example, previous ecological exposure to PSMs 

increases tolerance to those PSMs, but may decrease tolerance to novel PSMs 

(Gustafsson and Hansson, 2004; Sorensen et al., 2005b).  Memory of the positive and 

negative experiences of exceeding thresholds to nutrients and PSMs via conditioned 

food aversions can also influence foraging phenotypes (Provenza et al., 1998). 

Animals form aversions when they associate post-ingestive illness with the taste of 

food. Olfactory chemoreception is the most ancient sensory cue in animals and may 

be used for pre-ingestive avoidance of chemicals, whereas taste may be used for post-

ingestive limitation of food intake. Although these concepts have been verified using 

ecologically realistic combinations of flavors and toxins (Lawler et al., 1999), there 

has been some doubt cast on how well animals can generalize preferences when the 

foraging choices become more complex both temporally and spatially in natural 

systems (Duncan et al., 2007; Favreau et al., 2010; Ginane et al., 2005). However, 

animals can discriminate mixtures of chemicals to remember and track these olfactory 

cues through space and time (Derby and Sorensen, 2008). There is enormous scope 

for investigating the role and consequences of previous experience, learning and 
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associated sensory systems in understanding the foraging phenotypes of herbivores.

  

 

PHARMACOLOGICAL MECHANISMS 

It has been widely observed that the quality, quantity, and complexity of nutrients and 

PSMs and the learned responses to these dietary components can mediate the foraging 

patterns of herbivores (Amsler, 2008; Behmer, 2009; Hay and Fenical, 1988; Paul and 

Vanalstyne, 1992; Provenza et al., 1998; Provenza et al., 2003; Simpson and 

Raubenheimer, 2001). Although the general concepts of pharmacology were 

introduced to ecologists to explain plant-herbivore interactions 38 years ago (Freeland 

and Janzen, 1974), the empirical use of pharmacology to understand mechanisms 

driving foraging patterns in any system is limited (Haley et al., 2008; Magnanou et 

al., 2009; Marsh et al., 2006b; McLean and Duncan, 2006; Sorensen et al., 2006; 

Sotka et al., 2009). In contrast to the broad knowledge base that exists on the 

mechanisms required to process nutrients as well as mechanisms used by domestic 

and laboratory species to metabolize drugs, there is a general lack of understanding of 

how PSMs are processed by herbivores, especially in the context of a variable nutrient 

environment (Appel, 1993; Casarett et al., 2008; Gross and Bakker, 2012; Karasov 

and Hume, 1997). The gap in knowledge related to mechanisms required to process 

nutrients in marine herbivorous fishes, for example, has only recently begun to close 

(Choat and Clements, 1998; Clements et al., 2009). Moreover, despite a long history 

of investigating how aquatic animals process chemical contaminants (Chambers and 

Yarbrough, 1976; Katagi, 2010; Rewitz et al., 2006; Smital et al., 2004), studies 

investigating how they process dietary secondary metabolites have only recently been 

initiated (Gross and Bakker, 2012; Liang et al., 2007; Richardson et al., 2009). An 
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understanding of pharmacology can fill these gaps in both terrestrial and aquatic 

systems. 

  

The pharm-ecological approach focuses on evolutionary conserved mechanisms that 

define foraging phenotypes. As highlighted above, pharmacological approaches allow 

researchers to investigate the mechanisms that drive the fate (what the body does to a 

chemical, pharmacokinetics, PK) and action (what a chemical does to the body, 

pharmacodynamics, PD) of PSMs and nutrients in any herbivores. The pharm-

ecological perspective views the foraging ecology of herbivores as a dose-

concentration-response.  

 

The general outcome of the pharm-ecological mechanisms described, to minimize 

deficits and excesses to maintain homeostasis, is conserved across species for a range 

of chemicals and therefore can be applied to a variety of systems (see Behmer, 2009; 

Sotka et al., 2009). Of the parameters outlined in Figure 1, dose (e.g., total intake), 

metabolism, excretion and foraging response have received the most attention by 

ecologists (Haley et al., 2008; McLean and Duncan, 2006; Sorensen et al., 2006). 

Distribution, specifically associated with the amount and site of sequestered PSMs, is 

well described in terrestrial insects (Opitz and Muller, 2009; Dobler et al. 2011) and a 

small number of marine invertebrate systems (Pennings and Paul, 1993; Whalen et al., 

2010). The mechanisms of absorption of PSMs and the resultant kinetics (i.e. time 

course) of secondary metabolites are known in some vertebrate (Boyle et al., 2005; 

Dziba et al., 2006; Mclean et al., 2007) and invertebrate herbivores (Zangerl et al. 

2012). However, detailed pharmacokinetic studies where the concentration-time 

profile is linked to a specific mechanisms (e.g. metabolizing enzymes, efflux 
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transporters) are rare for all types of herbivores. Pharmacokinetic data of any kind are 

even scarcer for aquatic systems (Ibelings and Havens, 2008; Martin-Creuzburg and 

von Elert, 2009; Pennings and Paul, 1993; Whalen et al., 2010).  

