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Abstract. Observation and quantification of the Earth’s sur-

face is undergoing a revolutionary change due to the in-

creased spatial resolution and extent afforded by light de-

tection and ranging (lidar) technology. As a consequence,

lidar-derived information has led to fundamental discoveries

within the individual disciplines of geomorphology, hydrol-

ogy, and ecology. These disciplines form the cornerstones of

critical zone (CZ) science, where researchers study how in-

teractions among the geosphere, hydrosphere, and biosphere

shape and maintain the “zone of life”, which extends from

the top of unweathered bedrock to the top of the vegeta-

tion canopy. Fundamental to CZ science is the development

of transdisciplinary theories and tools that transcend disci-

plines and inform other’s work, capture new levels of com-

plexity, and create new intellectual outcomes and spaces. Re-

searchers are just beginning to use lidar data sets to answer

synergistic, transdisciplinary questions in CZ science, such

as how CZ processes co-evolve over long timescales and in-

teract over shorter timescales to create thresholds, shifts in

states and fluxes of water, energy, and carbon. The objective

of this review is to elucidate the transformative potential of

lidar for CZ science to simultaneously allow for quantifica-

tion of topographic, vegetative, and hydrological processes.

A review of 147 peer-reviewed lidar studies highlights a lack

of lidar applications for CZ studies as 38 % of the studies

were focused in geomorphology, 18 % in hydrology, 32 % in

ecology, and the remaining 12 % had an interdisciplinary fo-

cus. A handful of exemplar transdisciplinary studies demon-
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strate lidar data sets that are well-integrated with other ob-

servations can lead to fundamental advances in CZ science,

such as identification of feedbacks between hydrological and

ecological processes over hillslope scales and the synergistic

co-evolution of landscape-scale CZ structure due to interac-

tions amongst carbon, energy, and water cycles. We propose

that using lidar to its full potential will require numerous ad-

vances, including new and more powerful open-source pro-

cessing tools, exploiting new lidar acquisition technologies,

and improved integration with physically based models and

complementary in situ and remote-sensing observations. We

provide a 5-year vision that advocates for the expanded use

of lidar data sets and highlights subsequent potential to ad-

vance the state of CZ science.

1 Introduction

Complex interactions among the geosphere, ecosphere, and

hydrosphere give rise to present-day landforms, vegetation,

and corresponding water and energy fluxes. Critical zone

(CZ) science studies these interactions in the zone extending

from the top of unweathered bedrock to the top of the vegeta-

tion canopy. Understanding CZ function is fundamental for

characterizing regolith formation, carbon–energy–water cy-

cles, meteorological controls on ecology, linked surface and

subsurface processes, and numerous other Earth surface pro-

cesses (NRC, 2012). Improved understanding of CZ func-

tions is thus important for quantifying ecosystem services

and predicting their sensitivity to environmental change.

However, CZ processes are difficult to observe because they

occur over timescales of seconds to eons and spatial scales

of centimeters to kilometers, and thus require diverse mea-

surement approaches (Chorover et al., 2011). Light detection

and ranging (lidar) technologies can be helpful in this regard

because they generate repeatable, precise three-dimensional

information of the Earth’s surface characteristics.

Lidar allows for simultaneous measurements of above-

ground vegetation structure and human infrastructure, as well

as the topography of the Earth surface, including soils, ex-

posed bedrock, stream channels, and snow/ice. Depending

on the data collection system and platform, observations

can be made at the landscape scale (> 1000 km2) and at

spatial resolutions capable of capturing fine-scale processes

(< 10 cm). These unique measurement capabilities offered by

lidar have the potential to help answer transdisciplinary re-

search questions, which transcend a single discipline, cap-

ture greater complexity, and create new intellectual advances

that are synergistic (across disciplines) in nature. Fundamen-

tal CZ science questions often require transdisciplinary ap-

proaches that surpass what is possible in multidisciplinary

(i.e., collaborations across disciplines that pose their own

questions) or interdisciplinary (i.e., collaborations where in-

formation is transferred amongst disciplines) research set-

tings. Because lidar can characterize geomorphic, ecologic,

and hydrologic processes simultaneously across a range of

scales, it is uniquely suited to address questions posed by CZ

research.

Lidar acquisition capabilities are increasing exponentially

(Stennett, 2004; Glennie et al., 2013) and new ground-based

(terrestrial laser scanning – TLS), mobile platforms (airborne

laser scanning – ALS, or other mobile platforms like trucks

or boats), and space-based platforms (spaceborne laser scan-

ning – SLS) are leading to increased availability of lidar data

sets with CZ-relevant information content. Different lidar

platforms each have their own advantages and limitations,

but operate based on a similar principle by emitting and mea-

suring the round-trip time of travel of an energy pulse (laser

light), and thus measuring and mapping distance to a target.

Collection via TLS methods, for example, typically involves

lidar scanners that are mounted on tripods or other fixed lo-

cations. Fixed targets surveyed with a high-resolution GPS

are used to georeference the lidar data sets and to composite

multiple TLS scans into a single point cloud. TLS scanners

are becoming more affordable and available to individual re-

searchers and groups. Lidar collections via mobile platforms

are typically performed by mounting the lidar unit on an air-

craft, helicopter, or vehicle that moves over the study area

of interest. The aircraft must be equipped with a GPS unit

and internal measurement unit (IMU) to track the orienta-

tion and location of the scanner. Similar to TLS collection,

ALS methods require ground targets with known GPS loca-

tions for georeferencing. Lidar collection via SLS is much

less common, but has been successfully deployed on orbit-

ing spacecraft and will become more prevalent in 2017 with

the planned launch of ICESat-2 (Ice, Cloud, and land Eleva-

tion Satellite) (Abdalati et al., 2010). In addition to the laser

system, the spacecraft must have a GPS unit and altitude de-

termination system in order to georeference the data. Each of

these lidar platforms offer specifications that can be selected

and adjusted for a given science application. Throughout this

review we present studies using a suite of lidar methods and

highlight the advantages of each method for differing scien-

tific purposes.

The objective of this paper is to present a 5-year vision

for applying lidar to advance transdisciplinary CZ research.

