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ABSTRACT 

River ecosystems are among the most threatened and rapidly altering systems in 

the world because of anthropogenic disturbance. Chronic heavy metal contamination of 

lotic environments is a global concern and a widespread environmental and human health 

threat. This persistent stressor can shape microbial community structure and function, 

often selecting for the genotypic and phenotypic characteristics that increase fitness in 

toxic environments and may encumber the microbial community hosting metal resistance 

mechanisms with additional energetic costs. This cost should be expressed in 

heterotrophic aerobic microbial metabolism, a primary ecological process variable and 

can be estimated through respiration measurements. Hyporheic respiration is a proposed 

functional indicator of ecosystem health and is sensitive to gradients in environmental 

quality. The ecological importance and contaminant retention of the hyporheic zone 

presents these communities as a valuable indicator of natural resource damage. 

In this study, we illustrate the first documentation of the Resazurin Resorufin 

Smart Tracer as a functional indicator of lotic ecosystem integrity. This tool was used to 

quantify metabolism of hyporheic microbial communities from the chronic metal 

contamination gradient of the Clark Fork River, Montana, USA in column experiments. 

Communities from low, mid, and high contamination locations of the gradient were 

paired with pristine reference sites to test hypotheses regarding the use of the Resazurin 

Resorufin Smart Tracer to estimate ecological functional resilience and resistance to 
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chronic metal stress. We found that acute metal stress inhibits respiration in both 

communities and that the communities did not differ in metal resistance potential. This 

research indicates the Resazurin Resorufin Smart Tracer has potential as a functional 

indicator of ecological integrity and suggests that lotic heavy metal contamination 

represents a persistent stress from which this ecosystem was not able to recover in over 

100 years.      
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CHAPTER ONE: PERSISTENT METAL CONTAMINATION LIMITS LOTIC 

ECOSYSTEM HETEROTROPHIC METABOLISM AFTER MORE THAN 100 

YEARS OF EXPOSURE: A NOVEL APPLICATION OF THE RESAZURIN 

RESORUFIN SMART TRACER  

Abstract 

Persistent stress from anthropogenic metal deposition in lotic ecosystems is a 

global concern. This long-term selective pressure shapes hyporheic microbial 

assemblages and influences ecosystem functional integrity. We hypothesized that, even 

after 100 years of adaptation opportunity, ecosystem function remains inhibited by 

sediment-associated metal stress and that the Resazurin Resorufin Smart Tracer can be 

used as an indicator of that impact. The Resazurin Resorufin Smart Tracer system is 

applied here in a novel capacity as a metric of ecosystem function by quantifying 

ecosystem respiration of microbial communities. Hyporheic microbial communities 

exposed to differing magnitudes of chronic metal stress were compared to pristine 

reference sites in controlled column experiments. A Markov chain Monte Carlo technique 

was developed to solve the inverse smart tracer transport equation to derive community 

respiration data. Results suggest metals inhibit respiration by 13-30% relative to 

reference sites and this inhibition is directly related to the level of in situ metal stress. We 

demonstrate the first application of a hydrologic smart tracer as a functional indicator of 

ecological integrity within anthropogenically influenced flowing water systems and 
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provide data suggesting resilience is limited in hyporheic ecosystems even after more 

than a century of microbial adaption to chronic pollutants.  

 

Introduction  

Freshwaters are the most extensively altered systems in the world, placing them 

amongst the most threatened ecosystems on the planet (1-3). In addition, heavy metal 

contamination in lotic ecosystems is a persistent and widespread environmental and 

human health threat (4, 5). These persistent environmental pollutants can enact selective 

pressures, shaping ecosystem function and community structure (6).  

Key ecosystem level processes and the community structure of macro- (7, 8) and 

micro-organisms (9-11) respond to gradients of environmental stress, with micro-

organisms being the most sensitive indicators of anthropogenic contamination (10, 12-

14). In chronic metal contaminated environments, changes in the hyporheic microbial 

assemblage have been detected at concentrations nearly an order of magnitude less than 

responses in benthic macro-invertebrates can be measured (15), and microbial functional 

suppression has been observed in chronically metal contaminated terrestrial ecosystems 

(11, 16, 17). However, currently applied metrics of river health rely primarily upon 

macroorganism communities (e.g., aquatic invertebrates, fish and algal communities) 

(18-21) while often omitting microbial catalyzed functional processes (e.g., organic 

matter breakdown, ecosystem metabolism, sediment respiration) (22). Omission of these 

ecosystem level process variables is partially due to difficulties in measuring these 

responses in an integrated fashion across space and time on reach scales that may 

improve lotic ecosystem monitoring and assessment (23). Hyporheic microbial metabolic 
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function catalyzes a suite of ecological processes (e.g., decomposition, nutrient spiraling, 

etc.) (24, 25), is responsible for 40 to >90% of total stream metabolism (26), and is 

important to the trophic base of lotic food webs (27, 28). Also, the hyporheic zone can 

retain orders of magnitude greater concentrations of anthropogenic contaminants than 

surface waters (29). Because of this intricate role in ecosystem function and contaminant 

retention, measures of hyporheic community respiration may be valuable indicators of 

natural resource damage (23, 30). 

Ecosystem respiration is a useful functional indicator for establishing changes in 

ecosystem properties along contamination gradients (11, 31). Commonly employed 

means of estimating respiration include measuring changes in dissolved oxygen (DO) 

concentrations in flowing systems (32) or via point measurements of DO consumption in 

respiration chambers (33). Although DO-based methods offer the advantage of 

continuous monitoring, they are subject to non-target processes (e.g., atmospheric 

exchange, changes in concentration via groundwater mixing, autotrophic contributions, 

etc.) and can be highly uncertain (34). Reach scale DO measurements in flowing water 

systems are unreliable in instances when reaeration  ≥ ecosystem respiration, and 

estimates from respiration chambers require extrapolation to ecosystem relevant reach 

scales from smaller scales of measurement (32, 34, 35). Additionally, many of these 

methods require modification of in situ conditions through alteration of local 

hydrodynamics and/or extraction of sediment, potentially influencing the target process 

(20, 36, 37).  

We propose the Resazurin Resorufin (Raz Rru) Smart Tracer (RRST) as a 

continuous and direct method of interrogating heterotrophic microbial metabolism and 
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collecting physical transport data as a means to quantify the influence of long-term 

contaminant exposure on sediment respiration in flowing water systems. The RRST has 

previously been proposed as a hydrological tool coupling solute transport and 

microbiological activity at the sediment - water interface of freshwater systems (38), 

potentially associating ecosystem processes with transient storage (39, 40). Resazurin is 

irreversibly reduced to resorufin in the presence of metabolically active aerobic 

heterotrophic microbial communities (41); a reduction reaction that is proportional to DO 

consumption (42). In addition, the RRST is suspected to be relatively insensitive to non-

target processes and provide physical transport information at the reach scale while 

simultaneously measuring ecosystem respiration (38). Resazurin may also provide 

detection advantages over using naturally occurring substrates as ecosystem health 

metrics (i.e., leaf litter decomposition). Since they are introduced substances with low 

limits of detection, the RRST is easily discerned from background and is insensitive to 

environmental spatial and temporal variability, a concern associated with the use of 

naturally occurring substrates (23, 43). Collectively, these attributes are characteristic of 

effective environmental monitoring technologies (22, 23, 30, 36, 37) and indicate that the 

RRST may be useful as a lotic ecosystem quality assessment tool. 

We tested the potential of the RRST as an indicator of environmental integrity by 

quantifying the influence of chronic heavy metal exposure (> 100 years) on hyporheic 

microbial community respiration. Specifically, we predicted 1) chronic exposure to heavy 

metals has an energetic cost that limits heterotrophic microbial respiration and 2) the 

RRST is able to detect this inhibition through quantifying respiration of hyporheic 

microbial communities in flowing water systems. To test these hypotheses, Raz to Rru 
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reduction was measured in column experiments with sediment collected along a 

contamination gradient in the Clark Fork River drainage in Montana. Lower Raz to Rru 

reaction rate constants correlated with higher sediment heavy metal contents. The results 

of these experiments suggest a legacy of impaired hyporheic microbial community 

function imparted by heavy metal contamination even after 100 years of adaption, 

characterize RRST performance as a novel ecological monitoring tool in a geochemically 

complex environment, and indicate the potential for the RRST to be employed for 

continuous interrogation of ecosystem integrity at the reach scale. 

 

Methods  

Study Location  

Historic mining in the Clark Fork River has deposited elevated concentrations of 

As, Cd, Cu, Pb, and Zn several hundred times above background with concentrations 

declining from the headwaters in western Montana downstream to the confluence (5, 29). 

Shallow hyporheic sediment from differently contaminated locations along the Clark 

Fork contamination gradient and paired reference sites was collected (Figure 1.1), field 

sieved to a uniform grain size (1.7-2.36 mm), and shipped on wet ice to Boise, ID for 

analysis. Three sites were selected along the contamination gradient representing high, 

medium, and low metal contamination and were paired to reference sites similar in 

elevation, hydrogeological properties, and proximity (Table 1.1). This reference-site 

approach is well recognized as a means to estimate the impact of anthropogenic 

disturbance (23, 44). No significant environmental differences in hydraulic gradient, pH, 



6 
 

 

organic matter, dissolved oxygen, and temperature between Clark Fork sites and 

reference reaches were observed.  

Experimental Design  

Column experiments commenced within 24 hrs post collection. Sediment was 

packed into four replicate submerged columns per site (30 cm x 1.5 cm glass 

chromatography columns, Kontes Glass Company, New Jersey, USA). Influent solution 

consisting of 1 mM sodium phosphate buffered (pH = 6.6 ± 0.09) water from the most 

pristine stream and 1 µM RRST was supplied at a constant flow rate (~0.3 mL min-1) and 

temperature (~15.4°C ± 2.6°C). Experiments lasted approximately four hours until a 

breakthrough plateau in electrical conductivity (EC) was observed. Effluent was collected 

and measured for conductivity, trace metals (Na, Mg, Al, Si, P, K, Ca, Cr, Mn, Fe, Ni, 

Cu, Zn, As, Se, Kr, Sr, Ag, Cd, Ba, Pb, U), and RRST. Sampling intervals varied and 

ranged from 10-28 min with increased frequency during breakthrough. Sample points 

were linearly interpolated at an interval of 0.05 hr (3 min) for modeling.  

Resazurin/Resorufin Quantification 

 Raz and Rru samples were 0.22 µm filter sterilized and stored in the dark at 4◦C 

for < 24 hrs prior to reading. Raz (λexc = 602 nm, λemi = 634 nm) and Rru (λexc = 530 nm, 

λemi = 590 nm ) fluorescence measurements were performed with a Synergy Mx multi-

mode microplate reader with Gen 5 software (Biotek Instruments, Inc) with bandpass set 

to 9 and sensitivity set to 100. Prior to quantification, pH was raised to approximately 9.5 

with the addition of 15 µL of 50 mM NaOH (pH ~12.7) to 100 µL of sample in a sterile 

black-walled 96 well plate (Costar part # 3603). This pH adjustment was made to 
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maximize the fluorescent signals from both Raz and Rru (45, 46). The remaining sample 

volume was frozen for metal analysis. Standard curves generated with resazurin and 

resorufin sodium salts (Sigma Aldrich) were linear from 0 to 1 µM, bracketing the 

concentrations observed in column effluents.  

Trace Metal Quantification 

Metal concentrations of column effluent and sediment were quantified with an X-

Series II Inductively Coupled Plasma Mass Spectrometer (ICP-MS) (Thermo Fisher, 

Bremen, Germany). Solution was filtered (0.45 µm) and treated with 0.125 mL of 10% 

trace metal grade HNO3 according to EPA method 1669, then frozen until time of 

analysis. Discrete time point metal analysis samples were prepared from the frozen RRST 

samples and were brought to approximately 5 mL (4-8 fold dilution) in 2% triple distilled 

HNO3 for measurement.  

Sediment associated metal concentration was determined with EPA method 

3051A for microwave digestion. Leachate was diluted to 2% HNO3 for analysis. External 

standard verification (San Joaquin Soil, SRM 2709a, NIST) of average concentration of 

the five target metals are as follows of the reported range: arsenic (within reported range 

of 6.4-10 mg kg-1), cadmium (within reported range of 0.33-0.66 mg kg-1), copper (within 

2.2% of 24-28 mg kg-1), lead (within 4.3% of 8.1-11 mg kg-1), and zinc (within 1% of 69-

87 mg kg-1). See Chapter 2 for additional details.     

Metal Contamination Index Calculation 

Metal concentrations at each site and in column effluent were used to calculate a 

metal contamination index (MCI) (12, 47). This index normalizes the relative degree of 
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contamination to the most pristine site of the dataset. The MCI assigns a composite 

contamination score to a sediment or effluent sample as follows, 

MCI = Ʃ((log (Men)/log (background Men))/n 

where Men is the metal species, As, Cd, Cu, Pb, or Zn, n is the number of metals included 

in the index, and background is the respective metal concentration of the most pristine 

site.  

Dissolved Oxygen 

To establish a relationship between DO consumption and Raz-to-Rru  reduction, 

DO consumption was measured with non-intrusive fluorescence quenching (PreSens 

Precision Sensing GmbH, Regensburg, Germany) under various discharge regimes (0.1, 

0.15, 0.2, 0.3 mL min-1) (33). Oxygen sensor foils were adhered inside the column at the 

influent and effluent ends prior to packing with hyporheic sediments. DO consumption 

was determined as the difference between influent and effluent concentrations measured 

at the same time. Five DO consumption measurements and corresponding RRST levels 

were made during steady-state conditions on three replicate columns per discharge. 

Bacterial Enumeration  

Samples of sediment from each field site included in the column experiments 

were frozen upon receipt. DNA was isolated from five 0.5 g sub-samples from each site 

via the FastDNA® SPIN Kit for Soil and the FastPrep® Instrument (MP Biomedicals, 

Santa Ana, CA). Microbial densities per site were analyzed with real-time quantitative 

PCR (qPCR) amplifying the 16S rRNA gene with Bact 1369F and Prok 1492R primers 

and Taqman probe 1389F, using amplifications settings described previously (48). 
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Relative biomass density was inferred from the number of 16s gene copies per g 

sediment. qPCR standard curves were linear across seven orders of magnitude with a 

range of 2.9 × 101 – 2.9 × 108 16s gene copies µL-1 of extracted DNA.  

Organic Carbon Quantification 

Dried (85°C for >24 hrs) and sieved (<1.18 mm) column sediment was hand 

pulverized to <125 µm, then oven dried again (80°C for >24 hrs). Sediment associated 

inorganic carbon was removed by oxidation with 7 mL of 0.73 M sulfurous acid (H2SO3) 

in acid-washed vials (49). Acid-sediment solution was oven dried at 80°C for >24 hrs and 

the remaining organic carbon quantified on replicate (n=3) ~100 mg samples with the 

Flash EA 1112 Series NC Soil Analyzer (Thermo Scientific Inc., Bremen, Germany). 

Results were validated with internal standards (SRM 2709a) and verified with in-house 

external standards (CBXO Soil, BioTrace Lab, Boise, ID).   

Data Analysis  

Resazurin Resorufin ADE Forward Model 

RRST transport in column experiments is described by two dependent 1-D 

reactive advection dispersion equations associated by the pseudo-first order Raz-to-Rru 

reduction rate coefficient k12 as: 

��Raz
∂t � 	L ν


  �
2CRaz
��2 � �


  �CRaz
�x � �1CRaz –k12CRaz 

��Rru
∂t �

	L ν

  �

2�Rru
��2 � �


 ��Rru
�x � �2�Rru –k12

�Rru
�Raz

CRaz 

where �Raz is the concentration of Raz [µmol L-1]; �Rru is the concentration of Rru [µmol 

L-1]; � is time [hr]; � is distance [cm]; 	L is longitudinal dispersivity [cm]; v [cm hr-1] is 
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the average pore water velocity; 
 [-] is retardation coefficient due to sorption; k12 [hr-1] 

is the reaction rate coefficient of Raz to Rru; �1 [hr-1] is the reaction rate coefficient of 

Raz decay; �2 [hr-1] is the reaction rate coefficient of Rru decay; MRaz [g mol-1] is the 

molecular weight of Raz; and �Rru [g mol-1] is the molecular weight of Rru (38).  

Inverse Solution to the Reactive Advection Dispersion Equation 

A probabilistic Markov chain Monte Carlo data assimilation algorithm was 

developed to solve the inverse Raz Rru advection dispersion equation solution. 

Ecological respiration data is contained in k12 that cannot be measured directly and is 

inextricably linked to the chemical and physical transport parameters. This computational 

intensive approach was selected because it 1) is capable of providing uncertainty 

estimation through supplying parameter solutions as a posterior distribution, 2) ensures 

convergence to the global solution, 3) ensures physically appropriate parameter values, 

and 4) is less sensitive to initial estimation than gradient search methods (50). Parameter 

values and uncertainty are described as the maximum likelihood and standard deviation 

of the parameter distribution  

This approach stochastically selects a proposal solution consisting of a value for 

each parameter from a constrained window and applies the solution to the forward model 

for determination of goodness-of-fit with respect to the interpolated breakthrough curves. 

This process is repeated for 1,000,000 iterations. A solution is maintained until a more 

probable set of parameter values is realized, based on goodness-of-fit and the physical 

appropriateness, as determined through a prior distribution. A more probable solution is 

determined by an acceptance ratio, α, that is the quotient of the probability density of the 

goodness-of-fit of the proposed model parameter solution, X(t+1), and that of the current 
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solution, X(t). The acceptance ratio is then compared to a uniform random number, r, 

generated between 0-1 for each proposal solution. If α > r, the proposal solution, X(t+1), is 

accepted and becomes the current solution, if α < r, X(t+1) is rejected. Acceptance ratios of 

more probable proposal solutions are > 1 and will always be accepted. As α approaches 1, 

meaning the probability density of the goodness-of-fit of solutions X(t+1) and X(t) are 

similar, there is a higher likelihood of acceptance. Improbable solutions may also be 

accepted when r approaches zero on any given proposal iteration. The frequency of this 

occurrence is rather low and is functionally useful to avoid local minima. All accepted 

simulations form a parameter’s posterior distribution, from this distribution, the 

parameter value is the mode ± standard deviation. A more detailed discussion of this 

modeling application can be found in Appendix A and the code is documented in 

Appendix B.  

Statistical Analysis 

Significance of respiration differences in contamination gradient communities and 

reference sites as a function of the metal contamination index was measured using 

ANOVA. All pair wise means were contrasted post-hoc using the Tukey-Kramer test and 

were considered statistically significant at P≤0.05. Correlation P values of RRST 

parameters, environmental variables, and ecosystem process variables are significant at 

P≤0.05.  

Results and Discussion 

Based on prior observations by our group in metal contaminated floodplain soils 

(11, 47), we hypothesized that, even after 100 years of opportunity for adaptation, 
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hyporheic microbial community function remain suppressed by sediment-associated 

metal stress and that the RRST can be used as a functional indicator of that ecological 

impact. To test these hypotheses, we quantified differences in sediment respiration along 

a metal contamination gradient using column experiments that controlled for edaphic 

properties known to affect metal availability in situ (e.g., differences in DOC, dissolved 

nutrients, temperature, pH, etc).  

The RRST approach demonstrated that highly contaminated sites exhibited lower 

metabolic respiration capacity. Specifically, the reaction rate constant of Raz reduction to 

Rru (k12) was shown to be higher at reference sites relative to metal contaminated sites 

(Figure 1.2), and k12 normalized to bacterial density increased as metal contamination 

declined along the Clark Fork contamination gradient (Figure 1.3). Here k12 is interpreted 

as a measure of community level hyporheic respiration and as such is reflective of in-situ 

metabolic activity inclusive of between site variability.  When k12 is normalized to 

sediment associated bacterial densities, it reflects the level of metabolic inhibition at a per 

cell level. Ecological interpretation and the utility of this method as a functional-based 

environmental quality assessment tool is presented by 1) evaluating RRST performance, 

2) a discussion of hyporheic microbial adaptation to chronic metal stress, and 3) 

observations of the RRST in transient biogeochemical environments. 

Assessing RRST Performance 

Validation of the RRST was based upon reliability of Markov chain Monte Carlo 

to produce consistent parameter values and ensuring insensitivity of RRST to reduction 

by abiotic processes. Convergence to consistent and realistic parameter values in replicate 

model simulations provides confidence that k12 accurately reflects an ecosystem 
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metabolic response and that calculated differences in k12 are not relicts of model 

variation. We verified that the primary driver of RRST reduction was microbial 

respiration and not abiotic reduction, thereby supporting the applicability of this method 

as a functional indicator of ecosystem quality. 

Markov Chain Monte Carlo Convergence 

Convergence analysis was performed through analysis of the expected value and 

standard deviation of each Raz Rru advection dispersion equation parameter’s posterior 

distribution across 10 Markov chain Monte Carlo optimization experiments from one 

column per site. Satisfactory convergence was operationally defined as when the variance 

in the expected value of the posterior distribution parameters across the optimization 

experiments was at least two orders of magnitude less than the parameter value with 

consistent model error variance of < 10-6.Variance across the optimization experiments 

for k12 outperformed this criterion and was 3 to 5 orders of magnitude lower than the 

estimated k12 values across all sediment types. This low level of variation suggests that 

site-level k12 estimates reflect actual differences in respiration and not variation due to the 

optimization procedure. Notwithstanding dispersivity, variation of the remaining Raz Rru 

advection dispersion equation parameters were within that of k12 (Table 1.2). Posterior 

distributions of all parameters are realistic and within expected ranges (additional details 

are provided in Appendix A).  

Raz-to-Rru Reaction Rate Coefficient (k12)  

Raz-to-Rru reduction rate is described by k12 of the Raz Rru advection dispersion 

equation and is assumed to reflect only the biotic reduction of the compound (38). Raz 
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lost has a strong, direct linear relationship to k12 (R
2=0.88) and DO consumption versus 

Raz lost (R2=0.93) and Rru gained (R2=0.78) show similar behavior. Sediment associated 

bacterial density, inferred from 16s rRNA gene copies g-1 of sediment from each site, has 

a significant positive correlation with k12 (R
2 = 0.29, P < 0.01). The correlations of Raz 

reduction to bacterial density and DO consumption indicate k12 is sensitive to sediment 

respiration. Differences in k12 were detected between all sites with low standard deviation 

within sites (Table 1.1).  