 

Pharmacokinetic mechanisms: Dose. The dose-concentration relationship is primarily 

dependent on the amount of substrate (nutrient or PSM) orally consumed by an 

herbivore. Other forms of substrate administration may be important for other taxa, 

such as dosing through the skin or gills for aquatic species. Although measuring the 

dose consumed by an herbivore is standard practice, few researchers measure the 

actual systemic dose or concentration an herbivore experiences during foraging 

events.  Both meal size and frequency influence the peak systemic concentration and 

exposure (area under the concentration-time curve) of substrates in the body 

compartment(s) (Figure 2). For vertebrates with closed circulation systems, the most 

important body compartment is the blood, as this compartment delivers the substrate 

to all other compartments (e.g., liver, brain, kidney). Within invertebrates, the most 

important compartments are the gut, hemolymph and fat body (Govenor et al., 1997; 

Keeley, 1985). Within a species regardless of taxonomic group or morphology, larger, 

more frequent doses generally result in higher concentrations of the substrate in 

compartments (Figure 2).  

 

To avoid negative consequences of PSMs, both terrestrial and aquatic herbivores must 

be able to detect concentrations of key PSMs and regulate intake of food accordingly. 

The regulation model of dose control (reviewed in Torregrossa and Dearing, 2009) 

proposes that herbivores regulate daily dosing through modifications to either meal 

size or the intervals between meals, known as the “intermeal interval”. Several 
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mammalian herbivores appear to use the strategy of altering meal size as a function of 

PSM concentration (Boyle et al., 2005; Marsh et al., 2007; Sorensen et al., 2005a; 

Torregrossa et al., 2011; Torregrossa et al., 2012; Wiggins et al., 2006a; Wiggins et 

al., 2006b; Wiggins et al., 2003). Of the five species studied to date (three woodrats of 

the genus Neotoma and two marsupials: the koala and brushtail possum), only one 

exhibited a change in intermeal interval when fed increasing concentration of dietary 

PSMs (Sorensen et al., 2005a; Torregrossa and Dearing, 2009). Recent studies 

suggest that generalist herbivores may be better at regulating PSM dose than 

specialist herbivores (Torregrossa et al., 2012). Specialist herbivores may not need to 

regulate intake of PSMs since their biotransformation system has evolved to process 

high doses of PSMs in a limited diet or because they absorb a lower proportion of 

PSMs consumed (Marsh et al., 2006b; Shipley et al., 2009; Sorensen et al., 2004). The 

mechanisms through which regulation of meal size and frequency occurs and why 

they differ between species are currently unknown. The leading proposed mechanisms 

are detection of PSMs in food and in blood plasma, conditioned learning, and 

intestinal or gustatory receptors (Foley et al., 1999; Torregrossa et al., 2011; 

Torregrossa et al., 2012). To date, regulation of PSMs through meal size and 

intermeal interval has not been studied in aquatic herbivores. However, observations 

of feeding by free-ranging aquatic herbivores or documentation of intake of PSMs in 

captive aquatic animals readily lend themselves to investigation of PSM regulation 

via meal size and meal frequency. There is urgent need to link dose of PSMs with 

mechanisms of detection to understand how PSMs alter foraging behavior in a variety 

of systems. 
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Regardless of mechanism or system, the concentration of PSM is likely to dictate 

feeding responses of herbivores across systems.  As such, observations of temporal 

and spatial variation in feeding by herbivores could be a result of temporal and spatial 

variation in concentrations of PSMs.  For example, mammalian herbivores select 

specific trees (Degabriel et al., 2009; Moore and Foley, 2005; Moore et al., 2010) and 

aquatic herbivorous invertebrates select specific tissue types (Newman et al., 1996) to 

avoid consequences of toxic PSMs. To add to dietary complexity, feeding by 

herbivores can influence the concentration and distribution of both chemicals and 

nutrients.  Environmental conditions that change over short (e.g., seasons) and long-

time periods (e.g., global climate change) can also influence concentrations of PSMs 

(Bidart-Bouzat and Imeh-Nathaniel, 2008; Lindroth, 2010) as well as toxicity of 

PSMs (Dearing, 2012; Dearing et al., 2008). In some cases, changes in concentration 

of PSMs may differ between terrestrial and aquatic systems.  For example, 

concentrations may vary with fluctuations in hydration and ultraviolet light exposure 

in water-limited systems (Chen et al., 2011; Turtola et al., 2005), whereas these 

factors may be less variable in aquatic systems.  There is a need for cross-system 

comparisons of how both qualitative and quantitative variation in chemicals and 

nutrients influence how herbivores regulate the dose of plants consumed over time. 

