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ABSTRACT

Understanding subsurface structure by studying microseismicity influences a wide

range of activities, including energy extraction, aquifer storage, carbon sequestra-

tion, and seismic hazard assessment. Identifying individual fractures in a larger fault

system is key to characterizing, understanding, and potentially mitigating risks of

natural or induced seismicity.

A year-long study associated with a carbon dioxide (CO2) sequestration project

was conducted at the Aneth oil field in southeast Utah to record microseismicity

at a single downhole geophone array. A previous analysis located events by first

identifying event multiplets consisting of highly correlated time-domain waveforms

on receivers shallower than the depth of the microseismic events. Then, a relative

location algorithm was used within each multiplet. Hypocenters turned out to be

in a layer not directly impacted by either water or CO2 injection or oil extraction.

Nevertheless, the locations outlining faults are consistent with the geology of the

basin.

In this thesis, hierarchical agglomerative clustering is used to identify subtle dif-

ferences for one multiplet at the deepest receiver in the array, whose waveforms might

include guided waves. Each event starts out as its own cluster, after which events

are iteratively combined based on a dissimilarity metric until a single, final cluster
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results. Two distance measures are defined, spectral and temporal distance, and used

to calculate dissimilarity in the clustering algorithm.

While time-domain clustering was inconclusive, clustering in the frequency domain

reveals first spectral differences between two groups of events in multiplet 18, which

may originate in different lithologies. A more detailed look identifies subclusters in

one of these groups that organize spatially. Subtle spectral differences are detected

that are not the result of attenuation and may identify individual en echelon fractures

within the same lithological unit.

More investigation into the application of hierarchical agglomerative clustering

to event spectra and waveforms is needed to identify geophysical conditions where

the method could be further utilized. Additional station components, stations, and

multiplet analysis could further characterize the method’s strengths and constraints,

as well as refinement of the geophysical interpretation of results.
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CHAPTER 1:

INTRODUCTION

Monitoring induced seismicity provides valuable information regarding fluid transport

properties in hydrocarbon (Maxwell and Urbancic, 2001) and geothermal (Saar and

Manga, 2003) reservoirs, geomechanical effects in carbon sequestration (Streit et al.,

2005), and hydraulic properties in aquifer recharge and recovery. Besides classic

location algorithms based on the arrival of different wave phases, more advanced

techniques have been developed based on differences between closely spaced events

(Waldhauser and Ellsworth, 2000; Zhang and Thurber, 2003). Beyond hypocenter

estimation, classical time series methods have been used to estimate geomechanical

model parameters (Christiansen et al., 2005; Saar and Manga, 2003), while coda wave

and spectral methods can extract information about velocity changes in the medium

(Haney et al., 2009; Payan et al., 2009; Snieder and Hagerty, 2004; Zadler et al.,

2005). Furthermore, waveform correlation methods have been utilized to detect low-

magnitude and microseismic events (Schaff and Beroza, 2004; Schaff and Richards,

2004, 2011), refine phase arrivals and event hypocenters (Hansen et al., 2006; Rowe

et al., 2002; Snieder and Vrijlandt, 2005; Song et al., 2010), determine event focal

mechanisms (Hansen et al., 2006), and to classify unknown source events (Harris,
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1991; Shumway, 2003; Shumway and Stoffer, 2006).

In energy extraction operations, identifying individual faults, fault systems, and

associated structures influence the location and depth of production wells to ensure

the correct fluid conducting faults are tapped. Similarly, location of microseismicity is

important for injection wells to ensure that locations, depths, and injection rates will

generate fractures in desired fluid-bearing layers. Injection well locations and injection

rates in carbon sequestration operations are controlled by fault system structure in

managing gas migration and ensuring cap rock integrity. Seismic hazard assessment

is affected by fault characterization, since longer faults have the potential to increase

seismic hazard over smaller ones, thus influencing surface building and development.

Presented here is an application of statistical methods to analyze subtle differences

within clustered events. Events were first analyzed in the time domain to determine

whether medium changes over time could be detected. Upon finding no evidence of

temporal medium changes, a frequency-domain analysis was performed. Statistical

clustering of the power spectra identified evidence of subsurface structure not evident

in the time domain. Statistical clustering and correlation analysis of event spectra

illustrate how one might infer structure from limited amounts of data and show how

location information may be gleaned from a receiver previously omitted from event

hypocenter estimation. Chapter 2 discusses the site geology and details of passive

microseismic data collection and event location. Details of the analytical methods

are discussed in Chapter 3, frequency domain results are presented in Chapter 4,

time domain comparisons in Chapter 5, and Chapter 6 presents conclusions and

recommendations for future work.
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CHAPTER 2:

FIELD BACKGROUND AND MICROSEISMIC

DATA COLLECTION

2.1 Geologic Background and Reservoir History

The Aneth unit is one of four oil producing units located within the Greater Aneth

oil field of the Paradox Basin in southeast Utah (see Figure 2.1). The lower portion of

a stratigraphic column for the Greater Aneth Field from Hintze and Kowallis (2009)

is shown in Figure 2.2. Of interest here are the Pennsylvanian and Mississippian

subperiods, from which oil and gas are extracted, into which CO2 is injected, and

where microseismicity occurs. The formations of interest, from oldest to youngest,

are the Mississippian Leadville (two strata: lower dolostone and upper lime mudstone

to peloidal to crinoidal lime wackestone), and Pennsylvanian Molas (poorly stratified

silt and sandstones), Pinkerton Trail (alternating thin beds of mudstone and shales

interbedded with limestone), and Paradox (cyclic intervals of dolostone, shale, and

salt). Within the Aneth Unit, the Paradox Formation has been informally divided

into “production zones”; from oldest to youngest, named: Alkali Gulch, Barker Creek,
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Akah, Desert Creek, and Ismay. Oil is produced from the Desert Creek and Ismay

zones, the lowest three are referred to as “Paradox salts” (Carney, 2010).

Structural orientation within the Aneth unit is consistent with that of the Paradox

Basin and Greater Aneth (Chidsey, Jr., 2009; Carney, 2010; Morgan et al., 2010).

Figure 2.1 shows northwest-southeast oriented fold and fault belt along the northeast

portion of the Paradox Basin. Surface deformation bands within Greater Aneth

indicate a northwest-southeast trend (see Figure 2.3). Similarly, structure contour

maps of Paradox Formation strata identify the Aneth area as a northwest-southeast

contour orientation, as seen in Figure 2.4 from Carney (2010), which shows structural

contours of a shale layer within the Desert Creek zone. Three-dimensional seismic

studies of Greater Aneth show basement faults of Mississippian and Pennsylvanian

age that strike northwest-southeast (Rutledge and Soma, 2010). Chidsey, Jr. (2009)

reports that the Aneth unit is virtually free of folds and faults, with the exception of

a NW-SE striking fault observed in the Ismay and Desert Creek zones of the Paradox

formation (see Figure 2.4). Cores reveal evidence of faulting in these zones, but not

in the overlying DeChelly or Navajo Sandstones, leading Chidsey, Jr. (2009) to the

conclusion that the fault is short with minimal displacement.

This field was discovered in 1956, with water-enhanced oil recovery commencing

in 1961. In 2008, the field operator and the Southwest Regional Partnership for CO2

Sequestration began a carbon sequestration field study at Aneth by converting in-

jection wells from water to gas. As part of the site monitoring plan for the carbon

sequestration field study, a permanent, 60-level, down-hole geophone array was in-

stalled in a former injection well on the western side of the field (see Figure 2.5). With

the conversion to gas-injection, a deep brine injection well was installed to dispose
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of excess water. The well was drilled approximately 1 km northwest of the geophone

array, into Leadville formation limestone to a depth of approximately 2260 m (US

EPA Region IX UIC Program, 2007). The well has four lateral arms as shown in

Figure 2.5; injection rates varied between 12,000 and 20,000 m3 of water per week

between March, 2008 and March, 2009 (Chidsey, Jr., 2009).

