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ABSTRACT

The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation

products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data

assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of pre-

cipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of sea-

sonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal down-

scaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect

the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of

small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the

wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the ref-

erence National Centers for Environmental Prediction stage IV dataset than similar summertime experiments.

This study concludes that theWRF4D-Var system is able to effectively downscale a 6-h precipitation product with

a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—

relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.

1. Introduction

Precipitation is an important component of global and

regional hydrologic cycles. Since December 1997, the

Tropical Rainfall MeasuringMission (TRMM) has been

providing a wealth of spaceborne precipitation data.

Among these, the TRMM Multisatellite Precipitation

Analysis (TMPA) has provided 3B42 rainfall products

at resolutions as fine as 0.258 3 0.258 in space and 3h in

time over the tropics, which covers 508N–508S (Huffman

et al. 2007). The success of the TRMM has led to the

Global PrecipitationMeasurement (GPM)mission, which

consists of a core observatory and a complementary set of

existing and new satellites that will be cross calibrated and

operated as a constellation.As a successor of the TRMM,

the GPM will provide spaceborne observations of pre-

cipitation with unprecedented resolutions that may reach

up to 0.18 3 0.18 every 30min in the future for a merged

product that combines GPM core observations with

measurements provided by other partner radiometers

and infrared instruments (Hou et al. 2008, 2014).

From a hydrologic point of view, evolution of hourly

high-intensity rain cells typically occurs at a spatial scale

smaller than 10km, which may not be fully resolved in

satellite-based products. To enhance the resolution of

satellite-based precipitation for hydrologic applications,

such as flash flood forecasting and landslide prediction,

numerous downscaling approaches have been studied.

The two most common families of methodologies are dy-

namical and statistical downscaling approaches. Statistical

methods consist of a large group of methodologies that use
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empirical multiscale statistical relationships, parameterized

by observations or other environmental predictors, to

reproduce realizations of multiscale precipitation fields

(Fowler et al. 2007). This family of downscaling ap-

proaches is not typically capable of resolving the com-

plex underlying dynamics of precipitation processes and

is thus unable to produce realistic and sufficiently ac-

curate precipitation at high spatiotemporal resolutions

(Gutmann et al. 2012). On the other hand, dynamical

downscaling approaches are computationally more de-

manding than their statistical counterparts (Hellstrom

et al. 2001) but are able to resolve the inherent pre-

cipitation dynamics (Schmidli et al. 2007). In addition,

the family of dynamical downscaling methods is also

able to provide hydrometeorological variables (e.g.,

downward radiation, surface temperature, and surface

wind speed) that are physically consistent with the

downscaled precipitation and required by many hydro-

logical models. To this end, this paper attempts to use

a physically based mesoscale weather forecasting model

together with a variational data assimilation (DA) scheme

for producing high-resolution hourly precipitation prod-

ucts with a spatial scale of less than 10km in grid spacing.

Data assimilation—amathematical approach integrating

observations into a dynamicmodel—is used to dynamically

downscale satellite precipitation products with an at-

mospheric prediction system for hydrologic applications

(Zupanski et al. 2011; Zhang et al. 2013). Together with

data assimilation, dynamical downscaling approaches

that use a physically based model can integrate satellite

observations with underlying physics to spatially and

temporally downscale coarse-scale precipitation data and

other meteorological variables. To provide improved

precipitation analysis, some studies have focused on the

assimilation of precipitation into atmospheric models

using variational data assimilation techniques. For ex-

ample, the four-dimensional variational data assimila-

tion (4D-Var) of precipitation has been implemented in

operational regional climate models, including those of

the Japan Meteorological Agency (JMA) and the Met

Office of the United Kingdom (Bauer et al. 2011b). The

4D-Var technique has been shown to improve short-

term (i.e., 1–3 days) precipitation forecasts (Tsuyuki

1996a,b, 1997; Zupanski and Mesinger 1995). Koizumi

et al. (2005) used the JMA 4D-Var system to assimilate

1-h radar-based precipitation data at a spatial resolution

of 20 km and found improved precipitation forecasts up

to 18 h ahead. Mesinger et al. (2006) assimilated hourly

precipitation observations into the North American

Regional Reanalysis system, which provides 32-km spatial

resolution products every 3h, and demonstrated improve-

ments in the precipitation analysis compared to the refer-

encemonthly observations. Furthermore, Lopez (2011) and

Lopez and Bauer (2007) assimilated the National Cen-

ters for Environmental Prediction (NCEP) stage IV

gauge-corrected radar precipitation into the global In-

tegrated Forecasting System of the European Centre for

Medium-Range Weather Forecasts (ECMWF) and

found substantial improvement in the short-term (i.e.,

up to 12 h) precipitation forecasts.

As an alternative to direct assimilation of pre-

cipitation, the assimilation of satellite radiances into

atmospheric models is also frequently used to improve

precipitation forecasts. The assimilation of radiances,

however, requires a radiative transfer model, which

simulates radiances at the top of the atmosphere based

on simulated atmospheric (and sometimes land) states.