 

Pharmacokinetic mechanisms: Absorption, distribution, metabolism, and excretion 

(ADME). The dose consumed does not always translate into a concentration that 

elicits a response. The concentration-time profile of a substrate in compartments can 

be modified by herbivores through mechanical and biochemical mechanisms that 

influence the absorption, distribution, metabolism, and excretion of substrates. These 

factors are collectively referred to in pharmacological literature as “ADME” and 
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apply to both terrestrial and aquatic systems (Sotka et al., 2009). Pharmacokinetic 

studies that determine the concentration-time course may be more informative with 

respect to predictions of food intake than in vitro kinetic approaches that quantify 

enzyme activities. For example, different individuals consuming the same amount of 

PSM may not be exposed to the same concentration of PSM due to differences in the 

amount absorbed (Sorensen et al., 2004). Similarly, animals consuming different 

amounts of PSMs may have very similar levels of exposure to PSMs. These subtle 

differences could have major implications for proper interpretation of in vitro studies. 

But both in vivo and in vitro studies investigating ADME of both PSMs and nutrients 

will offer insights into understanding the foraging phenotype of herbivores.  

 

Absorption requires that the ingested substrate first be liberated, or released, from the 

plant biomass. For example, tannin-binding salivary proteins can bind to tannins and 

increase the availability of protein (Shimada, 2006). In addition, the physio-chemical 

characteristics of the stomach or the presence of microbes in the gut can influence the 

release of a PSM or nutrient from the food matrix (Foley et al., 1999; Gross et al., 

2008). Once liberated, the substrate must then be absorbed where it can be distributed 

to the sites of action. The small intestine is the major site of absorption for terrestrial 

vertebrates, but other tissues can also be important and should be considered (e.g., 

gills and skin for aquatic species). Regardless of the site of the barrier, absorption can 

be passive or active depending on the electrochemical properties of the chemical. 

There are ample reviews on factors such as the length and surface area of the intestine 

and the concentration and binding affinity of transporters that influence absorption of 

nutrients (Karasov and Martínez del Rio, 2007). In contrast, very few studies have 

investigated how these factors influence the absorption of PSMs by herbivores 
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(Sorensen et al., 2006). In addition, only a few studies have investigated how nutrient-

PSM interactions influence absorption. For example, some tannins can bind to dietary 

and endogenous proteins but disrupting these complexes in the gut significantly 

improves the protein economy of the animal and can improve the reproductive 

success of animals (Degabriel et al., 2009).  

 

One mechanism to minimize the response to PSMs is to actively transport PSMs out 

of cells, back into the intestine against a concentration gradient (Sorensen and 

Dearing, 2006). PSMs that are removed from the cells are then excreted in feces. 

Whereas some PSMs are substrates for these efflux transporters, others can inhibit or 

enhance their action (Wen et al. 2006, Zhou et al., 2008) and so influence the body 

concentrations of other PSMs ingested concurrently. This phenomenon, known as 

drug-drug-interactions, is well known in human pharmacology when drugs are 

ingested with other foods or drugs. Identifying transporters that regulate absorption 

may shed light on herbivore tolerance to PSMs, reveal that herbivores avoid inhibitors 

or select inducers of these transporters, and explain how animals sequester chemicals 

in tissues.  

 

Recent studies have highlighted the importance of paracellular absorption of many 

different compounds and the significant differences among groups of vertebrates in 

the capacity of this route (McWhorter et al., 2009). For example, paracellular 

absorption wherein molecules are passively absorbed through the aqueous channel in 

the tight junctions of adjoining cells appears to be particularly important in birds 

(Lavin and Karasov, 2008). Although enhanced paracellular absorption in birds 

relative to most mammals may compensate for shorter intestines of birds (Caviedes-

jburkhol
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply. DOI: 10.1007/s10886-013-0267-2



 

Vidal et al., 2007), it may also expose birds to significantly greater amounts of water 

soluble PSMs (McWhorter et al., 2009), which can interfere with digestion and exert 

potentially toxic effects. Differences in the importance of paracellular absorption can 

translate to significantly different effects of PSMs on nutrient absorption (Skopec et 

al., 2010) and offers an opportunity for researchers to investigate mechanisms 

responsible for nutrient-PSM interactions. Paracellular absorption has not been 

investigated in fish but given their relatively short intestines, they too may rely on this 

route of absorption and thus subjected to trade-offs similar to that observed in birds. 