To accomplish this, we first present the state of the science

on applying lidar to disciplinary-specific research in geomor-

phology, hydrology, and ecology in Sect. 1.1, 1.2, and 1.3,

respectively. This is followed in Sect. 2.1 by an exploration

of transdisciplinary studies that have utilized complementary

lidar-derived data sets to propel CZ science beyond what is

possible within disciplinary endeavors. We summarize these

exemplar transdisciplinary studies with the intent to guide

future research. In Sect. 2.2 we describe how lidar-derived

information is uniquely suited to advance three CZ research

topics beyond the current state of the science: (1) quantify-

ing change detection, (2) parameterization and verification

of physical models, and (3) improved understanding of CZ
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processes across multiple scales. These topics are limited by

a set of common impediments that we outline in Sect. 2.3.

Finally, in Sect. 2.4, we present a vision to advance CZ sci-

ence with lidar using examples of transdisciplinary research

questions and provide a set of recommendations for the CZ

community to increase usage and advocate for greater lidar

resources over the next 5 years.

1.1 Advances in geomorphology using lidar

High-resolution topographic data sets derived from lidar

have greatly contributed to quantifying geomorphic change,

identifying geomorphic features, and understanding ecohy-

drologically mediated processes at varying scales and ex-

tents. These advances have allowed testing of geomorphic

models, pattern and process recognition, and the identifi-

cation of unanticipated landforms and patterns (e.g., wave-

forms) that were not possible using previous survey tech-

niques. Generally, lidar information complements rather than

replaces field observations, with lidar observations leading

to new hypotheses and process cognition (Roering et al.,

2013). Broadly, lidar technology has been useful in study-

ing geomorphic response to extreme events such as fire and

storms (e.g., Pelletier and Orem, 2014; Sankey et al., 2013;

Perignon et al., 2013; Staley et al., 2014), human activities

(e.g., James et al., 2009), and past climatic and tectonic forc-

ings (e.g., Roering, 2008; Belmont et al., 2011; West et al.,

2014). Meter- and sub-meter-scale time-varying processes,

often derived from TLS, have been quantified in the response

of point bar and bank morphodynamics (Lotsari et al., 2014)

and in the formation of micro-topography due to feedbacks

with biota (e.g., Roering et al., 2010; Pelletier et al., 2012;

Harman et al., 2014). Examples of larger scale change detec-

tion applications, typically ALS-derived, include measuring

changes in stream channel pathways resulting from Holocene

climate change and anthropogenic activities (e.g., Day et al.,

2013; Kessler et al., 2012; James et al., 2012; Belmont et

al., 2011), rates of change in migrating sand dunes (Pelletier,

2013), the influence of lithology and climate on hillslope

form (e.g., Marshall and Roering, 2014; Hurst et al., 2013;

Perron et al., 2008; West et al., 2014), and channel head

formation (e.g., Pelletier et al., 2013; Pelletier and Perron,

2012; Perron and Hamon, 2012). Automated tools to identify

geomorphic features (e.g., floodplains, terraces, landslides)

and transitional zones (e.g., hillslope-to-valley, floodplain-to-

channel) have been used in conjunction with high-resolution

elevation data sets from lidar, including Geonet 2.0 (Pas-

salacqua et al., 2010), ALMTools (Booth et al., 2009), and

TerrEX (Stout and Belmont, 2014).

1.2 Advances in hydrology using lidar

Research utilizing lidar has advanced fundamental process

understanding in snow hydrology (Deems et al., 2013), sur-

face water hydraulics (Lane et al., 2004; Nathanson et al.,

2012; Lyon et al., 2015), and land-surface–atmosphere in-

teractions (Mitchell et al., 2011). Lidar-derived snow depths

(derived by differencing snow-on and snow-off elevations)

over large (> 1 km2) spatial extents from both ALS and TLS

(Deems et al., 2013) have yielded unprecedented contigu-

ous maps of spatial snow distributions (e.g., Fassnacht and

Deems, 2006; McCreight et al., 2014) and provided new

insights into underlying processes determining spatial pat-

terns in snow cover (von Trujillo et al., 2009; Kirchner et

al., 2014), accumulation and ablation rates (Grunewald et

al., 2010; Varhola and Coops, 2013), snow water resource

planning (Hopkinson et al., 2012), and estimating the ef-

fects of forest cover and forest disturbance on snow processes

(Harpold et al., 2014a). Change detection techniques have

been effective for determining glacier mass balances (Hop-

kinson and Demuth, 2006), ice surface properties (Williams

et al., 2013), and calving front movements (e.g., Arnold et al.,

2006; Hopkinson and Demuth, 2006). Prior to lidar, many

of these cryospheric processes had to be investigated using

single point observations or through statistical rather than

deterministic analyses; the additional information derived

from lidar has yielded important insights that have advanced

scientific understanding. High-resolution topographic infor-

mation from lidar has proved important for stream chan-

nel delineation (Kinzel et al., 2013), rating curve estima-

tion (Nathanson et al., 2012; Lyon et al., 2015), floodplain

mapping and inundation (Marks and Bates, 2000; Kinzel

et al., 2007), and topographic water accumulation indices

(Sørensen and Seibert, 2007; Jensco et al., 2009). Lidar

measurements of micro-topography shows potential for im-

proving soil property and moisture information (e.g., Tenen-

baum et al., 2006), surface and floodplain roughness (Ma-

son et al., 2003, Forzieri et al., 2010; Brasington et al.,

2012; Brubaker et al., 2013), hydraulic dynamics and sedi-

ment transport (Roering et al., 2009; McKean et al., 2014),

surface ponding and storage volume calculations (Li et al.,

2011; French, 2003), and wetland delineation (e.g., Lane and

D’Amico, 2010). Certain hydrological modeling fields are

well poised to utilize high-resolution topography, such as

movement of water in urban environments (Fewtrell et al.,

2008), in-channel flow modeling (Mandlburger et al., 2009;

Legleiter et al., 2011), and hyporheic exchange and ecohy-

draulics in small streams (e.g., Wheaton et al., 2010b). Fi-

nally, high-resolution, three-dimensional lidar measurements

of canopy and vegetation structure (Vierling et al., 2008)

have direct implications for modeling the surface energy bal-

ance (Musselman et al., 2013; Broxton et al., 2014) and evap-

otranspiration processes (Mitchell et al., 2011) at scales crit-

ical to increasing fidelity in physically based models.