2.2 Microseismic Data Collection and Event

Locations

Geophones in the permanent array were set between 805 and 1705 m at 15 m spacing.

With a sampling rate of 1500 Hz, the deepest 18 geophones (between 1705 m and

1445 m) are 3-component, the other sensors record the vertical component only. The

3-component geophones have a right-hand three-dimensional coordinate system so

that a Z signal is positive for a compression arrival from above.

A sonic log was obtained from the deep injection well before injection began,

from which a 1-D velocity model was estimated. Figure 2.7 shows the sonic log,

velocity model based on a 100-ft median smooth, and 24 geophone depths. These

24 geophones, which include the deepest 18 3-component receivers and 6 shallower

receivers spaced at 107 m, were used for microseismic location analysis.

Microseismic monitoring began at approximately the same time as salt water

injection. More than 3800 events were recorded between March, 2008 and March,

2009. For 1212 of these events, P- and S-wave arrival times were obtained from

the 24 geophones shown in Figure 2.7. Except for the 8 deepest geophones, which

may have recorded waves critically refracted at the top of the Leadville, Rutledge
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Figure 2.1: Paradox Basin oil and gas fields (modified from Figure 1-1 in Chidsey,
Jr., 2010).The study area is in the Greater Aneth oil field and marked by a red oval.
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Figure 2.2: The lower portion of a stratigraphic column for Aneth (modified from
Hintze and Kowallis, 2009), with formation thicknesses in feet. Oil is produced from
the Ismay and Desert Creek zones within the Paradox formation. The lower zones
of the Paradox formation (Akah, Barker Creek, and Alkali Gulch) are referred to as
Paradox salts, as seen in Figure 2.7.
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Figure 2.5: Locations of the deep injection well (“SWD”) and geophone array (“Moni-
tor well”) (from Figure 12-1 in Rutledge and Soma, 2010). Approximate depths of the
laterals on the injection well are: southeast, 2240 m, northeast, 2198 m, northwest,
2250 m, and southwest, 2206 m (US EPA Region IX UIC Program, 2007).
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and Soma (2010) report that P- and S-wave phases tend to be impulsive and easy

to identify. Events were initially screened by manually picking P-wave arrivals on

waveforms from just a few receivers. These waveforms were then clustered based on

waveform similarity (in the time domain) and re-picked using the methods of Rowe

et al. (2002), which resulted in sets of events with similar wavefields called multiplets,

using a threshold correlation coefficient of 0.8.

Rowe et al. (2002) identify an algorithm used to refine phase picks based on

waveform correlation and clustering. Data are first organized based on station-by-

station analysis to take advantage of waveforms that have similar source receiver

paths. Clustering is then performed over events using waveform correlations across

variable window-widths and multiplet composite waveforms are formed via within-

cluster stacking. Waveforms are polarization filtered (rotated), energy normalized,

and coherency filtered before identifying integer and sub-sample lags of maximum

cross correlation, which are then used to estimate phase pick corrections based on an

L1 norm solution to a system of equations. A master event is identified for each mul-

tiplet, using high signal-to-noise events or composite waveforms and relative, within-

cluster epicenters are estimated using a relative location algorithm of choice. The

waveform correlation algorithm is then reapplied to the master event waveforms to

adjust absolute locations.

Of the 47 multiplets located on the southwest boundary of the field, multiplet 18

with n = 73 events, was chosen to research, because of its highly correlated waveforms

that cover the 12-month study period and large number of events with high-confidence

picks at the geophones used for multiplet identification. The number of P picks for

multiplet 18 varies by receiver along the array (as well as by component) from the



12

3-component receivers. For instance, 70 picks are available from the east component

data for the geophone at 1552 m (the 11th geophone from the bottom), whereas 67

picks are available from the deepest receiver (geophone 1).

Rotated east-component data from Geophone 11 for 25 of the 70 events from

mulitplet 18 are shown in Figure 2.8. Peak-normalized waveforms starting 0.1 s prior

to the P-wave arrival are aligned according to the maximum correlation coefficient

over the first 0.25 s. To verify the 0.8 correlation coefficient threshold, starting with

the P-wave arrival for each event, the first 0.25 s (generally the region between the P

and S arrivals) were cross correlated, with all coefficients exceeding 0.85 but for one.

Although this waveform was not well correlated at any receiver along the array, it

was not deleted from the analysis since it was included in multiplet 18 by LANL.

Rutledge and Soma (2010) applied a master-slave location scheme to tie the weaker

events to the first arrivals of the stronger events. High Signal-to-Noise Ratio (SNR)

master events were formed by stacking events in a multiplets or were chosen from a

single large magnitude event from a multiplet. As a result, the first arrivals could be

reliably picked on this master event. The deepest eight geophones (geophones 1 - 8)

are omitted from the location analysis because of P-wave paths critically refracted

at the top of the Leadville formation. The left panel of Figure 2.9 from Rutledge

and Soma (2010) shows correlated P-wave picks as well as first arrivals for the radial

component of the 3-component geophones. The early arrivals at the lower geophones

correspond to energy from the critically refracted waves, as seen from the P-wave

raypaths in the right panel of this Figure.

For each master event the source locations (radial and depth positions with respect

to the vertical receiver array) were determined using an iterative least-squares method



13

to best fit the P- and S-wave arrival times (e.g., Rutledge and Phillips, 2003) plus

reflected SV phases (similar to Phillips et al., 1989). The travel time residuals for

the master event locations were then applied as station corrections to the remaining

events, while omitting the use of any arrivals from the lower eight receivers of the

array.

Azimuths to the sources were determined from the horizontal-component P-wave

particle motion trajectories (Rutledge and Soma, 2010). The particle-motion data

from the array were highly linear and consistent between receiver levels. Azimuths

were obtained by averaging over multiple receiver levels. Relative azimuth error was

about 1◦, measured as the standard error of the mean azimuth. Relative depth errors

average 4 m, radial errors average 8 m.

Figure 2.6 shows the 1212 microseismic events located by LANL (Rutledge and

Soma, 2010). Events organize into two clusters on opposite sides of the reservoir;

the northeast side includes 44 events, the southwest side, 1168 events, which is the

focus of discussion and analysis here. Events in the southwest cluster trend along a

northwest-southeast fracture zone (consistent with the geologic structure of the area)

at least 1500 m long within a depth range of 1830 to 2037 m. Figure 2.10 shows the

southwest cluster of events along with the location of the geophone array. Multiplet 18

event depths range between 2002 and 2030 m; the centroid of this multiplet is located

approximately 1690 m southwest of the array, 320 m below the deepest receiver and

219 m above the closest lateral of the deep injection well. Assuming no change of

formation depths between the salt water disposal well and event locations, multiplet

18 events occur in either the Paradox salt layer or the Pinkerton Trail formation

(Figure 2.2). The build-up contours in Figures 2.5 and 2.6 here, as well as additional
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Figures in Rutledge and Soma (2010), indicate that the formations are thicker in the

region of multiplet 18 than at the disposal well where the sonic log was obtained.

Structural contour maps are only available for formations from the Desert Creek and

above, but if the structure is consistent in the lower formations where microseismicity

is occurring, multiplet 18 events may actually be in the Pinkerton Trail or Molas

formations, rather than in the Paradox salt layer. This scenario is more likely, as both

the Molas silt and sandstones and Pinkerton Trail mudstones, shales, and limestones

will fail before the ductile salt layers in the Paradox Formation.

A Mw 3.7 earthquake (the Bluff earthquake) struck the region on June 6, 2008.