 

Once absorbed, the substrate is distributed throughout the body where it can be 

metabolized or react with tissues. The liver is the primary site of biotransformation of 

PSMs for vertebrates. In invertebrates, fat bodies and the digestive system, including 

the different gut compartments and the digestive gland, are responsible for the 

biotransformation of toxins (Appel, 1993; Gross et al., 2008; Hyne and Maher, 2003; 

Keeley, 1985; Rewitz et al., 2006). The enzymes responsible for the metabolism of 

drugs have been extensively investigated in laboratory and domestic mammals but far 

less so with respect to PSMs in wild herbivores, particularly aquatic ones (Dearing et 

al., 2005; Sorensen et al., 2006; Sotka et al., 2009).  Drug metabolizing enzymes are 

extremely diverse and categorized broadly by function into Phase 1 enzymes such as 

the cytochromes P450 or Phase 2 enzymes such as glutathione S-transferases and 

glucuronyltransferases (Casarett et al., 2008). In general, metabolizing enzymes act to 

convert lipid soluble PSMs (and other ingested chemicals) into more water-soluble 

metabolites that can then be excreted (Casarett et al., 2008; McLean and Duncan, 

2006). Individual mammals have hundreds of different drug metabolizing enzymes 

that are described elsewhere (for reviews see (Casarett et al., 2008; Dearing et al., 
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2005; McLean and Duncan, 2006).  The cytochromes P450 enzymes of aquatic 

crustaceans responsible for detoxification differed from those of fish (Koenig et al., 

2012), indicating differences between invertebrates and vertebrates. The recent 

genome sequencing of vertebrates (Margulies and Birney, 2008) and invertebrates, 

including freshwater (Colbourne et al., 2011) and terrestrial (Adams et al., 2000; 

Whiteman et al., 2011) species has yielded new insights about the evolution of drug 

metabolizing enzymes (Asselman et al., 2012). For example, the cytochromes P450 

(CYPs) appear to have undergone repeated duplications, resulting in multiple gene 

copies for similar enzymes (Hu et al., 2008). Such genetic diversity may be critical for 

herbivores in the process of adapting to toxic or novel diets.  Indeed Malenke et al 

(2011) recently reported putative functional differences related to PSM intake within 

the subfamily of CYP 2B in herbivorous woodrats. Future comparative genomic 

studies combined with functional analyses will be fruitful in understanding the 

evolution and diversity of drug-metabolizing enzymes and their influence on foraging 

phenotypes across taxa.  

 

Herbivores, however, cannot be treated in isolation of their microbial symbionts.  

There is increasing evidence that most mammalian herbivores, and many invertebrate 

herbivores harbor large populations of microbes (bacteria, protozoa and fungi) in their 

gut that can play a variety of roles including making nutrients more available to the 

host animal (Broderick et al. 2004; Chandler et al., 2008; Clark et al. 2010; Clements 

et al., 2009; Janson et al., 2008; Mountfort et al., 2002; Stevens and Hume, 1998). 

Given the frequency of microbe-herbivore association, microbial communities may 

influence pharmacokinetics of nutrients and PSMs. From a nutritional perspective, gut 

microbes likely enhance the digestive and intestinal metabolic processing of nutrients 
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in most herbivores.  For example, gut microbes might provide enzymes such as 

cellulases, to efficiently digest plant material (He et al., 2009). Aquatic and terrestrial 

herbivorous Lepidoptera larvae harbor distinct communities of bacteria in the gut 

despite their small body size and the rapid passage of food through gut, and these 

microbial communities differ depending on the plants eaten (Broderick et al., 2004; 

Walenciak et al., 2002). Whether these bacteria are involved in the detoxification of 

PSM remains to be seen. However, bacteria isolated from the gut of aquatic 

Lepidoptera larvae feeding on a tannin-rich aquatic plant were less susceptible to the 

antibacterial effects of tannins than bacteria isolated from the gut of larvae fed with a 

tannin-free plant (Walenciak et al., 2002). The importance of gut bacteria in the toxic 

effects of Bacillus thuringiensis kurstaki on Lepiodoptera larvae has also been 

demonstrated (Broderick et al. 2006). First attempts to identify the gut bacterial 

community in zooplankton have been successful (Peter and Sommaruga, 2008), and 

might aid in determining the role of microorganisms in dealing with toxic 

phytoplankton. Recent evidence suggests that microbial gut communities of 

herbivorous fishes are more similar to those of herbivorous mammals than to 

carnivorous fishes, raising the interesting suggestion that fishes were among the first 

animals to ferment plant material (Sullam et al. 2012). 

 

Another function of gut microbes might be the detoxification of ingested PSMs 

(Chandler et al., 2008; Dearing et al., 2005; Foley et al., 1999; Kohl and Dearing, 

2012; Kohl et al., 2011). There is at least one spectacular example of this 

phenomenon in domestic ruminants.  Jones and Megarrity (1986) showed that transfer 

of rumen contents from Indonesian goats to Australian goats allowed the latter to feed 

on Leucaena leaves without negative consequences. Synergistes jonesii was isolated 
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as the microbe responsible for detoxification of the toxic metabolite (goitrogen 3-

hydroxy-4(1H) pyridone) generated by the rumen metabolism of the PSM mimosine 

(Rincon et al., 1998).  This bacterium has been readily transferred between individual 

animals with clear benefits to the host (Jones and Megarrity, 1986).  Curiously, none 

of the players in this system (microbe, plant, herbivore) have a long evolutionary 

history with one another.  In addition to this example, detoxification of PSMs by gut 