The abiotic geochemical reactivity of resazurin and resorufin is largely unknown 

and may affect each compound differently. Elements found in the geochemically 

complex Clark Fork sediments have reducing capacity (e.g., Cu, Fe, Mn, OC, sulfides, 

etc), however, no significant decrease in Raz concentration was observed in batch 

experiments with sterilized Clark Fork sediments after 24 hr (average Raz concentration 

(n=3): t0 = 70 ± 3.8 ppb, t24 = 66 ± 5.4 ppb, P = 0.45). This data indicates the heavy 

metals present in Clark Fork sediments were negligibly influential on k12 directly. Rru 

gained/Raz lost ratio ranged from 0.44-0.83 and the mass balance ranged from 0.49-0.77 

of the influent solution, indicating imperfect recovery. Raz/Rru mass not accounted for in 

the mass balance was attributed to decay of each compound (k1, k2) and loss due to 

sorption, a process encapsulated in the retardation term (R) (Table 1.1 and Appendix A 

for details of parameter estimation). Unique sorption characteristics of each compound 

was not expected, therefore a single R value was applied to both Raz and Rru (38). 

Additionally, the further reduction of resorufin to hydroresorufin, a non-fluorescent 

molecule, is also known (51); however, hydroresorufin rapidly re-oxidizes to Rru in the 

presence of DO and should not influence results (52, 53). This RRST assessment 
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indicates k12 is driven by sediment respiration and is insensitive to abiotic reduction 

although complete geochemical behavior of this tracer is not yet fully understood. 

Ecological Response to Chronic Metal Contamination 

The magnitude of chronic metal stress in the contamination gradient was 

estimated with an index of the concentrations of the most toxic metals present (12). A 

metal contamination index was employed because it estimates total metal stress in a 

composite measure, avoiding problematic analysis of single metal cause and effects (54, 

55). A significant negative relationship between the sediment metal contamination index 

and k12 (P = 0.01) was observed and suggests that metal stress limits hyporheic sediment 

respiration and correspondingly ecological function continues to be inhibited along the 

metal contamination gradient after >100 years of chronic metal exposure. This 

observation corroborates prior studies of flood plain soil communities in this system and 

pure culture studies quantifying the metabolic costs of metal tolerance (11, 47, 56). Sites 

above a metal contamination index threshold of 0.7 demonstrated a substantially stronger 

correlation between k12 and metal contamination (R2 = 0.48, P = 0.003). This may 

suggest a threshold at which chronic metal exposure maintains a negative impact on 

ecosystem function and a level at which communities are not resilient to chronic stress.  

The k12 of the contaminated sediment columns was significantly lower than that of 

the reference site columns (average: 0.68 (reference), 0.53 (contaminated), P = 0.008). 

Furthermore, reference site k12 was significantly greater than its contaminated counterpart 

at each contamination level site pair (P = 0.02, P < 0.001, P < 0.001; low, middle, high 

elevation sites, respectively) (Table 1.1, Figure 1.2). The difference in k12 is smallest in 

the least contaminated-reference site pair (0.10), and increases with the more highly 
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contaminated mid-elevation (0.17) and high-elevation (0.18) site pairs. Assuming 

reference site k12 represents the full metabolic potential in each site pair, these differences 

correspond to contaminated site respiration of 87%, 70%, and 76% of their reference 

counterparts, respectively, calculated as contaminated k12 divided by reference k12. When 

k12 values for the contaminated sites were compared on the reach scale and normalized to 

cell densities, the magnitude of chronic metal stress impeded respiration at the per cell 

level (Figure 1.3). There was a strong inverse linear relationship (R2=0.98) between the 

sediment metal contamination index and the cell density normalized k12 with the 

contaminated sites. Further, the cell density normalized k12 values were significantly 

different among all of the contaminated sites sampled (P < 0.05), suggesting that the 

observed differences among sediment types was due to differences in sediment associated 

metal concentrations and not due to differences in associated microbial biomass. This 

data supports our hypothesis that hyporheic metabolic activity continues to be inhibited 

by, and directly related to, the magnitude of chronic metal concentrations in this system 

aligning with patterns of ecosystem functional suppression that have been observed in 

studies of Clark Fork floodplain soils (11, 47). 

Anthropogenic deposition of heavy metals in natural ecosystems is a persistent 

environmental stressor that can influence the genotypic and phenotypic character of the 

exposed community (6).We observed that ecosystem respiration remains suppressed in 

the Clark Fork River. These data suggest that aerobic heterotrophic hyporheic microbial 

communities are not fully resilient to this chronic metal stress that imposes a legacy of 

impaired ecosystem function even after long periods of selection for tolerant 

communities have structured the hyporheic microbial community species composition 
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(12-15, 48). In situ studies of soil microfauna indicate metabolic inhibition at metal 

concentrations and mixtures comparable to the Clark Fork (16, 17). Soil microbial 

communities exposed to chronically elevated concentrations of multiple heavy metals 

demonstrated inhibited sulfatase and dehydrogenase activity compared to uncontaminated 

soils with minimum As, Cd, Cu, Pb, and Zn concentrations of (ppm) 2.8, below detection 

limit, 9, 67, and 91, respectively (16). Similarly, microbial basal respiration was 

negatively correlated with Cu (23.8-1626.75 ppm), Pb (55.9-5060 ppm), and Zn (38.6-

2534) along a contamination gradient at a reclaimed mining area decommissioned for at 

least 20 years (17). The metabolic inhibition we and others have observed may result 

from the energetic cost of maintaining and expressing metal tolerance mechanisms 

necessary for survival in contaminated environments (56).  

RRST Continuous Detection of Transient Geochemical Conditions  

Raz breakthrough curves show a strong rising limb, peaking at elevated 

concentrations, followed by a decline to plateau concentrations, a pattern most evident in 

contaminated site columns (Figure 1.4). This differential temporal behavior in Raz 

transformation suggests respiration inhibition followed by stimulation. This response 

induces a systematic difference in model error between treatment groups. Error 

generation is primarily isolated to the Raz BTC rising limb with significantly greater 

error associated with contaminated site columns (average mean absolute error: Ref = 

0.025, Cont = 0.049, P < 0.001), suggesting a mechanistic explanation for the deviation 

of observed data from the Raz Rru advection dispersion equation model.  

Transient geochemical conditions within the columns stem from the introduction 

of the buffered (pH 6.6 ± 0.09) RRST influent solution as it mixes with the untreated 
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column pore water (i.e., river water used for column packing). This pH was chosen to 

represent the lower end of the in situ diel pH variation previously measured in Clark Fork 

hyporheic pore waters (57, 58). The phosphate buffer we employed imposed an increase 

in ionic strength relative to background (+192.0 ± 15 µs/cm) concomitant to the change 

in pH. These changes in column aqueous geochemistry could facilitate metal dissolution 

from sediment surfaces further increasing the complexity of a transient state (57, 59). 

Metal dissolution is evident in these experiments in discrete time point analysis of the 

arsenic breakthrough curve that co-varies with Raz concentrations (Figure 1.5), and by 

increases in effluent metal concentrations relative to the influent solution (e.g., As, Cd, 

Cu, Zn) (Figure 1.6) trends that are strongest in contaminated sediment column effluents. 

Changing ionic strength, pH, and metal concentrations generate transient column 

geochemistry and could all be influential drivers of the observed biotic responses. The 

more pronounced differential Raz behavior may be because of the increased complexity 

of the transient state associated with contaminated sediment and/or a stronger biotic 

response of metal resistant communities to transient pH and ionic strength conditions (60-

62).  

Raz behavior is suspected to be a biotic response to transient geochemical 

conditions within the column and may be evidence of the utility of this method for 

continuous detection of cause and effect relationships of the biotic community to 

environmental stimuli. If proven valid, this advocates for the use of this tool to assess 

dynamic community metabolic responses to changing environmental stimuli in the 

laboratory and potentially field studies. As such, the RRST may be useful for monitoring 

in situ ecological functional responses to environmental perturbations, alleviating bias 
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associated with time and space dependent assessments (63). Additionally, the RRST 

method could have a pertinent role for metabolic assessment of ecosystem integrity 

because it potentially maintains the advantages of currently applied metrics (continuous 

detection in flowing water systems) while reducing uncertainties associated with using 

naturally occurring substrates (43) and DO measurements where reaeration is a 

considerable confounding variable amongst additional complications (32, 34, 35).  

These observations cautiously support the RRST as a hydrologic tool for 

quantifying effects of anthropogenic pollutants to ecosystem processes in flowing water 

systems. Further, our findings suggest a lack of ecosystem resilience to long-term 

perturbations evident in that heterotrophic hyporheic metabolic function remains 

suppressed in the Clark Fork despite >100 years of selection for tolerant communities. 

The RRST was able to detect differences in respiration along a contamination gradient 

with a high degree of precision, indicating that long-term exposure to metal stress inhibits 

metabolic function up to 30% relative to reference conditions and that inhibition is 

directly related to the magnitude of metal stress. Raz also responded to transient 

biogeochemical conditions, suggesting the RRST is capable of detecting continuous 

differences in biotic processes through time in response to a changing environment. 

Therefore, while the RRST shows promise as a functional indicator of ecosystem health, 

additional study is required to confirm its utility and develop quantifiable empirical 

relationships between Raz-to-Rru reduction rate constants (k12) and tangible ecological 

productivity metrics such as carbon cycling rates.   
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Table 1.1 Site and Column Effluent Characteristics. Sites are organized in 

contaminated – reference pairs from the lowest contamination/elevation to the 

highest. 

Site Treatment Elev (m) Slope k12 (hr
-1

) Sed MCI
1 As (µg/g) Cd (µg/g) Cu (µg/g) Pb (µg/g) Zn (µg/g) Effl MCI

1 As (ppb) Cd (ppb) Cu (ppb) Zn (ppb) Sed TOC (µg/g) 

Bitterroot River Ref 957 0.1% 0.80 ± 0.02 0.00 0.79 ± 0.79 0.01 ± 0 2.7 ± 0.55 1.8 ± 1.6 4.5 ± 1.6 0.05 21 ± 2.7 0.12 ± 0.03 2.2 ± 1.7 44 ± 16 0.33 ± 0.09
CF at Missoula Cont 981 0.5% 0.70 ± 0.07 0.92 4.1 ± 1.1 0.23 ± 0.05 24 ± 7.5 4.8 ± 1.2 90 ± 18 0.70 197 ± 28 0.24 ± 0.09 35 ± 8.6 59 ± 8 7.3 ± 2.4

Rock Creek Ref 1084 0.2% 0.55 ± 0.01 0.08 3.4 ± 0.56 0.01 ± 0.01 2.5 ± 0.5 2.0 ± 1.5 3.6 ± 1.3 0.00 25 ± 1.1 0.29 ± 0.26 0.53 ± 0.14 38 ± 7.9 7.2 ± 2.6
CF at Drummond Cont 1220 0.3% 0.38 ± 0.04 1.15 6.8 ± 1.5 0.29 ± 0.05 42 ± 6.3 12 ± 5.3 121 ± 44 0.73 204 ± 90 0.22 ± 0.10 17 ± 6.7 169 ± 215 3.8 ± 1.4
Little Blackfoot Ref 1363 0.5% 0.72 ± 0.01 0.69 8.6 ± 1.4 0.10 ± 0.03 4.7 ± 1.2 5.9 ± 0.84 27 ± 5.4 0.43 197 ± 4.2 1.25 ± 0.00 0.90 ± 0.21 46 ± 13 4.4 ± 2.9

CF at Kohrs Ranch Cont 1369 0.4% 0.54 ± 0.02 1.34 26.6 ± 48 0.30 ± 0.08 143 ± 143 10 ± 2.9 102 ± 47 0.56 195 ± 8.2 0.12 ± 0.01 20 ± 2.4 54 ± 22 1.7 ± 0.3

Site Characteristics Column Effluent Characteristics

1Metal Contamination Index, Sed is sediment associated metal content, Effl is column effluent metal concentration

CF is Clark Fork. Sites are listed in order of elevation with low contaminated site, CF at Missoula, associated with its reference pair, Bitterroot River. CF at Kohrs Ranch is the highest contaminated site
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Parameter Velocity (v)
b

Retardation (R)
b 

Dispersivity (αL)
b

Parameter Values 23.8 - 27.4 1.7 - 2.3 0.40 - 1.4 0.03 - 0.09 0.10 - 0.27 0.35 - 0.91 0.02 - 0.07
Variation of 10 optimization experiments 6.9e-4 - 3.5e-3 1.5e-5 - 8.1e-4 4.9e-5 - 1.8e-2 4.9e-6 - 2.3e-5 1.7e-5 - 3.0e-4 6.9e-6 - 4.5e-4 1.1e-7 - 2.3e-6

Variation - Value difference 10-4 - 10-5 10-4 - 10-5 10-2 - 10-4 10-3 - 10-4 10-3 - 10-5 10-3 - 10-5 10-4 - 10-6

      a Range of parameter values and variation represents min and max values of the 24 columns of the dataset

       b units: v (cm hr-1), R (-), αL (cm), k1,2,12 (hr-1)

Raz Decay 

Coefficient (k1)
b

Rru Decay 

Coefficient (k2)
b

Raz to Rru 

Coefficient (k12)
b

Mean Absolute 

Error

Table 1.2 Parameter Value Range and Convergence Diagnostics of the Resazurin 

Resorufin Advection Dispersion Equation 
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N Montana

Idaho Wyoming

CF Watershed

CF at Kohrs Ranch

LBF

BR

CF at Missoula

RC

CF at Drummond

Figure 1.1 Site Map Showing Regional and Local Scales with Site Locations.

Bitterroot River (BR), Rock Creek (RC), and Little Blackfoot River (LBF) are the 

low, middle, and high-elevation reference sites, respectively, shown as light grey 

circles. Contaminated sites along the Clark Fork River are shown with dark grey 

circles and in order of lowest to highest elevation/contamination are Missoula, 

Drummond, and Kohrs Ranch. 
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Figure 1.2 Raz-to-Rru Transformation Rate Constants (k12) of Reference-

Contaminated Site Pairs (means ±±±± std. err.). * denotes significant differences 

among site pairs (ANOVA, P ≤ 0.05). Low elevation = low contamination level, 

Mid-elevation = mid-contamination level, and High elevation = high 

contamination level. 
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Figure 1.3 Bacterial Density Normalized k12 Values for Sediments Collected 

along the Clark Fork River Contamination Gradient (means ±±±± std. err.). Mean 

normalized k12 values are significantly different from each other at P < 0.001 

(ANOVA); letters denote significant differences among means as determined by 

a Tukey-Kramer Test (P ≤ 0.05 level). 
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Figure 1.4 Plot of Decoupled Raz and Rru Breakthrough Curves with 

Uncertainty Estimation. Breakthrough curves are expressed as concentration 

versus time. A) Low elevation reference site: Bitterroot River sediment columns. 

These were the best performing model simulations with an overall average 

model error of 0.022. B) Low elevation contaminated Clark Fork at Missoula 

sediment columns. These were the worst performing model simulations with a 

site average error of 0.056. Error generation is primarily isolated to the rising 

limb of the Raz breakthrough curve. 
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Figure 1.5 Plot of Arsenic and Raz Breakthrough Curves for Four Different 

Sediment Types: A) Mid elevation reference site (Rock Creek), B) Low elevation 

contaminated site (CF at Missoula), C) mid elevation contaminated site (CF at 

Drummond), D) high elevation contaminated site (CF at Kohrs Ranch). 
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Figure 1.6 Reference and Contaminated Site Averaged Increases in Effluent 

Metal Concentration from Influent Solution (means ±±±± std. err.). A) Copper, B) 

Zinc, C) Arsenic, D) Cadmium. Contaminated sites have significantly greater 

increasing in copper and arsenic concentrations. * denotes significant differences 

among site pairs (ANOVA, P < 0.05). 
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CHAPTER 2: DIFFERENT CHRONIC METAL CONTAMINATION REGIMES 

SELECT FOR SIMILAR HYPORHEIC MICROBIAL COMMUNITY                

METAL RESISTANCE POTENTIALS: ANALYSIS WITH THE                

RESAZURIN RESORUFIN SMART TRACER  

Abstract 

Chronic heavy metal contamination in lotic ecosystems can impose long-term 

metabolic inhibition in hyporheic microbial communities, reflecting the energetic cost of 

metal resistance. This selective stress influences the genotypic and phenotypic character 

of the exposed community. Pollution-induced community tolerance is expected to equip 

communities originating in chronic metal contaminated environments with a greater 

capacity to mitigate the toxic effects of an acute metal exposure. We tested this 

hypothesis by measuring the metabolic inhibition of two hyporheic microbial 

communities induced by an acute metal exposure. One community was from a metal 

contaminated site along the Clark Fork River, Montana and the other from a relatively 

uncontaminated reference site. Metabolic inhibition was estimated with the Resazurin 

Resorufin Smart Tracer (RRST) in column experiments. We predict that the community 

from the metal contaminated site should demonstrate less metabolic inhibition when 

exposed to an acute cadmium stress than the reference community. Contrary to this 

expectation, both the reference and contaminated community demonstrated similar 

metabolic responses to the Cd treatment characterized by consistent respiration below a 
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contamination threshold above which respiration declined. These results suggest that 

either a common metal resistance potential has evolved in response to the different metal 

contamination regimes of our two test sites or that the Cd-treatments we applied represent 

a relatively novel metal stress to both of the tested communities resulting in a similar 

inhibition profile. 

Introduction 

Heavy metal contamination of freshwater ecosystems is a persistent problem 

worldwide (1, 2). This chronic stress shapes the genotypic and phenotypic character of 

the exposed hyporheic microbial community by selecting for tolerant organisms that 

survive in otherwise toxic environments and encumbering the tolerant community with 

the metabolic cost of maintaining and expressing metal tolerance genes (6, 56). The cost 

of metal tolerance can manifest as inhibited basal metabolic potential during times of 

minimal metal exposure (47) (Chapter 1) in exchange for survival in times of higher 

metal stress (56). Therefore, communities that develop in chronically metal stressed 

environments and possess metal resistant genotypic traits to cope with acute metal 

exposures should have a different functional response to additional, acute metal stress 

than communities without these traits (60).  

In stream environments, elevated concentrations of sediment associated metals are 

persistent and the bioavailable and mobile fraction of these contaminants oscillates on 

diel (57) and/or seasonal (64-66) timeframes, with daily fluctuations as much as 500% in 

streams impacted by heavy metal deposition (57, 58, 67-69). We hypothesized that acute 

metal exposure responses are representative of in situ ecological behavior during peak 

bioavailable metal concentrations, and that differences in acute responses between 
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communities that have developed under low and high levels of metal stress should follow 

the predictions of the pollution-induced community tolerance hypothesis (70, 71).  The 

pollution-induced metal tolerance paradigm suggests metal tolerant communities should 

demonstrate less pronounced metabolic responses to additional metal stresses relative to 

communities developed under lower levels of, or in the absence of, metal stress (56, 71-

74). The expression of metal tolerance traits enables tolerant communities to more 

rapidly acclimate to conditions of acute metal exposure than naïve communities that lack 

such tolerance mechanisms (56). Alternatively, communities adapted to survive under a 

single stress regime may be more vulnerable to additional stressors because of loss of 

resistance and/or resiliency (60, 62), and as such these vulnerable communities may 

demonstrate a more robust response to an additional acute stress (60, 75).  

The cost of pollution-induced community tolerance of metal stressed communities 

to novel and/or other stressors has been documented (61, 76, 77). On the other hand, co-

tolerances are often developed in natural systems faced with multiple stressors and/or 

additional stressors; a reduced negative response would be expected when resistance 

mechanisms have similar modes of action (73, 78, 79). However, less is known about 

how hyporheic microbial communities adapted to chronic metal contamination will 

respond to acute metal exposures. The cost of maintaining cadmium efflux genes in 

Psuedomonas putida KT440 under varying levels of Cd exposure has been quantified 

with the wildtype P. putida strains able to out compete strains with deletions of one of 

two Cd resistant genes in the presence of > 0.1 mM Cd because of a shortened lag phase 

(56). Here, we attempt to quantify the ability of metal-adapted hyporheic microbial 
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communities to cope with an additional acute metal exposure using the metabolically 

reactive Resazurin Resorufin Smart Tracer. 

The Resazurin Resorufin Smart Tracer was recently proposed as a metabolically 

reactive hydrologic tracer capable of coupling solute transport and estimates of 

benthic/hyporheic microbiological activity in freshwater systems (38). In a controlled 

laboratory column experiment, this tracer showed promise in its initial deployment as a 

functional indicator of hyporheic ecological integrity (Chapter 1). RRST estimates of 

sediment-associated metabolic potential showed inhibition of sediment from the 

contamination gradient relative to reference communities with this inhibition varying 

linearly with metal contamination levels. The RRST also detected cause and effect 

relationships of community respiration to changing environmental conditions (Chapter 1).  

The metabolic resistance of hyporheic microbial communities inhabiting 

chronically metal contaminated sediments (> 100 y) when exposed to an acute cadmium 

exposure was tested and compared to the resistance of a reference stream’s hyporheic 

microbial community in column experiments using the Resazurin Resorufin Smart 

Tracer. We hypothesized that a hyporheic microbial community present in the chronically 

metal contaminated Clark Fork River, Montana would possess the metal tolerance 

mechanisms necessary to withstand periodic increases in metal stress and therefore would 

demonstrate less respiratory inhibition (i.e., greater resistance) in the presence of an 

experimentally applied acute cadmium (Cd) stress than communities from a reference 

site. Cadmium is one of the toxic metals found in the environment in which the metal-

adapted community originates. Contrary to our hypothesis, our results show similar metal 

resistance in both communities with respiration inhibition occurring above a Cd 
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concentration threshold (Figure 2.1). This suggests that both communities may possess 

metal tolerance mechanisms and these traits are not able to overcome all levels of acute 

metal stress. This may indicate a mechanism for prolonged ecosystem suppression in 

systems chronically contaminated with heavy metals.  

Methods 

We tested the metabolic effects of an acute Cd stress exposure on hyporheic 

microbial communities exposed to differing histories of fluvially deposited heavy metals. 

