
Boise State University
ScholarWorks

Biology Faculty Publications and Presentations Department of Biological Sciences

9-26-2012

Identification of an Amino-Terminal Fragment of
Apolipoprotein E4 that Localizes to Neurofibrillary
Tangles of the Alzheimer’s Disease Brain
Troy T. Rohn
Boise State University

Lindsey W. Catlin
Boise State University

Kendra G. Coonse
University of Washington School of Medicine

Jeffrey W. Habig
Boise State University

NOTICE: this is the author's version of a work that was accepted for publication in Brain Research. Changes resulting from the publishing process, such
as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version was subsequently published in Brain Research, 2012. DOI:
10.1016/j.brainres.2012.08.003

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/bio_facpubs
https://scholarworks.boisestate.edu/biosciences
http://dx.doi.org/10.1016/j.brainres.2012.08.003


 

 

 1 

NOTICE: this is the author‟s version of a work that was accepted for publication in Brain Research. Changes resulting from the publishing process, 

such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes 
may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Brain Research, 2012.  

DOI: 10.1016/j.brainres.2012.08.003 

Identification of an Amino-Terminal Fragment of Apolipoprotein 

E4 that Localizes to Neurofibrillary Tangles of the Alzheimer’s 

Disease Brain 
 

Troy T. Rohn and Lindsey W. Catlin 

Boise State University 

 

Kendra G. Coonse 

University of Washington School of Medicine 

 

Jeffrey W. Habig 

Boise State University 

 

Abstract 

 

Although the risk factor for harboring the apolipoprotein E4 (apoE4) allele in late-onset 

Alzheimer‟s disease (AD) is well known, the mechanism by which apoE4 contributes to AD 

pathogenesis has yet to be clarified. Preferential cleavage of the ApoE4 isoform relative to 

other polymorphic forms appears to be significant, as the resulting fragments are associated 

with hallmarks of AD. To examine the possible role of apoE4 proteolysis in AD, we designed 

a site-directed antibody directed at position D172, which would yield a predicted amino-

terminal fragment previously identified in AD brain extracts. Western blot analysis utilizing 

this novel antibody, termed the amino-terminal apoE4 cleavage fragment (nApoE4CF) Ab 

consistently identified the predicted amino-terminal fragment (~18 kDa) in several 

commercially available forms of human recombinant apoE4 purified from E. coli. Mass 

spectrometry confirmed the identity of this 18 kDa fragment as being an amino-terminal 

fragment of apoE4. Immunohistochemical experiments indicated the nApoE4CF Ab 

specifically labeled neurofibrillary tangles (NFTs) in AD frontal cortex sections that 

colocalized with the mature tangle marker PHF-1. Taken together, these results suggest a novel 

cleavage event of apoE4, generating an amino-terminal fragment that localizes within NFTs of 

the AD brain. 
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1. Introduction 

 

Alzheimer‟s disease (AD) is a neurodegenerative disorder characterized by extensive neuronal loss leading to 

cognitive impairment and dementia.  AD is diagnosed based upon the extent of senile plaques composed of beta-

amyloid and NFTs containing abnormally phosphorylated tau (Golde et al., 2006). Despite exhaustive efforts, there 

are few genetic risk factors associated with late-onset AD that have been identified, with the exception of the 

apolipoprotein (apo) E4 allele. Inheritance of one copy of the apoE4 allele increases disease risk fourfold, while two 

copies raises the risk tenfold (Eisenstein, 2011). Although apoE4 clearly enhances the risk for AD, the mechanism 

by which apoE4 contributes to AD pathogenesis is not known.  ApoE4 is a 34 kDa protein composed of 299 amino 

acids that plays a major role in cholesterol transport in the CNS, and may also help remove beta-amyloid from the 

brain (Eisenstein, 2011).  Impairment in these two processes following inactivation of apoE4 may help drive the 

underlying pathology associated with AD.  In this regard, apoE4 is highly susceptible to proteolysis compared to 

apoE3, and apoE4 fragments (14-20 kDa) have been identified in the AD brain (Harris et al., 2003). Thus, apoE4 

may promote AD pathogenesis through a loss of function.  On the other hand, emerging data suggests that apoE4 