microbes has been suggested for the unique and diverse microbial community found 

in the gut of a herbivorous rodent, the woodrat (Kohl et al., 2011).  Moreover, the 

diversity of the microbial community appears to be a function of the host’s 

evolutionary experience with PSMs such that more diverse communities are present 

in herbivores with previous experience to particular PSMs compared to novel ones 

(Kohl and Dearing, 2012). This microbial diversity may be key reducing the 

concentrations of PSMs prior to absorption by the host.  Recently, the first evidence 

that microbial detoxification of ingested PSMs occurs in fish was reported (Guan et 

al., 2009).  Nonetheless, there are other examples in domestic ruminants (Majak, 

1992) where an increase in toxicity occurs via microbial modification. Although 

hindgut fermenters are expected to benefit from microbial detoxification of PSMs less 

than foregut fermenters, microbes inhabit the mucosal lining of the intestine prior to 

the cecum in many terrestrial (Frey et al., 2010; Yamamoto et al., 2009) and aquatic 

animals (Ganguly and Prasad, 2011; Mondal et al., 2008). Additional studies are 

clearly needed to identify the positive and negative influences microbial communities 

have on herbivores with either complex or simplified digestive tracts such as those 

found in marine and freshwater invertebrates (Brunet et al., 1994; Freese and Schink, 

2011). 
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The recently developed technique of metagenomics is likely to reveal more about the 

function of gut microbes and perhaps result in some paradigm shifts (Ley et al., 2008; 

Ley et al., 2006). For example, the microbial floras of giant and red pandas are 

exceptional for herbivorous mammals in that they are more similar to that of their 

carnivorous relatives than to other herbivores (Ley et al., 2008). And a recent meta-

analysis suggests that not only do fish have specialized gut microflora, but that the 

bacterial communities in fish were closely related to those from terrestrial mammals 

(Sullam et al., 2012). A second frontier in both terrestrial and marine systems is in 

understanding the impact of nutrient and PSM concentrations on the interactions 

between gut microflora and the immune function of the host (Hooper and 

Macpherson, 2010; Perez et al., 2010; Reynaud et al., 2008).  

 

In general, herbivores are predicted to invest in mechanisms that regulate the 

liberation, absorption, distribution, metabolism, and excretion of PSMs and nutrients 

to minimize inadequate or surplus concentrations of these dietary components. 

Investment in particular strategies may be influenced by the extent to which nutrients 

or PSMs are more important for a particular herbivore. It is likely that many 

mechanisms are yet to be discovered particularly in non-model organisms.  

 

Pharmacodynamic mechanisms. Compared to our understanding of pharmacokinetic 

mechanisms, we know even less about pharmacodynamic (PD) mechanisms. The 

concentration-response relationship, referred to as pharmacodynamics, describes how 

a known concentration of a substrate elicits a behavioral or physiological response in 

herbivores (Figure 1). In general, it represents the extent to which a chemical reacts 

with the body to cause an observable response. Variation in food intake has been the 
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response measured most commonly in herbivores (Behmer, 2009; Ibelings and 

Havens, 2008; Martins and Vasconcelos, 2009; Torregrossa and Dearing, 2009). 

Other responses such as locomotor activity (Sorensen et al., 2005c), metabolic rates 

(Bozinovic and Novoa, 1997; Sorensen et al., 2005c), thermoregulation (McLister et 

al., 2004), organ damage (Fu et al., 2004), water balance (Dearing et al., 2002; 

Mangione et al., 2004) and acid-base homeostasis (Foley et al., 1995) have also been 

investigated. Only a single study has examined the effect of blood concentration of 

PSMs on intake in a wild mammal (Mclean et al., 2007), which may be critical to 

predicting foraging phenotypes in nature. The link between intake, blood (or other 

body compartment) concentration, and more specifically, distribution to specific 

tissues deserves attention if we want to know the mechanism of action of PSMs. 

Given the difficulty in collecting repeated blood samples for PSM concentrations for 

most animals, an alternative and potentially more effective pharmacodynamic 

approach could be to measure efficacy (the maximum response for a given dose), 

potency (the dose needed to produce a response), slope (how much or how little the 

difference is between the dose that causes no effect and one that causes a maximum 

effect) and variation of the dose-response curve within and between species 

administered different doses of PSMs (Figure 1). 

  

Identifying a mechanism of action that elicits a response is far more challenging than 

investigating enzyme metabolism.  Some PSMs are known to have highly specific 

targets such as the inhibition of Na+/K+ ATPase by cardenolides (Petschenka et al. 