1.3 Advances in ecology using lidar

Lidar-based remote sensing of vegetation communities has

transformed the way ecologists measure vegetation across

multiple spatial scales (e.g., Lefsky et al., 2002; Maltamo

www.hydrol-earth-syst-sci.net/19/2881/2015/ Hydrol. Earth Syst. Sci., 19, 2881–2897, 2015
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et al., 2014; Streutker and Glenn, 2006). Substantial work

has been undertaken using lidar to map vegetation struc-

ture and biomass distributions (see reviews by Seidel et al.,

2011 and Wulder et al., 2012). These include the estima-

tion of leaf area index (LAI; Riaño et al., 2004; Richard-

son et al., 2009; Hopkinson et al., 2013), vegetation rough-

ness (Streuker and Glenn, 2006; Antonarakis et al., 2010),

alpine tree lines (Coops et al., 2013), and total carbon storage

and sequestration rates in forest, grassland, savannahs, and/or

shrubland communities (Asner et al., 2012a; Baccini et al.,

2012; Mascaro et al., 2011; Simard et al., 2011; Antonarakis

et al., 2014). ALS has been used to characterize wildlife habi-

tat in tree and shrub canopies (Hyde et al., 2005; Bork and

Su, 2007; Vierling et al., 2008; Martinuzzi et al., 2009; Zell-

weger et al., 2014) and in aquatic systems (McKean et al.,

2008; Wedding et al., 2008; McKean et al., 2009). ALS has

been a critical tool in modeling catchment-scale water avail-

ability for vegetation at fine (Harmon et al., 2014) and broad

spatial scales (Chorover et al., 2011). Radiation transmission

and ray-tracing models utilizing lidar provide ecologists with

better tools to quantify in-canopy and below-canopy light en-

vironments (Lee et al., 2009; Bittner et al., 2014; Musselman

et al., 2013; von Bode et al., 2014; Moeser et al., 2014). Ad-

ditionally, ecologists are beginning to quantify the impact of

vegetation on micro-topography (Sankey et al., 2010; Pel-

letier et al., 2012; Harmon et al., 2014), as well as larger

landform processes (Pelletier et al., 2013). Broad-scale lidar

data allow for quantification of patches and mosaics amongst

plant functional types across landscapes (Antonarakis et al.,

2010; Dickinson et al., 2014) and global forest biomass esti-

mates (Simard et al., 2011). Ecologists have fused data from

hyperspectral imaging and lidar to enable species classifica-

tion for close to a decade (e.g., Mundt et al., 2006). However,

new opportunities exist to link species-level detail and plant

functional response through emerging technologies, includ-

ing co-deployment of hyperspectral and lidar sensors (Asner

et al., 2012b), and hyperspectral (supercontinuum) laser tech-

nology (Kaasalainen et al., 2007; Hakala et al., 2012). By

linking lidar with additional observations, researchers have

begun to quantify species-level detail and plant health esti-

mation (Cho et al., 2012; Féret and Asner, 2012; Olsoy et

al., 2014) and model forest carbon fluxes (Antonarakis et al.,

2014).

2 Current toolkits and open questions using lidar in

CZ science

Research based on lidar-derived information accounts for

substantial advances within the cornerstone CZ disciplines.

However, many open questions in CZ science require linked,

transdisciplinary investigations across multiple disciplines

that create new intellectual spaces for scientific advance-

ments. For example: how do CZ processes co-evolve over

long timescales and interact over shorter timescales to de-

velop thresholds and shifts in states and fluxes of water, en-

ergy, and carbon? What will be the response of the CZ struc-

ture to disturbance and land use change? These CZ science

questions must elucidate feedbacks and interactions among

the geosphere, ecosphere, and hydrosphere. This cannot be

accomplished within the individual disciplines (multidisci-

plinary) or by sharing information across disciplines (inter-

disciplinary), but instead require synergistic transdisciplinary

science that spans multiple spatial and temporal scales.

A key advantage of lidar for understanding CZ feedbacks

is the coupling of previously unprecedented coverage over

both broad temporal and spatial scales (Fig. 1). The utility of

lidar for geosphere, ecosphere, and hydrosphere investiga-

tions is dependent on the platform (e.g., TLS, ALS, or SLS)

with cross-platform observations capable of resolutions from

10−3 m to continental scales (Fig. 1). In terms of temporal

extent, TLS, ALS and SLS are capable of employing weekly

to sub-hourly repeat scan rates (Fig. 1). Technologies allow-

ing for faster scan rates will typically limit the spatial extent

(Fig. 1). Advances in technology described in Sect. 2.3 will

increase the spatial and temporal resolutions for all lidar plat-

forms in the next 5 years (Fig. 1). The intersecting process

scales shown in Fig. 1 demonstrate the viability of extract-

ing transdisciplinary information from lidar given thoughtful

experimental design and data collection.

2.1 Lidar as a transdisciplinary CZ tool

To investigate the state of the science of lidar in CZ research

we conducted a literature review of 147 peer-review papers

that employed lidar data sets to improve process-based un-

derstanding. Our review found that most lidar studies to date

have had a single disciplinary objective and that the CZ com-

munity is does not typically use the overlapping information

in space and time generated by lidar (Fig. 1). This is not sur-

prising given the rampant progress made in filling important

knowledge gaps in the individual cornerstone CZ disciplines

using lidar data sets (Sect. 1.1 to 1.3). We organized the lit-

erature reviewed for this paper into a scoring system of ge-

omorphic, hydrologic, and ecologic process knowledge ad-

vanced through individual lidar-based studies. For each paper

we assigned 10 points among the three disciplines to capture

potential transdisciplinary lidar use. For example, a study

leading purely to hydrologic process advances would rank as

10 in the hydrology category and 0 in the ecology and geo-

morphology categories. A study balancing the process-based

inferences among the three disciplines, with a more promi-

nent ecological focus, would have been assigned scores of

3, 3, and 4 for geomorphology, hydrology, and ecology, re-

spectively. Of course, this is a subjective scaling based on

author opinions. To limit potential impacts of subjectivity,

three different authors of the current paper assigned indepen-

dent scores to each study and we used the average score to

place each paper in the relative ranking triangle (Fig. 2).
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Figure 1. Important CZ processes graphed as a function of time ver-

sus space for geomorphology (a), hydrology (b), and ecology (c).