Compared to precipitation assimilation, radiance as-

similation is more straightforward, partly because the

nonzero and space–time continuous nature of radiances

that better conform to the Gaussian assumption in data

assimilation. However, radiance assimilation can be

challenging because of the difficulty of resolving cloud

water in an atmospheric data assimilation system. Bauer

et al. (2006a,b) implemented a 1D 1 4D-Var algorithm

into the ECMWF system to assimilate radiances under

rainy conditions, while Bauer et al. (2010) and Geer

et al. (2010) used a 4D-Var algorithm to assimilate all-

sky radiances. Zupanski et al. (2011), Zhang et al. (2013),

and Chambon et al. (2014) used an ensemble data as-

similation system to assimilate precipitation-affected ra-

diances such as those from the Advanced Microwave

Scanning Radiometer for Earth Observing System

(AMSR-E), the TRMM Microwave Imager (TMI), and

the Microwave Humidity Sounder (MHS) for improving

precipitation forecasts and providing downscaled pre-

cipitation estimates relevant to theGPMproducts. Zhang

et al. (2013) found that the precipitation forecasts can be

improved by radiance assimilation, and this improvement

becomes more pronounced when precipitation intensity

decreases and the spatial scale of analysis coarsens.

Chambon et al. (2014) showed that the radiance assimi-

lation reduces the root-mean-square error (RMSE) of

2-day accumulated precipitation at a 9-km resolution by

8.1% and improves the correlation of spatial rainfall

patterns from 0.57 to 0.63, when compared to the results

without assimilating radiances.

TheWeather Research and Forecasting (WRF)Model

data assimilation (WRFDA) is an open-source system

that has been widely used to improve precipitation fore-

casting. Because of the growing interest in the WRFDA

system and associated community-based developments,

the WRFDA system has been equipped with extensive

capability to assimilate various types of observations. The

WRFDAsystemhasDAoptions such as three-dimensional

variational data assimilation (3D-Var), 4D-Var, and hybrid
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variational-ensemble DA that permit assimilating

a wide range of observations including in situ measure-

ments, Doppler radar reflectivity, precipitation, and ra-

diances (Barker et al. 2012; Wang et al. 2013). For

example, the 3D-Var assimilation of conventional

ground-based data and radiance observations has been

used for improving precipitation forecasts at various

spatial resolutions (Ha et al. 2011; Ha and Lee 2012;

Hsiao et al. 2012; Liu et al. 2012; Routray et al. 2010;

Schwartz et al. 2012; Xu and Powell 2012).

This study uses version 3.4 of the WRF Model (see

Skamarock et al. 2008) and theWRFDA system (Barker

et al. 2004, 2012; Huang et al. 2009). Note that the

WRFDA system is currently not fully capable of as-

similating precipitation-affected radiances (Barker et al.

2012), and thus, we only focus on the assimilation of

precipitation for our dynamical downscaling experi-

ments using the 4D-Var module. Specifically, we first

focus on assimilating a point-scale observation at a sin-

gle site to shed light on the sensitivity of dynamical

downscaling to precipitation assimilation. Afterward, in

real case experiments, we study the impact of outlier

removal and seasonality on dynamical precipitation

downscaling. It is important to note that, unlike classic

data assimilation studies, which focus on improving the

forecast skills of a model, we use the WRF Model and

the WRFDA system to improve the spatiotemporal

resolution of remotely sensed rainfall observations. In

this paper, we use an upscaled (20-km grid boxes) ver-

sion of 6-h NCEP stage IV precipitation [see Lin and

Mitchell (2005) for the original version of stage IV data]

as a general surrogate for a coarse-scale remotely sensed

precipitation product and compare the downscaled re-

sults with the reference stage IV data at a gridded spatial

resolution of 9 km. Although the spatial scale of the

surrogate input precipitation is chosen closely to the

current TRMM 3B42 product, we assimilated 6-h pre-

cipitation to be consistent with the default assimilation

window of the WRF 4D-Var system. It is worthwhile

noting that Lopez (2011) reported that assimilating 6-h

stage IV precipitation in their ECMWF system ex-

hibited more improved analyses than assimilating 1- or

3-h precipitation. In addition, we need to note that the

chosen surrogate precipitation may not be fully consis-

tent with the envisaged future space–time resolution of

the GPM products. However, as we use a physically

based model for downscaling, the promising results of

this attempt can be considered as a proof of concept for

possible downscaling of GPM precipitation to the hy-

drologic scales of interest.

In summary, the main findings of this study are the

following: 1) the proposed dynamical downscaling

framework can effectively reproduce high space–time

resolution data from coarse-scale remotely sensed pre-

cipitation measurements; 2) the approach can suppress

false heavy rainfall forecasts in the final downscaled

fields; and 3) the methodology can properly translate

assimilated data from the coarse-resolution parent do-

main into the high-resolution child domain and resolve

the small-scale rainfall variability of interest. The rest of

the paper is organized as follows. Section 2 presents the

numerical experiment setup. Section 3 shows the results

of three experiments, and section 4 discusses conclusions

and future research.

2. Model configurations and experiment design

This study configured the WRF Model with a nested

domain as shown in Fig. 1, covering an outer 160 3 100

domain with a 36-km resolution and an inner 1213 101

domain with a 9-km resolution. One-way nesting was

used in order to support assimilation of coarse-scale

precipitation and facilitate dynamical downscaling. The

top pressure level of the experimental domain is set at

50 hPa with 40 vertical levels extending to the ground

surface. The WRF Model physics options used in this

study include schemes of the WRF single-moment

3-class microphysics (Hong et al. 2004), the Rapid Ra-

diative Transfer Model for longwave radiation (Mlawer

et al. 1997), the Dudhia shortwave radiation (Dudhia

1989), the MM5 similarity surface layer, the Noah land

surface model (Chen and Dudhia 2001), the Yonsei

University (YSU) planetary boundary layer (Hong et al.

2006), and the Kain–Fritsch cumulus parameterization

(Kain and Fritsch 1990).