2012) and cardiac glycosides (Holzinger et al. 1996) and inhibition of succinate 

dehyrogenase by papyriferic acid from birch (Forbey et al., 2011; McLean et al., 

2009).  Other PSMs interact with nutrients to cause broad pharmacological responses 

jburkhol
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply. DOI: 10.1007/s10886-013-0267-2



 

such as oxidative stress (Aucoin et al., 1995) or work synergistically with other PSMs 

to elicit responses (Guillet et al., 2000; Wen et al. 2006).  Others may exert their 

effects indirectly through multiple pathways.  For example, jensenone, a formylated 

phloroglucinol compound in Eucalyptus whose intake is closely regulated by 

folivorous marsupials, exerts its effects by binding to amine groups on critical 

molecules in the gastrointestinal tract, leading to a loss of metabolic function 

(McLean et al., 2004), followed by the release of 5-hydroxytryptamine (5HT), which 

in turn may mediate an emetic response leading to a conditioned aversion (Lawler et 

al., 1998). Not surprisingly, species differ in their dose-response curves (Forbey et al., 

2011; Majak, 1992). Moreover, the molecular targets of most PSMs that elicit the 

behavioral or physiological consequences (e.g. basal metabolic rate, energy excretion, 

weigh loss, increased body temperature) are not always apparent. Emerging advances 

in molecular modeling provide ecologists with in silico techniques that can reveal the 

most likely molecular targets of specific PSMs with known structures (Forbey et al., 

2011).  Coupling molecular modeling with in vitro and in vivo pharmacodynamic 

studies will facilitate understanding how differences in the interactions between 

nutrients, PSMs and target receptors explain foraging patterns of herbivores. 

 

PREDICTING FORAGING PATTERNS 

Chemistry-herbivore patterns. Although pharm-ecological approaches have largely 

been applied in controlled laboratory settings, the ultimate aim is to use the insights 

from this framework to predict foraging of herbivores in the field. Free-ranging 

animals have many more choices, broader diets and other competing costs such as 

predation than animals in captivity. For example, the ability of herbivores under 

laboratory conditions to regulate dose through frequent, smaller meals may be 
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constrained in the field if animals cannot meet biomass needs from a single plant and 

expend energy or have greater predation risk when moving between foraging patches 

(Nersesian et al., 2011; Wiggins et al., 2006b). Consequently, we should not 

necessarily expect simple correlations between the occurrence of one or several PSMs 

or nutrients and diet choice from field studies even when there are very strong 

relationships between particular PSMs, nutrients and intake in captive studies.  

 

Moreover, animals will rarely, if ever, encounter the full range of variation in 

intraspecific variation of PSMs in a species. Most PSMs are synthesized through the 

action of multiple genes and this results in concentrations of PSMs being normally 

distributed amongst different plants (Andrew et al., 2007). Consequently, animals 

frequently encounter the median concentrations but rarely the high and low extremes. 

Thus, the power to detect relationships between feeding and PSM or nutrient 

concentrations will be low unless a large number of observations are made and a large 

number of plants examined. Doing so requires high-throughput techniques such as 

near infrared reflectance spectroscopy (NIRS). This analytical technique relies on 

establishing relationships between traits of interest (e.g., nitrogen, specific PSM) and 

the NIR spectrum of the sample. Once this relationship is defined statistically, the 

traits can be predicted in a large number of additional samples by collecting the 

spectrum alone (Foley et al., 1998; Stolter et al., 2006). Although NIRS has mostly 

been applied to terrestrial plants it also works well with aquatic plants such as 

seagrass (Lawler et al., 2006) and brown macroalgae (Sargassum, Hay et al. 2010). 

The biggest benefit is being able to predict complex multi-dimensional traits such as 

the overall palatability of a plant to herbivores. With this approach, Moore et al. 

(2010) used NIRS to map the palatability of multiple home ranges used by koalas in 
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an area of forest and found that the palatability measure predicted feeding better than 

measuring PSMs and nutrients separately. NIRS thus allows measurement of complex 

traits of many plants and over large areas and a more comprehensive evaluation of the 

nutritional and chemical landscape. These traits can then be linked to mechanisms 

employed by populations or species with exceptionally low or high tolerance to these 

traits.  

 

In addition to high throughput approaches, genetic modification holds great promise 

for predicting foraging phenotypes of free-ranging herbivores (Kessler et al., 2004; 

Kessler et al., 2008; Wu and Baldwin, 2009).  For example, silencing of the jasmonate 

cascade in Nicotiana attenuata improved the performance of specialist herbivores and 

allowed non-adapted generalist herbivores to attack (Kessler et al., 2004). Insect 

transgenesis has been used to manipulate agricultural and medical insect pests (Fraser, 

2012) and could also be used to observe how foraging phenotypes of herbivores are 

influenced by control of pharmacokinetic (e.g., detoxification enzymes) and 

pharmacodymanic (e.g., target receptors) mechanisms. We suggest that genetic 

manipulations of free-ranging species offer exciting opportunities for examining the 

underlying mechanism of herbivore responses to variable diet quality.  