The spatial and temporal scales that lidar is currently addressing are

shown as colored bars, with dotted bars indicating increasing reso-

lutions and larger extents available in the next 5 years. Overlapping

spatiotemporal scales that encompass the example questions in the

Fig. 3 are also noted with red boxes.

The motivation for developing the conceptualization in

Fig. 2 is to facilitate identification of studies employing trans-

disciplinary synergies (e.g., lie within the internal triangle)

that rely on the multi-faceted nature of lidar data sets. The

review showed 38 % of 147 studies were focused (score of

6 or higher) in geomorphology, 18 % in hydrology, 32 % in
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Figure 2. Depiction of the disciplinary focus of 147 journal arti-

cles using lidar. Articles were qualitatively ranked based on their

applicability to geomorphological, hydrological, and/or ecological

process understanding. Articles in the center are examples of trans-

disciplinary lidar applications, with those shown in blue used as

exemplars in the text.

ecology, and the remainder had a more interdisciplinary fo-

cus. The few studies in the center of the triangle could be

considered as potential exemplars of CZ science using li-

dar as they balance well among each cornerstone discipline.

Several studies were transdisciplinary in nature, but focused

on lidar-derived topography and did not maximize informa-

tion content on hydrological and ecological processes from

lidar (Pelletier et al., 2012, Persson et al., 2012, Brubaker

et al., 2013, Pelletier, 2013, Coops et al., 2013, Rengers

and Tucker, 2014, and Pelletier and Orem, 2014). We in-

stead draw focus to transdisciplinary studies that demon-

strate the potential for complementary information to be ex-

tracted from lidar and integrated into field campaigns to al-

low multi-scale observations of interacting geomorphologic,

hydrologic, and ecologic processes.

We highlight three studies that can serve as possible road

maps to guide future transdisciplinary investigations using

lidar data sets (Fig. 2): Harman et al. (2014), Pelletier et

al. (2013), and Perignon et al. (2013). These studies used

complementary information from lidar to develop fundamen-

tal transdisciplinary advances in the theories and understand-

ing of CZ processes and structure. For example, Harman et

al. (2014) applied TLS to investigate co-evolution of lidar-

derived micro-topography and vegetation (biovolume) at two

100 m long semi-arid hillslopes. Integrating lidar and limited

field measurements, Harman et al. (2014) found that both al-

luvial and colluvial processes were important in shaping veg-

etation and soil dynamics on hillslopes. The insights found

by Harman et al. (2014) relied on the high resolution and

precision of lidar information and would not have been pos-

sible using coarser traditional survey techniques for topogra-

phy and vegetation structure. Pelletier et al. (2013) investi-

gated landscape-scale (> 10 km2) variability in aboveground

www.hydrol-earth-syst-sci.net/19/2881/2015/ Hydrol. Earth Syst. Sci., 19, 2881–2897, 2015
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biomass, hydrologic routing, and topography derived from li-

dar at two mountain ranges in southern Arizona and applied

a landscape evolution model to demonstrate the need to in-

clude ecological processes (e.g., vegetation density) to cor-

rectly model topography. Lidar-derived vegetation structure

provided new information not attainable from other meth-

ods that allowed for Pelletier et al. (2013) to test a novel

model of CZ development based on eco-pedo-geomorphic

feedbacks. Perignon et al. (2013) investigated topographic

change following a major flood along a 12 km stretch of

the Rio Puerco in New Mexico. They found that sedimen-

tation patterns reflected complex interactions of vegetation,

hydraulics, and sediment at the scale of individual plants.

This example demonstrates the value of lidar for testing eco-

hydrological resilience to extreme events and to develop new

understanding of the fine-scale ecological feedbacks (i.e., in-

dividual plants) on reach-scale geomorphic response.

These exemplar studies demonstrate the utility of lidar

for transdisciplinary process investigations at scales ranging

from hillslopes (e.g., Harman et al., 2014), to stream reaches

(e.g., Perignon et al., 2013), to mountain ranges (e.g., Pel-

letier et al., 2013). We believe that these exemplar transdisci-

plinary studies should serve as motivation for increased use

of lidar and integrated, multi-scale field observations for ad-

vancing CZ science. To this end, in Sect. 2.4 we provide ad-

ditional examples to illustrate the overlapping processes ob-

servable with lidar that are motivated by CZ science ques-

tions.

2.2 Applying lidar in CZ science

Through our literature review and subsequent conceptualiza-

tions (e.g., Fig. 1) we have identified three clear areas where

lidar observations have the potential to advance the state of

CZ science in the next 5 years: (1) quantifying change detec-

tion, (2) parameterization and verification of physical mod-

els, and (3) improving understanding of CZ processes across

multiple scales. These tools are not mutually exclusive and

each area has different levels of previous research and de-

velopment. For example, change detection utilizing lidar has

received notable use in the CZ science community, partic-

ularly by geomorphologists analyzing topographic change

over time. The use of lidar to quantify scaling relationships

and thresholds remains relatively unexplored, despite robust

scaling theories and analysis tools from other fields that are

portable to lidar data sets. Similarly, integration of lidar data

sets for either parameterization or verification has had lim-

ited development within CZ-relevant models.