It was located approximately 13 km northwest of the geophone array at a depth of

9.5 km. This earthquake was used to verify the azimuths to the events shown in Fig-

ure 2.10. The moveout of first arrivals for the earthquake clearly indicate an upward

propagating arrival across the array, and given the polarity of the vertical components

on the array, indicate dilatational first motion. Similarly, for the microseismic events,

which all occur below the bottom of the array, the vertical component at a subset

of geophones show dilatational first motion. Horizontal component first motions are

all opposite of the Bluff earthquake, putting the microseismic events in the southeast

quadrant with respect to the array.

Similar to Figure 2.8, rotated east-component waveforms from the deepest geo-

phone for the same 25 events from multiplet 18 are shown in Figure 2.11 and cross

correlation percentiles are shown in Figure 2.12. While these waves are not as similar

with one another as those from Geophone 11, they are still highly correlated in the

region of the P-wave arrival, with maximum cross correlations ranging between 0.76

and 0.99.
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The Nature of the Seismicity at Aneth Field

Rutledge and Soma (2010) study both the space-time development of microearthquake

occurrence and the correlation between seismicity and injection/production activities.

Using the Gutenburg-Richter law log(N) = a− bM , where N is the number of events

having magnitude that exceeds M , Rutledge and Soma (2010) fit a value b = 2.0.

Tectonic seismicity typically results in b ≈ 1. The high b-value at Aneth indicates a

higher proportion of small events to large ones, characteristic of fluid-injection induced

seismicity or natural swarm seismicity. Natural swarm seismicity typically precedes

volcanic eruption or is associated with the migration of crustal fluids through fracture

networks (Lay and Wallace, 1995). A population of earthquakes dominated by small

events is generally considered an indication of many small discontinuous faults ac-

commodating strain accumulation. Additionally, larger magnitude events occur near

time gaps in the seismicity, suggesting that the subsurface structure is made up of

discrete segments where stress may accumulate.

Based on the distance between the salt water injection well and microseismicity

(approximately 1200 m), the absence of discernable correlation between injection rates

and seismicity, and the long history of injection at Aneth, Rutledge and Soma (2010)

conclude that events occurring within the study period were not a direct result of deep

salt water injection into the Leadville or CO2 injection into the Desert Creek zone,

but rather stress release related to overall reservoir reduction over the production life

of the area.



16

Figure 2.6: Locations for 1212 microseismic events recorded at the geophone array
(“Monitor well”) in the year March 2008 - 2009 (modified from Figure 12-1 in Rutledge
and Soma, 2010). The blue oval shows the approximate location of a small NE-SW
striking fault in the Ismay and Desert Creek zones of the Paradox formation believed
to have minimal displacement. The thickness of the Desert Creek in the southwest
where microseismicity is occurring is 12 - 20 m.
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Figure 2.8: Twenty-five waveforms from multiplet 18 from the Geophone 11 (≈ 1552
m). Each waveform starts 0.1 s prior to the P-wave arrival and is normalized by
its maximum amplitude. Waveforms are highly similar, as expected by multiplet
identification.
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Figure 2.9: P-wave arrivals over the lower portion of the geophone array (left panel)
and P-wave raypaths from a master event to the array (right panel) (from Rutledge
and Soma (2010)). The green lines in the left panel correspond to the picks based
on waveform correlation, while the red lines represent true first arrivals. The lower
geophones in the array show weak energy arrivals corresponding to critically refracted
waves at the top of the Leadville formation, as shown by the P-wave paths in the
right panel.
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Figure 2.10: The 1168 events located on the southwest boundary of the reservoir,
with the geophone array plotted at the origin. Events follow a NW-SE lineament,
with slight dip to the west. The 67 magenta events are from multiplet 18, which show
similar depths but a geographic separation. P-wave velocity changes are shown to
the right of the bottom panel.
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Figure 2.11: Twenty-five waveforms from multiplet 18 from the deepest receiver,
aligned by the lag of the maximum correlation coefficient around the maximum am-
plitude. Each waveform starts 0.1 s prior to the P-wave arrival and is normalized by
its maximum amplitude. As noted by Rutledge and Soma (2010), P-wave arrivals for
these waveforms are weaker than those from Geophone 11 in Figure 2.8. The bottom
five traces can be visually differentiated from the top twenty.
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Figure 2.12: Percentiles of the multiplet 18 maximum cross correlations for Geophones
1 and 11 east-component waveforms. Cross correlations were computed for the first
0.25 s of the waveforms, starting with the P-wave arrival. The percentile is the
proportion of the cross correlations less than or equal to the ordinate. Geophone 1
correlations are slightly lower than those at Geophone 11, although still quite high.
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CHAPTER 3:

SPECTRAL ANALYSIS AND HIERARCHICAL

CLUSTERING

This chapter summarizes the methods used in the analysis of the events in multi-

plet 18, especially the spectral analysis and hierarchical agglomerative clustering. R

software was used for all calculations and is publicly available at www.R-project.org.

Scripts for the analysis presented in this thesis are found in the Appendix A.

3.1 Spectral Density Estimation

This section uses the notation of Diggle (1991) and Venables and Ripley (1999) in

summarizing the development of the periodogram as an estimate of the spectrum.

The model for the jth event waveform {aj(t), t = 1, 2, . . . , T} is {Aj(t), t = 1, 2, . . . , T},

a set of regularly spaced, stationary Gaussian random variables with zero mean and

autocovariance γi(k) = Cov {Aj(t), Aj(t− k)}. The Fourier transform pair for the
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spectrum and autocovariance of Aj is

fj(ω) =
∞∑
−∞

γj(k)eiω(k) (3.1)

and

γj(k) =
1

2π

∫ ∞

−∞
fj(ω)eikωdω. (3.2)

It can be shown by even symmetry of γj(k) and trigonometric substitution that

fj(ω) = γj(0) + 2
∞∑
k=1

γi(k) cos(kω) (3.3)

and

γi(k) =
1

π

∫ π

0

fi(ω) cos(kω)dω, (3.4)

where γj(0) is the variance of Aj.

For the jth observed waveform, aj, the sample autocovariance, gj(k), estimates

γj(k) and is written

gj(k) =
1

n

T∑
t=k+1

aj(t)aj(t− k) for integer k (3.5)

and n = T − (k + 1). The periodogram Ij(ω) then estimates fj(ω) and is written

Ij(ω) = gj(0) + 2
T−1∑
k=1

gj(k) cos(kω), (3.6)

where gj(0) is the sample variance and ω ∈ (1, T/2) Hz.

Assuming a stationary Gaussian model for A(t) ensures that the variability in
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A(t) can be wholly explained by γ(k). Hence, the periodogram is also viewed as a

partition of the total sum of squared errors into orthogonal components at the Fourier

frequencies. This property results in nice statistical attributes for the periodogram

ordinates (e.g., independence, χ2 distributions), which allow for additional statistical

analysis, if desired (Diggle, 1991). As a last step, Ij is normalized by max{Ij} so that

Ij ∈ [0, 1]. These power spectra will be compared with hierarchical agglomerative

clustering, which is described next.

3.2 Hierarchical Agglomerative Clustering

In agglomerative clustering, each event starts out as its own cluster, clusters are

agglomerated (combined) into larger ones, culminating in a single cluster that contains

all events. Agglomeration decisions are based on a dissimilarity metric, among which

there are many to choose, including Euclidean distance, Mahalanobis distance, and

Jeffrey’s divergence (McLachlan, 2004). For the purpose of clustering microseismic

events, I define spectral and amplitude distances as dissimilarity metrics.

Among clustering algorithms, hierarchical agglomerative clustering is attractive

for several reasons: 1) unlike k−means (Hartigan, 1975), the number of clusters is not

required in advance, 2) since it works on a distance matrix, it is robust to the order of

events, and 3) interactive determination of the number of clusters provides flexibility,

with the added advantage of quickly being able to identify outliers and singletons.

Hierarchical agglomerative clustering is a widely used algorithm, successfully applied

in a variety of disciplines, including seismic applications (Bardainne et al., 2006; Rowe

et al., 2002).