Figure 2 shows our experiment flowchart.We conducted

three sets of experiments over three different periods:

1) a synthetic experiment that investigates the assimilation

of a point-scale precipitation observation from 1800 UTC

10 June to 0000 UTC 11 June 2009, 2) winter experiments

on 11 February 2009, and 3) summer experiments from

FIG. 1. Model domain configuration with an outer domain (D01)

of 160 3 100 grids with a 36-km resolution and an inner domain

(D02) of 121 3 101 grids with a 9-km grid resolution.
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1800 UTC 10 June to 1800 UTC 15 June 2009. In these

experiments, we use a 6-h analysis cycle, and thus, each

set of experiments contains 1, 4, and 20 analysis cycles,

respectively. The purpose of the point-scale experiment

is to understand the sensitivity of precipitation assimi-

lation in the WRFDA system. In both the winter and

summer experiments, we investigate the impact of the

built-in quality-control option on our downscaling ap-

proach. In contrast to the winter experiments, the sum-

mer experiments are important for evaluating the ability

of our dynamical downscaling approach to reproduce

precipitation at fine space–time resolutions during con-

vective events.

For all WRFDA experiments, we specify several

general settings, including the specifications of the as-

similation domain, first guesses, cycling mode, and

background error covariance estimation. First, the DA

process is employed only on the outer domain as all

experiments use one-way nesting. Second, all experi-

ments use the NCEP Final (FNL) operational global

analysis dataset with 6-h, 18 3 18 resolutions to generate

first guesses or ‘‘background states.’’ Third, this study

designs a noncycling process, in which the first guesses

are generated based on NCEP FNL data, while the first

guesses in the cycling mode are typically obtained from

short-range (typically 1–6 h) forecasts (Skamarock et al.

2008, p.88). Fourth, the control variables (CVs) in the

WRFDA system are streamfunction, unbalanced po-

tential velocity, unbalanced temperature, unbalanced

surface pressure, and pseudorelative humidity (Barker

et al. 2004). For all cases, the background error co-

variance was obtained by computing the average dif-

ference between 12- and 24-h forecasts valid at the same

time using the National Meteorological Center (NMC)

FIG. 2. Flowchart of this study.
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method (Parrish and Derber 1992). The NMC method

generates domain-dependent, static background error

covariance matrices, referred to as CV5 in the WRFDA

system.

In addition to the above general WRFDA settings, we

have two specific settings for the WRF 4D-Var assimi-

lation of precipitation. These include an optional quality

control for innovations (i.e., observation minus back-

ground) and constructing the thinning mesh. First, in

some experiments, we employ the quality control of in-

novation (QCI) to reject outlier observations for which

the innovation exceeds 5 times the specified observation

error, which is set to 2mm (6h)21 in all experiments.

Moreover, we use a 20-km thinning mesh to reduce

overlapping observations at a given spatial resolution.

To understand how point-scale rainfall assimilation

affectsWRFprimary state variables, we first conduct the

4D-Var synthetic experiment involving assimilation of

only one perturbed precipitation observation at an arbi-

trary location (34.278N, 98.168W). The selected location is

associated with approximately 26mm of accumulated

precipitation over a 6-h period in the open-loop forecasts,

which representWRF forecasts without any assimilation

in this study. As is evident, the position of this point is

carefully selected, as it is surrounded by a strong pre-

cipitation forecast. Using the explained experiment

settings, we assimilate a synthetic observation, which is

generated by adding a small (1mm) positive increment

to the 6-h precipitation forecast at the selected location.

The winter and summer seasons are characterized by

different precipitation patterns and mechanisms. The

winter experiments focus on a large-scale extratropical

cyclone over the United States dominated by stratiform

precipitation that lasted for almost 1 day over our study

domain. On the other hand, the summer experiments in-

clude strong and local convective storms over the 5 days.

Since the resolution of the assimilated precipitation does

not capture the local nature of these intense summer-

time convective events, recovery of these small-scale,

high-intensity activities using the dynamical downscal-

ing approach is challenging. To study the effects of large

innovations in dynamical downscaling, we also in-

vestigate two scenarios, with and without the QCI in

both winter and summer experiments.

3. Results

a. Statistical basis for the comparison of experiments

We use three main statistical metrics to quantify the

performance of the proposed dynamical downscaling ap-

proach, namely, 1) RMSE, 2) mean absolute error (MAE),

and 3) correlation r between modeled (downscaled) and

observed (reference) precipitation. TheRMSE is defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nm
�
n

i51
�
m

j51

[RM(i, j)2RO(i, j)]
2

s
, (1)

whereRM andRO are them-by-nmodeled and observed

precipitation 2D fields, respectively. The MAE is de-

fined as follows:

MAE5
1

nm
�
n

i51
�
m

j51

jRM(i, j)2RO(i, j)j . (2)

Note that the RMSE markedly penalizes large anom-

alies compared to the MAE, which uniformly penalizes

all anomalies. Furthermore, to explore the predictive skill

of the proposed dynamical downscaling approach, we

also use normalized differences between the performance

metrics of the open-loop and 4D-Var results, as follows:

RMSEopen loop2RMSEDA

RMSEopen loop

(3)

and

MAEopen loop2MAEDA

MAEopen loop

. (4)

To evaluate the correlation between the downscaled and

reference precipitation fields, the classic Pearson cross-

correlation coefficient (i.e., r) is used.

b. Point-scale assimilation experiment

Figure 3 shows the analysis increments (i.e., analyses

minus the first guesses) of zonal wind, meridional wind,

surface dry air mass pressure, surface pressure, potential

temperature, and specific humidity at the lowest model

level. These figures are meant to demonstrate how

a small (1mm) perturbation in the assimilated pre-

cipitation propagates into the WRF state variables via

the 4D-Var algorithm. As a result of assimilation,

maximum analysis increments are 3.28 3 1024m s21 for

zonal wind, 4.25 3 1024m s21 for meridional wind,

0.24Pa for surface dry air mass pressure, 0.031Pa for

surface pressure, 2.7 3 1024K for potential tempera-

ture, and 2.01 3 1026 kg kg21 for specific humidity.