  

Understanding which components of the diet an animal is regulating, is important in 

applying pharm-ecological frameworks in the field. One particularly useful approach 

is the geometric modeling framework of Simpson and Raubenheimer (Raubenheimer 

and Simpson, 1997; Simpson and Raubenheimer, 2001; Simpson et al., 2010). This 

graphical approach allows preferences for one nutrient or PSM to be evaluated against 

multiple others while taking into account the animal’s current nutritional state. An 
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animal feeding on a nutritionally balanced food that contained a manageable 

concentration of PSMs could eat sufficient amounts of that food to meet requirements 

for multiple nutrients (e.g., protein and energy), whereas an imbalanced food might 

require ingesting too much of one nutrient or PSM to obtain sufficient quantities of 

another. The geometric framework then becomes a very powerful tool for observing 

tradeoffs and compromises and is equally applicable to examine tradeoffs between 

multiple nutrients, nutrients and PSMs or even nutrients and medicines 

(Raubenheimer and Simpson, 2009). Moreover, it can used to identify how genetic 

modification or chemical inhibition or induction of pharmacokinetic or 

pharmacodynamic mechanisms influence tradeoffs.  

The geometric framework has been most widely applied to captive species 

(Fanson et al. 2009; Jensen et al. 2011; Mayntz et al. 2009; Miller et al. 2009).  

However, it has been successfully used in free ranging herbivores as well (Wright et 

al. 2003).  A recent study in wild primates showed that contrary to prevailing views, 

spider monkeys prioritized acquisition of protein not bound by tannins over energy 

across many days of individual foraging (Felton et al., 2009). In contrast, similar 

studies of wild gorillas found no prioritization of protein (Rothman et al., 2011). This 

framework should be applied more broadly in multiple taxa to continue bridging the 

gap between a functional understanding of foraging in individual animals to that of 

whole communities (Simpson et al., 2010).  

 

CONCLUSIONS AND PHARM-ECOLOGICAL QUESTIONS 

The majority of studies in plant-herbivore interactions have focused solely on the 

effects of PSMs or nutrients on total intake, such that nutritional demands result in an 

increase in total intake of the required nutrient, whereas toxicity of PSMs result in a 
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decrease in total intake. We propose that the variable patterns of intake observed in 

herbivores cannot be fully explained unless we understand the mechanisms by which 

dose, concentration, and response are related and how they can be modified by 

herbivores. We also propose that a pharm-ecological approach can overcome and 

actually capitalize on differences between aquatic and terrestrial systems to answer 

how chemistry, ecology and taxonomy explain foraging phenotypes. Although all 

animals use highly conserved mechanisms to regulate the dose-concentration-

response relationship, each animal will likely have an unique pharmacokinetic and 

pharmacodynamic phenotypes that are dependent on various combinations of genetic, 

behavioral and biochemical mechanisms. Understanding the mechanisms driving 

similarities and differences between taxonomic groups of plants and herbivores will 

advance our understanding of the evolution of plant-herbivore interactions.  We offer 

some of the many questions that could be addressed through collaborations between 

ecologists studying aquatic and terrestrial systems: 

 

1. Does the physio-chemical environment influence foraging phenotypes? Although 

terrestrial and aquatic plants provide similar resources (e.g., protein, fats and 

carbohydrates) to herbivores and share many of the same broad classes of secondary 

metabolites (see Sotka et al., 2009), there are some notable differences.  For example, 

cyanogenic glycosides, glucosinolates or tetraterpenoids have either not been reported 

or are not produced by marine algae. How might terrestrial and aquatic herbivores 

respond to novel classes of PSMs only found in the other system? Do aquatic 

herbivores have specialized mechanisms to deal with more water soluble PSMs 

generated in the lower oxygen availability in marine environments (Kong et al., 2010) 

than terrestrial herbivores?  Are there differences in receptors for PSMs between 
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aquatic and terrestrial herbivores depending the sensitivity to detect water or lipid-

soluble PSMs?  Because herbivores in freshwater systems experience a gradient from 

dry to wet, do they possess PK-PD mechanisms that are functional in both marine and 

terrestrial systems?  Are aquatic herbivores more likely to experience synergistic 

chemical consequences when they than terrestrial herbivores? Have ecologists 

overlooked the consequences of inadvertently consuming cryptic toxins from small 

epiphytes living on larger plants (Cruz-Rivera and Hay, 2003; Sotka et al., 2009) by 

focusing only on host plant traits (Porras-Alfaro and Bayman, 2011)? 

2. Does the ecological extent of herbivory influence PK-PD mechanisms and foraging 

phenotypes? Do species that transition between carnivory, omnivory and degree of 

specialized herbivory during their life span have more generalized or plastic PK-PD 

mechanisms than species without these transitions? For example, terrestrial 

vertebrates, aquatic, and particularly marine herbivores, are largely generalists and 

rarely specialize on particular foods (Poore et al., 2008; Shipley et al., 2009).  