Changes in net heterotrophic hyporheic metabolism in response to the acute Cd stress 

were measured in column experiments using the Resazurin Resorufin Smart Tracer, a 

metabolically reactive hydrologic tracer. The Clark Fork River is a sixth-order river 

draining 66,870 km2 of western Montana and northern Idaho (80). Historic mining has 

deposited elevated concentrations of arsenic, cadmium, copper, lead, and zinc several 

hundred times above background with concentrations declining from the headwaters near 

Butte, MT to the outlet at Lake Pend Oreille in N. Idaho. Hyporheic sediment from a 

highly contaminated site, Clark Fork at Kohrs Bend (4th order; lat. 46°28’22.38”, long. 

112°43’41.59”; elevation 1350 m) was paired to a reference tributary stream, Little 

Blackfoot (LBF) (3rd order; lat. 46°32’13.23”, long. 112°42’57.90”; elevation 1363 m). 

This reference stream was chosen because of its similarity in physical fluvial 

geomorphological characteristics to the contaminated stream with the primary difference 

being the level of heavy metal present. Shallow (5-15 cm) hyporheic sediment was sieved 

in the field to a uniform grain size (1.7-2.36 mm), packed into coolers with wet ice and 

shipped overnight to Boise, ID for analysis.  
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Within 24 hrs post collection, sediment was packed into four replicate columns 

per site. The columns consisted of low-pressure 30 cm x 1.5 cm glass chromatography 

columns (FlexColumn, Kontes Glass Company, New Jersey, USA). Of each set of four 

columns, two received a Cd-amendment and two did not. The two Cd-treated columns 

per site were fed a pH buffered (6.7 ± 0.055) solution of stream water collected from a 

pristine reference stream within the Clark Fork drainage (Rock Creek). The common 

water source normalized dissolved organic carbon availability and other pore water 

characteristics for each treatment combination. The Cd-treated columns received an 

influent solution of 200 µM PIPES buffer, 0.1 mM Cadmium Chloride, and 0.1 mM 

chloride (Cl) delivered at a constant discharge (~0.3 mL/min) and temperature (~15.4°C 

± 2.6°C). In the control columns, the 200 µM PIPES buffer was amended with 0.2 mM 

NaCl instead of the 0.1 mM CdCl and 0.1 mM Cl to normalize ionic strength between 

treatments. Columns from each site were fed the treated pore water for 19 hrs to 

acclimate the sediment to the column environment and avoid measurement of transient 

responses. After incubation, 200 ppb resazurin was added to the treatment and control 

solutions and measurements of resazurin, resorufin, and Cl- (as a conservative tracer) 

were taken every 10-28 minutes for the following four hours until resazurin/resorufin 

concentrations reached plateau, resulting in a total acute Cd exposure of 23 hours. Cd was 

employed because it is a potent bacterial toxicant and it does not react with the 

resazurin/resorufin tracer.  

Influent solution was pumped from the feed reservoir to the columns with 

Masterflex® L/S 13 tubing (06424-13, ID 1.6 mm) using a Masterflex® peristaltic pump 

(L/S 7523-40 digital standard drive, Cole Parmer Instrument Co., Chicago, IL) with an 
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attached 12 channel, 8 roller cartridge pump head (Masterflex L/S® 7519-25) loaded 

with 4 Easy Load small cartridges (Masterflex L/S® 7519-85). Easy load cartridges were 

fitted with Masterflex® L/S Microbore 2 stop PVC tubing (06416-10, ID 0.19 mm). 

Microbore and L/S 13 tubing were attached using Ominfit (Cambridge, England) two-

way connectors (Cole Parmer Instruments 06473-00). Luer locks connected the L/S 

tubing to the column via a 4-way stopcock male lock. Peristaltic pump discharge rate was 

gravimetrically calibrated to 0.3±0.01 mL min-1 at the start of each experiment.  

Effluent samples were collected by fitting a luer lock connection at the effluent 

end of the column to a short piece of L/S 13 tubing and directing the column effluent to 

sterile 17 x 100 mm polypropylene culture test tubes (Fisherbrand 14-956-1J). Electrical 

conductivity measurements were made on these time-averaged volumes at each sampling 

point with an Orion 031610MD conductivity cell attached to the Orion 3 Star Portable 

Conductivity Meter (Thermo Scientific Inc., Bremen, Germany). Column effluent was 

pulled from the collection tube using a 1 mL plastic syringe and then filtered through a 

0.22 µm sterile filter (25 mm Durapore membrane filters and Millipore Swinnex-25 filter 

holders). Each sampling time point required multiple 1 mL pulls. The first pull evacuated 

the filter housing of residual effluent from the previous sampling time point. Sample 

collection for quantification (~500 µL) was then collected from a second filtered volume. 

To prevent cross contamination between sampling points, filters were then cleared with 

1-2 mL of air. Sterile filtered samples were measured for resazurin and resorufin 

concentrations at each discrete time point to establish breakthrough curves. Remaining 

effluent not used for resazurin/resorufin quantification was preserved and used for trace 

metal analysis. Volume averaged sample intervals varied and ranged from 10 to 28 
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minutes with higher frequency sampling occurring during breakthrough and fewer 

samples at plateau. Sample points were linearly interpolated at an interval of 0.05 hr (3 

min) prior to data processing.  

Resazurin/Resorufin Quantification  

Resazurin and resorufin sodium salts were purchased from Sigma Aldrich. Initial 

fluorometric analysis of stock resazurin indicates an average of 1.05% resorufin 

contamination. Resazurin and resorufin are fluorescent compounds uniquely detectable 

with individual fluorometric settings (resazurin: λexc = 602 nm, λemi = 634 nm; resorufin: 

λexc = 530 nm, λemi = 590 nm). Fluorescence of both compounds is pH dependent with 

optimal fluorescence (constant and maxima) observed at pH > 8 (45, 46). Prior to 

measuring fluorescence, the pH of samples and standards were raised to approximately 

9.5 with the addition of 2.5 µL 25 mM NaOH (control) or 2.5 µL 125 mM NaOH to 100 

µL sample in 96 well flat bottom, black-walled plates (Costar part # 3603). Fluorescence 

measurements were performed on a Synergy Mx multi-mode microplate reader with Gen 

5 software (Biotek Instruments, Inc) with bandpass set to 9 and sensitivity set to 100. All 

fluorescence measures were made within 24 hrs post experiment. Samples were stored in 

the dark at 4◦C prior to reading.  

Resazurin standard fluorescence remained consistent during the experimental 

period. The resorufin standard fluorescence showed a strong decay through time in 

preliminary assays under refrigeration; however, fluorescence was preserved when Rru 

standards were frozen. At the start of the experimental period, fresh resazurin and 

resorufin standards were prepared, aliquots of resorufin standards were frozen until used.  
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Trace Metal Quantification 

 Metal concentrations of column effluent (Mg, Al, Si, P, K, Ca, Cr, Mn, Fe, Ni, 

Cu, Zn, As, Sr, Cd, Ba, Pb, U) and sediment (Na, Mg, Al, Si, P, K, Ca, Cr, Mn, Fe, Ni, 

Cu, Zn, As, Se, Kr, Sr, Ag, Cd, Ba, Pb, U) were quantified with an X-Series II 

Inductively Coupled Plasma Mass Spectrometer (ICP-MS) (Thermo Fisher, Bremen, 

Germany). Effluent metal concentrations were measured on composite samples of 

column effluent collected over the duration of each experiment. At the completion of the 

experiment, 25 mL of this solution was sterile filtered with 0.45 µm Millipore Durapore 

Membrane Filters and treated with 0.125 mL of 10% trace metal grade HNO3, according 

to EPA method 1669, and then frozen until analyzed.  

Total extractable metal analysis of sediment samples followed EPA method 

3051A for microwave digestion. Briefly, five 0.5 g (± 0.005) replicates per site of thawed 

and dried (four days at 50◦C) sediment (not used in column experiments) were placed into 

fluorocarbon polymer microwave vessels. 10 mL of triple distilled concentrated HNO3 

was added and then the vessels were sealed according to the manufacturer’s directions 

and digested in a microwave digester (CEM Mars Xpress, CEM Corporation, Matthews, 

NC) using the pre-loaded EPA 3051A program as follows: temperature ramped to 

175±5◦C in 5.5±0.25 min and maintained for 4.5±0.25 min. Vessels were allowed to cool 

in the microwave. Leachate was removed and diluted to 2% HNO3 for ICP-MS analysis. 

External standard verification (San Joaquin Soil, SRM 2709a, NIST) of the average 

concentration of the five target metals were as follows: arsenic (within reported range), 

cadmium (within reported range), copper (within 2.2%), lead (within 4.3%), and zinc 

(within 1%).     
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MCI Calculation 

 The magnitude of metal contamination for each site and in the column effluents 

was expressed as a metal contamination index (MCI) (12, 81). This index normalizes the 

relative degree of contamination to the most pristine site within the dataset. MCI values 

for each sample were calculated as follows, 

MCI=Σ((log (Men)/log (background Men))/n 

where Men is the metal species (i.e., As, Cd, Cu, Pb, or Zn), n is the number of metals 

included in the index, and background is the respective metal concentration of the most 

pristine site. In this study, the measurement of chronic stress is normalized to the metal 

concentrations of the Bitterroot River, MT the most pristine site surveyed during the 

summer of 2010 with the following metal concentrations (ppm): arsenic (0.79), cadmium 

(0.013), copper (2.66), lead (1.83), and zinc (4.45). 

Sediment MCI (sMCI) values, derived from sediment digestions, describe the 

magnitude of metal stress the tested hyporheic microbial community experienced in situ, 

and provides a relative measure of the environmental contamination gradient that exists 

within the Clark Fork River watershed. Effluent MCI (eMCI) values were calculated 

from the soluble metals present in the column effluents and describe the magnitude of 

acute metal stress. Effluent from a LBF control column was used to formulate column 

eMCI of the acute metal stress experiment: As (2.05), Cd (0.75), Cu (0.37), Zn (8.56), 

and the average of both LBF control columns were used as the baseline for the eMCI site 

analysis with the following concentrations (ppb): As (2.12), Cd (2.04), Cu (0.32), Zn 

(7.01).  
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Dissolved Oxygen  

The relationship between resazurin/resorufin measures of sediment respiration 

and DO consumption was established in independent column experiments operated under 

various discharge regimes (0.1, 0.15, 0.2, 0.3 mL/min). Five replicate columns were 

measured at each discharge. Resazurin/resorufin were measured as described above. DO 

consumption was measured with non-intrusive fluorescence quenching (PreSens 

Precision Sensing GmbH, Regensburg, Germany). Oxygen sensor foils were adhered 

inside the column prior to packing with Boise River sediment at the influent and effluent 

ends. Sediment respiration measurements were made at steady state with DO consumed 

measured as the difference between DO concentration as the pore water entered the 

column and as it exited the column. González-Pinzón et al., (2012) has demonstrated the 

relative consistency of the relationship between sediment respiration, DO consumption, 

and resorufin production (82). 

Bacterial Enumeration 

Bacterial densities were measured on Clark Fork and Little Blackfoot sediments 

pre-experiment via quantitative PCR. Total community DNA was extracted from 

sediments using the FastDNA® SPIN Kit for Soil and the FastPrep® Instrument (MP 

Biomedicals, Santa Ana, CA). Using amplification setting previously described (48), five 

replicate DNA extractions per site were analyzed with real-time quantitative PCR 

(qPCR), amplifying the 16S rRNA gene with Bact 1369F and Prok 1492R primers and 

Taqman probe 1389F. The relative density of bacterial biomass in each sample was 

expressed as a function of the number of 16s gene copies g-1 sediment. A plasmid-based 
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qPCR standard curve was linear across seven orders of magnitude in the 2.9×101 – 

2.9×108 16s gene copies mL-1 range (48). 

Organic Carbon Quantification 

Sediment associated organic carbon (OC) was quantified using the <1.18 mm 

grain size fraction from each column. Column sediment was thawed and dried at 85◦C for 

24 hrs then sieved through a 2 mm mesh followed by a 1.18 mm mesh, coarse sediment 

was discarded. Sediment smaller than 1.18 mm was hand pulverized to <125 µm, 

collected and dried for at least 24 hrs at 80◦C. Inorganic carbon was oxidized with the 

addition of 7 mL of 0.73 M sulfurous acid (H2SO3) in acid-washed vials (83). This 

represents at a minimum a 1:10 mixing ratio of g sediment: mL acid for all columns. The 

acid-sediment solution was then dried at 80◦C for >24 hrs and replicate (n=3) ~100 mg 

samples were measured into tin discs (CD Elantech, Inc., Lakewood, NJ) for carbon 

quantification by the Flash EA 1112 Series NC Soil Analyzer (Thermo Scientific Inc., 

Bremen, Germany). A low concentration calibration curve (0.1-0.005 mg C mg-1 sample) 

was generated with San Joaquin Soil (NIST SRM 2709a) for accurate quantification of 

the carbon content of the Clark Fork sediments. Results were validated with internal 

standards (SRM 2709a) and verified with in-house external standards (CBXO Soil, 

BioTrace Lab, Boise, ID).  

Data Analysis  

Resazurin and resorufin breakthrough curves were deconstructed into constituent 

biological and physical parameters with the application of a Markov chain Monte Carlo 

data assimilation technique solving the inverse resazurin/resorufin advection dispersion 
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equation with a Metropolis Hastings algorithm developed to provide a probabilistic 

solution. This forward model is a suite of reactive advection dispersion equations 

describing resazurin and resorufin transport through porous media. These transport 

equations are associated through the k12 term that quantifies resazurin to resorufin 

reduction as (38)  
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where �Raz is the concentration of Raz [µmol L-1]; �Rru is the concentration of Rru [µmol 

L-1]; � is time [hr]; � is distance [cm]; 	L is longitudinal dispersivity [cm]; v [cm hr-1] is 

the average pore water velocity; 
 [-] is retardation coefficient due to sorption; k12 [hr-1] 

is the reaction rate coefficient of Raz to Rru; �1 [hr-1] is the reaction rate coefficient of 

Raz decay; �2 [hr-1] is the reaction rate coefficient of Rru decay; MRaz [g mol-1] is the 

molecular weight of Raz; and �Rru [g mol-1] is the molecular weight of Rru (38). The 

forward RRADE model developed in Haggerty et al., (2008) (38) was provided and 

translated into Matlab® R2011a. Accuracy of the Matlab formulation was verified 

through comparison of resazurin/resorufin concentrations at discrete time points in 

simulations of initial conditions and variable values found in Haggerty et al., (2008) (38). 

The Markov chain Monte Carlo resazurin resorufin advection dispersion equation 

optimization accurately fit the model to the observed data with model error ranging from 

0.0122-0.0207, significantly less model error than that generated in prior experiments 

(Chapter 1), most likely attributable to the long incubation time allowing for steady-state 

conditions. This modeling approach is previous detailed (Chapter 1). 
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Results and Discussion 

We investigated the metal resistance capability of hyporheic microbial 

communities selected for under different chronic metal stress regimes by measuring the 

extent to which respiration was suppressed or not by an acute exposure to a toxic metal 

and expected chronic toxic metal exposed communities would demonstrate a greater 

resistance to an additional acute metal exposure than communities from lesser 

contaminated environments. Based on predictions of the pollution-induced community 

tolerance, we hypothesized that respiration of communities from chronically metal 

contaminated environments would be inhibited in the presence of an acute metal 

exposure and that this inhibition would be inversely correlated to the magnitude of long-

term stress (71) (Figure 2.1). Accordingly, we predicted that the highly contaminated 

Kohrs Bend (KB, sMCI = 1.15) site would exhibit a smaller difference in k12 between 

treatment and control columns than that of Little Blackfoot (LBF, sMCI = 0.71). 

Respiration rate responses were quantified with the Resazurin Resorufin Smart Tracer by 

comparing the rate coefficient of resazurin to resorufin reduction by each community 

(k12).  

Resazurin to Resorufin Reduction Rate Constant 

Direct correlations of cellular density to k12 (R
2 = 0.51) and DO consumption 

resazurin lost (R2 = 093) suggest k12 is an accurate estimation of sediment-associated 

respiration (Chapter 1). In this study, k12 was normalized to bacterial density to provide an 

interpretation of the per cell metabolic response to acute metal exposure. Heterotrophic 

respiration in the hyporheic zone is often influenced by the availability of organic carbon 

(84); however, in this study, sediment associated organic carbon was not correlated to 
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normalized k12 (P =0.6) and is not a suspected driver of the differential respiration 

responses observed, in part because the DOC quantity and quality was normalized across 

communities and treatments by utilizing a common water source for all experiments. 

Similarly, other water chemistry constituents known to affect metabolic activity (e.g., 

nutrients, pH, ionic strength, etc) were normalized with same source influent solution. 

Therefore, metabolic differences are attributed primarily to metal toxicity.  

Ecological Response to Acute Metal Exposures 

We measured the level of dissolved metals in the column effluents and expressed 

them in terms of effluent MCI to assess the level of applied acute metal stress (Table 2.1). 

This metal contamination index assumes that all metals are equally toxic and ameliorates 

differences in concentrations and toxicity of metals in favor of a lower resolution 

environmentally relevant composite score (12). There was a comparable increase in 

effluent MCI of 0.9 and 0.8 between treatment and control for columns containing 

hyporheic sediments from the reference Little Blackfoot River and the contaminated 

Clark Fork at Kohrs Bend, respectively. However, columns amended with Cd and 

containing the contaminated sediments experienced a stronger overall metal exposure 

(average effluent MCI: Little Blackfoot control = 0.04 ± 0.06, Little Blackfoot treatment 

= 0.94 ± 0.06, Clark Fork at Kohrs Bend control = 1.1 ± 0.28, Clark Fork at Little 

Blackfoot control = 1.9 ± 0.05). k12 declined in the treatment columns of both sites 

relative to the control. The greatest inhibition was associated with a more pronounced 

difference in k12 between the control – treatment columns of the contaminated community 

(P = 0.005). Acute Cd exposure reduced respiration by this community by 6.9 × 10-10 hr-1 

compared to 3.6 × 10-10 hr-1 of the reference community (Figure 2.2). This suggests that 
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the magnitude of acute stress that was greatest in the contaminated sediment Cd-

treatment columns inhibits respiration even in communities developed in highly metal 

contaminated environments. Further categorical conclusions about relative levels of 

community metal resistance from this plot are inappropriate because of the unequal 

effluent MCI values between community types. However, a systematic metabolic 

inhibition corresponding to acute metal exposure was observed for both hyporheic 

communities (i.e., an inverse relationship of cell density normalized k12 versus effluent 

MCI) (Figure 2.3). With the exception of one reference site treatment column, 

normalized k12 shows a slight and nearly equal decline in both communities within the 

effluent MCI range of 0 - 1.4, above an MCI of 1.4 k12 is markedly depressed, suggesting 

a continuous response of both communities up to a stress threshold. Although we applied 

a single metal stress (Cd), the metal content of the sediments themselves contributed to 

the net contaminant stress experienced by the sediment associated microbial 

communities. Owing to the natural heterogeneity in sediment metal contents among sites, 

there was a large discrepancy across columns and treatments in the metal concentrations 

in the effluent pore water contributing to the overall MCI score. To understand the 

relative impact of each of these metals, a more highly resolved analysis of individual 

metals is necessary. 

The level of acute metal stress present as Cd in the influent solution was constant 

across sediment/hyporheic community types, however, the actual level and type of acute 

metal stress experienced by the communities in each column varied. Effluent Cd 

concentrations spanned a gradient of more than 3 orders of magnitude from 2 - > 3500 

ppb with nearly a 500x increase between Little Blackfoot control and treatment columns 
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and a 30x increase in Clark Fork at Kohrs Bend (Table 2.1). The lowest Cd 

concentrations are associated with control columns from both sites followed by a marked 

increase in the treatment columns. Cd-treated reference site columns were exposed to 

nearly an order of magnitude greater Cd concentration than the contaminated site control 

columns. Effluent copper concentrations ranged from 0.3 to 18 ppb and the contaminated 

site columns had greater concentrations than the reference. The Cd-treated columns of 

both sites had greater Cu concentrations than control columns with the reference site 

having a 4 fold increase to 1.3 ± 0.8 ppb and a doubling of the contaminated site columns 

to 18.3 ± 0.7 ppb. Zinc concentrations ranged from 7.0 ± 2.2 ppb in the reference control 

columns to 505 ± 45 ppb in the contaminated site treatment. Cd-treated reference site 

columns were similar to the contaminated site control columns with 50 ± 5.7 ppb and 32 

± 9.3 ppb Zn, respectively. Arsenic concentrations were much lower ranging from 1.2 ± 

0.38 to 9.0 ± 0.25 with control columns of each site having higher As concentrations than 

the treatment columns, reflecting the differential sorption characteristics of As vs. Cd, 

Cu, and Zn (57). We analyzed individual metal-k12 relationships to develop a more highly 

resolved depiction of degree and type of metal stress than possible with the MCI 

calculation (Figure 2.4). This analysis shows the reference site columns received a 

correspondingly high Cd stress relative to the Cd-treated contaminated site columns. Cd-

treated Clark Fork at Kohrs Bend columns experienced the highest overall stress and the 

highest concentrations of Cd, Cu, and Zn.  

Cadmium is one of the most toxic metals incorporated into the MCI (85-87). It is 

also the highest concentration dissolved metal of the dataset, although its concentration 

was highly variable, which was unexpected given the consistent concentration of Cd 
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applied with the column influent. Effluent from cadmium-amended columns from Little 

Blackfoot and Clark Fork at Kohrs Bend contained 98%, 84%, 75%, 62%, less than the 

amount of Cd applied with the influent solution, respectively, with large within site 

variability of dissolved Cd concentrations of 191 and 1755 ppb, and 2792 and 4319 ppb 

for the Little Blackfoot and Clark Fork at Kohrs Bend, respectively. Cadmium retention 

in the columns is likely due to the presence of iron and manganese oxyhydroxides 

sediment coatings that are prevalent in the CF system (88) and sediment associated 

organic carbon, two factors that exhibit strong Cd adsorption potentials (89, 90). 