While the maximum absolute increments are small, it is

interesting to note that the 4D-Var algorithm in the

WRFDA system affects the primary state variables over

a relatively large area, which may be partly due to the

smoothing effects of the background error covariance.

Unlike other state variables with widespread increments,

the specific humidity shows a limited spatial spread.

Despite the fact that the small magnitude of the as-

similated perturbation did not substantially affect the

magnitude ofWRF primary state variables, we found that
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the influence on the analysis rainfall is substantial. Figure 4a

shows the open-loop forecasts of the rainfall field from

1800 UTC 10 June to 0000 UTC 11 June 2009 covering

the contiguous United States, while Fig. 4b shows the

6-h accumulated rainfall analyses minus the open-loop

forecasts. A total of 116 pixels out of 160 000 pixels have

6-h deviation (analysis minus forecast) greater than

1mm with the maximum value of 9.17mm. Note that

those pixels usually correspond to rainy pixels of the

open-loop forecast. After 6h of nonlinear model in-

tegration, the small rainfall perturbation not only is

propagated throughout the entire domain but also causes

a significant deviation much larger than the perturbation

itself over a significant surrounding area. The results

clearly suggest that the 4D-Var rainfall analysis might be

markedly sensitive to assimilated rainfall observations.

c. Winter experiments

In this section, we focus on the winter experiments

and devote special attention to comparing the results of

multiple assimilation scenarios. As the NCEP stage IV

data are only available over land, we selected a rectangular

region of interest that corresponds to 66 3 41 grid cells

(2706 pixels total) within the outer domain. The winter

experiments consist of the following three scenarios:

1) OpL,which is theopen-loopWRF forecastwithoutDA;

2) P-noQCI, which is assimilation of 20 km, 6-h accu-

mulated precipitation P using the 4D-Var algorithm

without the QCI; and

3) P-QCI, which is the same asP-noQCI but with theQCI.

Figure 5 shows 1-day precipitation accumulations

from the reference NCEP stage IV data, the open-loop

forecasts, and the two precipitation assimilation sce-

narios. The analysis fields show a good visual agreement

with the reference field, which is also well reflected in

the computed statistical metrics (see Fig. 5d). Moreover,

the improvement is more significant when we use the

built-in QCI. Note that, in each analysis cycle during the

1-day experiments, the P-noQCI scenario used the en-

tire 29 996 precipitation data points within the outer

domain, while the P-QCI experiment filtered out 431,

FIG. 3. The increments of several variables defined as the analyses minus the first guesses at the lowest model

level from the synthetic experiment of the 4D-Var assimilation of a 6-h accumulated precipitation observation at

a single site: (a) zonal wind (m s21), (b) meridional wind (m s21), (c) surface dry air mass pressure (Pa), (d) surface

pressure (Pa), (e) potential temperature (K), and (f) specific humidity (kg kg21).
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444, 279, and 338 data points in four analysis cycles,

respectively. About 1% of the observations is removed

in the analysis cycle and ultimately leads to a significant

improvement in the precipitation analysis. Note also

that, although P-noQCI leads to a close visual

agreement with the reference data, the quantitative im-

provements are marginal, compared to the OpL scenario.

In contrast, the P-QCI scenario shows the best RMSE

(4.98mm) and MAE (2.43mm), which are equivalent to

29% and 28% relative improvements, respectively. This

finding suggests that the removal of outliers can be a key

element for successful implementation of the proposed

dynamical downscaling via precipitation assimilation

during the winter.

d. Summer experiments

In this section, we study the performance of dynamical

downscaling for the summer experiments over both 36-

(outer domain) and 9-km (inner domain) resolutions.

Figure 6 shows the 5-day precipitation accumulations at

the 36-km resolution for the same scenarios described in

section 3c. The 4D-Var with the QCI scenario shows the

most improved downscaled precipitation (Fig. 6d), while

the 4D-Var without the QCI scenario shows significant

overestimation (Fig. 6c). When compared to the refer-

ence dataset and OpL forecasts, the assimilation with

the QCI scenario markedly improves the spatial pat-

terns of precipitation analyses. For instance, the P-QCI

scenario captures a band of rainfall that extends from

northeastern Colorado through Kansas, northern

Oklahoma, and northernArkansas to northernGeorgia,

while the OpL scenario does not. In addition, the P-QCI

scenario produced lower-intensity rainfall around In-

diana, leading to a closer agreement with the reference

data. Statistics of the 5-day precipitation accumulations

also confirm that the 4D-Var assimilation with the QCI

can substantially improve the spatial distributions of

FIG. 4. Precipitation analysis and forecast [mm (6 h)21] in the

point-scale assimilation experiment from 1800 UTC 10 Jun to

0000 UTC 11 Jun 2009. (a) The 6-h accumulated precipitation of

the open-loop experiment. (b) The deviation of 6-h accumulated

precipitation computed as the precipitation of the DA experiment

minus that of the open-loop experiment with a constrained scale

from 25 to 5mm (6 h)21.