fragments may provide a gain of function by promoting the formation of both plaques and tangles. In particular, the 
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C-terminal portion of apoE has been implicated in binding to beta-amyloid and is localized to plaques (Marques et 

al., 2004).  The N-terminal domain conversely, preferentially localizes within neurofibrillary tangles (NFTs) and is 

neurotoxic in culture (Harris et al., 2003).  More recently, in a mouse model of AD, expression of a N-terminal 

fragment of apoE4 resulted in accumulation of pathogenic beta-amyloid oligomers and led to neuronal as well as 

behavioral defects in mice (Bien-Ly et al., 2011).  Taken together, these data suggest the link between apoE4 and 

AD pathogenesis may be proteolytic cleavage of the protein leading to the production of fragments that enhance 

pathology.  However, to date, the exact nature of the protease involved in cleaving apoE4 is unknown although 

several candidates have been reported including cathepsin D (Zhou et al., 2006), a chymotrypsin-like protease 

(Harris et al., 2003), and aspartic proteases (Marques et al., 2004).  

 

Several studies have identified the presence of ~18 kDa band in human AD brain extracts, suggesting cleavage of 

apoE4 near position D172 (Harris et al., 2003; Huang et al., 2001).  To determine if this site within apoE4 is cleaved 

by proteases in the AD brain, we developed and characterized a site-directed neoepitope antibody directed towards 

the amino-terminal fragment that would be generated following cleavage at D172.  Application of this antibody, in 

situ, revealed specific localization within NFTs that co-localized with PHF-1.  Thus, this antibody may have utility 

in future studies examining the role of apoE4 proteolysis in AD. 

 

2. Results 

 

Examination of the amino acid sequence of apoE4 that would generate an approximate 18 kDa fragment revealed 

the presence of several ideal caspase-cleavage consensus sites at position D128 (DMED) and D172 (DADD). 

Therefore, we hypothesized that apoE4 may be a suitable substrate for caspase-3 cleavage. As an initial approach, 

experiments were performed utilizing human recombinant apoE4 from E. coli incubated with active caspase-3 for 24 

hours at room temperature and analyzed by western blot analysis using a full-length amino-terminal apoE4 antibody. 

Overall, there was very little difference in the appearance of apoE4 in the presence or absence of caspase-3. 

However, the results did indicate a unique band in the digested sample running at ~16 kDa (Fig. 1A, lane marked 

„+Casp-3‟). This unique band is close to the predicted molecular weight of the amino-terminal fragment of apoE4 

that would occur following cleavage at position D172 (predicted fragment ~18.2 kDa). These results suggested that 

apoE4 is a substrate for caspase-3 cleavage. A somewhat surprising result of this experiment was that in addition to 

an intense band labeling at 34 kDa, corresponding to full-length apoE4, there were several apoE4 amino-terminal 

bands present in the control lane, suggesting that proteolytic cleavage of apoE4 occurred following purification of 

apoE4 from E. coli, where is was expressed (Fig. 1A, lane marked „Ctl‟).  The presence of these amino-terminal 

fragments of apoE4 under control conditions, particularly the band running at ~18 kDa was confirmed using an 

additional commercial source of recombinant apoE4 from MBL International (data not shown).  This confirms the 

sensitivity of apoE4 to proteolytic cleavage and suggests that in addition to being a substrate for caspase-3, apoE4 

may also be subjected to proteolysis by other proteases present in E. coli. 

 

As previously mentioned, caspases are unique in that they show an absolute requirement for cleavage after aspartic 

acid (Rohn and Head, 2009). Based upon the sequence of human apoE4, there are several potential caspase-3 sites at 

position D128 (DMED) and D172 (DADD). The predicted amino terminal fragments following cleavage of caspase-