Starting with the P-wave arrival, aj is trimmed to the length of the shortest
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duration event so that the Fourier frequencies are constant between events and inter-

polation is not necessary. At the deepest station, the shortest length event is 1598

samples, which is then padded with zeros, so that T = 1600, to optimize the discrete

Fourier transform. The result is 800 Fourier frequencies with a delta-frequency of

0.937 Hz. Squared spectral distance between events i and j is

dFreq(i,j) = [Ii(ω)− Ij(ω)]T [Ii(ω)− Ij(ω)] (3.7)

with I(ω), ω in the frequency band [1,375] Hz. Initially the clustering was performed

using ω in [1,750] Hz. Event spectra contain little information or variability after

approximately 350 Hz, and the results did not change when the higher frequencies

were omitted, so discussion and results using fewer frequencies is presented.

A dendrogram is the analysis tool used to determine an appropriate number of

clusters; an example is shown in Figure 3.1. The y-axis is “Dissimilarity,” and hori-

zontal lines show where agglomerations occur. Dissimilarity is the weighted distance

(either spectral or temporal), as shown by (3.7) or (3.8) below.

Conceptually, all pairwise squared distances between events are calculated and

put in a lower triangular matrix D with dimension n x n, where n is the number of

events (n(n − 1)/2 pairwise distances). The lowest horizontal line in Figure 3.1 is

at min{D} and notes the first agglomeration. At the next step, D is recalculated,

but its dimensions are (n− 1)× (n− 1), where the rows and columns corresponding

to the clustered events are omitted and a new row calculating the distance between

the cluster centroid and the other events is added. At this stage, there are several

methods by which to choose the next agglomeration. Using min{D} throughout

equates to a nearest neighbor approach, but does not necessarily result in the most
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compact clustering (Ward, 1963). Instead, Ward’s minimum variance method is used

(Ward, 1963), which minimizes the within-cluster variance (Var) at each agglomer-

ation step, resulting in the most compact clusters possible. Rather then calculating

Var[dFreq(i), dFreq(j)] for each possible combination of clusters at each step, the Lance-

Williams algorithm is used to recursively calculate dissimilarity (Lance and Williams,

1967). Here, for clusters Ci, Cj, and Ck with sizes n1, n2, and n3, between-cluster

dissimilarity after agglomerating clusters Ci and Cj is

dFreq(i,j)k = αidFreq(ik) + αjdFreq(jk) + βdFreq(ij), (3.8)

where αi = (ni + n3)/(n1 + n2 + n3) and β = (−n3)/(n1 + n2 + n3). The cluster with

the minimum variance is the one that minimizes dFreq over all i, j, k. Ward’s method

only works with true distance measures, which is a motivation for using Equation 3.7.

Time Domain

The clustering algorithm is identical in the time domain, but instead of dFreq(i,j), the

measure is

dT ime(i,j) = [ai(t)− aj(t)]T [ai(t)− aj(t)] , t = {1, 2, . . . T}, (3.9)

where ai(t) is the peak normalized amplitude at time t. Ward’s minimum variance

is used to make agglomeration decisions, just as in the frequency domain. Here,

dissimilarity becomes

dT ime(i,j)k = αidT ime(ik) + αjdT ime(jk) + βdT ime(ij). (3.10)
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CHAPTER 4:

CLUSTERING IN THE FREQUENCY DOMAIN

Based on a strong correlation of the wave fields in the time domain, events are de-

termined to be of the same multiplet, located using a single master event. As seen in

the lower panel in Figure 2.10, these events cluster into two areas that cross a veloc-

ity boundary, assuming the velocity model of Figure 2.7 is correct at the location of

the events. However, even under this assumption, relative depth uncertainty vitiates

velocity layer differences. Additional evidence that they represent different fractures,

or a fracture that crosses a velocity boundary, lies in the spectral analysis.

The magenta dots in Figure 2.10, corresponding to multiplet 18 events, organize

into western and eastern groupings and are named Groups 1 and 2, respectively.

Of the 70 events in multiplet 18, 3 events do not have P-wave arrivals and were

dropped from the analysis. The remaining multiplet 18 spectra, {Ii, i = 1, 2, . . . , 67},

were clustered using methods of Chapter 3. The cluster dendrogram is shown in

Figure 4.2, with color-coded rectangles corresponding to cluster membership. Height

on the y-axis represents dissimilarity, and the higher horizontal agglomeration line

indicates greater spectral dissimilarity. Group 2 I’s (denoted {IG2}) are agglomerated

together early and only join Group 1 I’s (denoted {IG1}) at the final agglomeration
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step, indicating that {IG1} are markedly different than {IG2}. Figure 4.1 plots the

average spectrum of each group (ĪG1, (nG1 = 56) and ĪG2, (nG2 = 11)); frequency

content differs greatly between ĪG1 and ĪG2, corroborating evidence that these events

originate in regions with different elastic properties.

It is reasonable to consider subdividing {IG1} into two subgroups based on Fig-

ure 4.2; the two subgroups in {IG1} are named Groups 1E and 1W (denoted {I1W}

and {I1W}, respectively) and their average spectra (Ī1E and Ī1W ) are shown in Fig-

ure 4.3. Although similar, the Ī1E has more power in the higher frequencies than

Ī1W .

Cross Correlation

The cross correlation of Ī1E and Ī1W is shown in Figure 4.4. Cross correlations are

computed at discrete lags, which in the frequency domain correspond to discrete

Fourier frequencies, thus the vertical alignment of lags in Figure 4.4, where each lag

corresponds to a 0.93 Hz frequency shift. The maximum cross correlation of 0.82 at

lag 1.87 Hz shows the strong similarity between {I1W} and {I1E} and the Group 1E

frequency shift.

Similarly, {IG1} were cross correlated with both Ī1E and Ī1W in Figure 4.3. Max-

imum cross correlations and corresponding lags between {IG1} and Ī1W are shown

in Figure 4.5. As expected, the Group 1W events align at lag zero – the maximum

correlation between {I1W} and Ī1W is not shifted for any Group 1W event. The

Group 1E events are all shifted positively with respect to Group 1W, indicating that

{I1E} have slightly higher frequency content than Ī1W , and, in general, {I1W}. While

this difference in frequencies is only one or two lags (0.93 and 1.87 Hz), it has com-
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Figure 4.1: Average peak-normalized spectra, ĪG1 and ĪG2 for the western (G1) and
eastern (G2) sets of multiplet 18 events. The colored line is the the mean by frequency
whereas the light gray lines are individual 95% confidence intervals. Spectral energy
is present generally between 20 and 200 Hz for both groups, but intensity differs.

pelling impact, as can be seen in Figure 4.6. The clusters organize spatially into two

non-overlapping groups, indicating the spectra originate from two nearby but distinct

spatial regions.
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Figure 4.3: Mean spectra Ī1W and Ī1E appear to show a small but distinct shift in
frequency.
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Figure 4.6: {IG1} locations, color coded by spectral membership: {I1W} (blue), {I1E}
(red), show that 1W and 1E organize clearly in space. Black ovals represent location
1σ uncertainty ellipses.
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by the area of uncertainty ellipses. These events organize into two non-overlapping,
parallel regions, ({I1W} (blue) and {I1E} (red)) indicative of en echelon fracturing.



38

4.1 Discussion

Aside from the spectral differences that are indicated by color-coding in Figure 4.6,

neither event locations nor waveforms exhibit particularly distinguishing features that

differentiate events within {IG1}. Size and orientation of relative error ellipses blurs

the distinction between sub-groups and, along with high time-domain waveform cor-

relation, makes arguing subsurface structure difficult. Spectral correlation, however,

reveals distinguishing characteristics that hint at subsurface structure. The spectral

clusters organize spatially into two non-overlapping groups, indicating two nearby

but distinct spatial regions. Structure is further identified by omitting events with

the largest 20% of error-area, as seen in Figure 4.7.