FIG. 5. The 1-day accumulated precipitation (mm) at the 36-km resolution for the winter experiments: (a) refer-

ence data from NCEP stage IV precipitation observations, (b) OpL, (c) P-noQCI, and (d) P-QCI. The RMSE

(mmday21), MAE (mmday21), and r of modeled and observed precipitation are reported in (b)–(d).
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precipitation. However, as is apparent, the assimilation

experiment produces too much precipitation over north-

eastern Arkansas and western Tennessee. In addition to

5-day accumulations, we also compare the hourly domain

means of the reference data with those of the P-QCI and

the OpL scenarios at the 36-km resolution over the study

region introduced in section 3c (Fig. 7). The results dem-

onstrate that the hourly domain means of the P-QCI

scenario are closer to those of the reference data than those

for theOpL forecasts (Figs. 7a,b), showing the effectiveness

of the QCI in our dynamical downscaling approach. In the

sections below,wewill only analyze thewinter and summer

assimilation experiments using the QCI.

The results for a selected region of interest in the inner

domain (1013 81 pixels at 9-km resolution) are shown in

Fig. 8, which compares 5-day precipitation accumulations

from the 4D-Var and the open-loop experiments with the

reference data. This region excludes a 10-grid space of

each side of the inner domain for convenience of analysis

and to avoid any boundary effect. A closer scrutiny of

Fig. 8 clearly shows that the dynamical downscaling ap-

proach improves the estimation of rainfall spatial distri-

bution. In particular, four distinct features confirm that

the 4D-Var experiment outperforms the open-loop ex-

periment. First, a rainband from about 428N, 1048W to

378N, 978W (a white-line irregular shape in Fig. 8) is

captured by the 4D-Var experiment, which is in agree-

ment with the reference data, but not capturedwell by the

open-loop experiment. Second, along latitude 398–408N
and within longitude 958–998W, the open-loop experi-

ment predicted heavy rain of 40–80mm, which is

corrected with the data assimilation. Third, the WRF

4D-Var system successfully recovers a narrow strip with

heavy precipitation along latitude 408N and within lon-

gitude 958–968W(awhite-line rectangle), which ismissing

in the open-loop experiment. Finally, all the statistics, the

domainmeans, the RMSE, theMAE, and the correlation

demonstrate that theWRF4D-Var assimilation produces

precipitation analyses in closer agreement with the ref-

erence data than the open-loop experiment.

FIG. 6. The 5-day surface accumulated summer precipitation (mm) from the outer domain from 1800 UTC 10 Jun

to 1800 UTC 15 Jun 2009: (a) reference data from NCEP stage IV precipitation observations, (b) Opl, (c) P-noQCI,

and (d) P-QCI. The domain means are expressed in (a)–(d), while the RMSE,MAE, and r of modeled and observed

precipitation are reported in (b)–(d).

FIG. 7. The comparison of the domain means of hourly observed

summer precipitation, the open-loop, and the DA experiments from

the outer domain from 1800 UTC 10 Jun to 1800 UTC 15 Jun 2009.

(a) Domain means and (b) the absolute value of the difference be-

tween the domain means of the reference data and open-loop fore-

casts and those between the reference data and the 4D-Var analyses.
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For each pixel within the region of interest in the inner

domain, Fig. 9 compares the MAEs, correlations, and

RMSEs among forecasts, analyses, and the reference

data obtained from the hourly rainfall time series over

the entire 8181 pixels. Figure 9a shows the MAE for the

4D-Var and open-loop experiments. A total of 60% of

the MAE values fall below the diagonal line, indicating

that the dynamical downscaling with 4D-Var performed

better than the open-loop forecasts in 60% of pixels. For

the correlation coefficients, Fig. 9b shows that the out-

performance of 4D-Var over the open-loop experiment

is even stronger, as 66% of the points fall above the di-

agonal line. The RMSE also shows that 55% of the

pixels in the 4D-Var experiment have a better perfor-

mance than the open-loop experiment. Note that the

above assimilation experiments were only performed in

the outer domain, and analysis outputs from the outer

domain were used as the initial and lateral boundary

conditions for the inner domain. Therefore, we observed

that assimilation in the outer domain (36-km grids) pro-

duces improved initial and lateral boundary conditions

for the inner domain (9-km grids) that ultimately lead to

high-resolution and improved estimates of precipitation.

e. Summer convective rain versus winter extratropical
cyclone

The purpose of this comparison is to understand the

performance of the proposed dynamical downscaling

approach for different seasons and rainfall mechanisms.

The performance of assimilating 6-h accumulated pre-

cipitation in each DA analysis cycle of the 1-day winter

experiments is compared with that of the 5-day summer

FIG. 8. The 5-day surface accumulated precipitation (mm) from the inner domain of the

summer experiments from 1800 UTC 10 Jun to 1800 UTC 15 Jun 2009: (a) NCEP stage IV

precipitation data, (b) 4D-Var experiment, and (c) open-loop experiment. The domain means

are reported in (a)–(c). The RMSE, MAE, and r are computed between the modeled accu-

mulated precipitation and observed data. The white-line regions are described in section 3d.
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experiments over the region of interest at the outer do-

main resolution. As mentioned in section 2, the winter

experiments are associated with an extratropical cyclone

while the summer experiments consist of many con-

vective storms. Figure 10 shows the correlation between

the modeled and the observed precipitation and the

predictive skill measured by RMSE and MAE, re-

spectively, for every 6-h analysis cycle in both summer

and winter experiments. For the winter experiments, the

average correlation between the open-loop forecasts

and the reference data is higher than that between the

4D-Var analyses and reference data from the summer

experiments (Fig. 10a). This shows that the precipitation

forecasts for the winter, even without using data assim-

ilation, are in closer agreement with the reference data

than the corresponding data assimilation experiment in

the summer. It is reported in Fig. 10 that assimilation of

precipitation increases the correlation between model

output and reference data on average by 0.19 for the

summer and 0.13 for the winter. In other words, data

assimilation improves the summertime precipitation

analyses more than the wintertime in terms of correla-

tion. However, the end results are closer to the reference

data in the winter because of better quality of the open-

loop forecasts during the winter.