3 at these two positions are 13 and 18.2 kDa, respectively.  Because our results in Fig. 1A suggested the caspase-3 

fragment was closer to 18 kDa, and was larger than 13 kDa, we chose the sequence at position D172 to synthesize a 

site-directed antibody. We chose the 7-mer peptide LLRDADD, which represents the upstream neoepitope fragment 

of apoE4 that would be generated following cleavage after the terminal aspartic acid residue. Following synthesis, 

this peptide was coupled to KLH and injected into rabbits. The resulting sera (verified by ELISAs) were used to 

affinity purify antibodies. Western blot analysis was performed to confirm whether this antibody, herein termed the 

amino-terminal apoE4 cleavage fragment (nApoE4CF Ab), recognized the predicted amino-terminal fragment 

following incubation of human recombinant apoE4 with activated caspase-3.  As shown, the nAPoE4CF Ab strongly 

labeled a band running at ~18 kDa following incubation of apoE4 with caspase-3 (Fig. 1B, right lane). However, 

surprisingly, this same band was also evident in the control lane representing apoE4 incubated in the absence of 

caspase-3 (Fig. 1B, lane marked „Ctl‟). Several conclusions can be drawn from this experiment: the first is that this 

novel antibody did not label the full-length form of apoE4, a critical requisite for a site-directed antibody. Second, 

these data suggest that caspase-3 or some other protease already cleaved apoE4 following its purification from E. 

coli. Based on the results from Fig. 1A, the caspase-3 generated fragment ran slightly smaller (~16 kDa) than the 

nAPoE4CF-labeled band of ~18 kDa (Fig. 1B). Therefore, our data suggest the nApoE4CF Ab did not detect the 16 

kDa caspase-3-generated fragment that was immunolabeled with the full-length apoE4 antibody (Fig. 1A). 
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To confirm that the 18 kDa fragment represented an amino-terminal cleavage fragment of apoE4, similar 

experiments were repeated using His-tagged human recombinant apoE4.  As in Fig. 1B, the nAPoE4CF antibody 

again labeled an ~18 kDa band of apoE4 under control conditions (Fig. 1C, left panel).  An amino-terminal His-

tagged antibody immunolabeled the same 18 kDa band in addition to full-length apoE4 as well as smaller amino-

terminal fragments (Fig. 1C, right panel).   

 

To determine whether this 18 kDa band was unique to recombinant apoE4 purified from E. coli, similar experiments 

were performed using apoE4 purified from human plasma. Because this form of apoE4 had not been expressed in E. 

coli, we predicted that the 18 kDa band would no longer be present following western blot analysis using the 

nApoE4CF antibody.  Results from Fig. 1D supported this idea, and revealed a complete lack of immunoreactivity 

to an 18 kDa band, whereas the 18 kDa band as well as two other higher molecular weight bands were 

immunolabeled under identical experimental conditions in apoE4 from E. coli. Moreover, these data confirmed the 

high specificity of this antibody to the fragment of apoE4, as no reactivity to full-length apoE4 was observed even 

though there were ample levels of the full-length protein present in the transferred gel (Fig. 1E). Experiments were 

also undertaken looking at whether the 18 kDa band detected using recombinant apoE4 is also present in 

recombinant apoE3. In this case, we pushed the sensitivity of the system by doubling the amount of apoE3 loaded 

onto gels as compared to apoE4 and by increasing the level of nApoE4CF antibody to 1:100 instead of 1:500. In this 

case, there was a total lack of immunoreactivity of the nApoE4CF Ab to apoE3 and this was supported by the 

absence of other bands in the Coomassie blue-stained gel (Fig. 1E). 

 

Further support that the 18-kDa band represented an amino-terminal fragment of apoE4 was provided by mass 

spectrometry. When recombinant human apoE4 from E. coli was separated by SDS-PAGE a number of bands were 

evident following staining (Fig. 2), including bands corresponding to the full-length protein (34 kDa) and the 

presumptive amino-terminal cleavage product (18 kDa). The 34-kDa and 18-kDa bands were isolated, digested, and 

analyzed by HPLC-coupled mass spectrometry. As expected, nearly complete sequence coverage of apoE4 was 

obtained from the 34-kDa band with a very high Sequest confidence score (Fig. 2, top right). The peptides from the 