If attenuation was a factor in the spectral separation of the events in {IG1}, one

would expect the opposite of what is observed: events farther from the receiver, {I1E},

would have less spectral energy in the higher frequencies than {I1W}. Instead, we

attribute small spectral differences between events in {IG1} to either two closely sep-

arated fractures, or one fracture transitioning (laterally) into a material with varying

elastic properties, or different mechanical behavior of individual fractures.

In a temporal analysis of events, Rutledge and Soma (2010) observe that higher

magnitude events occur near time gaps in seismicity, indicating that the structure

is composed of discrete segments, such as en echelon jogs where stress would tend

to concentrate near discontinuities. Additionally, a magnitude distribution analysis

shows a population of earthquakes dominated by small events, which is generally

considered an indication of many small discontinuous faults accommodating strain

accumulation. However, the single- well array geometry and large source-receiver

distances prevent resolving detailed subsurface structure in the time domain.
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The results of spectral clustering add insight to our understanding of fracturing

at Aneth Field. In contrast to the striking spectral differences between {IG1} and

{IG2}, which are hypothesized to originate from different velocity layers or have dif-

ferent fracture orientations, the subtly different spectra of {I1W} and {I1E} indicate

some other cause. Their spectral power differences are small, but accumulate in the

statistical clustering algorithm, suggesting that these sub groups represent different

fractures within the same medium. The highest quality (smallest uncertainty) events

from {IG1} are shown in Figure 4.7, color coded by spectral group. These events

suggest separate, parallel fractures that are indicative of en echelon fracturing, sup-

porting the conclusions of Rutledge and Soma (2010).

Additionally, the fracture pattern observed is consistent with both the microseis-

mic event lineament shown in Figure 2.6 as well as the overall structure of the basin.

The lineament extends NW-SE, similar to the surface folds shown if Figure 2.1 and

surface deformation band patterns indicated by Figure 2.3. The fractures observed

are oblique to the lineament, a characteristic of echelon fracturing. Finally, en echelon

fractures are planar structures. Although the formation depths below the oil produc-

ing zones are not well understood in the region of microseismicity, assuming the layer

thickness contour plot in Figure 2.4 represents thicknesses patterns of the underlying

formations, the consistent depths of multiplet 18 events indicates they occur within

the same structure, and are therefore planar as well.

As discussed in Zhang and Thurber (2003), event epicenters estimated from double

difference algorithms may be biased if inter-event distances exceed the scale length

of the velocity model. An assumption is that events are from the same fracture or

medium. This is particularly relevant in highly heterogeneous sites such as the Aneth
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field. While shallower stations indicate that both {IG1} and {IG2} events belong to the

same multiplet, spectral analysis of likely guided waves at the deepest station shows

otherwise and suggests that these events should be separated in a refined location

analysis.
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CHAPTER 5:

CLUSTERING IN THE TIME DOMAIN

In Figure 2.11, the bottom five traces are from Group 2. One can visually differenti-

ate these waveforms from the top 20, which are randomly selected from Group 1, and

include events from both Group 1W and Group 1E. Their subtle spectral differences

are virtually impossible to visually detect in the time domain. Hierarchical agglomer-

ative clustering was applied to multiplet 18 events in the time domain to investigate

whether spectral differences are detected using a parallel algorithm.

As in the frequency domain, events are truncated to the shortest length event

and then are peak normalized. Figure 5.1 shows the dendrogram from time domain

clustering. Although dissimilarity is unitless, it is not comparable between the do-

mains. As discussed in Chapter 3, dFreq is the sum of 400 values, whereas in the

time domain, dT ime is the sum of 1597 values. Dissimilarities dFreq(ij)k and dT ime(ij)k

are not directly comparable because spectral differences are manifested in the time

domain as both amplitude and waveform shape differences. Generally speaking, then,

for fixed i, j, k, dFreq(ij)k < dT ime(ij)k. To illustrate this, Figure 5.2 shows spectra and

filtered waveforms for two events. Events show highly similar spectra, especially in

the region (20, 50) Hz, however, when bandpass filtered over (20, 50) Hz, waveforms
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show both amplitude and wave shape differences.

From Figure 5.1, three clusters seems reasonable. However, if we consider three

clusters without first considering two, we miss the important result that events do

not have the same spatial clustering as in the frequency domain. Figure 5.3 shows the

spatial results of two clusters in the time domain. The far southeast events are not

a cluster by themselves, as in the frequency domain (recall the western and eastern

groups in Figure 2.6 being hierarchically clustered into Groups 1 and 2 in Figure

4.2), but are joined with events in Group 1E. Analogous to the method used in the

frequency domain, Figure 5.4 shows cross correlations between {a} and āG1 where

G1 membership is determined in the time domain (Figure 5.1). Group 2 events show

generally low correlations at negative lags, indicating a negative time shift off the

āG1. A considerable number of Group 1 events have maximum correlations at lag 0,

but there is significant variation in both the correlations and lags within this group.

5.1 Discussion

Intuitively, the time and frequency domains should give similar results, because, as

noted in Zadler et al. (2005), the domains contain the same information. However, a

few observations are worth considering.

In the frequency domain, a peak in a power spectrum indicates energy present

across the duration of the signal in the time domain. In this sense, each frequency

in the spectrum represents the entire time series. Frequency domain clustering, then,

compares multiple characteristics of the entire time domain. Conversely, dissimilarity

in the time domain compares individual observations within signals. Along those

lines, the P wave pick has a larger influence on the results in the time domain than
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Figure 5.2: Events 4 and 5 spectra (I4, I5) and filtered waveforms. Event spectra
are nearly identical, especially in the region [20, 50] Hz (between the dashed vertical
lines). Bandpass filtered waveforms on [20, 50] Hz show peak shape and amplitude
dissimilarities.
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in the frequency domain. If two signals are identical but for the P pick, a constant

time shift in the series results in a large dissimilarity value in the time domain but a

very small one in the frequency domain.

Additionally, frequency domain clustering as performed here does not incorporate

the phase spectrum, whereas in the time domain, both frequency and phase are being

compared simultaneously. As with the influence of the P pick, a simple phase shift

could cause a large dissimilarity value in the time domain, altering the cluster results

between the two domains.

Because P picks are based on waveform correlations, the effects of P pick and phase

shifts are minimized to the extent possible but may become more of an issue if com-

paring events from different multiplets. However, there are still differences between

the two domains that cannot be explained so far. The events cluster in a completely

different order in the time domain, resulting in different cluster membership for two

clusters.

While the goal of the time domain clustering was to determine whether similar

spatial organization resulted using the same algorithm, the amount of time spent

studying and interpreting the results was significantly less, and the differences between

the two results deserves more attention.
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CHAPTER 6:

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The events analyzed here occur between 2002 and 2030 m and were grouped into a

single multiplet based on their waveform correlations at stations between 800 and

1550 m. Geophones between 1590 and 1705 m were not used in the original multiplet

and location analysis because of their weak arrivals and the likelihood of guided waves.

The deepest geophone, at 1705 m, is the receiver closest to the events, and waves

traveling between events and this receiver are the least affected by attenuation and

geometrical spreading. Additionally, if, waves at this geophone are head waves, their

direct waves traverse layers beneath the events, rather than only layers above. This

thesis demonstrates that information regarding location, and potentially structure,

may be gleaned from this geophone.

Visual inspection of waveforms in the time domain indicate two subsets of events

(Groups 1 and 2). Power spectra between these groups are markedly different, leading

to the supposition that events may be located in two different lithologic units or pos-

sibly have different fracture orientation. Spectral clustering further categorizes events
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within Group 1 that may be related to separate fractures. This fracture structure is

not well-identified in the time domain, likely due to spectral differences that manifest

in the time domain as both amplitude and wave shape differences. Removing events

with the largest uncertainty ellipses suggests that this method may be successful at

identifying individual en echelon fractures, thereby giving an indication of shear zones

and non-coaxial shear fracturing.