2.2.1 Change detection

Lidar-based change-detection analyses (CDA), i.e., mapping

landscape adjustments through time in multi-temporal ALS

and TLS data sets, have provided comprehensive measure-

ments of snow depth (e.g., Harpold et al., 2014b; Tinkham

et al., 2014) and ablation (Egli et al., 2011), co-seismic dis-

placements after earthquakes (e.g., Oskin et al., 2012; Nis-

sen et al., 2014), changes in aeolian dune form and migration

rates (e.g., Pelletier, 2013), fluvial erosion (e.g., Anderson

and Pitlick, 2014; Pelletier and Orem, 2014), earthflow dis-

placements (e.g., DeLong et al., 2011), knickpoint migration

in gully/channel systems (e.g., Rengers and Tucker, 2014),

cliff retreat along coasts (Young et al., 2010), permafrost

degradation (Levy et al., 2013; Barnhart and Crosby, 2013),

forest growth (Yu et al., 2004; Næsset and Gobakken, 2005),

and changes in biomass (e.g., Meyer et al., 2013; Olsoy et al.,

2014). Traditionally, lidar point clouds have been rasterized

prior to differencing using open-source processing toolkits

(e.g., GCD (Geomorphic Change Detection); e.g., Wheaton

et al., 2010a). However, new methods such as iterative closest

point (Nissen et al., 2012), particle image velocimetry (Aryal

et al., 2012), and Multiscale Model to Model Cloud Compar-

ison (Lague et al., 2013) enable direct differencing of point

clouds. Continued methodological advances, coupled with

increasingly available repeat data sets will progress the capa-

bilities and quality of CDA. Structure from Motion (SfM) es-

timates three-dimensional structures from two-dimensional

images providing an easily portable and low-cost method

for making high-frequency change detection measurements

(Westoby et al., 2012; Fonstad et al., 2013; James and Rob-

son, 2012). There is also potential to apply time-series multi-

/hyperspectral lidar data sets to quantify changes in forest

health over time. Similarly, integration of bathymetric lidar

with ALS opens the potential to monitor dynamic changes

in streambed morphology, river flow, and sediment trans-

port (Flener et al., 2013). Although researchers often imple-

ment CDA using historic data sets (Rhoades et al., 2009),

challenges arise from sparse metadata and reduced accuracy,

thereby limiting data set utility (e.g., Glennie et al., 2014).

Future CDA may be improved by further establishing best

practices for data set sharing and archiving through reposito-

ries such as OpenTopography and UNAVCO.

2.2.2 Scaling CZ processes

While researchers have harnessed existing scaling theories

and tools utilizing lidar data sets, there is room for expan-

sion using the range of scales afforded by lidar technolo-

gies (Fig. 1). Two complementary techniques, characteriz-

ing fractal patterns (e.g., Deems et al., 2006; Glenn et al.,

2006; Perron et al., 2008) and process changes expressed

as fractal breaks (e.g., Drake and Weishampel, 2000), ben-

efit from the extensive breadth of spatial scales offered by

lidar data. Self-similar patterns across scales indicate consis-

tent processes and thus provide a framework for sampling,

modeling, and re-scaling processes. Variograms and semi-

variograms are commonly employed to plot lidar-derived at-

tributes of interest such as snow distribution (e.g., Deems et

al., 2008; Harpold et al., 2014a) or forest spatial patterns

(e.g., Boutet et al., 2003) against scale. Fractal and fractal
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deviations, as well as the length-scales of landscape structure

(Perron et. al., 2008), convey important CZ information, e.g.,

the effect of tree-root spacing through time on soil production

(Roering et al., 2010), patterns in tree gap formation (Plot-

nick et al., 1996; Frazer et al., 2005), and underlying abi-

otic and biotic controls on forest fractal dimensions (Drake

and Weishampel, 2000). Within the CZ framework, lidar al-

lows for consideration of topographic variation and biomass

distribution (Chorover et al., 2011), and spatial thresholds

for interactions among vegetation, hydrology, lithology, and

surface processes ranging from the grain to landscape scale

(e.g., Musselman et al., 2013; Pelletier et al., 2013; Harman

et al., 2014). Zhao et al. (2009) developed a scale-invariant

model of forest biomass, which illustrated the utility of scale-

independent methods. However, we caution that one scien-

tist’s signal may be another’s noise (Tarolli, 2014). Signal

recognition may involve smoothing at one scale to quantify

a relevant landscape metric, such as hillslope curvature (and

derived erosion rates; Hurst et al., 2013), which in turn lim-

its valuable information at another scale, such as hydrologi-

cally driven surface roughness or the spacing of tree-driven

bedrock disruption (Roering et al., 2010; Hurst et al., 2012).

Overall, lidar data sets retain the promise of up- or down-

scaling feedbacks among multiple processes that are just be-

ginning to be fully utilized.

2.2.3 Model parameterization and verification

The wealth of recently collected lidar data has the poten-

tial to inform the choice of physically based model parame-

ters and verify model output. Improved terrain representation

has helped characterize hysteretic relationships between wa-

ter storage and contributing area in large wetland complexes

within parameterized runoff models (Shook et al., 2013), im-

proved mapping in and along river channels to parameterize

network-level structure and flood inundation models (French,

2003; Kinzel et al., 2007; Snyder, 2009; Bates, 2012), and

expanded investigation of geomorphological change in flood-

plains (Thoma et al., 2005; Jones et al., 2007). Lidar provides

vertical information that permits the direct retrieval of forest

attributes such as tree height and canopy structure (Hyyppä

et al., 2012; Vosselman and Maas, 2010) that can be used

to model canopy volume (Palminteri et al., 2012), biomass

(Zhao et al., 2009), and the transmittance of solar radiation

(Essery et al., 2008; Musselman et al., 2013; von Bode et al.,

2014). Lidar has also proven to be instrumental in the verifi-

cation of model states. For example, lidar data sets have been

used to verify physically based models, including landscape

evolution models (Pelletier et al., 2014; Pelletier and Perron,

2012; Rengers and Tucker, 2014), aeolian models (Pelletier

et al., 2012; Pelletier, 2013), physiological models (Coops

et al., 2013), snowpack energy balance models (Essery et

al., 2008, Broxton et al., 2014), and an ecosystem dynamics

model (Antonarakis et al., 2014). Simpler, empirical mod-

els have also been developed using lidar-derived estimates of

soil erosion (Pelletier and Orem, 2014) and snow accumu-

lation and ablation (Varhola et al., 2014). Better recognition

of the potential benefits of lidar for model calibration and

verification within CZ modeling communities could lead to

increased utilization and targeted acquisitions in the future.

2.3 Adoption and utilization of lidar data sets

New and improved lidar data sets are more likely to result

in transformative CZ science if a number of key opportuni-

ties (and impediments) are recognized. The research topics

discussed in Sect. 2.2 require attention to four key areas in

order to maximize the applicability of lidar in CZ science:

(1) emerging data acquisition technologies, 2) availability of

processing and analysis techniques, (3) linkages to in situ ob-

servations, and (4) linkages to other remote-sensing observa-

tions. The first two areas recognize the importance of tech-

nological advances and information sharing to enhance lidar

data quality and coverage. The second two areas demonstrate

the potential to extend scientific inferences made from lidar

with linkages to multiple, complementary observations.