Moreover, herbivorous fishes are often carnivores as juveniles and transition to 

herbivory with age (Horn, 1989).  Is there a relationship between the expression and 

diversity of PK mechanism and dietary transition points that is consistent among 

taxa? Certainly, shifts in generalism and omnivory will make linking laboratory 

pharm-ecological studies to field foraging patterns difficult as the link between diet 

and response is clearer in specialist herbivores.  However, broadscale approaches such 

as state-of-the-art genomic and proteomic techniques can compare the diversity of 

detoxification mechanisms (Browning et al., 2010; Eyckmans et al., 2012; Glenn et 

al., 2010; Itokawa et al., 2010; Shawahna et al., 2011; Thiyagarajan and Qian, 2008; 

Whalen et al., 2008) and microbial communities (Langille et al., 2012; Masahira et 

al., 2009; Matteotti et al., 2011; Weinstock, 2012) relative to dietary diversity.  These 
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emerging approaches offer enormous potential to compare and contrast pharm-

ecological mechanisms and foraging phenotypes across wide taxonomic groups 

3. Does phylogenetic diversity influence PK-PD?  Relative to terrestrial herbivores, 

there is a broader phyletic diversity of herbivores in the ocean than on land.  While 

herbivory is largely the domain of two terrestrial groups (insects and mammals), there 

are at least six phyla that consume benthic seaweeds: vertebrates (fish, reptiles and 

manatees), arthropods (insects, amphipods, isopods, crabs), echinoderms, annelids, 

pycnogonids, and mollusks (chitons, snails, sea slugs, abalone).   Moreover, herbivory 

arose independently within dozens of clades of more recent origin (Vermeij and 

Lindberg, 2000).  Given the phylogenetic diversity within marine systems, do marine 

herbivores as a group, use a broader suite of mechanisms to ‘deal’ with the challenges 

of consuming chemically-defended and nutritionally-poor foods relative to terrestrial 

consumers? 

 

The pharm-ecological questions and approaches provided here allow researchers to 

explain and predict how intake, dose, and herbivore morphology, physiology and 

taxonomy interact to influence kinetic and dynamic interactions between plants and 

herbivores. The true value of the pharm-ecological approach requires interdisciplinary 

collaboration among aquatic and terrestrial ecotoxicologists or physiologists who 

focus solely on mechanisms and ecologists who look primarily at ecological patterns 

and processes.  Pharm-ecology provides a common language and approach to meet a 

future objective: scaling a functional understanding of nutrient acquisition in 

individual organisms to the more complex interactions at higher levels of biological 

organization and comparing these scales across diverse systems. 
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Figure Captions 

Figure 1. Pharm-ecological concepts explaining the dose-concentration-response in 

plant-herbivore interactions. Animals consume diets containing plant secondary 

metabolites (PSMs) and nutrients. The doses of PSMs and nutrients ingested are 

dependent upon the amount of plant material ingested and concentration of these 

chemicals in the plant. The animal’s mechanisms of absorption, distribution, 

metabolism and excretion (ADME) determine the concentrations of the PSM or 

nutrient in body compartments (e.g. circulation, tissues) over time. The concentration-

time course of chemicals is called pharmacokinetics (PK). Circulating or distributed 

PSMs or nutrients can interact at one or multiple sites within the body through 

dynamic mechanisms of action in the body and elicit a physiological or behavioral 

response. The concentration-response relationship is called pharmacodynamics (PD). 

This response can directly impact the subsequent intake of food. Occasionally, the 

resultant metabolites of metabolism are more bioactive than the original chemical and 

can have pharmacodynamic responses. Herbivores may detect PSM and nutrient 

concentrations in the environment (via volatile chemicals), after tasting the diet or 

perhaps in the circulation and adjust intake (dose). ADME mechanisms and 

sensitivity to mechanisms of action ultimately influence the response to PSMs and 

nutrients. But see (McLean and Duncan, 2006; Sorensen et al., 2006; Sotka et al., 

2009) for additional details. 

 
 

Figure 2. A schematic of the relationship between meals (grey bars), concentration of 

a PSM or nutrient in the blood after a meal (solid line) and time. The upper dashed 

line (A) represents a theoretical maximum threshold of intake above which animals 

experience negative effects due to a surplus of PSMs or nutrients. The lower dashed 
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line (B) represents a minimum threshold of intake below which animals are in a 

nutritional deficit or do not derive the potential positive benefit of PSMs. If meal sizes 

are too large (C), blood concentrations of PSMs or nutrients are in surplus, whereas if 

meal size is too small (D), there is a nutritional deficit or lack of potential therapeutic 

benefit from PSMs. Small meals consumed more frequently will allow animals to 

reach a “steady state”, or balance, between deficiencies or surplus of PSMs or 

nutrients and this can then be maintained with a constant meal size and frequency 

interval (E). However, even small meals consumed too frequently will result in 

concentrations of PSMs or nutrients above maximum thresholds. The terminal slope 

of the concentration curves for each meal is constant to indicate a non-saturable 

elimination of the PSM or nutrient from the blood. 
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