Reference site sediments had significantly higher organic carbon content relative to the 

contaminated site sediments (P = 0.01) and more than two times the amount of sediment 

associated Fe of 8237 mg g-1 sediment compared to 3524 mg g-1 sediment with similar 

Mn concentrations between sites of 210 mg g-1 sediment (reference) and 285 mg g-1 

sediment (contaminated). The higher effluent Cd concentrations observed for the 

contaminated site may be a function of the elevated concentrations of cationic metals 

sorbet to these sediments at the time of collection in addition to lower sediment 

associated OC and Mn contents. Presence of such metal captions may have limited the 

availability of action binding sites on surface associated Fe/Mn-oxyhydroxides relative to 

the Little Blackfoot sediments (91, 92). The increase of pore water Cu and Zn from both 

sets of Cd-treated columns likely is due to pH and ionic strength influenced desorption 

driven by the application of the influent solution poised at a pH = 6.7 ± 0.06 and an 

average increase in ionic strength of 232 ± 74 µs cm-1 (55, 92).  

The biomass-normalized k12 shows Cd dependence (Figure 2.4). Normalized k12 

for both communities remained near 3.5 × 10-9 for Cd concentrations of 1 – 200 ppb, 
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followed by a rapid decline associated with Cd concentrations greater than 1750 ppb that 

incorporates one Little Blackfoot and both Clark Fork at KB Cd-treated columns (Figure 

2.4a). A clear breakpoint in ecological function exists in both the contaminated and 

reference communities in the Cd concentration range of >225 and <1755 ppb. This 

suggests both communities have similar Cd resistance at low end concentrations (< 225 

ppb) and a continuous decline at high end concentrations (>1755 ppb); however, highly 

resolved definition of each community’s ecological threshold is indistinguishable because 

of the absence of data in the threshold range. A definitive breakpoint in function is not as 

clear in the copper and zinc plots because in one Cd-treated reference site column k12 is 

inhibited at the lower end of the measured metal concentration range (0.7 ppb Cu and 18 

ppb Zn) and the other reference site treatment column, although experiencing increased 

Cu and Zn concentrations, is not inhibited. These observations suggest metabolic 

inhibition of the low k12 column is not attributable to either of these individual metals 

(Figures 2.4b and 2.3c). Conversely, this column was exposed to a Cd concentration 

beyond the functional breakpoint potentially pointing to Cd as the primary driver of the 

metabolic suppression. There are no distinguishable patterns in the arsenic range of 1 – 9 

ppb, indicating As did not influence community respiration. 

The concentration range of metals shown to cause a definitive effect on biotic 

processes can vary by orders of magnitude in the literature primary due to assay 

conditions and varying environmental/geochemical interactions (93). Further, the 

relationship of k12 inhibition to more commonly used metabolic measurements (e.g., 

enzyme activity, carbon substrate utilization) is currently unavailable. However, 

inhibition of non-metal and metal exposed communities has been observed at the acute 
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Cd concentrations levels applied in this study. Cadmium concentrations required to 

inhibit dehydrogenase activity by 10%, 50% and 75% in metal naïve soil communities is 

0.004, 0.14, and 1.12 ppm, respectively (85). A similar Cd concentration range (0.98 – 

1.7 ppm) was found to inhibit thymidine uptake by 50% relative to the control in 

periphyton communities (94). Average effluent Cd concentration for the reference site 

control columns was below these minimum values while treatment columns are in the 

range of required to inhibit thymidine uptake by 50% and for 50 - 75% inhibition of 

dehydrogenase activity. Cadmium concentrations required to inhibit thymidine uptake by 

50% in periphyton communities from chronically contaminated environments has been 

observed with Cd concentrations of 17.3 – 24.5 ppm (94). Cadmium decreased bacterial 

glucose uptake by 10% and 50% in metal contaminated sediments with 0.73 ppm and 

50.6 ppm, respectively. (86). The contaminated site control column Cd stress was below 

these values while the treatment columns are within the Cd range that decreased glucose 

consumption by 10 – 50%. Copper induced a 10% inhibition of dehydrogenase activity of 

non-metal contaminated soil communities at 0.019 ppm (85). This concentration was 

only observed in the effluent of the highest Cu containing column of the contaminated 

site sediment. Likewise, Zn concentrations of 0.06 ppm induced a 10% inhibition of 

dehydrogenase activity and a range of 0.44 – 3.7 ppm Zn reduced thymidine 

incorporation by 50% in communities not previously exposed to metals (85). For 

communities previously exposed to Zn, 29.2 ppm Zn reduced glucose consumption by 

10% (86) and reduced thymidine uptake by 50% with 39.3 ppm (94). The Zn 

concentrations observed in the reference site (0.01-0.02 ppm) and contaminated site 

(0.03-0.54 ppm) here are below the concentrations noted in other studies that inhibited 
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metabolic processes in non-metal exposed and metal exposed communities, suggesting 

that Zn is not the primary driver of normalized k12 inhibition. Cadmium concentrations 

applied in these other studies are similar to those employed here while the Zn and Cu 

concentrations previously demonstrated to inhibit metabolic variables are higher than 

observed here, supporting Cd as a primary driver of metabolic inhibition in our column 

experiments. However, it is noted that the multiplicative effects metals has been 

documented in other studies (95).  

Combined, this data supports our hypothesis in that acute metal exposure inhibits 

respiration by hyporheic communities from chronically metal contaminated environments 

and reference communities. However, the more highly contaminated community did not 

demonstrate greater resistance to additional metal stress than the reference community 

that originated from a more pristine environment, contrary to our initial prediction and 

the pollution-induced community tolerance hypothesis (71). We present two possible 

explanations for these observations. The reference and contaminated community may 

possess different metal resistance potential that is not observed here because of the use of 

an acute cadmium stress. Both communities experience similar chronic Cd contamination 

whereas differential tolerance to metals more prevalent in situ may exist (e.g., Cu 

concentrations increase from 4.6 to 67 mg g-1 sediment between reference and 

contaminated sites whereas Cd concentrations are 0.1 and 0.2 mg g-1 sediment, 

respectively). Cu was not used in this study due to its ability to abiotically reduce 

resazurin (data not shown). Alternatively, both communities may possess similar metal 

resistance capacities because even though the metal contamination regimes differ in time 

and magnitude, both communities have experienced anthropogenic metal deposition. 
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Cd-specific metal resistance may not have developed in these communities and 

with metabolic inhibition primarily driven by Cd in these experiments neither community 

may have tolerance to the applied acute stress. Microorganisms employ four classes of 

metal resistance strategies: production of extracellular polysaccharides, metal efflux 

pumps, intra and extra-cellular chelation mechanisms, and enzyme catalyzed redox 

modification of toxic metals. Each strategy varies in its degree of metal specificity. 

Highly charged exopolysaccharides are non-specific and bind metals prior to importation 

into the cell (96). Metal efflux pumps vary in specificity from non-specific to exportation 

of similar metal families (97). Manufacturing of chelation molecules such as glutathione, 

polysaccharides, and chaperone proteins for intra or extra binding of metals rendering 

them non-reactive is metal species and/or metal-class specific (87). The most specific 

resistance mechanism is intra-cellular redox reaction, resulting in the formation of less 

toxic metal redox states, a mechanism specific to a given metal species and redox state 

(87, 97). Specific metal resistance mechanisms are coded for by specific genes and may 

provide the host with co-tolerances to multiple metals, such as czcA1 and cadA2 that 

encode the Cd/Zn and Cd/Pb efflux transporter (56) or the copA and cusCFBA Cu efflux 

pumps and the cueO for Cu oxidation (97). While metal co-tolerances exist, such as the 

tolerance to Pb and Zn in Cu contaminated communities (73, 78) or Cd, Zn, and Co (97), 

Cd co-tolerance may only develop in mainly Cu contaminated environments via the more 

non-specific metal resistance strategies (e.g. exopolysaccharide production (96)). 

Therefore, specific Cd tolerance may not have been selected for in the tested 

communities, leaving both equally vulnerable to the experimental acute Cd stress.  
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Secondly, similar metal resistance potential could exist in both communities. Our 

reference community is not strictly metal naïve, having experienced a less intensive 

historic metal contamination regime, but still sufficient to drive the sediment MCI value 

to 0.71, whereas our contaminated site sediment MCI is 1.15. A previous investigation 

found basal metabolic inhibition to be correlated to sediment MCI above a threshold of 

0.7 (Chapter 1). The log scale MCI suggests a difference in contamination nearly a half 

order of magnitude between the two sites tested here. However, this range of 

environmental contamination may have selected for similar metal resistance capacities. 

Indeed, respiration inhibition was similar in two communities after five years of differing 

levels of soil Cu contamination (e.g., 10 and 82 µg g-1) in the range of acute Cu 

exposures of 40 – 500 µg Cu g-1 soil (70). Perhaps, similar metal resistance potential 

develops within a range of concentrations of prior metal exposure. For example, a 

pristine community may be the most vulnerable to an acute stress, with communities 

developed under mid and high range contaminant exposures exhibiting greater resistance 

than the pristine community but similar capacities to each other. One potential 

explanation for the similar response of the reference and contaminated communities 

employed here is that both communities originated in a contamination range that equally 

equips for metal resistance. This explanation would suggest that similar metal resistance 

potential is developed in the sediment MCI range of 0.71-1.15, and may provide insight 

into which specific metal resistance traits have evolved in this system. 

We found that both communities, from reference and contaminated streams, 

demonstrated a consistent response to increasing acute Cd stress until an ecological 

threshold was surpassed, where after strong metabolic inhibition was observed in both 
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communities, differing from the predictions of the pollution-induced community 

tolerance hypothesis. We postulated two explanations for the deviation of the observed 

response from the pollution-induced community tolerance model predictions, one relating 

to the genotypic structure of the communities and the other related to the level of 

community tolerance as a function of chronic metal contamination thresholds. These two 

explanations may be related by the level of community metal resistance being a function 

of which metal tolerance genes have been selected for. Perhaps, stronger selective 

pressure specialize the tolerant community to more specific metal resistance strategies. 

Our communities may have either developed specialized metal resistance genes not 

specific to the Cd that drove metabolic inhibition leaving both equally vulnerable to the 

applied stress or perhaps the level of chronic stress at each site encoded for general metal 

resistance and both are equally resistant.   
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LBF Control 0.71 0.04 ± 0.06 0.39 ± 0.0003 1.09 ± 0.3 2.0 ± 1.83 0.32 ± 0.07 2.1 ± 0.10 7.0 ± 2.2
LBF Treatment 0.71 0.94 ± 0.06 0.35 ± 0.04 1.09 ± 0.3 973 ± 1106 1.3 ± 0.81 1.2 ± 0.38 50 ± 5.7
KR Control 1.15 1.1 ± 0.28 0.88 ±0.01 2.5 ± 0.8 118 ± 152 9.7 ± 0.49 9.0 ± 0.25 32 ±  9.3
KR Treatment 1.15 1.9 ± 0.05 0.71 ± 0.01 2.5 ± 0.8 3556 ± 1080 18.3 ± 0.71 5.2 ± 0.02 505 ±  45

Zn (ppb)k12 (hr-1)
Cell Density (108 16s 

rRNA gene copies g-1)

Sediment 
MCI

Effluent        
MCI

Cd (ppb) Cu (ppb) As (ppb)

Table 2.1 Average Sediment and Effluent Metal Contamination Index Values, k12 

(hr
-1

), Sediment Associated Bacterial Densities, and Effluent Metal Concentrations 

(means ± std. err.) 
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Figure 2.1 A Conceptual Model of Pollution Induced Community Tolerance (A) and 

the Pattern Observed in our Experiments (B). The pollution-induced community 

tolerance hypothesis predicts communities that have developed stress resistance via 

prolonged exposure to a pollutant or toxic stressor will exhibit greater resilience to 

related acute stresses relative to communities developed in lesser magnitudes or the 

absence of the pollutant or stress. Contrary to this hypothesis, respiration of 

hyporheic microbial communities with different metal contamination histories in 

this data set shows a threshold response to increasing acute metal stress. 
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Figure 2.2 Average Cell Density-Normalized k12 of Reference and Contaminated 

Sites for Control and Cd-Treated Columns. * denotes significant differences 

between treatment and control columns (ANOVA, P < 0.05). 
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Figure 2.3 Effluent Metal Contamination Index vs. Cell Density-Normalized k12. 

Data points are individual responses measured for each experimental treatment. 
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Figure 2.4 Individual Effluent Metal Concentrations vs. Cell Density-Normalized 

k12.  A) Cadmium, B) Copper, C) Zinc, D) Arsenic   
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CONCLUSIONS 

This study documents our investigation of a lotic ecosystem exposed to more than 

100 years of anthropogenic metal contamination with the experimental Resazurin 

Resorufin Smart Tracer. The Clark Fork River, Montana, USA with its extensive mining 

history provided the environmental setting to examine the resilience of differently 

contaminated hyporheic microbial communities (i.e., to return to the level of function 

observed in their corresponding paired pristine reference sites) and the metabolic 

capability of the communities from metal contaminated environments to resist an 

additional acute metal exposure. Our results show than even with more than 100 years of 

adaption opportunity to this metal stress, hyporheic microbial communities continue to be 

inhibited and have not regained pre-contaminated metabolic function, suggesting this 

community has not become resilient to this chronic stress. Additionally, metabolic 

inhibition was observed in the presence of an acute metal stress in two communities with 

different historic metal contamination regimes. No increase in the ability to resist 

additional metal stressors was observed between the two communities. This latter 

observation was not expected and does not adhere to the predictions of the well-accepted, 

pollution-induced community tolerance hypothesis. We postulate two possible 

explanations. The first is that these two communities have not had the opportunity to 

develop resistance to the metal species applied (i.e. cadmium) and therefore we would 

not expect tolerance. Secondly, both communities may possess equal cadmium resistance 

because even though their metal contamination histories differ, both communities 
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experience some level of metal stress and other work suggests some limited cross-over 

between tolerance mechanisms selected under the metal stresses present in our field sites 

and cadmium. These explanations require further study into the genomic structure of the 

metal resistant communities and detailed study of metal contamination thresholds in 

relation to the degree of resistance this stress endows.  

The Resazurin Resorufin Smart Tracer showed promise as a functional indicator 

of ecosystem quality, detecting differences between contaminated sites and their paired 

reference sites and along the contaminated gradient. Reduced k12 was associated with 

greater anthropogenic stress ( i.e., increased chronic and acute metal exposures) as our 

hypotheses predicted. The Resazurin Resorufin Smart Tracer also displayed the 

capability to detect cause and effect relationships between a changing environment and 

microbial metabolism. In this primary documentation, the use of the Resazurin Resorufin 

Smart Tracer as a functional indicator of ecosystem integrity is supported in the 

laboratory. However, continuing to develop the relationships of k12 as a metric of 

ecological currency is of upmost importance.  Specifically, future work may want to 

focus on relating this reaction rate coefficient to carbon and nutrient spiraling. Also, this 

system should be tested with other anthropogenic contaminants (e.g., phosphate and 

nitrogen, thermal pollution, organic pollutants, etc). Efforts should be directed to in situ 

application of this tracer in this capacity.  
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APPENDIX A 

Resazurin Resorufin Smart Tracer Advection Dispersion Equation: Markov Chain 

Monte Carlo Data Assimilation  
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This appendix provides a description of the Resazurin Resorufin Smart Tracer 

advection dispersion equation Markov chain Monte Carlo (RRADE-MCMC) 

optimization algorithm with figures and tables addressing the tuning parameters and 

corresponding influence on model performance (Table A1); model progression (Figure 

A1); model behavior through time and expected value convergence (Figure A2), and 

Resazurin Resorufin advection dispersion equation parameter and joint distributions 

(Figure A3). Also included is the correlation matrix of all measured variables (Table A2).  

Description of RRADE-MCMC  

RRADE-MCMC Initial Conditions, Variable Parameterization, and Heuristic Rules  

Constants must be explicitly defined for input into the RRADE forward model. 

The initial concentration of Raz (µmol/L), initial Rru contamination of Raz solution 

(µmol/L), and time (hr) must all be individually input into the model for each column as 

well as the RRADE model parameters: �Raz is the concentration of Raz [µmol L-1]; �Rru is 

the concentration of Rru [µmol L-1]; � is time [hr]; � is distance [cm]; 	L is longitudinal 

dispersivity [cm]; v [cm hr-2] is the average pore water velocity; 
 [-] is retardation 

coefficient due to sorption; k12 [hr-1] is the reaction rate coefficient of Raz to Rru; �1 [hr-1] 

is the reaction rate coefficient of Raz decay; �2 [hr-1] is the reaction rate coefficient of 

Rru decay; MRaz [g mol-1] is the molecular weight of Raz; �Rru [g mol-1] is the molecular 

weight of Rru (1). Other input variables, length of column (30 cm) and the molecular 

weight of Raz (251.2 g/mol) and Rru (235.2 g/mol) are universal constants in these 

experiments and defined within the forward model. The following variables require an 

imposed restriction on parameter values to be physically representative of their process; 
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R ≥ 1, αL ≥ 0, and the rate coefficients k1, k2, and k12 must all be Ʃ 0. One heuristic rule, 

defining the Raz decay rate coefficient, k1, as less than the Rru decay rate coefficient, k2 

is also imposed and supported by laboratory data, preliminary modeling and previously 

published values (1).     

Execution of the RRADE-MCMC 

This data assimilation method consists of a sensitivity analysis and a Markov 

chain Monte Carlo (MCMC).  MCMC conditions uncertain model states and parameters 

on imperfect observations. MCMC constrains potential parameter values by 

stochastically sampling and accepting values in a two-stage design. The first stage, 

referred to as the “burn-in,” is designed to identify informed prior parameter distributions 

by conditioning model simulations on the observations using relatively permissive 

criteria for acceptance of parameter sets. The informed prior distributions derived from 

the burn-in phase constitute the distributions from which parameters are subsequently 

sampled and conditioned on observations with more restrictive acceptance criteria to 

obtain the posterior distribution (PD). We refer to this as the optimization phase. Building 

from the burn-in, informed prior sampling refines parameter estimation with increasing 

confidence. Statistical moments of the PD contain the expected value and associated 

uncertainty. The prior distribution is loosely defined and contains all possible realizations 

of the parameter values. The PD is a refined estimation of the parameter value with 

confidence intervals. The informed prior (i.e., post burn-in) and PDs are assumed to have 

a Gaussian distribution. In this way, RRADE-MCMC parameter estimation grows more 

exact as the model progresses from the initial sensitivity analysis to the posterior 

distribution (Figure A1).  
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Sensitivity Analysis  

The RRADE-MCMC requires an initial estimation of each RRADE parameter 

constrained by the prior distribution for PD sampling. Because initial estimations of 

parameter values are unknown, a sensitivity analysis (SA) was employed to constrain the 

unknown state space for each parameter requiring optimization (v, αL, R, k1, k2, k12). The 

SA was run for 3,000,000 iterations to stochastically assign each parameter a value from 

a window constrained by an exaggerated range sufficiently sized to encompass all 

possible values, and runs the forward model generating Raz and Rru concentration 

profiles. Each iteration is independent and parameter values are selected using uniform 

random number (URN) generation. Parameter values from an iteration are accepted and 

stored if the mean absolute error (MAE) of the modeled simulation is less than a 

threshold error (determined as the plate reader variation of replicate reads of Raz and Rru 

for known concentrations of each compound (0.0323 µmol/L)). Stored values are then 

transformed into Gaussian prior distributions and input to the MCMC. The Gaussian 

distribution is defined by the mean and standard deviation of the 95% range of the 

accepted values. The 95% range was selected to exclude outlying values. This process is 

repeated for every column.  

 RRADE-MCMC: Metropolis-Hastings Decision 

To condition uncertain RRADE model states and parameters, the RRADE-

MCMC solves Bayes theorem (eq. S1). Bayes formula,  

"#$|&' �  (#)|*'(#*'
(#)'       (A1) 

computes a continuous distribution for unknown parameters (the PD), "#$|&', 

based on the likelihood of proposed parameter values, "#&|$', multiplied by a prior 
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distribution, "#$',  divided by the probability of realizing current parameter values, 

 "#&',, a normalization constant that is often omitted. Bayes theorem poses the inverse 

problem in stochastic space returning PDs that are interpreted as the probability that a 

parameter will assume a certain value given the forward model, observed (experimental) 

data, and the constrained state space (2, 3).  

Proposal solutions of the MCMC are accepted or declined according to the 

Metropolis Hastings (MH) acceptance-rejection decision based on goodness of fit ( mean 

absolute error (MAE)), and the physical appropriateness of the solution, determined by 

comparison to the prior distribution. The MH acceptance-rejection decision is based on 

the product of the probability density of the error associated with X(t+1), the proposal 

vector of parameters, and the likelihood of occurrence of X(t+1), normalized by the 

corresponding error density-parameter likelihood product of Xt, the currently accepted 

parameter solution in the Markov chain. This ratio is expressed as the probability ratio α 

where, 

	 � ƒ#-#t.1''/ 0#-#t.1''
ƒ#-t'/ 0#-t)'  .      (A2) 

This formulation includes information about the goodness of fit of the proposed 

and current solution vectors, as well as their likelihood of occurrence. The probability 

ratio is then compared to a URN distributed between 0-1, r, and the proposed parameters 

accepted if α > r as  

2t
 = 3X#t.1'     

if α > r

Xt          if α < r
5.        (A3) 

If X(t+1) is a more probable solution than Xt, α > 1 and is automatically accepted. 

If α > r, the proposal is accepted. Accepted solutions transition the chain and become the 

current step. If α < r the proposal is discarded and the chain is stationary with Xt 
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remaining the current step. One of the strengths of the MH criteria is that a proposed 

solution vector associated with a lower estimation error may not be accepted if the 

parameters are highly unlikely based on the informed priors.   

The following formulas are used to compute α. The likelihood, "#&|$', of a given 

vector of model values satisfying the measured observations is determined according to 

6#X#t.1'' � exp9:
; / ∑ #ф9ф#-#t.1'''>

?x2       (A4) 

and 

6#Xt
) � exp9:

; / ∑ #ф9ф#-t
))

2

σx
2     (A5) 

where ф is the vector of observed Raz and Rru concentrations, ф(X(t+1)) is the 

vector of concentrations of the proposed solution, ф(Xt) is the vector of concentrations of 

the current step in the Markov chain, and σx is observation error.  

Prior distribution evaluation of X(t+1) , π(X(t+1)) and π(Xt), determines if the 

proposal vector is within the state space and is calculated as 

π#X(t+1)
) � exp9:

; / ∑ #-(t+1)9@))
2

σ
2     (A6) 

and 

π#Xt
) � exp9:

; / ∑ #-t9@))
2

σ
2  .     (A7) 

In this equation, X(t+1) is the proposed vector of parameters, Xt is the accepted 

vector of parameters in the current step of the Markov chain, Ʃ is the vector of median 

values from the SA and σ is a vector of standard deviation values from the SA.  