18-kDa band also corresponded to apoE4, but were not localized solely to the amino terminus (Fig. 2, lower right) as 

would be expected if this band were purely the amino-terminus cleavage product. Two pieces of evidence suggest 

that the 18-kDa band was a combination of the amino-terminal cleavage product that co-migrated with apoE4 

degradation and/or cleavage products, accounting for the carboxy-terminal peptides in the analysis. First, a similar 

analysis of the region located between the 18- and 34-kDa bands resulted in abundant apoE4 peptides and complete 

sequence coverage similar to the full-length product, consistent with apoE4 degradation and/or cleavage. Second, 

the Sequest confidence score associated with spectral matches to the amino-terminal fragment was six-fold higher 

than the carboxy-terminal fragment for the 18-kDa band, whereas the amino- and carboxy-terminal scores were 

roughly equivalent for the 34-kDa band. Taken together the results presented in Figs. 1 and 2 suggested the presence 

of a unique amino-terminal proteolytic fragment of apoE4 generated in E. coli that did not appear to be the result of 

caspase-3-mediated cleavage. Furthermore, none of the low abundant bacterial contaminants associated with the 

purification process appeared to possess a suitable epitope for the nApoE4CF antibody (data not shown). 

 

These initial findings suggest a novel cleavage event of apoE4 in vitro.  To test whether a similar cleavage event 

occurs in the AD brain, immunohistochemistry experiments were undertaken using postmortem frontal cortex brain 

sections from AD subjects.  As an initial approach, we first characterized the staining profile in sections using 

commercial full-length antibodies to either the extreme N-terminal or C-terminal region of apoE4.  Previous studies 

have indicated a preferential localization of apoE4 antibodies such that N-terminal antibodies immunolabel both 

plaques and tangles, while C-terminal antibodies immunolabel plaques only (Huang et al., 2001).  Figure 3 displays 

representative results following immunohistochemical analysis with N- and C-terminal full-length antibodies to 

apoE4.  As depicted for the N-terminal antibody (Fig. 3A), both full-length antibodies strongly labeled blood 

vessels. However, the N-terminal antibody preferentially localized to both plaques and tangles (Fig. 3B), while the 

C-terminal antibody predominantly labeled plaques only (Fig. 3C).  These results confirmed previous findings 

(Huang et al., 2001). We next performed experiments utilizing our novel cleavage antibody to apoE4 under identical 

experimental conditions.  The apoE4CF antibody exclusively labeled NFTs in the AD brain (Fig. 3D). Of interest 

was the general lack of staining in both blood vessels and within senile plaques.  Because the nApoE4CF antibody 

localized exclusively within NFTs, this supports the hypothesis that the antibody is specific for the N-terminal 

region of apoE4. Additional experimentation was carried out on specific AD cases in which the exact apoE allele 

type was known.  Previous studies have indicated that the risk of AD is highest with the inheritance of the apoE4 

allele, while the apoE3 allele is neutral and the apoE2 allele is actually protective (Verghese et al., 2011). We 
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quantified the number of nApoE4CF-positive NFTs in AD cases possessing both apoE3 alleles (3/3), one apoE4 

allele, (3/4), and both apoE4 alleles (4/4).  Our results were intriguing in that the highest number of nApoE4CF-

positive NFTs were found in 3/4 and 4/4 cases, both of which were significantly higher than 3/3 cases (Fig. 3E).  

These data suggest a potential relationship between inheritance of the apoE4 allele, the cleavage of apoE4 and the 

localization of this N-terminal fragment within NFTs. In support of these findings, we also demonstrated the 

presence of nApoE4CF in AD frontal cortex extracts by western blot analysis (Fig. 3F). 

 

In an attempt to further characterize the labeling of the nAPoE4CF Ab, experiments were performed comparing the 

staining in AD versus age-matched control sections. Specific staining within NFTs was only observed in AD frontal 

cortex sections (Fig. 4A) and was absent in age-matched controls (Fig. 4B). We also confirmed the specificity of the 

nAPoE4CF Ab by performing control experiments with preimmune versus immunized serum in serial AD frontal 

cortex sections. No specific staining was observed when preimmune serum was used in place of immunized serum 

(Fig. 4C and D). In addition, staining with the nAPoE4CF Ab was prevented after preadsorption with free peptide 

that was used as the immunogen (Fig. 4E and F).  