In addition, the skill measured by RMSE is relatively

consistent for the analysis cycles during the winter but

varies substantially and degrades sometimes during the

summer. Figure 10b shows the skills measured by RMSE

for the winter and summer experiments are 34% and

3%, respectively. Since RMSE penalizes large errors

substantially, the poor summer skill may be due to over-

or underestimation of localized extreme precipitation in-

tensities by the data assimilation scheme. This suggests that

in a convection dominant regime, precipitation extremes

may not be well captured by the employed data assim-

ilation system. Surprisingly, the skill of the 4D-Var

measured by MAE shows an increase in skill of on av-

erage 31% and 29% for the winter and summer exper-

iments, respectively (Fig. 10c). While both the summer

and winter experiments have similar average MAE, the

improvement in downscaled precipitation exhibits more

spatial variability during the summer than winter. Note

that the second analysis cycle in the summer experiment

is associated with a large degradation in RMSE and

MAE, and the sixteenth analysis cycle shows a large

degradation measured by RMSE while no degradation

measured by MAE.

Figure 11 shows 6-h precipitation of assimilation cy-

cles 1, 2, 3, and 16 from the summer experiments, while

Fig. 12 shows 6-h precipitation of cycles 1–4 from the

winter experiments. These figures give more detail of

the impact of nonassimilated observations due to the

QCI. As discussed previously, cycles 2 and 16 in the

summer experiments do not exhibit good assimilation

skill asmeasured byRMSE (Fig. 10b). Figures 11j and 11l

show where the WRF 4D-Var system significantly over-

estimates precipitation in comparison to the reference

data in Figs. 11f and 11h, respectively, which is themajor

source of large RMSE. Note that this region is mainly

dominated by convective activity for which its spatial

extent is largely estimated correctly, but its precipitation

intensities are overestimated by the 4D-Var algorithm.

This situation happens much more frequently in the

summer than in the winter, mainly because 1) the differ-

ence between the observed and forecasted precipitation

can be very large for the cases of convective rainfall events,

and thus the observations may not be used in the DA

experiment because of the QCI, and 2) the prescribed

background error covariance can affect model states at

FIG. 9. The comparison of the (a) MAE, (b) r, and (c) RMSE of hourly precipitation for each grid of the open-loop experiment vs the

DAexperiment over the inner domain in the summer experiments. Higher density of the red dots compared to the blue dots shows that the

4D-Var experiment outperforms the open-loop experiment.
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a large spatial extent and may not benefit our proposed

downscaling approach in capturing local precipitation

extremes. The gray regions in northern Texas (Fig. 11b)

and in Tennessee, Alabama, and Mississippi (Fig. 11d)

are those areas where the observations are considered to

be outliers in the QCI module and have not been used in

the 4D-Var algorithm. Notice that these areas are typi-

cally surrounded by relatively large positive innovations

in the studied convective dominant storm. As a result,

the positive innovations and the large spatial footprint of

the background error covariance typically lead to over-

estimation in those gray regions where no observations

are assimilated to properly constrain the overestimation

through the cost function of 4D-Var algorithm. In con-

trast, since winter open-loop forecasts are relatively

accurate, the innovation magnitudes mainly remain

within the acceptable bounds of the QCI. Thus, the

WRFDA typically assimilates a major fraction of heavy

precipitation observations within the storm. In Figs. 12a–d,

it can be seen that the wintertime 4D-Var assimilates rel-

atively more areas of heavy precipitation observations

than that of the summertime experiments and thereby

do not exhibit significant overestimation. This problem

further manifests itself in summertime experiments

when open-loop forecasts completely miss the observed

small-scale convective cells. In this case, the 4D-Var

with the QCI typically ignores the observations and to-

tallymisses information content of important convective

precipitation features of the storm. Figure 11g shows

a small but heavy precipitation patch in Texas that was

observed but not assimilated (Fig. 11c). Therefore, over

this heavy rainfall patch, data assimilation does not alter

the precipitation analyses significantly compared to the

forecasts (Fig. 11o), and the analysis rainfall intensities

remain almost unchanged (Fig. 11k). However, it can be

seen that the WRF 4D-Var system effectively reduces

FIG. 10. The statistics of the summer experiments (blue) and the winter experiments (red):

(a) r between the 6-h accumulation of modeled and observed precipitation. The hollow circles

and squares represent the r between the open-loop experiment and reference data. The other

end of each line without a circle or a square represents the r between the DA experiment

and reference data. (b),(c) The skill of modeling improvement in terms of RMSE and MAE,

respectively.
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precipitation errors when the open-loop forecasts pro-

duce heavy rain over the areas where the observations

suggest no rain or light rain. Figure 11m shows heavy rain

forecasts within longitudes 858–958W, while we see little

or very light rainfall in Figs. 11e and 11i. Even though

Fig. 11a has a gray region of nonassimilated observations,

the assimilated observations surrounding the gray region

ultimately reduce forecast errors significantly and lead

precipitation analyses in a good agreement with the ref-

erence data. Therefore, the QCI seems very effective

when the open-loop experiment falsely predicts rainfall,

while giving rise tomisleading results when the open-loop

forecasts miss observed localized precipitation events.

f. Time series analysis of 4D-Var assimilation of
precipitation

In this section, we focus on understanding how the

4D-Var scheme impacts wintertime and summertime

precipitation analyses at hourly and pixel scales (the

smallest simulation unit) within the experimental do-

main. We select a set of pixels over the study domain

where the accumulated precipitation exceeds certain

thresholds and discuss the temporal aspects of the pro-

posed dynamical downscaling in those locations.