2.3.1 Data acquisition technology

Future advances in data acquisition technologies will provide

greater information and spatiotemporal coverage from lidar

(and similar high-resolution remote sensing technologies)

data sets. Several new lidar technologies are rapidly improv-

ing data quality (accuracy, precision, resolution, etc.) and

information content. Full waveform lidar data promises to

provide a better definition of ground surface and vegetation

canopy (Wagner et al., 2008, Mallet and Bretar, 2009). Uti-

lizing blue-green light spectrum, lidar systems are capable of

bathymetric profiling (McKean et al., 2009; Fernandez-Diaz

et al., 2014) and potentially determining turbidity and inher-

ent optical properties of the water column. Lidar systems

have demonstrated the benefits of combining point clouds

with alternative data sources by, for example, including in-

tensity and/or RGB cameras (Bork and Su, 2007) that collect

data synchronously with the lidar and provide metadata for

each point in the cloud. Less expensive and more adaptable

lidar systems (Brooks et al., 2013) and alternative 3-D remote

sensing techniques, such as SfM or low-cost 3-D cameras

(Mankoff and Russo, 2013; Javernick et al., 2014; Lam et al.,

2015), promise high-resolution monitoring at finer temporal

resolutions and lower costs. Increasingly, lidar observations

are combined with passive electro-optical multispectral and

hyperspectral images (Kurz et al., 2011). Lidar technology

already includes active multispectral laser systems, and hy-

perspectral laser observations of object reflectance are likely

only 3 to 5 years away (Hakala et al., 2012; Hartzell et al.,

2014). These systems promise to lessen the need for multiple

sensors, thus reducing uncertainties due to data registration,

lowering costs, and reducing processing time. The combina-

tion of these technologies holds promise as a means to cost-
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effectively monitor aspects of the CZ at timescales of days

or less and information content that includes not only 3-D

structure but also spectral information that is potentially ca-

pable of determining vegetation composition and health, soil

and exposed bedrock composition, and soil water content.

In addition to emerging lidar acquisition systems, new

and existing collection platforms are substantially broad-

ening data coverage. Collection of lidar from fixed-wing

aircraft is expanding to national scales through programs

such as the U.S. Geological Survey’s 3-D Elevation Pro-

gram (3DEP), Switzerland’s national lidar data set col-

lected by the Federal Office of Topography, Sweden’s Lant-

mäteriet (http://www.lantmateriet.se), Netherlands’ Public

Map Service (http://www.pdok.nl/en/node), Denmark’s Geo-

data Agency (http://gst.dk), Finland’s National Land Survey

(http://www.maanmittauslaitos.fi/en/maps-5), United King-

dom’s Environment Agency (http://www.geomatics-group.

co.uk/GeoCMS), and Australia’s AusCover (http://www.

auscover.org.au/). Additionally, acquisition of aircraft and li-

dar systems by institutional research programs have led to

greater capabilities for ecological research by the National

Ecological Observatory Network (Kampe et al., 2010) and

snow water resources via NASA’s Airborne Snow Observa-

tory (http://aso.jpl.nasa.gov). Institutional systems and oper-

ational expertise are also available for short-term research

projects across a range of Earth science applications (Glennie

et al., 2013) via the National Center for Airborne Laser Map-

ping (NCALM) and UNAVCO. Of particular interest to the

CZ community is the development of unmanned aerial sys-

tems (UASs) that are capable of mounting small lidar sys-

tems for rapid deployment (Lin et al., 2011; Wallace et al.,

2012). Long-range UASs offer the potential for repeat lidar

acquisitions at a fraction of the cost of current ALS plat-

forms. Best practices for collecting, processing, and analyz-

ing lidar over increasing extents (i.e., continental scales) are

generally lacking, which can limit the effectiveness of data

sets collected over vastly different physiographic conditions.

2.3.2 Data access, processing, and analysis

The crux of successfully leveraging a flood of new lidar (and

other high-resolution topographic information) data for CZ

science (e.g., Stennett, 2004) will be the ability to extract

meaningful information from these rich and voluminous data

sets. These new lidar data sets require that data processing

and analysis tools be optimized to handle increasingly large

data sets with greater information content. Processing limi-

tations are likely to reduce the usability and extent of very

high information data sets, e.g., waveform or multispectral

data sets pose processing challenges at the continental scale

but may be more manageable at the watershed scale. Further,

new software and workflows need to be developed that en-

able scientists to incorporate lidar data into detailed models

of the CZ without expertise in remote sensing. The CZ sci-

ence community must engage in a concerted effort to develop

(and/or adopt from other domains) new open-source tools

that leverage high performance computing resources avail-

able through programs such as the National Science Founda-

tion (NSF) Extreme Science and Engineering Discovery En-

vironment (XSEDE) (https://www.xsede.org/home). By in-

creasing the scalability of CZ lidar-oriented processing and

analysis tools, computationally intensive analysis and mod-

eling at the highest resolution of the lidar data sets will be

possible. In addition to increasing software scalability, new

processing tools are necessary to take advantage of new data

types, such as full waveform lidar (Wagner et al., 2008,

Mallet and Bretar, 2009) and hyperspectral laser technology

(Hakala et al., 2012). Cloud computing and the “big data

paradigm” that is increasingly common in both industry and

academia (Mattman, 2013) present opportunities for the CZ

lidar community. One such opportunity for big data sharing is

EarthCube (http://www.earthcube.org), a relatively new pro-

gram that has potential to integrate lidar information (among

other geospatial information) into data sharing efforts in the

geosciences. Due to efforts such as NSF’s OpenTopography

(Crosby et al., 2011), there is a large volume of CZ-oriented

lidar online and freely available to the community. For exam-

ple, OpenTopography already offers on-demand processing

services (Krishnan et al., 2011) that permit users to gener-

ate standard and commonly used derivatives from the hosted

lidar point cloud. By coupling data processing with data ac-

cess, users are not required to download large volumes of

data locally or have the dedicated computing and software

resources to process these data. Although many CZ-oriented

lidar data sets are already available to the community through

resources such as OpenTopography in the USA, there are nu-

merous other lidar data sets globally that are not accessible

because they are not available online or access is restricted.

Many of these “legacy” data sets are likely to be important

temporal baselines for comparison against future data sets

(Glennie et al., 2014; Harpold et al., 2014a).