 

To further examine the distribution of nApoE4CF in AD tissue, double-labeling experiments were carried out using 

an anti beta-amyloid antibody as a marker for plaques and PHF-1 as a marker of late NFTs. By bright-field 

immunohistochemistry, no co-localization was observed between nApoE4CF and beta-amyloid, suggesting 

nApoE4CF is absent in plaques (Fig. 5A). However, using immunofluorescence it was demonstrated that 

nApoE4CF co-localized with PHF-1 in merged images (Fig 5B and C, yellow). Quantitative experiments indicated 

that nApoE4CF was present in ~60% of PHF-1-positive NFTs (Fig. 5D). Although single PHF-1-positive NFTs 

were identified (arrowheads, Fig 5C), no nApoE4CF single-positive NFTs were observed.  

  

3- Discussion 

 

Human apolipoprotein E (apoE) is a 34 kDa glycoprotein that exists in three isoforms, E2, E3, and E4, which differ 

by single amino acid variations.  Inheritance of one copy of apoE4 increases the risk of Alzheimer‟s disease (AD) 

fourfold, while inheritance of two copies raises the risk about tenfold (Eisenstein, 2011). The molecular mechanisms 

by which apoE4 contributes to AD pathogenesis is unknown, however, emerging data suggests that apoE4 is highly 

unstable and a loss of function may impair the movement of cholesterol and beta-amyloid within the brain 

(Eisenstein, 2011).  Recent evidence suggests that the instability of apoE4 is a result of a susceptibility to proteolytic 

cleavage. Compared to other isoforms of apoE, apoE4 is highly susceptible to proteolytic cleavage (Harris et al., 

2003) and apoE N-terminal fragments (14-20 kDa) are present at much greater levels in the AD brain as compared 

to age-matched controls (Harris et al., 2003). Besides a possible loss of function of apoE4 in cholesterol and beta-

amyloid transport within the CNS following proteolysis, emerging data suggests that apoE4 fragments may provide 

a toxicity gain of function by promoting the formation of both plaques and NFTs. For example, employing a mouse 

model of AD, expression of a N-terminal fragment of apoE4 resulted in accumulation of pathogenic beta-amyloid 

oligomers and leads to neuronal as well as behavioral deficits in mice (Bien-Ly et al., 2011).  Taken together, these 

data suggest the link between apoE4 and AD pathogenesis may be proteolytic cleavage leading to the generation of 

fragments that enhance pathology.  However, to date, the exact nature of the protease involved in cleaving apoE4 is 

unknown although several candidates have been reported including cathepsin D (Zhou et al., 2006), a chymotrypsin-

like protease (Harris et al., 2003), and aspartic proteases (Marques et al., 2004).  The goal of the current study was to 

examine in further detail the mechanisms underlying proteolytic cleavage of apoE4 in the AD brain. 

 

Because of the well documented role that caspases play in promoting the pathology underlying AD, including 

proteolysis of tau and the amyloid precursor protein (APP), which may promote the formation of NFTs and beta-

amyloid formation, respectively, (Rohn, 2010), we hypothesize that this family of proteases may be involved in the 

proteolysis of apoE4. Caspases are critical to the execution of apoptosis and represent a family of cysteine proteases, 

which are unique in their specificity of cleavage after aspartyl residues (Rohn and Head, 2009).  Examination of the 

amino acid sequence of apoE4 reveals several candidate caspase-cleavage consensus cleavage sites, including one in 

particular at D172 (DADD), that would produce a predicted ~18 kDa amino-terminal fragment of apoE4, similar in 

size to what has been previously reported to be present in the AD brain (Harris et al., 2003). We chose the 7-mer 

peptide LLRDADD, which represents the upstream neoepitope fragment of apoE4 that would be generated 

following cleavage after the terminal aspartic acid residue.  Following affinity purification of this antibody, which 

we termed the amino-terminal apoE4 C-terminal fragment (nApoE4CF) antibody, we tested the antibody in fixed 

frontal brain sections from AD subjects using immunohistochemistry. As an initial approach, we first characterized 
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the staining profile in sections using commercial full-length antibodies to either the extreme N-terminal or C-

terminal region of apoE4.  Previous studies have indicated a preferential localization of apoE4 antibodies such that 

N-terminal antibodies immunolabel both plaques and tangles, while C-terminal antibodies immunolabel plaques 

only (Huang et al., 2001). Results in Fig. 3 confirmed these findings whereby application of our novel antibody 

specifically labeled NFTs not plaques and, in addition, was significantly dependent upon the apoE4 allele status of 

selected cases. Taken together these data suggest the nApoE4CF antibody is specific for a N-terminal fragment of 

apoE4, which may not be produced until full-length apoE4 exits blood vessels and enters in the extravascular space.  