1) TIME SERIES OF 1-DAY WINTER EXPERIMENTS

(36-KM RESOLUTION)

Figure 13a shows the 1-day accumulated precipitation

from the reference data and the location of six selected

sites for hourly time series analysis. The precipitation

time series at the sites are shown in Figs. 13b–g with the

corresponding statistics presented in Table 1. To study

the effects of the dynamical downscaling approach on

capturing high-intensity precipitation over the studied

domain, we select six individual locations based on the

following criteria: 1) sites B and C exhibit accumulated

FIG. 13. (a) Observed accumulated precipitation and the locations of selected sites (black circles) from the outer

domain (36-km resolution) of the 1-day winter experiments. (b)–(g) The time series of hourly precipitation of stage IV

reference data (black), the open-loop experiment (blue), and the 4D-Var experiment (red) for sites B–G, respectively.
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precipitation within the top 10% of the reference data

(.30mmday21) and the highest modeling skill mea-

sured by MAE defined in Eq. (4); 2) sites D and E ex-

hibit similar behavior as sites B and C, except that their

accumulated precipitation is within the top 10% of the

open-loop experiment (.25mmday21); and 3) sites

F and G exhibit accumulated precipitation within the

top 10% of the reference data but exhibit the lowest

modeling skill measured by MAE.

Figures 13b–e demonstrate that the downscaling ap-

proach effectively disaggregates 6-h winter precipitation

to the hourly scale, particularly for the case that the

open-loop experiment falsely forecasts heavy rainfall.

At sites B–E, it can be seen that the time series of

4D-Var analyses are in closer agreement with the reference

data than those of open-loop forecasts. For those time in-

tervals in which the open-loop forecasts have intense rain-

fall but the reference data do not, the WRF 4D-Var

significantly reduces overestimation of the open-loop fore-

cast. We see similar behaviors at all sites, especially in time

intervals 1500–2000 UTC at site B; 1400–1700 UTC at site

C; 0000–0600 UTC at site D; and 1600–1800 UTC at site E.

Figures 13f and 13g show that the downscaling ap-

proach occasionally overestimates precipitation analy-

ses when the rainfall patterns in the open-loop forecasts

and reference data are drastically different. In some

sense, the overestimation problem is related to issues

previously discussed in section 3e. At these two sites, the

WRF 4D-Var reproduces downscaled precipitation over

the time intervals in which the open-loop forecasts are

rainy and remains dry when the open-loop forecasts are

dry. In other words, the 4D-Var assimilation only increases

the rainfall estimates over those time intervals where the

open-loop forecast is raining rather than reproducing rain-

fall temporal patterns similar to the reference data. For

example, it can be seen that the behavior of hourly

precipitation is different between the reference data and

the open-loop forecasts within the second assimilation

cycle (0700–1200 UTC). In this cycle, the reference data

showmoderate rain from 0700 to 0800UTC, with rainfall

effectively stopping at 0900 UTC; however, the open-

loop experiment only forecasts a small amount of pre-

cipitation at 1000 UTC. Assimilating 6-h rainfall ob-

servations, the WRF 4D-Var algorithm apparently

increases the volume of precipitation analysis during the

time intervals in which the open-loop forecasts are

raining. As a result, we can see that the precipitation in-

tensities at 1000 UTC for the reference data, DA experi-

ment, and open-loop experiment are 0, 14, and 2mm,

respectively. These findings suggest that the proposed

dynamical downscaling approach may be less effective in

those analysis cycles within which the observed rainfall

exhibits strong intermittency.

2) TIME SERIES OF 5-DAY SUMMER EXPERIMENTS

(36-KM RESOLUTION)

In the summer experiments, similar assimilation ef-

fects are found as discussed in the previous section, ex-

cept the fact that the effect is more drastic. In other

words, the 4D-Var analyses still outperform the open-

loop forecasts in a temporal sense at the hourly scale.

However, because the temporal patterns of open-loop

forecasts and assimilated observations are typically very

different during the summer, the assimilation results are

not as good as the winter experiments in terms of the

examined quality metrics. Figure 14a shows the accu-

mulated precipitation during the 5-day summer experi-

ments with the location of the six selected sites.

Figures 14b–g show the hourly precipitation time series

at each site with the corresponding statistics reported in

Table 1. The selection criteria for the six sites are the

same as section 3f(1), except that the top 10% of the

TABLE 1. The statistics of selected sites in Figs. 13–15. Units are millimeters.