6.2 Future Work

The results presented here include one component from a single station. There are

several obvious avenues for future work, both to further explore the technique and to

utilize its results.

Possible future work using the Aneth data set includes analysis of additional

components and stations. Preliminary frequency domain analysis at Geophone 2, the

second-deepest receiver (∼ 1689 m), yields ambiguous results, which we postulate

may be the result of geophones being located at lithologic transitions (see Figure 2.7).

Frequency domain comparisons between the additional deep geophones might provide

further illumination. Additionally, comparing location uncertainties before and after

spectral clustering would give an indication of its ability to impact location analysis.

Zadler et al. (2005) illustrate the sensitivities of time and frequency domain analy-

sis with respect to coda wave interferometry and spectroscopy and discuss the ability

of each to reveal medium velocity changes. Similarly, as mentioned in Chapter 5.1,

a better characterization of the difference between time and frequency clustering re-

sults would be useful, potentially increasing understanding of how nuances of spectral

clustering are reflected in the time domain, as well as to possibly understand the geo-
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physical properties that are reflected in the clustering in each domain.

Events in Figure 2.10 trend NW-SE. Analyzing additional multiplets would not

only verify its usefulness at this site, but would also give a new cross-sectional look at

the heterogeneity of the layers underlying the reservoir, which to date have not been

greatly studied.

Spectral clustering in the frequency domain should be attempted at different sites

to determine its broader usefulness and reproducability. Assuming reasonable utility,

work remains to determine how to best incorporate results of spectral clustering into

geophysical modeling.

Popular techniques to refine hypocenter distributions include hypodd (Waldhauser

and Ellsworth, 2000) and tomodd (Zhang and Thurber, 2003), based on the double

differences between P- and S-wave arrivals of closely spaced events. The methods rely

on inter-event distances not to exceed the scale length of the velocity model, or bias

may be introduced. This work suggests that spectral clustering may help predefine

subsets of hypocenters, which in turn can then be relocated via double-difference

techniques.
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APPENDIX A:

R SCRIPTS

This appendix contains the R-scripts for this analysis, which was performed using

Version 2.9.2, GUI 1.29, Tiger build, 32-bit. R software is platform independent and

available publicly at www.R-project.org. Useful libraries, also available at the same

website, include ”Rsac”, for loading SAC files and performing seismic analysis, and

”cluster” for statistical clustering algorithms.

#2012/06/27

#################################################

#attach libraries

library(Rsac)

library(cluster)

#set paths

mymachine="dt" #"lt" for laptop, "dt" for desktop

if(mymachine=="lt"){
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#input paths

toppath="/Users/dfagan/School/EOR/"

myendian=’big’

} else{

toppath="/Users/deb/SchlumbergerEOR/"

}

datadir=paste(toppath,"Data/cluster_00018/",sep="")

codepath=paste(toppath,"RCode/",sep="")

figpath=paste(toppath,"Figures20110203/",sep="")

#################################################

#read in sac data

#get list of event directories

mydirs=list.files(topdir,pattern=glob2rx("d*"))

#get list of -component files in each event directory

fils=vector(’list’,length(mydirs))

for(i in 1:length(mydirs)){

mypath=paste(topdir,mydirs[i],sep="")

fils[[i]]=list.files(mypath,pattern=glob2rx("*E"))

}

#number of events

nev=length(mydirs)
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#read in data by event

ev=vector(’list’,nev)

names(ev)=paste(’ev’,1:nev,sep="")

for(k in 1:nev){

cat(’k=’,k,’; ’)

fnames=paste(topdir,mydirs[k],’/’,fils[[k]],sep="")

ev[[k]]=rsac(fnames,endian=’big’)

names(ev[[k]])=paste(’sta’,1:length(ev[[k]]),sep="")

}

dt=ev$ev1$sta1$dt #dt is the same for all events/stations

#################################################

#specify date of regional earthquake

eqday=158 #June 8, 2008

#################################################

#read in location data for events

#convert feet to meters

#remove events that do not have locations

evlocs=read.table(paste(toppath,"Data/AllEventLocs.txt",sep=""),

header=T,as.is=T)

#convert feet to meters in event locs

ftm=0.3048

evlocs$north.m=evlocs$north.ft*ftm
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evlocs$east.m=evlocs$east.ft*ftm

evlocs$depth.m=evlocs$depth*ftm

mymatch=match(mydirs,evlocs$event)

#check for unlocated events

evnoloc=mydirs[is.na(mymatch)]

#remove unlocated events

indx=which(is.na(mymatch),arr.ind=T)

ev=ev[-indx]

#############################################################

#read in multiplet 18 locations separately

c18locs=read.table(paste(toppath,’/Data/C18locs.txt’,sep=""),

header=T,as.is=T)

#convert feet to meters

ftm=0.3048

c18locs$north.m=c18locs$north.ft*ftm

c18locs$east.m=c18locs$east.ft*ftm

c18locs$depth.m=c18locs$depth*ftm

#####################################################

#read in geophone locations
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staloc=read.table(paste(toppath,"Data/geophoneLocs.txt",sep=""),

skip=4)

names(staloc)=c(’sonde’,’md’,’tvd’,’north’,’east’)

#convert feet to meters

ftm=0.3048

staloc[,c(’north’,’east’,’tvd’,’md’)]=

ftm*staloc[,c(’north’,’east’,’tvd’,’md’)]

#####################################################

#source functions

calcCCF.r=function(ev1=sta11f1$ev1$amp,ev2=sta11f1$ev8$amp){

#requires dt, tw

#ev1 is reference event

len=min(length(ev1),length(ev2))

nwin=floor(len*dt/tw)

win=tw/dt

seq1=seq(1,len,floor(tw/dt))

indx=rep(seq1,each=win)

indx=indx[1:len]

ev1sp=split(ev1[1:len],indx)

ev2sp=split(ev2[1:len],indx)

tmp=vector(’list’,length(unique(indx)))
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for(i in 1:length(tmp)){

tmp[[i]]=list(’strt’=seq1[i],’ev1’=ev1sp[[i]],

’ev2’=ev2sp[[i]])

}

for(i in 1:length(tmp)){

tmpccf=ccf(tmp[[i]]$ev1,tmp[[i]]$ev2,plot=F)

tmpmax=which(tmpccf$acf==max(tmpccf$acf),arr.ind=T)

tmp[[i]]$ccfmax=tmpccf$acf[tmpmax]

tmp[[i]]$maxlag=tmpccf$lag[tmpmax]

rm(tmpccf,tmpmax)

}

res=matrix(NA,nrow=length(tmp),ncol=3)

for(i in 1:length(tmp)){

res[i,]=c(tmp[[i]]$strt,tmp[[i]]$ccfmax,tmp[[i]]$maxlag)

}

dimnames(res)=list(NULL,c(’indx’,’maxcorr’,’lag’))

return(res)

}

normPk.r=function(x){

#function to normalize by max amplitude

#2011/11/29
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#x is an element of spec (an event)

#divide amplitudes by max amplitude

if(!is.null(x$spec)){

mmax=max(x$spec,na.rm=T)

x$normPk=x$spec/mmax

}elsex$normPk=NULL

x

}

#####################################################

#do analysis

sta=’sta1’

sta1ev=vector(’list’,length=length(ev))

for(k in 1:length(ev)){

sta1ev[[k]]=ev[[k]]$sta1

class(sta1ev[[k]])=’rsac’

}

names(sta1ev)=names(ev)

#remove events without arrival times

foo.r=function(x){
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#x is an element of sta1ev (an event)

x$a

}

parr=unlist(lapply(sta1ev,foo.r))

for(i in length(sta1ev):1){

if(is.na(parr[i])) sta1ev[[i]]=NULL

}

#truncate amplitudes to start at P-arrival time

foo.r=function(x){

#x is an element of sta1ev (an event)

st=floor(x$a/dt)

x$amp=x$amp[st:x$N]