Both σ and σx are MH decision acceptance-rejection criteria. Larger values are 

less stringent and allow less probable simulations to be accepted, increasing the 

acceptance rate. Decreasing these values increases selectivity and decreases acceptance 
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rate. This is the primary difference between a burn-in period where larger values of σ and 

σx are allowed in order to determine an “informed prior” distribution from which 

parameters will subsequently be sampled to determine the parameter PDs.    

RRADE-MCMC: Tuning  

Multiple MCMC MH decision and acceptance criteria were tested to drive the 

algorithm to optimal performance. MCMC performance is based primarily on 

convergence, secondarily on acceptance rate and thirdly on computation time and 

resources. To increase performance, acceptance criteria (σ, σx) and MH decision criteria 

were manipulated (Table A1).  

Convergence: Convergence is judged upon the variance of the PD expected value 

and standard deviation across replicate RRADE-MCMC experiments being at least 2 

orders of magnitude less than the parameter value, MCMC-replicate parameters values 

being within the probable error for that parameter, and the variance of the MAE. Probable 

error is a statement of certainty around the central tendency that one half of the 

distribution lies within this range (4), therefore the true mean.   

Acceptance Rate: Algorithm efficiency is a measure of how completely the PD is 

sampled on a given timeframe, quantified by the acceptance rate (5).  Metropolis-

Hastings MCMC algorithms have been empirically found to be at least 80% efficient 

with an acceptance rate of 0.15-0.5 (6).  

Acceptance rate is increased with accurate and adequately constrained prior 

distributions that guide the algorithm in selecting a prudent starting point and sampling 

space, random walk step size, and the shape of the Gaussian distribution contained within 

the MH decision (equations A4-A7). Because of the assumption of Gaussianity, the 
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algorithm efficiency of the RRADE-MCMC experiments are predominantly controlled 

by the variance of the parameter sampling distribution during the burn-in and 

optimization phases of the experiment; σprior and σburn-in, respectively, as well as the 

corresponding variance of the observation error distribution during the burn-in and 

optimization phases; σx prior and σx burn-in, respectively.  

Random walk step size during the MCMC experiment is proportional to σprior and 

σburn-in, which are calibrated from the SA and burn-in respectively. “Good” σprior and σburn-

in values compromise between being too large, which has the effect of stepping the 

proposed parameter vector to low probability regions of the sample space and reducing 

the acceptance rate, or too small, which discouraging complete exploration of the 

sampling space and potentially making convergence sensitive to local minima (6). In this 

study, step size was decreased after the SA and burn-in phases to increase acceptance 

rate. Small step size increase acceptance frequency because the probability ratio, α, will 

be near 1 due to the similarity in the likelihood of the current and proposed solutions. 

Tuning step size in this manner must be done judiciously as to not over constrain 

movement through sampling space.   

Transitions in the chain and the magnitude of step size are shown in Figure A2b. 

Stationary behavior (no movement along y axis) between transitions (change in y axis 

value) is due to maintenance of the current step in the chain through numerous iterations 

because of rejection of less probable solutions. The longer a stationary period, the more 

weight these highly probable parameter values impose upon the shape of the PDs, 

justifying the distribution’s mode as the expected parameter value. Transition step size is 

the magnitude of change in parameter value between successive iterations. The 
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magnitude of transitions in the demonstration plot range from 9.9957E-5 to 0.2870, 

oscillating around the mode value of 0.7571. This range and variability of step size 

avoids local minima and explores the entire state space, ultimately converging to the most 

probable solution.  

RRADE-MCMC: Burn-in 

The first 5% of the total iterations were discarded as the burn-in (50,000 burn-in 

iterations, 1,000,000 optimization iterations). At this point, the initial starting point 

asserts negligible influence on populating the PD and this transient stage has shifted 

posterior sampling to a more favorable sampling position.  

For each column, the burn-in period begins by initializing a vector of median 

parameter values, Ʃ, and standard deviations, σprior, from the ignorant prior distribution 

generated through the SA and corresponding to [v, αL, R, k1, k2, k12]. RRADE-MCMC 

initiates at a randomly selected starting point from the prior distribution for each 

parameter, creating the Xt vector. A random walk from Xt generates X(t+1) and the 

acceptance ratio, α, is calculated. Burn-in is designed for greater leniency in the 

acceptance criteria allowing for higher acceptance frequency. Accepted simulations are 

stored and passed as the informed prior distribution for the optimization phase.  

RRADE-MCMC: Posterior Distribution Sampling 

PD sampling initiates by resetting the sampling state space, newly defined by the 

accepted simulations of the burn-in (i.e., the informed priors) and imposing a stricter 

acceptance criteria. PD sampling also elaborates on the MH decision with three 

additional procedures; a Metropolis jump dynamic, a single parameter optimization, and 
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the building of a global PD. Together, updating the sampling state space, resetting the 

MH decision to more selective criteria, and imposing additional acceptance protocols 

ensures convergence to the most probable inverse solution with a highly refined estimate 

of the PD.  

The jump diffusion uses a Metropolis jump dynamic to avoid local minima in the 

algorithm. At a frequency of 0.5%, preceding the MH decision, the jump component 

creates a transition in the Markov chain accepting the X(t+1) solution without regard to α. 

This transition is a random walk from Xt and is designed to unconditionally accept a less 

probable solution. This forces the algorithm to re-build to the globally most probable 

solution from an improbable state in the chain. During the 99.5% of time when the jump 

diffusion is not activated, the MH decision is engaged as normal.   

Iterations not subjected to the Metropolis jump dynamic and accepted by the MH 

decision (α > r) are then routed to a single parameter optimization intending to maintain 

highly accurate parameter values. At this point, there is the current step in the chain from 

the previous iteration, X(t), and the current accepted proposal vector, X(t+1), that will 

become the current step in the chain. The MAE of X(t+1) is calculated and is the baseline 

for subsequent comparison. The algorithm generates a vector populated by a random 

combination of the Xt and X(t-1) vectors with lowest error, maintaining the parameter 

sequence (i.e. v is position 1, αL is position 2, R is position 3, k1 is position 4, k2 is 

position 5, k12 is position 6). This vector is then applied to the forward model and the 

MAE calculated. If MAE of the combined vector is reduced from the previous, this 

vector is stored and the associated MAE becomes the baseline for subsequent 

comparison, if the MAE is greater than the previous, the vector is discarded. A new 
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vector is generated from X(t) and X(t-1) and the process recurs for 10 iterations. The vector 

minimizing the MAE then becomes the current step in the chain. This re-combination of 

high scoring simulations attempts to optimize individual parameters that may be bulkily 

discarded with the previous X(t).   

In addition to a more rigorous MH decision, the global PD for each column of one 

RRADE-MCMC experiment is developed through concatenation of five local 1,000,000 

iteration PDs from independent model runs, deemed local runs. Each local run is a 

complete cycle of the MCMC (burn-in and PD sampling). The global PD is then 

populated with the 5,000,000 accepted parameter vectors in the concatenated Markov 

chains. The RRADE solution is derived from the mode and standard deviation of the 

global PD. RRADE-MCMC temporal behavior is shown in Figure A2. The algorithm 

successfully navigates the state space with successive iterations fluctuating around the 

mode value. Mode value variability of a local run exemplifies the need for concatenation 

of local runs into a global simulation (Figure A2a).  

Prior, Posterior and Joint Distribution 

The RRADE-MCMC algorithm generates a PD containing the expected value of 

the parameter (mode) and a standard deviation. PDs for all six RRADE parameters are 

unimodal and treated as normal distributions (Figure A3a). The PD for velocity most 

closely matches its prior, indicating agreement between initial estimation and model 

output, whereas the remaining parameters show a marked migration from the prior. This 

was expected given the paucity of prior knowledge of these unknown parameters, 

whereas velocity was estimated prior to RRADE-MCMC using a Cl- tracer and by setting 

σ to 0.20, three orders of magnitude less than the actual value. This restricts the random 
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walk to converge to values near the estimated velocity and imposes stringent acceptance 

criterion. In contrast, for the remaining five parameters we were not able to apply an 

accurate estimation using ancillary information and thus the σ is on the same, or within 

an, order of magnitude of the parameter value explaining the marked migration towards 

more probable state space from the prior distribution during model execution. The PDs of 

k1 and k2 reflect the heuristic rule k1 < k2.   

The joint distribution, shown as the RRST BTC bracketed by confidence intervals 

representing the min max values, the 95% range, and the interquartile range (IQR) 

provides uncertainty estimation (Figure A3b). The expected value of each parameter 

value distribution populates the forward model to derive the average BTC. Statistical 

quantiles are developed using Monte Carlo randomly sampling the PD for each parameter 

and running the forward model. This is repeated 2500 times resulting in an ensemble of 

concentrations for a given interpolated time point. The demonstration plot depicts results 

for a 2500 member ensemble for 84 interpolated time points. For each of these time 

points, the concentration distribution is described by the confidence intervals surrounding 

the mean BTC. The high reproducibility accompanied with narrow IQR assures 

confidence in the optimized parameter values.  
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Tune 

#
Acceptance Criteria MH Decision Criteria Selected Column Parameter Modal Variation

Average 

Acceptance Rate

σ Burn-in σ posterior σx burn-in

σx 

posterior

c auto 

accept

N parameter 

optim

S sims 

concatenated

v R αL k1 k2 k12 MAE burn in posterior

1 σ prior
0.75*σ 

burn
0.1 0.03 - - - 9.61E-01 8.07E-03 1.11E-01 1.43E-03 1.32E-03 3.81E-03 - 0.1086 0.0591

2 2*σ prior
0.75*σ 

burn
0.1 0.03 - - - 9.44E-03 1.84E-03 1.02E-02 2.59E-05 1.34E-05 1.63E-04 7.59E-06 0.1854 0.0274

3 2*σ prior
0.5*σ 

burn
0.1 0.03 - - - 1.78E-03 1.38E-03 1.01E-02 1.30E-05 3.44E-05 1.30E-04 6.12E-06 0.1858 0.0617

4 2*σ prior
0.5*σ 

burn
0.1 0.04 - - - 2.84E-03 5.33E-04 1.41E-02 1.57E-05 3.59E-05 5.95E-05 5.10E-06 0.1852 0.1007

5 2*σ prior
0.5*σ 

burn
0.11 0.035 - - - 4.11E-03 2.97E-03 4.86E-03 4.83E-05 1.16E-04 9.62E-05 2.18E-06 0.2097 0.0776

6 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 - - 9.49E-03 1.63E-03 2.74E-02 3.27E-04 3.01E-04 5.44E-04 6.75E-05 0.2102 0.097

7 2*σ prior
0.5*σ 

burn
0.11 0.04 0.995 - - 5.69E-03 1.05E-03 1.14E-02 1.54E-05 4.01E-05 9.62E-05 3.34E-06 0.2104 0.1104

8 2*σ prior
0.5*σ 

burn
0.11 0.035 0.99 - - 1.22E-03 1.14E-03 1.57E-02 2.88E-05 1.61E-05 2.84E-04 8.10E-06 0.2112 0.1126

9 2*σ prior
0.5*σ 

burn
0.11 0.035 0.99 10 - 6.88E-03 4.95E-04 4.86E-03 1.08E-04 4.56E-04 1.08E-04 5.00E-06 0.2212 0.1126

10 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 10 - 6.85E-03 3.31E-04 4.65E-03 3.94E-05 3.55E-05 9.57E-05 1.37E-06 0.2096 0.0965

11 2*σ prior
1.0*σ 

burn
0.11 0.035 0.995 10 - 8.25E-02 5.18E-03 2.41E-01 2.72E-04 1.81E-04 4.95E-04 9.53E-05 0.2108 0.0295

12 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 15 - 3.47E-03 8.09E-04 1.97E-03 8.22E-06 1.70E-05 4.06E-05 1.98E-06 0.2104 0.0693

13 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 10 4 1.11E-03 1.87E-04 1.44E-03 8.77E-06 9.61E-06 2.90E-05 3.90E-07 0.2102 0.097

14 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 20 4 7.79E-04 2.29E-04 7.96E-04 2.60E-05 4.37E-05 4.84E-05 2.47E-07 0.2102 0.097

15 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 10 5 1.15E-03 2.71E-04 5.95E-03 2.61E-05 1.11E-05 7.88E-06 7.22E-07 0.2109 0.0685

16 2*σ prior
0.5*σ 

burn
0.11 0.035 0.995 10 6 3.16E-03 9.17E-04 7.46E-03 1.11E-05 8.64E-06 1.27E-04 4.18E-06 0.2114 0.0689

Table A.1 Tuning Parameters of the RRADE MCMC. Table shows successive 

tuning parameters attempted and increase model performance. Model performance 

is judged based upon minimization of variation of RRADE parameters, acceptance 

frequency, and computational resources. Parameter values associated with tune 

number 15 were selected for optimal performance. 
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Figure A.1 Progression of RRADE-MCMC from Sensitivity Analysis to Ensemble 

Statistical Distribution, Parameter Values vs. Frequency. Subsequent stages of the 

RRADE-MCMC are shown in progressively darker shades. The x-axis shows initial 

sensitivity analysis (SA) window estimation of parameter value range. 
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Figure A.2 RRADE-MCMC Model Behavior through Time with Mode Value, 

k12 vs. Iteration. A) One complete model simulation showing mode variation 

during a local 1,000,000 iteration run, contrasted by the consistent global mode, 

with accepted simulations fluctuating around this central tendency. B) Panel A 

in a highly resolved view showing stationary behavior between transitions in the 

chain with variable step size. 
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Figure A.3 RRADE Parameter Distributions and Joint Distribution. A) The 

constrained prior distribution and the posterior distribution of the six RRADE 

parameters, parameter value versus frequency with x axis showing initial window 

constrains of the SA, a is velocity (cm/hr), b is R (-), c is dispersivity (cm), d is k2 (hr
-
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), e is k1 (hr

-1
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). B) Joint distribution of the RRADE BTC showing 

observed data points and modeled BTC bracketed with confidence intervals. 
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APPENDIX B 

Correlation Matrix of RRADE Parameters, Model Variables and Environmental 

Characteristics 
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R alpha k1 k2 k12 norm k12 Raz Lost Rru Gained Raz Lost:Rru Gained Bacterial Density Model Error (MAE) Mass Recovery
R 1.00 0.01 0.13 0.97 0.01 0.00 0.00 0.47 0.01 0.00 0.00 0.00

alpha 1.00 0.08 0.06 0.54 0.01 0.24 0.02 0.00 0.01 0.39 0.00
k1 1.00 0.00 0.49 0.00 0.02 0.05 0.00 0.00 0.10 0.00
k2 1.00 0.33 0.02 0.68 0.00 0.00 0.08 0.89 0.01

k12 1.00 0.54 0.00 0.00 0.98 0.01 0.12 0.06
norm k12 1.00 0.00 0.09 0.00 0.00 0.01 0.00
Raz Lost 1.00 0.06 0.02 0.00 0.01 0.00

Rru Gained 1.00 0.00 0.99 0.78 0.27
Raz Lost:Rru Gained 1.00 0.00 0.02 0.00

Bacterial Density 1.00 0.01 0.00
Model Error (MAE) 1.00 0.00

Mass Recovery 1.00

Elevation OC eMCI plateau EC Change in EC sMCI Mg_Eff (ppb) Al_Eff (ppb) P_Eff (ppb) K_Eff (ppb) Ca_Eff (ppb) Cr_Eff(ppb)
R 0.45 0.77 0.71 0.81 0.03 0.10 0.00 0.14 0.01 0.01 0.00 0.42

alpha 0.03 0.78 0.00 0.08 0.49 0.10 0.06 0.22 0.40 0.01 0.00 0.00
k1 0.00 0.10 0.52 0.58 0.15 0.38 0.62 0.10 0.25 0.29 0.30 0.93
k2 0.00 0.23 0.10 0.19 0.01 0.02 0.19 0.15 0.03 0.75 0.96 0.50

k12 0.06 0.30 0.16 0.58 0.00 0.01 0.02 0.56 0.00 0.08 0.00 0.34
norm k12 0.00 0.10 0.49 0.48 0.36 0.48 0.60 0.51 0.62 0.02 0.04 0.55
Raz Lost 0.85 0.09 0.49 0.93 0.06 0.10 0.03 0.45 0.04 0.01 0.00 0.73

Rru Gained 0.00 0.82 0.16 0.70 0.00 0.03 0.09 0.89 0.01 0.67 0.27 0.14
Raz Lost:Rru Gained 0.00 0.17 0.32 0.61 0.21 0.40 0.78 0.63 0.58 0.10 0.07 0.20

Bacterial Density 0.02 0.41 0.72 0.55 0.49 0.70 0.02 0.97 0.30 0.02 0.00 0.60
Model Error (MAE) 0.88 0.22 0.00 0.00 0.10 0.00 0.18 0.25 0.04 0.03 0.01 0.73

Mass Recovery 0.01 0.07 0.64 0.63 0.92 0.98 0.26 0.47 0.63 0.01 0.00 0.51

Table B.1 Correlation Matrix of RRADE Parameters, Modeling Variables and Environmental Characteristics. Significant 

correlations are shown in grey. Table continued on page 89.  
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Mn_Eff (ppb) Fe_Eff (ppb) Ni_Eff (ppb) Cu_Eff (ppb) Zn_Eff (ppb) As_Eff (ppb) Sr_Eff (ppb) Cd_Eff (ppb) Ba_Eff (ppb) Pb_Eff (ppb) Na_Sed (ug/g) Mg_Sed (ug/g)
R 0.01 0.01 0.64 0.04 0.17 0.49 0.00 0.000 0.649 0.088 0.115 0.087

alpha 0.00 0.90 0.04 0.86 0.20 0.00 0.00 0.018 0.066 0.148 0.000 0.068
k1 0.24 0.06 0.72 0.09 0.78 0.67 0.02 0.055 0.000 0.164 0.000 0.547
k2 0.52 0.01 0.71 0.52 0.72 0.09 0.18 0.212 0.000 0.799 0.000 0.670
k12 0.05 0.27 0.72 0.36 0.04 0.05 0.01 0.259 0.386 0.022 0.158 0.650

norm k12 0.44 0.79 0.75 0.04 0.83 0.47 0.00 0.002 0.010 0.181 0.000 0.768
Raz Lost 0.02 0.52 0.88 0.07 0.10 0.27 0.00 0.013 0.522 0.012 0.527 0.798

Rru Gained 0.54 0.10 0.90 0.47 0.06 0.07 0.89 0.639 0.007 0.331 0.000 0.517
Raz Lost:Rru Gained 0.13 0.31 0.65 0.04 0.63 0.35 0.00 0.009 0.001 0.423 0.000 0.928

Bacterial Density 0.04 0.35 0.53 0.04 0.32 0.97 0.00 0.000 0.221 0.068 0.007 0.233
Model Error (MAE) 0.55 0.16 0.63 0.00 0.56 0.00 0.03 0.064 0.700 0.003 0.339 0.192

Mass Recovery 0.03 0.68 0.78 0.03 0.63 0.81 0.00 0.001 0.009 0.079 0.000 0.980

Al_Sed (ug/g) Si_Sed (ug/g) P_Sed (ug/g) K_Sed (ug/g) Ca_Sed (ug/g) Cr_Sed (ug/g) Mn_Sed (ug/g) Fe_Sed (ug/g) Ni_Sed (ug/g) Cu_Sed (ug/g) Zn_Sed (ug/g) As_Sed (ug/g)
R 0.000 0.000 0.004 0.577 0.278 0.009 0.653 0.000 0.071 0.015 0.004 0.249

alpha 0.000 0.340 0.001 0.042 0.041 0.012 0.005 0.007 0.009 0.592 0.253 0.997
k1 0.015 0.049 0.027 0.021 0.771 0.192 0.156 0.115 0.768 0.675 0.956 0.254
k2 0.025 0.772 0.022 0.049 0.985 0.157 0.011 0.218 0.454 0.214 0.081 0.096
k12 0.941 0.002 0.605 0.102 0.437 0.358 0.212 0.824 0.428 0.048 0.002 0.122

norm k12 0.003 0.004 0.001 0.510 0.723 0.029 0.361 0.012 0.592 0.403 0.422 0.029
Raz Lost 0.121 0.000 0.313 0.032 0.586 0.792 0.692 0.170 0.769 0.170 0.005 0.627

Rru Gained 0.075 0.507 0.043 0.851 0.364 0.048 0.095 0.245 0.263 0.218 0.034 0.159
Raz Lost:Rru Gained 0.000 0.016 0.001 0.033 0.959 0.022 0.128 0.011 0.272 0.946 0.970 0.420

Bacterial Density 0.000 0.000 0.000 0.315 0.319 0.009 0.552 0.000 0.144 0.366 0.059 0.659
Model Error (MAE) 0.145 0.000 0.469 0.700 0.014 0.203 0.002 0.076 0.681 0.010 0.000 0.102

Mass Recovery 0.001 0.000 0.007 0.017 0.877 0.093 0.363 0.016 0.583 0.664 0.236 0.541

Se_Sed (ug/g) Se_Sed (ug/g) Sr_Sed (ug/g) Cd_Sed (ug/g) In_Sed (ug/g) Ba_Sed (ug/g) Pb_Sed (ug/g) Bi_Sed (ug/g) U_Sed (ug/g) Raz Uncertainty Est Rru Uncertainty Est
R 0.000 0.001 0.594 0.012 0.027 0.666 0.057 0.453 0.822 0.609 0.000

alpha 0.000 0.000 0.000 0.235 0.333 0.033 0.046 0.248 0.003 0.003 0.000
k1 0.001 0.000 0.002 0.740 0.408 0.752 0.111 0.133 0.169 0.039 0.001
k2 0.004 0.001 0.000 0.056 0.059 0.332 0.000 0.103 0.068 0.001 0.020
k12 0.559 0.633 0.033 0.004 0.192 0.029 0.000 0.373 0.594 0.003 0.067

norm k12 0.000 0.000 0.040 0.801 0.975 0.579 0.367 0.601 0.872 0.048 0.000
Raz Lost 0.012 0.012 0.720 0.021 0.359 0.052 0.026 0.231 0.431 0.351 0.000

Rru Gained 0.105 0.071 0.000 0.041 0.257 0.138 0.000 0.894 0.630 0.000 0.395
Raz Lost:Rru Gained 0.000 0.000 0.000 0.839 0.670 0.891 0.080 0.326 0.143 0.003 0.000

Bacterial Density 0.000 0.000 0.170 0.169 0.345 0.734 0.509 0.788 0.619 0.669 0.000
Model Error (MAE) 0.168 0.294 0.882 0.000 0.000 0.001 0.020 0.075 0.128 0.222 0.045

Mass Recovery 0.000 0.000 0.022 0.432 0.968 0.424 0.772 0.202 0.213 0.117 0.000
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APPENDIX C 

RRADE – MCMC Code in MATLAB
®
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Resazurin Resorufin Advection Dispersion Equation Forward Model 

%This is the Resazurin Resorufin Advection Dispersion Forward Model.  