2.3.3 Linkages to in situ observations

Many CZ studies have incorporated in situ observations to

extend or confirm inferences made with lidar-derived data

sets. In situ measurements are time consuming to collect,

often expensive to analyze, and limited in terms of spatial

coverage. As a result, researchers must be judicious with in

situ data collection and maximize integration with lidar data

sets. Physical and chemical properties of soil and rock, and

vegetation structure are among the in situ observations com-

monly integrated with lidar data sets. For example, lidar-

based studies have integrated distributed measurements of

soil hydraulic properties (Harman et al., 2014) and soil thick-

ness (Roering et al., 2010; Pelletier et al., 2014; West et al.,

2014), as well as radioactive isotopes in soils (West et al.,

2014). Lidar data sets have also been used to extend in situ

observations of snow depth (Harpold et al., 2014a; Varhola

and Coops, 2013) and carbon fluxes (Hudak et al., 2012) in
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both space and time. In situ observations of vegetation struc-

tural characteristics are commonly made to develop relation-

ships with lidar observations and extend these relationships

for forest inventory (e.g., Wulder et al., 2002). In addition

to scientific inferences, lidar can be used to improve sam-

pling design to reduce field time and analytical expenses.

For example, lidar has improved insight into sampling snow

measurements necessary for water management (McCreight

et al., 2014). A number of challenges remain to link lidar-

derived information to in situ measurements, including poor

GPS information for historical data sets, constraining the ob-

servational footprint of different measurements, and compar-

ing lidar-derived metrics to typical field measurements. De-

spite these challenges, opportunities exist to better integrate

historical measurements into lidar-based studies and develop

new in situ observations that use lidar data sets to up-scale

CZ processes.

2.3.4 Linkages to satellite remote sensing

Satellite observations of surface-altimetry, reflectance, per-

mittivity, and atmospheric profiles provide observations of

CZ processes at multiple spatiotemporal scales, frequently

with global coverage. The high spatial resolution offered

by lidar technology complements the regular temporal fre-

quency of optical and radar satellite observations, which

could be used to co-calibrate and co-validate these types of

data sets. Satellites also provide another platform for lidar

acquisition. There are numerous examples where lidar data

sets have been used to calibrate and verify coarser estimates

of vegetation, cryosphere (glaciers, permafrost, snowpacks,

etc.), and geomorphic processes and states made via optical

and radar satellites. For example, Mora et al. (2013) used de-

tailed lidar measurements of vegetation structure to quantify

the spatial and temporal scalability of aboveground biomass

of continental forests measured with a very high spatial res-

olution (VHSR) satellite. In data-limited regions of Uganda,

lidar fused with Landsat data sets have improved modeled

biomass predictions and understanding of phenologic pro-

cesses (Avitable et al., 2012). Varhola and Coops (2013) and

Ahmed et al. (2014) introduce methods for detecting changes

in vegetation structure and function from disturbance by fus-

ing Landsat and lidar measurements, and Bright et al. (2014)

used similar fused data sets to investigate changes follow-

ing forest mortality. Applications combining lidar and satel-

lite measurements to change detection have also been ap-

plied to evaluate the effects of vegetation on snowpack dy-

namics (Varhola et al., 2014) and for comparison with model

and satellite-derived estimates of snow-covered area (Kirch-

ner et al., 2014; Hedrick et al., 2015). A multi-faceted ap-

proach for the prediction and monitoring of landslides by

Guzzeti et al. (2012) used measurements from optical satel-

lites and lidar. The Ice, Cloud, and land Elevation Satel-

lite (ICESat) was a NASA mission from 2003 to 2009 that

mapped changes in glacier mass balance using SLS (Kohler

et. al. 2013). Scientists have used the ICESat Geoscience

Laser Altimeter System (GLAS) to identify areas of forest

regeneration along the Mississippi (Li et al., 2011) and it has

been applied in development of a global forest height map

(Simard et al., 2011). A second mission (ICESat-2) is slated

to launch in 2017 and while focused on ice sheet and sea

ice change, it will provide complementary products to char-

acterize terrestrial ecology. Furthermore, other current and

future satellite missions will provide CZ observations that in-

tegrate with lidar, including soil moisture, groundwater stor-

age, soil freeze/thaw, carbon flux, and primary productivity

(Schimel et al., 2013). Of particular interest might be the Sur-

face Water and Ocean Topography (SWOT) mission that pro-

vides coarse water and land topography using radar that has

potential to complement finer-scale measurements acquired

with lidar. To fully realize the potential information avail-

able from fused lidar and satellite data sets, critical atten-

tion must be paid to (1) efficient processing of large data sets

that span collection platforms and spatiotemporal variability,

and (2) maintaining expert knowledge in data interpretation

(Mattmann, 2013).

2.4 A proposed 5-year vision

The fields of CZ science and lidar-based technology are both

advancing rapidly. Here, we present a vision that keeps CZ

researchers abreast of advances in lidar technologies and po-

sitions CZ science at the forefront of the lidar revolution, par-

ticularly with regards to new hardware, processing capabil-

ities, and linkages with complementary observations. These

ideas are guided by the recognition that lidar is capable of si-

multaneously observing process signatures from multiple CZ

disciplines (Fig. 1). To elucidate this point, we discuss three

examples of transdisciplinary CZ research questions and sug-

gest how they could benefit from current and future lidar

technologies. We also provide specific recommendations for

CZ researchers working with (or considering working with)

with lidar data sets. Our intent is to catalyze CZ interest in

the transdisciplinary possibilities of lidar data sets, while in-

creasing the influence of CZ scientists within the broader

group of lidar end users.

Technological advances can be conceptualized as increas-

ing data coverage, quality, and information, including new

acquisition platforms or higher acquisition rates (Fig. 3).

Other advances, such as full-waveform information or hy-

perspectral lasers, will increase the data quality and infor-

mation content extractable from lidar data sets. Three exam-

ples of linked transdisciplinary research questions (Fig. 3)

demonstrate the value of technological advances in lidar

for CZ science: (1) how does co-variation between vegeta-

tion and hydrological flow paths control the likelihood and

distribution of earth flows and landslides? (2) How is the

rapidly changing cryosphere influencing hydrological con-

nectivity, drainage network organization, nutrient and sedi-

ment fluxes, land-surface energy inputs, and vegetation struc-
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Figure 3. Example CZ research questions conceptualizing the trans-

disciplinary potential of lidar data sets when coupled with future

technological advances. The questions encompass processes from

geomorphology (a), hydrology (b), and ecology (c) that overlap

spatial and temporal scales. These scales are noted in Fig. 1. The

text in the panel notes specific improvements offered and the tech-

nology needed in parentheses. The arrows qualitatively represent

whether the technological advance expands data coverage and/or

data quality/content.

ture? (3) How does above- and belowground biomass control

bedrock to soil production rates, sediment mixing and trans-

port, and associated carbon fluxes via bioturbation and hill-

slope transport? These example questions demonstrate the

need for research that transcends information sharing across

disciplines to develop synergistic new theories and advances

in CZ science.