}

tmp=lapply(sta1ev,foo.r)

for(k in 1:length(tmp)){

sta1ev[[k]]$amp=tmp[[k]]

}

class(sta1ev)=’rsac’

foo.r=function(x){

length(x$amp)

}
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minN=min(unlist(lapply(sta1ev,foo.r)))

###########################################

##########################################

#2012/05/25

#cluster time series straight up

#peak normalize time series

foo.r=function(x){

#get amplitudes into a matrix

x$amp[1:minN]/max(x$amp[1:minN])

}

sta1evamp=matrix(unlist(lapply(sta1ev,foo.r)),nrow=minN,

ncol=length(sta1ev))

sta1evamp=t(sta1evamp) #rows are events, columns are time

tm=seq(0,(minN-1))

dimnames(sta1evamp)=list(names(sta1ev),tm)

tmclust=hclust(dist(sta1evamp)^2,’ward’)

outname=paste(sta,’_tccf_dend’,sep="")

par(mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(tmclust,ylab=’Dissimilarity’,cex=0.7,mgp=c(2,0.5,0),

tcl=-0.2)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=-0.5,outer=T,adj=1,cex=0.6)
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mtext(paste(codepath,"Eg1tccfV1_sta1.r ",sep=""),side=1,

line=0.5,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

#initialize time cluster object (only do once)

#tmcl=vector(’list’,length=length(ev$ev1))

#names(tmcl)=names(ev$ev1)

nclust=2

tmcl$sta1=cutree(tmclust,k=nclust)

#plot locations color coded by group

colvec2=rep(NA,length(tmcl))

colvec2[tmcl$sta1==1]=’blue’

colvec2[tmcl$sta1==2]=’green’

colvec2[tmcl$sta1==3]=’red’

colvec2[tmcl$sta1==4]=’orange’

colvec2[tmp2$sta1==5]=’magenta’

match2=match(names(tmcl$sta1),c18locs$ev)

leglab=paste("Group",1:nclust)
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legcol=unique(colvec2)

outname=paste(sta,’_tccf_ENlocs_’,nclust,sep="")

par(mfrow=c(1,1),mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(c18locs$east.m[match2],c18locs$north.m[match2],col=colvec2,

xlab=’East (m)’, ylab=’North (m)’, mgp=c(2,0.5,0),tcl=-0.2)

legend(x=’topright’,legend=leglab, col=legcol, pch=rep(1,3), cex=0.7,

inset=0.015)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,line=0,

outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

yrng=c(max(c18locs$depth.m[match2]),min(c18locs$depth.m[match2]))

outname=paste(sta,’_tccf_EZlocs_’,nclust,sep="")

par(mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(c18locs$east.m[match2],c18locs$depth.m[match2],

col=colvec2,xlab=’east (m)’,ylab=’depth (m)’,

mgp=c(2,0.5,0),tcl=-0.2,ylim=yrng)
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mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=0,outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

#do cross correlations with group means

#get cluster mean time series

clmeans=vector(’list’,length=nclust)

names(clmeans)=paste(’cl’,1:nclust,sep=’’)

for(i in 1:nclust){

clmeans[[i]]=apply(sta1evamp[tmcl$sta1==i,],2,mean)

}

#initialize ccf list

tmclccf=vector(’list’,length=nclust)

names(tmclccf)=paste(’cl’,1:nclust,sep=’’)

nlag=30 #corresponds to 0.02 s

tm=(-nlag:nlag)*dt

#populate it

for(i in 1:nclust){

cat(’i=’,i,’; ’)
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tmclccf[[i]]=vector(’list’,nrow(sta1evamp))

names(tmclccf[[i]])=dimnames(sta1evamp)[[1]]

for(j in 1:nrow(sta1evamp)){

cat(’j=’,j,’; ’)

tmp=ccf(x=clmeans[[i]],y=sta1evamp[j,],lag.max=nlag)

tmclccf[[i]][[j]]=data.frame(tm,’lag’=tmp$lag,’acf’=tmp$acf)

}

rm(tmp)

}

#pull off max ccf and corresponding lag

foo.r=function(x){

#x is an element of tmclccf[[i]] (an event)

ind=which(x$acf==max(x$acf),arr.ind=T)

x[ind,]

}

foo1.r=function(x){

#x is an element of tmclccf (a cluster mean)

lapply(x,foo.r)

}

tmp=lapply(tmclccf,foo1.r)

#pull off max

tmccfmax=vector(’list’,length(tmp))

names(tmccfmax)=names(tmp)

for(i in 1:length(tmp)){
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tmccfmax[[i]]=cbind(tmcl$sta1,

matrix(unlist(tmp[[i]]),ncol=3,byrow=T))

dimnames(tmccfmax[[i]])=list(names(sta1evamp),

c(’cl’,’tm’,’lag’,’maxccf’))

tmccfmax[[i]]=as.data.frame(tmccfmax[[i]])

}

#plot

outname=paste(sta,’tm_ccfmax’,sep=’’)

mycol=c(’blue’,’green’)

colvec=rep(NA,length(tmccfmax$cl1))

ind=tmccfmax$cl1$cl==1

colvec[ind]=’blue’

colvec[!ind]=’green’

par(mfrow=c(1,2))

plot(tmccfmax$cl1$tm,tmccfmax$cl1$maxccf,col=colvec,cex=0.8,

xlab=’Lag (s)’,ylab=’Maximum Cross-correlation’,

mgp=c(1.5,0.5,0),tcl=-0.25)

abline(v=0,lty=2,col=’gray’)

colvec=rep(NA,length(tmccfmax$cl2))

ind=tmccfmax$cl2$cl==1

colvec[ind]=’blue’

colvec[!ind]=’green’

plot(tmccfmax$cl2$tm,tmccfmax$cl2$maxccf,col=colvec,cex=0.8,
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xlab=’time (s)’,ylab=’max(ccf)’,mgp=c(1.5,0.5,0),tcl=-0.25)

abline(v=0,lty=2,col=’gray’)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,line=0,

outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

###########################################

##########################################

#2012/05/25

#cluster spectra straight up

#get spectra for each event, starting with arrival time and series

#length==min(len)

#if an event does not have an arrival time, spec[event]==NULL

foo.r=function(x){

#x is an element of sta1ev (an event)

spectrum(ts(data=x,start=0,frequency=dt),plot=F)

}

sta1spec=apply(sta1evamp,1,foo.r)
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freq=sta1spec[[1]]$freq

#normalize spectra by peak frequency and append to

#each element of spec

tmp=lapply(sta1spec,normPk.r) #move through events

sta1spec=tmp

rm(tmp)

#cluster using hclust, method=’ward’

#1. get spectra into a matrix

foo.r=function(x){

#x is an element of spec (a station)

if(!is.null(x$normPk)) x$normPk

}

sta1specmx=matrix(unlist(lapply(sta1spec,foo.r)),ncol=length(freq),

byrow=T)

dimnames(sta1specmx)=list(names(sta1spec),freq)

#2. cluster

#intialize cluster object (only do this once)

#cl=vector(’list’,length=length(ev[[1]])) #number of stations

#names(cl)=names(ev[[1]]) #names are station names

#calculate starting centroids using hclust
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tmp=hclust(dist(sta1specmx)^2,’ward’)

#plot dendrogram (station 1 dendrogram plot below)

outname=paste(sta,’fDend_plain’,sep="")

par(mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(tmp,cex=0.65,ylab="Dissimilarity (Hz^2)",mgp=c(2,1,0),

tcl=-0.02,cex.axis=0.8)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,line=-0.5,

outer=T, adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.5,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

#choose number of clusters

nclust=2

km=cutree(tmp,k=nclust)