%1. User must explicitly define the following variables. The length of column (30 cm) 

here must also be explicitly defined. 

%   Craz0 (umol/L) initial concentration of raz  

%   t (hr) 

%   Frru (dimonsionless) fraction of rru contam in raz 

%   var(1) = v (cm/hr) 

%   var(2) = R (dimonsionless) 

%   var(3) = alpha (cm) sorbing dispersivity 

%   var(4) = k1 (hr^-1) rate coeffiecient of raz decay 

%   var(5) = k2 (hr^-1) rate coefficient of rru decay 

%   var(6) = k12 (hr^-1) rate coefficient of biological raz reduction  

function [t,Craz,Crru] = RRADE_MCMC(var,Frru,Craz0,t) 

% var is vector of all six variables that need to be optimized 

Mrru = 235.2; %this is the molecular weight of resorufin (g/mol) 

Mraz = 251.17; %this is the molecular weight of resazurin (g/mol) 

x = 30; %length of column (cm) 

%2. Equation building 

%2a. These equations are inputs into the model 
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k1tot = var(4)+var(6);  % (hr^-1) 

beta1_v1 = sqrt(1./(4.*var(3).*var(3))+k1tot./(var(1).*var(3)./var(2))); 

beta2_v1 = sqrt(1./(4.*var(3).*var(3))+var(5)./(var(1).*var(3)./var(2))); 

y12 = (var(6)./k1tot)*(Mrru./Mraz); 

%Raz Model 

D=(1-Frru).*Craz0./2*exp(x./(2*var(3))); 

E=(x-

sqrt(var(1)*var(1)/var(2)/var(2)+4*k1tot*var(1)/var(2)*var(3)).*t)./((2*sqrt(var(1)./var(2

)*var(3)).*t));   

f = length(E); 

if(-10<f<0) 

F=exp(-beta1_v1*x)*(1+erf(abs(E))); 

elseif(f>=0); 

F=exp(-beta1_v1*x)*erfc(E); 

else(f<=-10); 

F=exp(-beta1_v1*x)*(1+erf(10)); 

end 

G = 

exp(beta1_v1*x)*erfc((x+sqrt(var(1)*var(1)./var(2)./var(2)+4.*k1tot*var(1)/var(2)*var(3

)).*t)./(2*sqrt(var(1)/var(2)*var(3).*t)));  
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Craz=D*(F+G); 

%Rru Model 

J = Craz0*(((1-Frru)*y12*k1tot)/(k1tot-

var(5))+Frru)/2*exp(var(1)/var(2)*x/(2*var(1)/var(2)*var(3))); 

K = (x-

sqrt(var(1)/var(2)/var(2)+4*var(5)*var(1)/var(2)*var(3)).*t)./(2*sqrt(var(1)*var(2)*var(3

).*t)); 

l = length(K); 

if(-10<l<0) 

        L=exp(-beta2_v1*x)*(1+erf(abs(E))); 

    elseif(l>=0); 

       L=exp(-beta2_v1*x)*erfc(E); 

else(l<=-10); 

        L=exp(-beta2_v1*x)*(1+erf(10)); 

end 

m = length(K); 

if(m<-20) 

    0; 

else 
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    M = 

exp(beta2_v1*x).*erfc((x+sqrt(var(1)*var(1)/var(2)/var(2)+4*var(5)*var(1)./var(2)*var(3

)).*t)./(2*sqrt(var(1)/var(2)*var(3).*t))); 

end 

N = J.*(L+M); 

Crru = N-((Craz.*y12*k1tot)/(k1tot-var(5))); 

Crru = Crru'; 

Craz = Craz'; 

End 

Sensitivity Analysis Code 

%This wrapper combines all columns from all experiments and is intended to run without 

interruption.  The range used here for parameter estimation operate on ignorant prior 

knowledge of the distribution and are the same for each column- ignorance of prior 

distribution is an assumption of MCMC and setting the ranges the same for each column 

asserts objectivity for each simulation, except for velocity, which uses CXTFIT 

estimation.   As these are large windows, the simulation will need be run a million or 

more times per columns. 

%The 6 columns of the resulting ascii file correspond to R, alpha, k1, k2, k12  

%The windows for each parameter are as follows with justification for 

%selection of the range: 

%   V: Column Dependant- values from CXTFIT 
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%   D: 0.1-10 cm, The LB of this rangerepresents if the solute mass was a wall moving 

through the column and 

    %   arriving at the measurement point instanteously, the UB would be if 

    %   only dispersion were responsible for the solute transfer in the column 

%   R: 1-10, The LB represents if no retardation occurred, which mass 

    %   recovered in each column rejects this possbility.  This value cannot go 

    %   below 1 as this would indicate mass accumulation (see equation for 

    %   proof).  The UB was selected arbitrarily and may need modification 

    %   depending upon the simulation results  

%   K values: .01-5 hr^-1, first guess as to encompassing range.  This may need 

    %   modification depending upon the posterior distribution 

    % Daniel Stanaway 11.20.2010 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

%This wrapper uses the RADD function to model the Bitterroot, Column 1 data 

%set path to interpolated data 

path(path,'E:\Thesis\LAB\RRADE-MATLAB\Interpolated Data') 

% Read in observed and interpolated profile and timestep 

load('BR1_Raz'); Craz_obs = single(BR1_Raz'); 

load('BR1_Rru'); Crru_obs = single(BR1_Rru'); 

load('BR1_xi');  

%These are the variables that need explicit defintion 
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Craz0 = 1.103;  %(umol/L) initial concentration of raz+rru - noted as total concentration 

because Frru is in function so rru contamination will be accounted for 

%RC = 0.011; %(umol/L) initial rru concentration, rru contamination of raz 

Frru = 0.01; % percent rru contamination (Craz0/RC) 

% create variable for number of MC runs 

N = 3000000; 

% Variables describing observational error 

std_pr = .0323; %the Synergy Mx documentation says sensitivity is 6-12 ppb,  

%the St Dev from the standards of all experiments averaged for all concentrations is 

approximately .014 umol/L for both Raz and Rru (see STD_Standards.xlsx)  

%this is less than that published by Biotek.  This value may need to be 

%modfified depending on results.  A value of 0.049 value here represents the 

%average umol/L concentration of the upper end sensitivity (12 ppb).  The 

%value shown here is from experimental data see file (SynergyMXerror.xlsx), 

%using the value found for rru, that is the higher of the two. When the raz 

%and rru stdev values are averaged, 100000 runs returned only 12 accepted runs.  The rru 

value returned 37 for the same number of runs. 

% Declare MCMC vector for acceptance and for iterative variables 

Accept = single(zeros(N,1)); 

R = single(zeros(N,1)); 

alpha = single(zeros(N,1)); 

k1 = single(zeros(N,1)); 

k2 = single(zeros(N,1)); 
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k12 = single(zeros(N,1)); 

%This for loop will iterate to find the best combination of the variables 

%within 

parfor i=1:N 

    t = BR1_xi; %(hr) time vector 

    %parameter estimation 

    v(i) = single(18.6-16.6)*rand(1)+16.6; 

    %v(i) = single((25.10-12.60)*rand(1)+12.6); %the CXTFIT estimated velocity is 17.6 

cm/hr, this represents a +/- half cm/hr 

    R(i) = single((5.000-1.000)*rand(1)+1.000); %I am unsure of the range of the R value, 

so I selected a large range to start 

    alpha(i) = single((4.000-0.1)*rand(1)+0.1); %CXTFIT estimation of dispersivity of Cl 

is 10.6 cm, Haggerty and others predict 

    %dispersivity of sorptive solutes to increase.  Upper bound may need to be amended 

    k1(i) = single((1.000-0.0100)*rand(1)+0.0100); %raz decay, unsure of this value as 

well, Haggerty notes 0.141, but trying a larger range here to start 

    k2(i) = single((1.000-0.0100)*rand(1)+0.0100); %rru decay, Haggerty notes 0.514 but 

trying a large range 

    k12(i)= single((3.000-0.100)*rand(1)+0.1000); %raz reduction to rru, Haggerty notes 

1.41, not sure of range 

    %call RRADE function 

    [t,Craz(:,i),Crru(:,i)] = RRADE(v(i),R(i),alpha(i),k1(i),k2(i),k12(i),Frru,Craz0,t); 

    %distance of each point from the modeled and true data for Raz and Rru 
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    dist_raz = Craz(:,i) - Craz_obs;  

    dist_rru = Crru(:,i) - Crru_obs;  

    %absolute average distance between modeled run and true data- this can 

    %become more stringent if the max distance is used  

    zraz = mean(abs(dist_raz)); 

    zrru = mean(abs(dist_rru)); 

    praz = 1 - normcdf(zraz,0,std_pr); % probability that profile i was drawn from a 

gaussian 

    % distribution with 0 mean standard deviation std_pr 

    prru = 1- normcdf(zrru,0,std_pr); %probability that profile i was drawn from a 

gaussian 

    % distribution with 0 mean standard deviation std_pr 

    %automatic acceptance rule - if zraz/zrru has a higher value than the 

    %probability of the variance of the plate reader accept this run 

    %(praz>praz_accept) 

    %coin flip acceptance fills the tails of the pdf - if a random number 

    %(0-1)< praz accept this run.  This has a lower probability of 

    %acceptance 

    %Acceptance conditions must be met for both raz and rru breakthrough 

    %curves 

    praz_accpt = 1 - normcdf(std_pr,0,std_pr); 

    prru_accpt = 1 - normcdf(std_pr,0,std_pr); 

    %random number generation 
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    razrand = rand;   

    rrurand = rand;  

    if((praz>praz_accpt)&&(prru>prru_accpt)) 

       Accept(i) = 1;   %store all accepted runs in this vector (1 accept 0 discard)       

    end 

end 

%store all variables of the accepted runs - these will populate each %the pdf 

R_accpt = single(R(Accept==1)); 

alpha_accpt = single(alpha(Accept==1)); 

k1_accpt = single(k1(Accept==1)); 

k2_accpt = single(k2(Accept==1)); 

k12_accpt = single(k12(Accept==1)); 

  

BR1_OUT = double([R_accpt alpha_accpt k1_accpt k2_accpt k12_accpt]); 

save('BR1_OUT','BR1_OUT','-ASCII'); 

close all; clear all;   

RRADE-MCMC Code 

%RRADE MCMC 

%D. Stanaway 3/26/2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%This script iterates through the Clark Fork Breakthrough curves,         % 

%organized by elevation (Bitterroot, CFFB, Rock Creek, Drummond, Kohrs Cd,% 
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%LBF Cd,LBF, Kohrs Ranch) fitting each observed breakthrough curve with 

%the RRADE model converging to the best simulation through Markov Chain 

%Monte Carlo 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%set path 

%path(path,'E:\RRADE MCMC Practice') 

%load CF data 

load('CF_MCMC_data') 

CF = CF_MCMC_data; 

[nrows,ncol] = size(CF); 

for u = 1:32 

    %output progress 

    overall_progress = u/ncol 

    %generate Location as current file - used to save each column 

    outputbasename = char(CF(1,u).Location); 

    %declare # of simulations 

    N_reps = 1000000; 

    N_burnin = 50000; 

    %declare iteration numbers for repeated simulations and generate 

    %variable to direct each 'r' 

    r = 5; %this needs to be noted in the OutputError and OutputMode empty containers 

    replicate = [0 N_reps 2*N_reps 3*N_reps 4*N_reps 5*N_reps]; 
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    %1. Declare input data and variables 

    %identify observed and interpolated data 

    Craz0 = single(CF(1,u).Craz0); 

    Frru = single(CF(1,u).Frru); 

    t = single(CF(1,u).Time_Interpolated); 

    Craz_obs = single(CF(1,u).Raz_Interpolated); 

    Crru_obs = single(CF(1,u).Rru_Interpolated); 

    %place Raz and Rru data into a column vector 

    x_obs = single([Craz_obs';Crru_obs']); 

    %declare empty containers to store the values from 4 independent 

    %runs 

    Phi_np1_ALL  = zeros(6,r*N_reps,'single'); %six is number of parameters to be 

optimized, amend if more parameters are optimized 

    X_np1_ALL    = zeros(length(x_obs),r*N_reps,'single'); 

    Craz_np1_ALL = zeros(length(Craz_obs),r*N_reps,'single'); 

    Crru_np1_ALL = zeros(length(Crru_obs),r*N_reps,'single'); 

    for o = 1: r %this for loop is for multiple runs of the same column 

        %Declare observational error 

        sig_obs = 0.11; 

        %Perform Burnin 

        [phi_np1_store,n_a] = BURNIN(CF,Craz0,Frru,t,x_obs,N_burnin,sig_obs,u); 

        %Calculate frequency of acceptance 

        f_a_burn = n_a./N_burnin 
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        while(f_a_burn<0.001) 

            [phi_np1_store,n_a] = BURNIN(CF,Craz0,Frru,t,x_obs,N_burnin,sig_obs,u); 

            f_a_burn = n_a./N_burnin 

        end 

        %run posterior distribution 

        [Phi_np1_all,X_np1_all,Craz_np1_all,Crru_np1_all,f_a_post] = 

POSTDIST(phi_np1_store,N_reps,x_obs,Craz_obs,Crru_obs,Frru,Craz0,t); 

        %compile the accepted values from all five runs to create mode 

        %values and ensembles 

        Phi_np1_ALL(:,replicate(o)+1:replicate(o+1)) = round(Phi_np1_all*10000)/10000; 

        X_np1_ALL(:,replicate(o)+1:replicate(o+1))    = X_np1_all; 

        Craz_np1_ALL(:,replicate(o)+1:replicate(o+1)) = Craz_np1_all; 

        Crru_np1_ALL(:,replicate(o)+1:replicate(o+1)) = Crru_np1_all; 

    end 

    %compute error and mode values from simulation 

    [ME,mode] = RunStatsandError(Phi_np1_ALL,t,Craz_obs,Crru_obs,Frru,Craz0); 

    OutputError = ME; 

    OutputMode(:,1) = mode; 

%     %4. Compute posterior statistics to save 

%     [t,ensmean_Craz,ensmean_Crru] = RRADE_MCMC(OutputMode,Frru,Craz0,t); 

%     %ensmean_Crru = mode(Crru_np1_ALL,2); 

%     ensstd_Crru = std(Crru_np1_ALL,[],2); 

%     ensmax_Crru  = max(Crru_np1_ALL,[],2); 
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%     ensmin_Crru  = min(Crru_np1_ALL,[],2); 

%     %ensmean_Craz = mode(Craz_np1_ALL,2); given an error becuase of 

%     %zeros, so using the mode values from Phi_np1_ALL, the mode values 

%     %of the accepted simulation is used here 

%     ensstd_Craz = std(Craz_np1_ALL,[],2); 

%     ensmax_Craz  = max(Craz_np1_ALL,[],2); 

%     ensmin_Craz  = min(Craz_np1_ALL,[],2); 

     denseoutput = [outputbasename,'_dense.mat']; 

     save(denseoutput,'Phi_np1_ALL','OutputError','OutputMode','f_a_burn','f_a_post'); 

    close all; clear all 

    load('CF_MCMC_data') 

    CF = CF_MCMC_data; 

    [nrows,ncol] = size(CF); 

End 

MCMC Burn-in Code 

function [phi_np1_store,n_a] = BURNIN(CF,Craz0,Frru,t,x_obs,N_burnin,sig_obs,u) 

%declare container 

phi_np1_store = zeros(6,N_burnin,'single'); 

%Declare Prior Distribution 

%mean value 

vprior     = single(CF(1,u).Vave_prior); 

Rprior     = single(CF(1,u).Rave_prior); 

alphaprior = single(CF(1,u).alphaave_prior); 
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k1prior    = single(CF(1,u).k1ave_prior); 

k2prior    = single(CF(1,u).k2ave_prior); 

k12prior   = single(CF(1,u).k12ave_prior); 

%place in means in a vector 

MuPhi = [vprior Rprior alphaprior k1prior k2prior k12prior]'; 

%Standard Deviation 

sig_v     = single(CF(1,u).Vstd_prior); 

sig_R     = single(CF(1,u).Rstd_prior); 

sig_alpha = single(CF(1,u).alphastd_prior); 

sig_k1    = single(CF(1,u).k1std_prior); 

sig_k2    = single(CF(1,u).k2std_prior); 

sig_k12   = single(CF(1,u).k12std_prior); 

%Place STD in a vector 

SigPhi = 2*[sig_v sig_R sig_alpha sig_k1 sig_k2 sig_k12]'; 

%Initialize the vector of parameters currently in the Markov chain 

vstart     = single(CF(1,u).Vave_prior + CF(1,u).Vstd_prior*randn(1,1)); 

Rstart     = single(CF(1,u).Rave_prior + CF(1,u).Rstd_prior*randn(1,1)); 

while(Rstart<=0) 

    Rstart     = single(CF(1,u).Rave_prior + CF(1,u).Rstd_prior*randn(1,1)); 

end 

alphastart = single(CF(1,u).alphaave_prior + CF(1,u).alphastd_prior*randn(1,1)); 

while(alphastart<=0) 

    alphastart = single(CF(1,u).alphaave_prior + CF(1,u).alphastd_prior*randn(1,1)); 
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end 

k1start    = single(CF(1,u).k1ave_prior + CF(1,u).k1std_prior*randn(1,1)); 

while(k1start<=0) 

    k1start    = single(CF(1,u).k1ave_prior + CF(1,u).k1std_prior*randn(1,1)); 

end 

k2start    = single(CF(1,u).k2ave_prior + CF(1,u).k2std_prior*randn(1,1)); 

while(k2start<=0) 

    k2start    = single(CF(1,u).k2ave_prior + CF(1,u).k2std_prior*randn(1,1)); 

end 

k12start   = single(CF(1,u).k12ave_prior + CF(1,u).k12std_prior*randn(1,1)); 

while(k12start<=0) 

    k12start   = single(CF(1,u).k12ave_prior + CF(1,u).k12std_prior*randn(1,1)); 

end 

phi_np1 = [vstart Rstart alphastart k1start k2start k12start]; 

%set accepted to zero 

n_a = 0; 

%2. Perform the burn-in and keep the initial state 

for i=1:N_burnin 

    % 2a. Generate a candidate parameter set using a random walk 

    v_p     = phi_np1(1) + sig_v*randn; 

    while(v_p<=0) 

        v_p = phi_np1(1) + sig_v*randn; 

    end 
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    R_p     = phi_np1(2) + sig_R*randn; 

    while(R_p<=1) 

        R_p     = phi_np1(2) + sig_R*randn; 

    end 

    alpha_p = phi_np1(3) + sig_alpha*randn; 

    while((alpha_p<=0)||(alpha_p>5)) 

        alpha_p = phi_np1(3) + sig_alpha*randn; 

    end 

    k1_p    = phi_np1(4) + sig_k1*randn; 

    while(k1_p<=0) 

        k1_p    = phi_np1(4) + sig_k1*randn; 

    end 

    k2_p    = phi_np1(5) + sig_k2*randn; 

    while(k2_p<k1_p) %set k2 > k1 

        k2_p    = phi_np1(5) + sig_k2*randn; 

    end 

    k12_p   = phi_np1(6) + sig_k12*randn; 

    while(k12_p<=0) 

        k12_p   = phi_np1(6) + sig_k12*randn; 

    end 

    phi_p = [v_p; R_p; alpha_p; k1_p; k2_p; k12_p]; 

    % 2b. Run the advection-dispersion model 

    Craz0_i = Craz0 + 0.01*randn; 
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    Frru_i = Frru + 0.002*randn; 

    [t,Craz_p,Crru_p] = RRADE_MCMC(phi_p,Frru_i,Craz0_i,t); 

    x_p = [Craz_p; Crru_p]; 

    % 2c. Perform the Metropolis-Hastings decision 

    if(i==1) 

        keep = 1; 

    else 

        [keep,phi_p] = 

MH_Decision(x_obs,sig_obs,x_p,phi_p,x_np1,phi_np1,MuPhi,SigPhi); 

    end 

    if(keep==1) 

        % True, accept 

        phi_np1  = phi_p; 

        x_np1  = x_p; 

        % Increase the number of acceptance 

        n_a = n_a + 1; 

    end 

    phi_np1_store(:,i)=phi_np1; 

end 

end 
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MCMC Posterior Distribution Code 

function [Phi_np1_all,X_np1_all,Craz_np1_all,Crru_np1_all,f_a] = 

POSTDIST(phi_np1_store,N_reps,x_obs,Craz_obs,Crru_obs,Frru,Craz0,t) 

% Reset noise parameters 

sig_obs   = 0.035; % Observational error, variance of plate reader, interpolation error, 

PD = 0.5; 

sig_v = PD*std(phi_np1_store(1,:)); 

sig_R = PD*std(phi_np1_store(2,:)); 

sig_alpha = PD*std(phi_np1_store(3,:)); 

sig_k1 = PD*std(phi_np1_store(4,:)); 

sig_k2 = PD*std(phi_np1_store(5,:)); 

sig_k12 = PD*std(phi_np1_store(6,:)); 

SigPhi = [sig_v; sig_R; sig_alpha; sig_k1; sig_k2; sig_k12]; %use the distributions from 

the burn in to start the posterior distribution 

%SigPhi = SigPhi_PD; %[sig_v sig_R sig_alpha sig_k1 sig_k2 sig_k12]'; 

MuPhi = [median(phi_np1_store(1,:)) median(phi_np1_store(2,:)) 

median(phi_np1_store(3,:)) median(phi_np1_store(4,:)) median(phi_np1_store(5,:)) 

median(phi_np1_store(6,:))]'; 