These research questions span a wide-range of spatial

and temporal scales, from smaller and faster (× 10−2 m and

× 101 s) in question 3 to larger and more long-term (× 105 m

and × 106 s) in question 2 (see Fig. 1). Our ability to answer

these questions benefits from several facets of improved lidar

technologies, including higher acquisition rates and larger

ranges, more rapid and robust deployment options, and im-

proved processing resources for extracting information. Fu-

ture lidar technologies could address question 1 by identify-

ing specific vegetation species via hyperspectral laser tech-

nologies, increasing accuracy of bare-earth estimation to im-

prove hydrologic routing using full-waveform analysis, and

increasing coverage of landslide-prone areas from different

physiographic regions (Fig. 3). New technology will address

question 2 by providing estimates of riparian vegetation pro-

ductivity, measuring channel bathymetry using blue-green li-

dar, and with new platforms that increase sampling frequency

via UASs or other low-cost systems. Lastly, new technol-

ogy will address question 3 by providing improved estimates

of aboveground biomass and bare-earth extraction using full

waveform analysis, and improved fine-scale change detec-

tion with greater processing resources. These example ques-

tions and their conceptualization (Fig. 3) demonstrate what

well-integrated lidar data sets can provide to stimulate and

improve future CZ research.

We propose five recommendations as an attempt to unite

the CZ community around improved utilization and advo-

cacy of lidar technology in important transdisciplinary sci-

entific contexts that integrate the opportunities and impedi-

ments discussed previously:

Open lines of communication

Develop communication within and among groups, includ-

ing individual CZ disciplines, remote-sensing scientists,

computer scientists, private industry, and funding agencies.

Workshops have the potential to increase communication be-

tween “data users” and “data creators”. CZ scientists must

find ways to communicate their data acquisition specifica-

tions to the scientists and engineers who create lidar hard-

ware and processing software through venues such as meet-

ings with private industry, the development of advisory com-

mittees, and commentary pieces in trade journals that present

a vision for the future needs of CZ scientists. Open communi-

cation among diverse CZ scientists is fundamental to devel-

oping collaborations capable of transdisciplinary advances.

Working groups within CZ communities, like the critical

zone exploration network (http://www.czen.org), and town-

hall meetings at international Earth science conferences have

initiated sustainable communication venues. Future efforts

focused on early-career CZ scientists that demonstrate the

benefits of transdisciplinary efforts, such as focused confer-

ences and pilot research projects, should be pursued.

Increase information extraction

Advocate for lidar repositories that are interoperable and

broaden data access, as well as open-source and community-

centric processing resources. Ultimately, enhanced and

streamlined data processing and analysis tools will enable

CZ researchers to concentrate on understanding fundamen-

tal science problems instead of struggling with data access,

processing, and analysis. Specifically, recent efforts focused

on cloud storage and computing resources, and open source

software tools could greatly aid this effort. Efforts to im-

prove the efficiency of processing will become more im-

portant as the acquisition of lidar expands to continental

scales. Information extraction at larger extents will require

judicious tradeoffs between acquisition parameters and costs

that consider variability in local physiographic conditions

(i.e., higher sampling densities in areas with dense vegeta-
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tion cover and high topographic complexity). Programs to

support open-source software and their long-term sustain-

ability are required to support CZ science. Increasing open

access to lidar data sets facilitates greater information extrac-

tion and the potential for meta-analysis studies. The value of

open-access data sets will increase as improved processing

tools become available. CZ scientists should also consider

working with private lidar acquisition companies and their

customers (i.e., forestry, mining, and urban planning organi-

zations) to release what has previously been proprietary data

to the public.

Increase accessibility of lidar systems

Advocate for new acquisition technologies that lower the cost

of lidar collection and increase its availability, such as un-

manned platforms and less expensive and longer-range lidar

systems. Institutional acquisitions of lidar systems also sig-

nificantly increase accessibility. Community-supported lidar

systems available to researchers, through agencies such as

UNAVCO and NCALM, should also be encouraged. A pow-

erful advancement would be a “clearinghouse” where agen-

cies and institutions could exchange information on lidar sys-

tems, seek expert advice on lidar acquisition, and potentially

trade or rent hardware to better meet the needs of individual

projects.

Focus on key technologies

Support the development of new lidar technologies that are

useful for linking disciplinary observations. For example, our

review has stressed the potential benefits for linking CZ func-

tions to processes offered by hyperspectral laser technolo-

gies (Fig. 3). Other key technologies include new acquisi-

tion platforms (UASs) and improved open-source processing

capabilities and open-source industry-standard data formats.

The community should continue with a dialogue about crit-

ical technologies within CZ science venues in parallel with

interactions with technology developers (as mentioned pre-

viously). The more united the CZ community is about the

benefits of a particular technology (i.e., hyperspectral lidar)

the more it can advocate within public and private sectors for

its advancement.

Link complementary observations

Consider other remote-sensing observations that may be

complementary to lidar (e.g., thermal, infrared, optical, and

microwave). While fusing remote-sensing data is becom-

ing more common, the value of lidar information to coarser

remote-sensing products is vast and underutilized. Be mind-

ful of the potential synergistic benefits of collecting lidar data

over areas with in situ observations and vice versa, consider

how to improve collection of in situ observations based on

lidar information. In particular, in situ information collected

during lidar data collection can be extremely valuable and

difficult to substitute for at a later date. Maintain awareness

of competing, less expensive technologies, such as SfM, that

may be more appropriate in some conditions and geographi-

cal locations. The multi-scale nature of transdisciplinary re-

search (Figs. 1 and 3) demands that lidar be integrated into

a broader observational framework that does not neglect the

value of in situ and coarser remote-sensing observations.
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