B C D E F G

1-day experiments for the winter (D01)

Accumulated precipitation (OBS) 39 65 11 34 33 34

Accumulated precipitation (OpL) 98 41 29 59 30 25

MAE (DA vs OBS) 1.47 1.28 0.38 0.84 1.70 1.79

MAE (OpL vs OBS) 3.51 2.48 1.09 1.88 0.95 0.96

5-day experiments for the summer (D01)

Accumulated precipitation (OBS) 58 54 7 16 49 89

Accumulated precipitation (OpL) 77 66 102 81 17 10

MAE (DA vs OBS) 0.37 0.41 0.10 0.17 0.75 0.99

MAE (OpL vs OBS) 0.86 0.76 0.80 0.91 0.39 0.68

5-day experiments for the summer (D02)

Accumulated precipitation (OBS) 52 60 17 62 10 108

Accumulated precipitation (OpL) 126 17 80 64 70 71

MAE (DA vs OBS) 0.54 0.33 0.19 0.53 0.07 0.73

MAE (OpL vs OBS) 1.17 0.60 0.60 0.87 0.64 1.07
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reference data and open-loop experiment are now 46 and

54mmover 5 days, respectively. For sitesB–E, it is clear that

the DA was quite effective and improved the results of

precipitation analyses with respect to the reference data

compared to those of open-loop forecasts. On the other

hand, the sites F and G show lowest downscaling perfor-

mance. It canbe seen that theDAexperiment overestimates

precipitation during very short periods of time, such as the

hour 0000 UTC 11 June and the time interval from 1300

to 1800 UTC 12 June at site F, and underestimates from

0700 to 1800 UTC 11 June at site G. As discussed in section

3e,we suspect that the difficulty of precipitationdownscaling

is related to the imprecise forecast of summertime

convective precipitation and the smoothing effect of the

prescribed background error covariance.

3) TIME SERIES OF 5-DAY SUMMER EXPERIMENTS

(9-KM RESOLUTION)

The hourly precipitation time series of six selected

sites within the inner domain are also presented in

Fig. 15with the corresponding statistics reported inTable 1.

The domain in Fig. 15a was divided into six regions, each

containing a site with significant improvementmeasured by

the MAE metric. Figures 15b–g demonstrate that in all

cases the 4D-Var outperforms the open-loop experiment.

However, both the open-loop forecasts and 4D-Var anal-

yses occasionally missed high-intensity precipitation in the

reference data (Fig. 15e). We can see that the assimilation

scheme is fairly effective at reducing or removing rainfall

intensities appearing in the open-loop forecasts that do not

appear in the reference data. As a result, we conclude that

our dynamical downscaling approach is sufficiently effec-

tive not only in improving precipitation accumulation

measured by the described statistical metrics but also in

precipitation estimation at hourly time and pixel scales.

4. Conclusions and future work

The WRF 4D-Var assimilation was examined for dy-

namical rainfall downscaling. We assimilated 6-h NCEP

FIG. 14. As in Fig. 13, but for the outer domain (36-km resolution) of the summer experiments.
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stage IV data at a gridded spatial resolution of 20 km

into the WRF Model and compared the downscaled

precipitation fields with hourly NCEP stage IV data at

a gridded resolution of 9 km as a proof of concept.

Precipitation data assimilation currently entails several

major difficulties, such as the non-Gaussianity property

of precipitation (Bauer et al. 2011a). Therefore, the

overall success of our physically based downscaling ex-

periment is promising for downscaling real GPM data to

higher resolutions for hydrologic applications.

In summary, our point-scale assimilation experiment

demonstrated that precipitation analysis might be very

sensitive to direct rainfall assimilation. The results from

both winter and summer experiments showed that the

WRF 4D-Var system can effectively combine in-

formation from both observations and background

states and use the underlying physics to produce hourly

precipitation at the 9-km spatial resolution. In terms of

the studied quantitative metrics, both winter and sum-

mer assimilation experiments over the outer domain

(36-km resolution) indicated that using the built-in QCI

can significantly improve the quality of the downscaled

precipitation. In the seasonality comparison, we ob-

served that the WRF forecasts are in closer agreement

with the reference observations during the winter than

those during the summer, and therefore, the downscaled

precipitation analyses in the winter are in closer agree-

ment with the reference data than those in the summer.

We also observed that the WRF 4D-Var system is very

effective in correcting forecast errors when open-loop

forecasts falsely produce high-intensity rain cells over

areas of no or light rainfall in the reference fields.

The proposed downscaling algorithm can be further

studied from several perspectives for a broader un-

derstanding of the WRF 4D-Var precipitation DA. First,

while we demonstrated promising results by assimilating

stage IV rainfall data, future research needs to be devoted

to the direct assimilation of GPM or TRMM products and

the evaluation of the results. Second, additional case stud-

ies, over longer timeperiods, are essential for enhancingour

FIG. 15. As in Fig. 13, but for the inner domain (9-km resolution) of the summer experiments.
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understanding of the longer-term and seasonal perfor-

mance of the dynamical downscaling. Third, understanding

the sensitivity of the proposed approach to the use of

other global datasets (e.g., the ECMWF products) for

the boundary conditions requires further investigation.

Although we demonstrated the effectiveness of our pro-

posed downscaling approach, two difficulties in down-

scaling summertime small-scale precipitation extremes

need to be addressed in future research, including

1) ineffectiveness in reproducing heavy rain at pixels

with non- or low-precipitation forecasts and 2) over-

estimation of convective cells. Instead of using time-

invariant prescribed observational and background

error covariance matrices and the subjective quality-

control procedure, using a time-varying and adaptive

error characterization scheme seems to be a promising

area of future research. Moreover, to improve dynami-

cal downscaling of convective precipitation, future re-

search can be devoted to incorporating soil moisture

data, a main driver of land surface turbulent heat fluxes

(e.g., Chen et al. 2001; Case et al. 2011; Flores et al. 2012;

Margulis et al. 2002; Peters-Lidard et al. 2011), into the

proposed downscaling framework.
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