% Declare some empty containers 

Phi_np1_all  = zeros(length(MuPhi),N_reps,'single'); 

X_np1_all    = zeros(length(x_obs),N_reps,'single'); 

Craz_np1_all = zeros(length(Craz_obs),N_reps,'single'); 

Crru_np1_all = zeros(length(Crru_obs),N_reps,'single'); 
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%generate starting position for posterior distribution 

Phi_np1_all(:,1)  = [randsample(phi_np1_store(1,:),1) randsample(phi_np1_store(2,:),1) 

randsample(phi_np1_store(3,:),1) randsample(phi_np1_store(4,:),1) 

randsample(phi_np1_store(5,:),1) randsample(phi_np1_store(6,:),1)]; %select a randomly 

selected accepted run from burn in to start posterior distribution 

[t,Craz_np1,Crru_np1] = RRADE_MCMC(Phi_np1_all(:,1),Frru,Craz0,t); 

x_np1 = [Craz_np1; Crru_np1]; 

phi_np1 = Phi_np1_all(:,1); 

% Reset counter 

n_a = 0; 

%3. Get a Markov Chain using the MCMC algorithm 

for i=2:N_reps 

    %MCMC_progress = i/N_reps 

    % 3a. Generate a candidate parameter set using a random walk 

    v_p     = Phi_np1_all(1,i-1) + sig_v*randn; 

    while(v_p<=0) 

        v_p     = Phi_np1_all(1,i-1) + sig_v*randn; 

    end 

     

    R_p     = Phi_np1_all(2,i-1) + sig_R*randn; 

    while(R_p<=1) 

        R_p     = Phi_np1_all(2,i-1) + sig_R*randn; 

    end 
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    alpha_p = Phi_np1_all(3,i-1) + sig_alpha*randn; 

    while((alpha_p<=0)||(alpha_p>5)) 

        alpha_p = Phi_np1_all(3,i-1) + sig_alpha*randn; 

    end 

    k1_p    = Phi_np1_all(4,i-1) + sig_k1*randn; 

    while(k1_p<=0) 

        k1_p    = Phi_np1_all(4,i-1) + sig_k1*randn; 

    end 

    k2_p    = Phi_np1_all(5,i-1) + sig_k2*randn; 

    while(k2_p<k1_p) %set k2 > k1 

        k2_p    = Phi_np1_all(5,i-1) + sig_k2*randn; 

    end 

    k12_p   = Phi_np1_all(6,i-1) + sig_k12*randn; 

    while(k12_p<=0) 

        k12_p   = Phi_np1_all(6,i-1) + sig_k12*randn; 

    end 

    phi_p = [v_p R_p alpha_p k1_p k2_p k12_p]'; 

    % 3b. Run the advection-dispersion model 

    [t,Craz_p,Crru_p] = RRADE_MCMC(phi_p,Frru,Craz0,t); 

    x_p = [Craz_p; Crru_p]; 

    % 3c. Perform the Metropolis-Hastings decision 

    if(i==1) 

        keep = 1; 
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    elseif(isnan(x_p)) 

        keep = 0; 

    else 

        [keep,x_p,phi_p,Craz_p,Crru_p] = 

MH_Decision_PD_MAE(x_obs,sig_obs,x_p,phi_p,x_np1,phi_np1,MuPhi,SigPhi,Frru,Cr

az0,t,Craz_p,Crru_p); 

    end 

    if(keep==1) 

        % True, accept 

        x_np1    = x_p; 

        phi_np1  = phi_p; 

        Craz_np1 = Craz_p; 

        Crru_np1 = Crru_p; 

        % Store values 

        Phi_np1_all(:,i)  = phi_np1; 

        X_np1_all(:,i)    = x_np1; 

        Craz_np1_all(:,i) = Craz_np1; 

        Crru_np1_all(:,i) = Crru_np1; 

        % Increase the number of acceptance 

        n_a = n_a + 1; 

    else 

        % Store values: there is no change. The model predictions and 

        % parameters from the previous step in the Markov chain will be 
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        % kept 

        Phi_np1_all(:,i)  = phi_np1; 

        X_np1_all(:,i)    = x_np1; 

        Craz_np1_all(:,i) = Craz_np1; 

        Crru_np1_all(:,i) = Crru_np1; 

         

    end  

end 

%output acceptance 

f_a = n_a./N_reps 

end 

MCMC Metropolis Hastings Burn in Decision Code  

function [keep,phi_p] = 

MH_Decision_Burn(x_obs,sig_obs,x_p,phi_p,x_np1,phi_np1,MuPhi,SigPhi) 

    obs2assim = 1:10:length(x_obs); 

    x_obs = x_obs(obs2assim); 

    x_p   = x_p(obs2assim); 

    x_np1 = x_np1(obs2assim); 

    pi_p = exp(-(1/2)*sum((phi_p - MuPhi).^2./SigPhi.^2)); %this is model simulation 

    pi_n = exp(-(1/2)*sum((phi_np1 - MuPhi).^2./SigPhi.^2)); %this is model simulation 

    f_xp = exp(-(1/2)*sum((x_obs - x_p).^2./sig_obs.^2)); % this has the observed data 

    f_xn = exp(-(1/2)*sum((x_obs - x_np1).^2./sig_obs.^2)); %this has the observed data 

    r = rand; 
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    if(((pi_p*f_xp)/(pi_n*f_xn))>r) 

        % Accept 

        keep=1; 

    else 

        % Reject 

        keep=0; 

    end 

  

end 

 

MCMC Metropolis Hastings Posterior Distribution Decision Code  

function keep = 

MH_Decision_PD(x_obs,sig_obs,x_p,phi_p,x_np1,phi_np1,MuPhi,SigPhi) 

obs2assim = 1:10:length(x_obs); 

x_obs = x_obs(obs2assim); 

x_p   = x_p(obs2assim); 

x_np1 = x_np1(obs2assim); 

pi_p = exp(-(1/2)*sum((phi_p - MuPhi).^2./SigPhi.^2)); %this is model simulation 

pi_n = exp(-(1/2)*sum((phi_np1 - MuPhi).^2./SigPhi.^2)); %this is model simulation 

f_xp = exp(-(1/2)*sum((x_obs - x_p).^2./sig_obs.^2)); % this has the observed data 

f_xn = exp(-(1/2)*sum((x_obs - x_np1).^2./sig_obs.^2)); %this has the observed data 

p = rand; 

r = rand; 

c = 0.995; %this is the threshold criteria for unconditional acceptance 

ratio = ((pi_p*f_xp)/(pi_n*f_xn)); 
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if(p>c) 

    keep = 1; 

elseif(ratio>r) 

    keep = 1; 

else 

    % Reject 

    keep=0; 

end 

end 
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APPENDIX D 

Column Data 
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Table D.1 Bitterroot River Column 1 

 
  

Time (hr) Raz Conc (µmol L-1) Rru Conc (µmol L-1) EC (µs cm-1) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.22 0.00 0.00 76.90 321.20 250.80 70.40
0.47 0.00 0.00 83.90 295.80 223.40 72.40
0.72 0.00 0.00 82.40 314.60 240.60 74.00
1.03 0.00 0.00 80.50 304.50 222.40 82.10
1.27 0.02 0.01 94.00 296.10 230.00 66.10
1.48 0.06 0.07 139.70 325.20 253.50 71.70
1.70 0.10 0.15 195.30 307.10 228.00 79.10
1.95 0.12 0.28 241.60 293.70 231.40 62.30
2.20 0.12 0.37 263.00 324.70 257.20 67.50
2.45 0.13 0.44 275.10 301.90 230.30 71.60
2.90 0.15 0.54 282.60 312.50 241.30 71.20
3.17 0.14 0.58 284.20 295.20 231.10 64.10
3.38 0.14 0.60 283.10 328.70 265.60 63.10
3.63 0.14 0.59 284.80 302.00 229.40 72.60
4.00 0.14 0.61 284.70 315.20 258.30 56.90

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
0.45 6.72 1.53 45.31 20.58 0.12 0.00 108.56 2247.20 2.66 4.45 0.79 0.01 1.83

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L-1)

Effluent Metal Concentrations (µg L-1) Sediment Association Metal Concentrations (mg g-1)

Column Average Data
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Table D.2 Bitterroot River Column 2 

 
  

Time (hr) Raz Conc (µmol L-1) Rru Conc (µmol L-1) EC (µs cm-1) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.27 0.00 0.01 77.70 308.40 225.20 83.20
0.52 0.00 0.01 84.50 293.00 212.20 80.80
0.77 0.00 0.01 83.70 322.30 230.50 91.80
1.08 0.00 0.01 80.90 303.00 207.50 95.50
1.32 0.00 0.01 87.30 296.50 227.60 68.90
1.55 0.04 0.05 120.20 324.60 245.70 78.90
1.78 0.09 0.16 188.90 300.70 219.20 81.50
2.02 0.12 0.28 234.70 302.10 233.90 68.20
2.25 0.12 0.39 255.10 321.50 239.70 81.80
2.50 0.14 0.46 270.30 298.70 219.80 78.90
2.97 0.15 0.57 277.70 307.40 228.40 79.00
3.23 0.14 0.60 284.20 295.60 223.30 72.30
3.45 0.14 0.60 280.80 322.50 246.80 75.70
3.68 0.13 0.59 283.80 298.50 223.20 75.30
4.05 0.12 0.53 282.30 317.70 245.60 72.10

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
0.36 6.72 1.69 29.30 17.99 0.10 0.00 108.56 2247.20 2.66 4.45 0.79 0.01 1.83

Effluent Metal Concentrations (µg L-1) Sediment Association Metal Concentrations (mg g-1)

Column Average Data

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L-1)
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Table D.3 Bitterroot River Column 3 

 
  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.32 0.00 0.00 78.00 300.80 231.90 68.90
0.58 0.00 0.00 86.90 289.60 217.00 72.60
0.82 0.00 0.00 84.90 324.30 231.50 92.80
1.13 0.00 0.00 81.50 299.00 222.40 76.60
1.37 0.02 0.01 84.50 312.80 246.50 66.30
1.60 0.08 0.07 140.90 319.70 238.80 80.90
1.83 0.11 0.20 228.30 298.40 227.70 70.70
2.07 0.12 0.34 267.10 316.90 249.20 67.70
2.32 0.14 0.44 276.90 314.60 234.10 80.50
2.57 0.13 0.52 281.90 295.90 229.30 66.60
3.03 0.14 0.59 284.30 302.60 228.50 74.10
3.28 0.14 0.59 285.50 312.80 243.50 69.30
3.50 0.13 0.56 282.20 314.90 242.10 72.80
3.75 0.15 0.59 285.90 296.80 224.90 71.90
4.08 0.14 0.62 282.70 322.30 251.00 71.30

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
0.26 6.72 0.85 36.52 20.18 0.17 0.00 108.56 2247.20 2.66 4.45 0.79 0.01 1.83

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.4 Bitterroot River Column 4 

 
  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.40 0.00 0.00 87.10 303.30 225.90 77.40
0.63 0.00 0.00 86.50 299.50 222.10 77.40
0.87 0.00 0.00 83.80 326.90 234.60 92.30
1.18 0.00 0.00 81.70 301.30 215.50 85.80
1.43 0.01 0.01 86.50 330.40 250.90 79.50
1.65 0.05 0.06 137.60 318.10 228.80 89.30
1.88 0.08 0.17 220.40 301.30 220.60 80.70
2.13 0.11 0.30 258.20 328.50 250.60 77.90
2.37 0.11 0.40 276.80 314.00 223.00 91.00
2.63 0.13 0.54 282.00 297.20 223.50 73.70
3.10 0.12 0.56 285.30 302.00 221.80 80.20
3.33 0.12 0.57 283.80 328.60 248.90 79.70
3.57 0.13 0.58 284.60 315.20 231.00 84.20
3.80 0.13 0.61 287.60 297.30 220.90 76.40
4.15 0.13 0.61 284.90 324.60 237.10 87.50

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
0.26 6.72 4.58 66.76 24.43 0.11 0.02 108.56 2247.20 2.66 4.45 0.79 0.01 1.83

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.5 CF at Missoula Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.17 0.00 0.00 103.60 290.60 213.50 77.10
0.42 0.00 0.00 119.90 330.10 211.90 118.20
0.65 0.00 0.00 121.70 307.50 175.20 132.30
1.03 0.01 0.00 116.20 332.80 184.80 148.00
1.32 0.07 0.02 126.10 307.60 194.90 112.70
1.53 0.22 0.12 197.10 318.40 227.10 91.30
1.75 0.25 0.23 270.30 326.50 239.30 87.20
1.97 0.24 0.30 308.00 305.40 214.20 91.20
2.20 0.24 0.42 320.00 332.40 248.50 83.90
2.48 0.23 0.45 318.00 318.10 226.90 91.20
2.73 0.22 0.51 319.00 306.60 227.20 79.40
2.98 0.22 0.55 310.00 323.40 243.20 80.20
3.22 0.20 0.55 310.00 304.50 223.10 81.40
3.53 0.21 0.59 305.00 321.00 245.30 75.70
3.88 0.20 0.57 306.00 313.90 236.70 77.20

OC  (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
7.45 6.75 38.23 64.47 237.19 0.36 0.42 313.36 3539.00 23.75 89.83 4.05 0.23 4.80

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.6 CF at Missoula Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) Effluent As (µg g
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - - -
0.23 0.00 0.00 5.62 110.40 275.70 165.00 110.70
0.48 0.00 0.00 5.57 126.00 325.70 195.30 130.40
0.72 0.00 0.00 - 126.10 296.20 159.70 136.50
1.08 0.00 0.00 32.44 118.00 331.60 193.10 138.50
1.37 0.12 0.04 118.87 131.50 298.90 206.70 92.20
1.58 0.27 0.17 152.36 213.50 331.80 244.20 87.60
1.80 0.29 0.29 140.16 284.30 307.70 225.70 82.00
2.02 0.27 0.37 137.76 315.00 296.90 215.10 81.80
2.25 0.26 0.45 120.68 317.00 339.70 256.90 82.80
2.53 0.24 0.49 - 314.00 309.60 223.20 86.40
2.80 0.21 0.53 105.55 315.00 323.70 244.90 78.80
3.05 0.23 0.57 - 309.00 311.80 228.90 82.90
3.27 0.23 0.60 91.29 309.00 299.70 221.10 78.60
3.58 0.24 0.63 84.06 306.00 315.20 232.70 82.50
3.93 0.22 0.63 - 304.00 321.70 246.40 75.30

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
5.43 6.75 25.57 47.30 188.39 0.18 0.31 313.36 3539.00 23.75 89.83 4.05 0.23 4.80

Effluent Metal Concentrations (µg L-1) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)
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Table D.7 CF at Missoula Column 3 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.22 0.01 0.00 108.70 298.40 186.10 112.30
0.47 0.00 0.00 124.30 320.20 179.40 140.80
0.70 0.00 0.00 127.30 293.70 151.20 142.50
1.13 0.01 0.00 119.40 304.00 164.60 139.40
1.35 0.12 0.05 140.80 293.70 185.00 108.70
1.57 0.29 0.18 216.60 335.40 226.70 108.70
1.78 0.34 0.32 285.30 303.40 205.50 97.90
2.00 0.27 0.37 312.00 293.80 197.80 96.00
2.23 0.26 0.44 316.00 347.40 244.50 102.90
2.52 0.25 0.52 318.00 305.90 209.30 96.60
2.80 0.23 0.55 313.00 331.70 237.30 94.40
3.03 0.24 0.57 310.00 305.70 213.20 92.50
3.25 0.23 0.58 308.00 305.50 212.40 93.10
3.57 0.21 0.61 307.00 310.50 219.40 91.10
3.90 0.23 0.64 303.00 333.30 238.90 94.40

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead
5.60 6.75 31.51 63.28 189.59 0.18 0.27 313.36 3539.00 23.75 89.83 4.05 0.23 4.80

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.8 CF at Missoula Column 4 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.35 0.00 0.00 114.10 322.00 198.50 123.50
0.58 0.00 0.00 122.40 310.60 162.10 148.50
0.83 0.01 0.00 120.60 296.20 135.60 160.60
1.22 0.03 0.01 121.00 300.10 173.70 126.40
1.48 0.18 0.10 184.00 302.00 198.10 103.90
1.70 0.29 0.24 267.80 353.50 236.00 117.50
1.90 0.30 0.36 310.00 310.60 202.70 107.90
2.12 0.27 0.42 321.00 302.50 204.50 98.00
2.35 0.25 0.47 315.00 337.40 227.70 109.70
2.65 0.24 0.53 317.00 310.70 211.60 99.10
2.92 0.22 0.56 312.00 345.40 237.10 108.30
3.15 0.22 0.59 310.00 311.30 211.30 100.00
3.37 0.22 0.60 308.00 327.20 230.30 96.90
3.70 0.21 0.62 306.00 310.70 215.30 95.40
4.02 0.24 0.67 300.00 342.20 241.80 100.40

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

10.51 6.75 45.46 61.41 172.69 0.22 0.68 313.36 3539.00 23.75 89.83 4.05 0.23 4.80

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.9 Rock Creek Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.18 0.00 0.00 84.00 295.80 199.30 96.50
0.47 0.00 0.00 87.10 326.90 189.30 137.60
0.83 0.00 0.00 87.60 324.70 167.30 157.40
1.08 0.00 0.00 89.00 317.10 182.00 135.10
1.37 0.00 0.01 93.00 340.20 258.10 82.10
1.62 0.07 0.05 158.90 319.20 260.00 59.20
1.87 0.15 0.15 236.50 349.60 304.10 45.50
2.15 0.21 0.29 267.90 333.80 269.50 64.30
2.45 0.22 0.37 279.00 324.90 281.30 43.60
2.72 0.23 0.43 278.80 340.90 285.00 55.90
3.08 0.26 0.48 285.20 320.80 274.20 46.60
3.35 0.25 0.53 279.50 358.80 304.20 54.60
3.60 0.24 0.53 282.50 320.80 264.90 55.90
3.83 0.25 0.54 284.20 337.70 292.30 45.40
4.12 0.25 0.55 282.80 336.80 275.20 61.60

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

11.14 6.57 0.45 34.50 25.04 0.22 0.03 52.72 4458.50 2.48 3.57 3.43 0.01 1.96

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.10 Rock Creek Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.27 0.00 0.00 85.40 316.10 194.50 121.60
0.53 0.00 0.00 87.20 344.30 193.00 151.30
0.90 0.00 0.00 88.60 328.10 161.70 166.40
1.15 0.00 0.00 88.90 344.40 196.40 148.00
1.42 0.00 0.01 94.20 338.00 253.50 84.50
1.68 0.08 0.06 159.30 320.80 262.40 58.40
1.93 0.16 0.17 230.10 361.60 302.10 59.50
2.20 0.18 0.27 265.50 331.80 265.50 66.30
2.50 0.20 0.37 274.60 347.70 297.60 50.10
2.78 0.25 0.43 276.90 342.40 275.20 67.20
3.13 0.25 0.48 281.50 323.20 276.10 47.10
3.40 0.22 0.53 277.70 345.30 283.70 61.60
3.67 0.23 0.53 279.35 321.70 263.50 58.20
3.90 0.23 0.54 281.00 354.10 304.90 49.20
4.18 0.22 0.55 282.30 334.80 271.40 63.40

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

5.54 6.57 0.42 31.14 25.36 0.61 0.04 52.72 4458.50 2.48 3.57 3.43 0.01 1.96

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data



 

 

126 

Table D.11 Rock Creek Column 3 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.32 0.00 0.00 86.60 295.30 191.90 103.40
0.60 0.00 0.00 87.10 350.10 196.20 153.90
0.95 0.00 0.00 88.40 321.50 166.70 154.80
1.22 0.00 0.00 88.10 354.60 234.90 119.70
1.48 0.04 0.02 116.20 333.20 263.70 69.50
1.73 0.15 0.11 201.10 324.00 274.30 49.70
2.00 0.20 0.23 250.40 364.70 297.10 67.60
2.30 0.23 0.33 273.90 328.50 272.10 56.40
2.57 0.22 0.37 277.70 366.10 308.10 58.00
2.85 0.24 0.42 279.30 337.70 275.10 62.60
3.20 0.29 0.52 283.00 354.70 303.40 51.30
3.47 0.25 0.52 280.70 345.40 282.00 63.40
3.70 0.27 0.54 283.90 321.20 272.60 48.60
3.95 0.26 0.53 281.20 376.30 312.60 63.70
4.22 0.25 0.53 283.10 333.50 274.00 59.50

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

5.85 6.57 0.74 49.29 23.61 0.18 0.07 52.72 4458.50 2.48 3.57 3.43 0.01 1.96

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.12 Rock Creek Column 4 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) Effluent As (µg g
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - - -
0.37 0.00 0.00 1.29 89.00 313.00 195.00 118.00
0.67 0.00 0.00 - 88.90 348.00 191.40 156.60
1.02 0.00 0.00 1.44 89.90 326.90 163.40 163.50
1.28 0.00 0.00 7.12 89.30 356.70 249.30 107.40
1.55 0.03 0.02 16.95 115.40 331.00 259.40 71.60
1.80 0.12 0.09 19.03 202.70 351.80 291.00 60.80
2.08 0.18 0.23 18.65 253.00 347.10 276.10 71.00
2.35 0.20 0.32 17.65 273.00 327.60 270.30 57.30
2.63 0.25 0.42 17.02 273.80 369.90 301.00 68.90
2.92 0.26 0.49 15.41 280.10 330.40 268.60 61.80
3.27 0.24 0.52 - 279.50 364.80 303.20 61.60
3.53 0.25 0.52 14.34 281.30 338.00 269.50 68.50
3.77 0.26 0.55 - 284.60 321.30 267.80 53.50
4.00 0.25 0.57 12.89 278.50 367.50 299.50 68.00
4.28 0.26 0.54 - 282.40 330.70 267.00 63.70

OC (µg g-1) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc ArsenicCadmium Lead
6.28 6.57 0.52 38.56 26.26 0.16 0.09 52.72 4458.50 2.48 3.57 3.43 0.01 1.96