#organize output of hclust to be similar to kmeans

match1=match(sta,names(cl))

cl[[match1]]$cluster=km
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colvec2=rep(NA,length(cl$sta1$cluster))

colvec2[cl$sta1$cluster==1]=’purple’

colvec2[cl$sta1$cluster==2]=’green’

colvec2[cl$sta1$cluster==3]=’red’

colvec2[cl$sta1$cluster==4]=’orange’

colvec2[cl$sta1$cluster==5]=’magenta’

match1=match(names(cl$sta1$cluster),c18locs$ev)

leglab=paste("Group",1:nclust)

legcol=unique(colvec2)

outname=paste(sta,’_fccf_ENlocs_’,nclust,sep="")

par(mfrow=c(1,1),mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(c18locs$east.m[match1],c18locs$north.m[match1],col=colvec2,

xlab=’East (m)’, ylab=’North (m)’, mgp=c(2,0.5,0),tcl=-0.2)

legend(x=’topright’,legend=leglab, col=legcol, pch=rep(1,3),

cex=0.7,inset=0.015)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,line=0,

outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))
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rm(outname)

yrng=c(max(c18locs$depth.m[match1]),min(c18locs$depth.m[match1]))

outname=paste(sta,’_fccf_EZlocs_’,nclust,sep="")

par(mar=c(3,3,1,1),oma=c(4,1,2,1))

plot(c18locs$east.m[match1],c18locs$depth.m[match1],col=colvec2,

xlab=’East (m)’,ylab=’Depth (m)’,mgp=c(2,0.5,0),tcl=-0.2,ylim=yrng)

#legend(x=’bottomright’, legend=c("Group 1","Group 2","Group 3"),

col=c("blue","green","red"), pch=rep(1,3), cex=0.7, inset=0.015)

abline(h=vel$bdepth[5],lty=2)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,line=0,

outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

#######################################################

########################################################

########################################################

#plot 2 filtered waves to highlight either shoulder or double peaks

#find events with nearly identical spectra in a low frequency band
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flo=20

fhi=50

outname=paste(sta,’_ev4ev5spec’,sep="")

par(mar=c(3,3,1,2),oma=c(4,1,2,1))

plot(sta1specmx[4,1:600],type=’l’,col=’blue’,xlab="Frequency (Hz)",

ylab="Normalized Intensity",mgp=c(2,0.5,0),tcl=-0.2)

lines(sta1specmx[5,1:600],col=’green’)

abline(v=c(flo,fhi),lty=2)

legend(x=’topright’,legend=paste(’Event’,c(4,5)),

col=c(’blue’,’green’),pch=rep(1,2),cex=0.8,inset=0.01)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=0,outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

#filter

tmp=vector(mode=’list’)

tmp[[1]]=sta1ev$ev4

tmp[[2]]=sta1ev$ev5
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class(tmp)=’rsac’

x=iir(tmp,fl=flo,fh=fhi,proto="BU",type="BP")

tm=(1:minN)*dt

outname=paste(sta,’_ev4ev5ftrace’,sep="")

par(mar=c(3,3,1,2),oma=c(4,1,2,1))

plot(tm,x[[1]]$amp[1:minN]/max(x[[1]]$amp),type=’l’,

col=’blue’,xlab=’Time (s)’,ylab=’Normalized amplitude’,

mgp=c(2,0.5,0),tcl=-0.2)

lines(tm,x[[2]]$amp[1:minN]/max(x[[2]]$amp),col=’green’)

legend(x=’topright’,legend=paste(’Event’,c(4,5)),

col=c(’blue’,’green’),lty=rep(1,2),cex=0.8,inset=0.01)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=0,outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Etmfr_ccf_sta2.r ",sep=""),

side=1,line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

##########################################

#2012/05/24

#calculate mean time series from group 1 correlated with
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#all time series

foo.r=function(x){

#get amplitudes into a matrix and peak normalize

x$amp[1:minN]/max(x$amp[1:minN])

}

sta2evamp=matrix(unlist(lapply(sta2ev,foo.r)),nrow=minN,

ncol=length(sta2ev))

tm=seq(0,(minN-1))

dimnames(sta2evamp)=list(tm,names(sta2ev))

sta2evamp.mn=apply(sta2evamp,1,mean)

foo.r=function(x,y=sta2evamp.mn){

#x is a row of sta2evamp (an event)

tmp=ccf(x,y,lag.max=30,plot=F)

}

sta2evtccf=apply(sta2evamp,2,foo.r)

names(sta2evtccf)=names(sta2ev)

foo.r=function(x){

#x is an element of sta2evtccf (an event)

length(x$lag)

}

tmp=NULL

for(i in 1:length(sta2evtccf)){
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tmp=rbind(tmp,sta2evtccf[[i]]$acf)

}

dimnames(tmp)=list(names(sta2ev),seq(-30,30))

outname="sta2_tacfmx"

x=seq(-30,30)*dt

y=1:length(sta2evtccf)

par(mar=c(3,3,1,1),oma=c(4,1,1,1))

image(x,y,t(tmp),col=gray(seq(0,1,length=61)),

xlab=’lag (s)’,ylab=’’,mgp=c(1.5,0.5,0.1),mar=c(4,3,1,1),

yaxt=’n’,cex.axis=0.9)

axis(side=2,at=y,labels=names(sta2evtccf),cex.axis=0.7,las=2,

mgp=c(2,0.5,0),tcl=-0.2)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=-0.5,outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Eg1avgdtvtV2_sta2.r ",sep=""),side=1,

line=0.5,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

tmp2=hclust(dist(tmp),’ward’)

tmp3=cutree(tmp2,k=3)
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outname=’sta2_tccf_g1dend’

par(mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(tmp2,ylab=’dissimilarity’,cex=0.7,mgp=c(2,0.5,0),tcl=-0.2)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=-0.5,outer=T,adj=1,cex=0.6)

mtext(paste(codepath,"Eg1avgdtvtV2_sta2.r ",sep=""),side=1,

line=0.5,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

clmatch=match(names(tmp3),names(cl$sta2$cluster))

table(tmp3,cl$sta2$cluster[clmatch])

#find events that switch cluster membership

tmp3diff=tmp3-cl$sta2$cluster[clmatch]

table(tmp3diff)

#tmp3diff

ind=tmp3diff!=0

cbind(tmp3[ind],cl$sta2$cluster[ind])
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#original color scheme

#cl$sta2$cluster = 1==1W (blue) 2==2 (green) 3==1E (red)

colvec1=rep(NA,length(cl$sta2$cluster))

colvec1[cl$sta2$cluster==1]=’blue’

colvec1[cl$sta2$cluster==2]=’green’

colvec1[cl$sta2$cluster==3]=’red’

match1=match(names(cl$sta2$cluster),c18locs$ev)

colvec2=rep(NA,length(tmp3))

colvec2[tmp3==1]=’blue’

colvec2[tmp3==2]=’green’

colvec2[tmp3==3]=’red’

match2=match(names(tmp3),c18locs$ev)

outname=’sta2_tccf_fccf_locs’

par(mfrow=c(1,2),mar=c(3,3,1,1),oma=c(4,1,1,1))

plot(c18locs$east.m[match1],c18locs$north.m[match1],

col=colvec1,xlab=’east’, ylab=’north’,mgp=c(2,0.5,0),

tcl=-0.2,cex.axis=0.8)

plot(c18locs$east.m[match2],c18locs$north.m[match2],

col=colvec2,xlab=’east’,ylab=’north’,mgp=c(2,0.5,0),

tcl=-0.2,cex.axis=0.8)

mtext(paste(figpath,outname,".eps ",sep=""),side=1,

line=0,outer=T,adj=1,cex=0.6)



81

mtext(paste(codepath,"Eg1tccfV1_sta2.r ",sep=""),side=1,

line=0.75,outer=T,adj=1,cex=0.6)

mtext(paste(date()," ",sep=""),side=1,line=1.5,outer=T,

adj=1,cex=0.6)

dev.print(file=paste(figpath,outname,".eps",sep=""))

rm(outname)

q(’yes’)