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)
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Table D.13 CF at Drummond Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.22 0.00 0.00 117.60 320.20 181.40 138.80
0.48 0.00 0.00 138.80 313.10 170.00 143.10
0.75 0.00 0.00 137.00 321.80 180.10 141.70
1.02 0.01 0.00 136.00 308.00 209.80 98.20
1.28 0.07 0.02 154.60 317.20 254.60 62.60
1.48 0.17 0.05 185.60 326.20 268.10 58.10
1.65 0.24 0.09 226.00 314.20 255.50 58.70
1.85 0.34 0.15 265.20 306.40 253.20 53.20
2.07 0.37 0.19 283.00 322.60 268.80 53.80
2.28 0.36 0.24 292.30 323.20 267.50 55.70
2.52 0.41 0.29 300.00 310.40 256.90 53.50
2.75 0.40 0.31 298.00 326.70 272.50 54.20
3.08 0.44 0.34 301.00 315.10 256.80 58.30
3.35 0.42 0.35 301.00 307.10 258.80 48.30
3.62 0.42 0.36 297.00 332.70 279.60 53.10
3.88 0.43 0.38 300.00 313.50 259.60 53.90

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.30 6.65 26.84 94.16 339.39 0.30 0.53 319.46 3857.20 41.88 121.17 6.82 0.29 12.18

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.14 CF at Drummond Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.28 0.00 0.00 124.90 293.60 173.70 119.90
0.53 0.00 0.00 135.20 306.80 172.70 134.10
0.80 0.00 0.00 131.20 312.30 164.50 147.80
1.07 0.00 0.00 125.70 298.40 176.10 122.30
1.33 0.05 0.01 128.30 311.50 240.80 70.70
1.52 0.17 0.04 177.40 314.70 247.70 67.00
1.70 0.27 0.10 236.40 303.40 243.30 60.10
1.90 0.32 0.15 278.50 294.90 245.20 49.70
2.12 0.34 0.21 293.80 312.70 256.50 56.20
2.33 0.39 0.27 300.00 309.20 247.60 61.60
2.57 0.39 0.31 305.00 299.00 246.50 52.50
2.80 0.38 0.33 300.00 315.50 260.60 54.90
3.13 0.38 0.35 305.00 301.70 242.40 59.30
3.40 0.36 0.36 302.00 304.40 255.20 49.20
3.67 0.34 0.36 298.00 317.50 261.40 56.10
3.93 0.38 0.38 300.00 298.80 246.60 52.20

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

8.10 6.65 11.88 28.28 164.59 0.10 0.16 319.46 3857.20 41.88 121.17 6.82 0.29 12.18

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.15 CF at Drummond Column 3 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.35 0.00 0.00 137.30 287.60 177.00 110.60
0.58 0.00 0.00 139.90 311.00 178.50 132.50
0.87 0.00 0.00 128.90 313.40 162.70 150.70
1.12 0.00 0.00 128.20 300.20 184.40 115.80
1.38 0.07 0.01 141.50 321.50 237.10 84.40
1.57 0.20 0.06 201.20 321.80 245.70 76.10
1.75 0.32 0.12 259.50 308.50 246.90 61.60
1.95 0.36 0.18 288.50 303.80 248.30 55.50
2.17 0.38 0.23 296.00 325.70 266.30 59.40
2.38 0.38 0.26 300.00 317.30 252.60 64.70
2.63 0.41 0.31 301.00 320.20 260.80 59.40
2.87 0.40 0.32 298.00 331.50 269.90 61.60
3.18 0.41 0.35 303.00 309.10 252.20 56.90
3.45 0.42 0.37 300.00 325.60 271.00 54.60
3.72 0.42 0.37 297.00 326.60 267.50 59.10
3.97 0.42 0.38 300.00 310.90 252.40 58.50

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

4.05 6.65 14.49 488.36 155.29 0.30 0.87 319.46 3857.20 41.88 121.17 6.82 0.29 12.18

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.16 CF at Drummond Column 4 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) Effluent As (µg g
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - - -
0.40 0.00 0.00 14.45 121.70 289.30 176.80 112.50
0.63 0.00 0.00 - 133.00 318.20 179.40 138.80
0.92 0.00 0.00 28.71 131.40 306.30 173.70 132.60
1.17 0.01 0.00 - 132.30 299.20 220.90 78.30
1.43 0.14 0.03 235.98 173.90 323.10 257.90 65.20
1.60 0.29 0.10 266.46 243.00 312.10 250.50 61.60
1.80 0.35 0.16 - 286.30 300.70 248.90 51.80
2.02 0.39 0.22 230.06 301.00 309.60 258.40 51.20
2.23 0.37 0.27 - 301.00 323.30 264.30 59.00
2.45 0.44 0.33 193.52 305.00 304.30 250.60 53.70
2.68 0.42 0.35 171.24 303.00 318.60 263.40 55.20
2.90 0.39 0.35 158.17 299.00 317.60 252.00 65.60
3.22 0.41 0.36 148.86 305.00 299.50 251.30 48.20
3.48 0.42 0.40 - 302.00 324.70 267.80 56.90
3.75 0.39 0.40 128.64 298.00 315.90 255.80 60.10

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

4.95 6.65 14.83 64.68 156.39 0.17 0.21 319.46 3857.20 41.88 121.17 6.82 0.29 12.18

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)
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Table D.17 Little Blackfoot River Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.23 0.00 0.00 100.40 302.40 217.00 85.40
0.47 0.00 0.00 114.20 284.90 158.50 126.40
0.75 0.00 0.00 115.00 292.20 156.80 135.40
1.02 0.00 0.00 111.50 293.10 154.80 138.30
1.28 0.00 0.00 114.20 278.50 196.90 81.60
1.53 0.06 0.04 155.50 304.30 237.30 67.00
1.78 0.09 0.13 244.40 282.30 225.70 56.60
2.05 0.11 0.23 289.90 310.80 264.10 46.70
2.30 0.10 0.29 307.00 291.70 230.50 61.20
2.57 0.09 0.31 314.00 286.00 238.70 47.30
2.87 0.11 0.40 313.00 296.20 242.00 54.20
3.22 0.11 0.43 313.00 295.80 252.60 43.20
3.48 0.12 0.50 313.00 299.90 249.00 50.90
3.70 0.12 0.49 312.00 286.80 233.10 53.70
4.02 0.12 0.51 312.00 313.20 267.80 45.40

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

4.71 6.64 0.68 65.12 159.59 9.55 0.10 280.60 6883.80 4.67 27.40 8.56 0.10 5.89

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.18 Little Blackfoot River Column 2 

 

  

Dissolved Oxygen (µmol L
-1

)

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.28 0.00 0.00 105.70 287.20 175.00 112.20
0.53 0.00 0.00 118.10 277.10 148.40 128.70
0.80 0.00 0.00 115.40 302.30 147.00 155.30
1.07 0.00 0.00 112.40 285.40 148.90 136.50
1.35 0.02 0.01 122.90 295.80 215.20 80.60
1.58 0.05 0.05 170.90 295.10 220.60 74.50
1.87 0.08 0.14 240.90 279.60 216.80 62.80
2.12 0.09 0.23 283.40 310.50 245.70 64.80
2.37 0.10 0.29 305.00 287.30 221.40 65.90
2.70 0.11 0.37 309.00 309.40 252.10 57.30
2.93 0.11 0.43 314.00 293.30 225.60 67.70
3.28 0.12 0.47 313.00 309.90 253.40 56.50
3.53 0.10 0.46 312.00 293.10 228.90 64.20
3.75 0.11 0.48 314.00 283.10 227.60 55.50
4.02 0.11 0.50 313.00 311.20 252.40 58.80

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.60 6.64 1.13 44.90 149.39 9.54 0.08 280.60 6883.80 4.67 27.40 8.56 0.10 5.89

Discrete Time Point Sample Data

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.19 Little Blackfoot River Column 3 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.35 0.00 0.00 109.20 293.60 166.70 126.90
0.58 0.00 0.00 116.90 280.10 144.30 135.80
0.88 0.00 0.00 112.90 310.40 142.90 167.50
1.13 0.00 0.00 111.80 288.20 160.70 127.50
1.40 0.02 0.02 127.00 309.60 229.60 80.00
1.65 0.09 0.09 193.50 293.00 213.50 79.50
1.92 0.11 0.19 257.70 298.20 229.80 68.40
2.18 0.12 0.27 281.10 304.20 229.80 74.40
2.43 0.11 0.33 290.70 287.00 219.30 67.70
2.77 0.13 0.40 292.00 313.10 243.40 69.70
3.00 0.12 0.44 292.90 289.40 222.50 66.90
3.35 0.11 0.44 290.30 315.10 249.40 65.70
3.58 0.13 0.48 291.30 292.10 222.50 69.60
3.80 0.13 0.50 292.30 279.90 226.60 53.30
4.02 0.12 0.47 292.50 313.50 246.90 66.60

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

7.81 6.58 0.77 36.15 156.09 1.26 0.09 280.60 6883.80 4.67 27.40 8.56 0.10 5.89

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.20 Little Blackfoot River Column 4 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.40 0.00 0.00 112.40 286.00 152.90 133.10
0.67 0.00 0.00 119.50 275.50 135.20 140.30
0.90 0.00 0.00 115.90 304.00 131.80 172.20
1.22 0.00 0.00 117.50 283.10 184.50 98.60
1.47 0.05 0.04 149.00 319.20 232.30 86.90
1.72 0.09 0.12 215.30 288.20 209.00 79.20
1.98 0.09 0.21 257.40 313.70 239.00 74.70
2.23 0.11 0.29 277.10 300.40 219.10 81.30
2.50 0.11 0.36 289.80 285.00 218.50 66.50
2.82 0.13 0.43 291.00 309.20 228.80 80.40
3.05 0.11 0.44 294.80 287.30 222.30 65.00
3.42 0.12 0.46 291.70 318.30 239.20 79.10
3.63 0.11 0.47 294.30 292.20 220.70 71.50
3.87 0.12 0.50 295.00 299.90 239.00 60.90
4.02 0.13 0.50 292.80 319.30 241.70 77.60

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.90 6.58 1.03 38.95 154.49 1.25 0.07 280.60 6883.80 4.67 27.40 8.56 0.10 5.89

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.21 CF at Kohr's Ranch Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.18 0.00 0.00 131.00 299.70 151.30 148.40
0.45 0.00 0.00 155.30 320.90 141.70 179.20
0.67 0.00 0.00 149.70 324.60 139.20 185.40
0.93 0.00 0.00 142.20 309.60 130.70 178.90
1.18 0.00 0.00 129.70 341.10 234.10 107.00
1.40 0.07 0.02 138.60 318.70 244.40 74.30
1.60 0.20 0.10 205.40 308.30 253.40 54.90
1.80 0.30 0.22 268.90 345.80 286.60 59.20
1.98 0.24 0.24 297.00 323.40 255.10 68.30
2.18 0.24 0.30 314.00 311.70 252.00 59.70
2.40 0.29 0.39 313.00 338.20 285.40 52.80
2.75 0.29 0.43 314.00 319.60 254.60 65.00
2.97 0.29 0.47 312.00 325.50 275.80 49.70
3.18 0.25 0.47 307.00 335.10 273.90 61.20
3.45 0.24 0.49 310.00 312.90 257.60 55.30
3.80 0.25 0.54 305.00 336.90 279.50 57.40

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

1.44 6.65 18.07 46.88 205.79 0.12 0.19 294.26 2308.60 142.47 101.50 26.64 0.30 10.01

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.22 CF at Kohr's Ranch Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) Effluent As (µg g
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - - -
0.28 0.00 0.00 - 144.90 298.20 161.50 136.70
0.55 0.00 0.00 18.21 153.90 323.80 156.90 166.90
0.75 0.00 0.00 - 146.20 315.20 141.90 173.30
1.02 0.00 0.00 - 138.40 307.50 150.30 157.20
1.25 0.00 0.00 151.14 126.10 336.10 254.30 81.80
1.50 0.14 0.05 305.78 162.40 313.80 248.00 65.80
1.70 0.27 0.15 337.71 247.70 319.50 267.90 51.60
1.88 0.29 0.23 - 290.50 333.20 280.90 52.30
2.07 0.30 0.30 287.98 309.00 318.60 255.90 62.70
2.27 0.31 0.37 - 315.00 307.20 257.30 49.90
2.48 0.33 0.43 225.18 310.00 334.90 288.60 46.30
2.83 0.30 0.46 206.67 309.00 313.30 258.00 55.30
3.07 0.27 0.45 190.24 306.00 330.00 284.60 45.40
3.27 0.28 0.48 178.91 303.00 328.40 267.90 60.50
3.55 0.27 0.47 162.89 308.00 310.30 261.30 49.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

1.64 6.65 22.53 55.88 186.59 0.13 0.21 294.26 2308.60 142.47 101.50 26.64 0.30 10.01

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)
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Table D.23 CF at Kohr's Ranch Column 3 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.35 0.00 0.00 127.80 311.00 164.40 146.60
0.62 0.00 0.00 147.30 337.60 166.40 171.20
0.82 0.00 0.00 148.00 326.40 136.70 189.70
1.08 0.00 0.00 139.90 320.30 136.30 184.00
1.33 0.00 0.00 131.20 336.90 207.90 129.00
1.57 0.12 0.04 156.60 322.50 230.50 92.00
1.77 0.24 0.15 234.90 339.50 259.20 80.30
1.95 0.28 0.22 284.80 337.80 267.60 70.20
2.13 0.28 0.28 309.00 326.60 250.40 76.20
2.33 0.26 0.33 313.00 328.40 260.90 67.50
2.55 0.29 0.39 310.00 344.50 278.20 66.30
2.90 0.24 0.39 312.00 321.00 251.70 69.30
3.13 0.25 0.42 308.00 346.50 286.10 60.40
3.35 0.25 0.44 304.00 333.70 261.10 72.60
3.63 0.26 0.47 307.00 320.00 256.00 64.00
3.97 0.24 0.47 303.00 336.40 264.90 71.50

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.09 6.65 21.18 81.93 195.29 0.13 0.17 294.26 2308.60 142.47 101.50 26.64 0.30 10.01

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.24 CF at Kohr's Ranch Column 4 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

) Influent DO Effluent DO Change in DO
0.00 0.00 0.00 - - - -
0.38 0.00 0.00 136.40 297.60 149.30 148.30
0.65 0.00 0.00 145.30 336.20 141.70 194.50
0.85 0.00 0.00 140.60 316.50 119.60 196.90
1.13 0.00 0.00 135.50 336.00 158.90 177.10
1.37 0.04 0.01 133.10 330.70 224.90 105.80
1.60 0.18 0.08 184.70 316.90 239.30 77.60
1.80 0.26 0.17 260.20 347.70 270.60 77.10
1.98 0.27 0.24 289.50 334.10 257.10 77.00
2.17 0.27 0.30 311.00 320.90 247.10 73.80
2.38 0.30 0.39 310.00 340.80 270.10 70.70
2.60 0.27 0.38 311.00 339.80 261.60 78.20
2.93 0.25 0.43 314.00 317.20 251.00 66.20
3.17 0.27 0.47 307.00 357.20 282.90 74.30
3.40 0.26 0.48 305.00 327.00 251.70 75.30
3.67 0.25 0.49 303.00 333.20 265.90 67.30
4.00 0.25 0.49 307.00 328.00 255.40 72.60

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

1.57 6.65 17.65 30.41 191.49 0.10 0.21 294.26 2308.60 142.47 101.50 26.64 0.30 10.01

Discrete Time Point Sample Data

Dissolved Oxygen (µmol L
-1

)

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data
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Table D.25 Metal Stress Little Blackfoot River Control Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.33 0.00 0.00 215.30
0.60 0.00 0.00 213.70
0.83 0.00 0.00 218.10
1.08 0.00 0.00 215.40
1.32 0.01 0.01 266.20
1.55 0.09 0.05 347.00
1.77 0.16 0.11 430.00
1.97 0.22 0.18 474.00
2.18 0.26 0.22 487.00
2.40 0.28 0.26 502.00
2.62 0.32 0.31 497.00
2.83 0.34 0.34 501.00
3.07 0.36 0.37 499.00
3.28 0.37 0.34 499.00
3.50 0.37 0.38 503.00
4.03 0.37 0.39 501.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

3.76 6.70 0.27 5.45 2.19 3.33 0.01 209.76 7504.00 4.58 29.90 8.84 0.10 6.31

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1)

Column Average Data

Discrete Time Point Sample Data
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Table D.26 Metal Stress Little Blackfoot River Control Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.40 0.00 0.00 215.10
0.67 0.00 0.00 215.40
0.88 0.00 0.00 217.80
1.13 0.00 0.00 217.30
1.37 0.03 0.01 270.70
1.58 0.09 0.06 357.00
1.80 0.17 0.12 429.00
2.02 0.22 0.17 467.00
2.22 0.27 0.24 489.00
2.45 0.32 0.29 501.00
2.67 0.36 0.33 490.00
2.88 0.36 0.34 503.00
3.10 0.36 0.35 499.00
3.33 0.37 0.36 501.00
3.55 0.35 0.34 502.00
4.08 0.34 0.35 502.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.03 6.70 0.37 8.58 2.05 0.75 0.02 209.76 7504.00 4.58 29.90 8.84 0.10 6.31

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.27 Metal Stress Little Blackfoot River Treatment Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.45 0.00 0.00 494.00
0.72 0.00 0.00 500.00
0.93 0.00 0.00 487.00
1.18 0.00 0.00 489.00
1.42 0.00 0.01 516.00
1.63 0.05 0.03 557.00
1.85 0.10 0.06 598.00
2.05 0.15 0.11 617.00
2.28 0.18 0.15 637.00
2.50 0.24 0.21 636.00
2.72 0.25 0.23 634.00
2.93 0.29 0.27 639.00
3.15 0.27 0.28 635.00
3.37 0.30 0.29 640.00
3.63 0.30 0.29 635.00
4.13 0.29 0.28 634.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

1.60 6.75 1.88 82.34 1.44 191.00 0.02 209.76 7504.00 4.58 29.90 8.84 0.10 6.31

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.28 Metal Stress Little Blackfoot River Treatment Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.53 0.00 0.00 490.00
0.78 0.00 0.00 489.00
1.00 0.00 0.00 492.00
1.25 0.04 0.01 521.00
1.48 0.10 0.04 570.00
1.70 0.16 0.08 613.00
1.92 0.22 0.13 638.00
2.12 0.25 0.16 633.00
2.33 0.31 0.21 628.00
2.57 0.36 0.27 631.00
2.78 0.39 0.28 638.00
3.00 0.39 0.27 636.00
3.22 0.39 0.29 636.00
3.43 0.40 0.29 636.00
3.68 0.40 0.30 637.00
4.18 0.41 0.30 633.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

2.94 6.75 0.72 17.78 0.90 1755.00 0.01 209.76 7504.00 4.58 29.90 8.84 0.10 6.31

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.29 Metal Stress CF at Kohr's Bend Control Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.30 0.00 0.00 221.50
0.55 0.01 0.00 222.20
0.78 0.01 0.00 220.10
1.02 0.00 0.00 220.10
1.25 0.01 0.01 264.80
1.45 0.02 0.04 345.00
1.65 0.04 0.10 439.00
1.87 0.06 0.19 503.00
2.05 0.07 0.30 521.00
2.28 0.08 0.38 534.00
2.50 0.09 0.46 533.00
2.70 0.09 0.49 531.00
2.95 0.10 0.54 538.00
3.20 0.12 0.58 532.00
3.55 0.11 0.60 537.00
4.00 0.10 0.56 528.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

0.71 6.65 9.33 25.48 8.83 10.24 0.00 284.88 3204.20 66.72 97.99 7.30 0.23 12.08

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.30 Metal Stress CF at Kohr's Bend Control Column 2 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.35 0.01 0.00 220.70
0.60 0.00 0.00 219.95
0.83 0.00 0.00 219.20
1.07 0.01 0.00 219.70
1.30 0.01 0.00 251.30
1.50 0.02 0.03 356.00
1.70 0.03 0.10 443.00
1.90 0.04 0.18 499.00
2.10 0.07 0.32 515.00
2.32 0.07 0.37 534.00
2.53 0.08 0.41 529.00
2.73 0.09 0.47 533.00
3.00 0.10 0.57 536.00
3.25 0.11 0.58 532.00
3.60 0.10 0.58 536.00
4.03 0.09 0.56 534.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

0.60 6.65 10.03 38.69 9.18 225.39 0.03 284.88 3204.20 66.72 97.99 7.30 0.23 12.08

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.31 Metal Stress CF at Kohr's Bend Treatment Column 1 

 

  

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.40 0.00 0.00 485.00
0.65 0.00 0.00 490.00
0.88 0.00 0.00 481.00
1.12 0.01 0.00 486.00
1.35 0.01 0.01 526.00
1.55 0.02 0.04 604.00
1.75 0.05 0.11 650.00
1.95 0.07 0.20 665.00
2.13 0.11 0.28 667.00
2.37 0.10 0.35 677.00
2.58 0.11 0.41 664.00
2.80 0.13 0.46 676.00
3.05 0.14 0.50 675.00
3.30 0.16 0.55 673.00
3.65 0.16 0.57 676.00
4.07 0.16 0.52 667.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

0.71 6.74 17.80 473.06 5.18 2791.99 0.03 284.88 3204.20 66.72 97.99 7.30 0.23 12.08

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data
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Table D.32 Metal Stress CF at Kohr's Bend Treatment Column 2 

 

Time (hr) Raz Conc (µmol L
-1

) Rru Conc (µmol L
-1

) EC (µs cm
-1

)

0.00 0.00 0.00 -
0.47 0.00 0.00 490.00
0.72 0.00 0.00 488.00
0.95 0.01 0.00 485.00
1.20 0.01 0.00 503.00
1.40 0.02 0.02 558.00
1.60 0.04 0.08 615.00
1.80 0.06 0.16 655.00
2.00 0.08 0.23 657.00
2.18 0.10 0.30 658.00
2.42 0.11 0.36 678.00
2.63 0.12 0.41 668.00
2.85 0.13 0.46 666.00
3.12 0.14 0.50 673.00
3.35 0.16 0.55 672.00
3.67 0.18 0.58 675.00
4.08 0.15 0.52 671.00

OC (µg g-1
) pH Copper Zinc Arsenic Cadmium Lead Manganese Iron Copper Zinc Arsenic Cadmium Lead

1.17 6.74 18.80 536.76 5.20 4318.99 0.04 284.88 3204.20 66.72 97.99 7.30 0.23 12.08

Effluent Metal Concentrations (µg L
-1

) Sediment Association Metal Concentrations (mg g-1
)

Column Average Data

Discrete Time Point Sample Data