This suggests that the protease involved in producing this fragment is either present extracellularly or within 

neurons. 

 

We verified whether our nApoE4CF antibody could detect the predicted caspase-cleavage fragment of 18 kDa 

following cell-free experiments using human recombinant apoE4 and activated caspase-3.   Although we were able 

to confirm that apoE4 is indeed a substrate for caspase-3 proteolysis, our data clearly indicated that the nApoE4CF 

antibody does not recognize a caspase-cleaved fragment of apoE4 by western blot analysis. Instead we observed a 

consistent immunoreactivity to a 18 kDa band in commercial preparations of human recombinant apoE4 under 

control conditions (Fig. 1).  These data suggest some other protease already cleaved apoE4 following its purification 

from E. coli. Based on the results from Fig. 1A, the caspase-3 generated fragment ran slightly smaller (~16 kDa) 

than the predicted fragment of 18.2 kDa.  Therefore, it is possible we chose the incorrect cleavage site to synthesize 

our antibody.  Indeed, further examination of the amino acid sequence of apoE4 by CASVM (server for SVM 

prediction of caspase substrate cleavage sites) (Wee et al., 2006), indicated another potential caspase-cleavage 

consensus site at position D169, just upstream to D172, would yield a predicted cleavage fragment of ~16 kDa, 

which would correspond to the size fragment present in Fig. 1A following incubation of apoE4 with caspase-3.  

Taken together our data support the conclusion that the nApoE4CF antibody recognizes a novel cleavage site 

generated by an unknown protease and that this site is cleaved in vivo.   

 

Future studies utilizing our novel nApoE4CF antibody should aid in identifying the protease responsible for the in 

vivo cleavage of apoE4 in the AD brain. Examination of the apoE4 sequence indicates the next amino acid after 

D172 to which our nApoE4CF antibody was designed towards, is leucine at position D173.  There are several 

potential candidate proteases that could be cleaving apoE4 between residues D172 and D173 generating an amino-

terminal fragment of 18 kDa.  These include the family of matrix metalloproteinases (MMPs) that accept large 

hydrophobic amino acids at the S1‟ site. We hypothesize that a member of this MMP family may be cleaving apoE4 

at the N-terminal side of leucine at position D173. Cleavage of the peptide bond between these two the aspartate and 

leucine residues would generate an amino-terminal fragment that could now be recognized by our nApoE4CF 

antibody.  Examining the MMP family, several candidate proteases stand out including MMP-3 (also known as 

stromelysin-1), MMP-7 (also known as matrilysin) and MMP-9.  Of particular interest is MMP-3 and MMP-9 both 

of which have been implicated in the pathogenesis associated with AD.  For example, MMP-3 has a selective 

distribution in the AD brain being found in astrocytes and within senile plaques (Yoshiyama et al., 2000).  For 

MMP-9, studies have shown an increase in MMP-9 activity in patients with mild cognitive impairment compared to 

normal age-matched controls (Bruno et al., 2009).  In addition, there was an inverse correlation between Global 

Cognitive Score and Mini-Mental State Examination score and MMP-9 activity (Bruno et al., 2009). More 

intriguing is a recent study that has linked MMP-9 together with apoE4 in the breakdown and loss of integrity of the 

blood-brain barrier associated with AD (Bell et al., 2012). 

 

In conclusion, in the present study we examined the proteolytic cleavage of apoE4 both in vitro and in situ using an 

epitope site-directed antibody.  Our results demonstrate a novel cleavage event of apoE4 at position D172 generating 

an amino-terminal fragment that localizes to NFTs of the AD brain. Further studies are warranted to identify the 

nature of this protease and our novel nApoE4CF antibody should aid in identifying potential proteases. Our present 

results suggest the focus should be on examining on the family of MMPs such as MMP-3 and MMP-9. 

 

4. Experimental Procedure 

 

Materials.  

 

The anti-A mAb 1560 (clone 6E10) was purchased from Covance (Dedham, MA). The beta-actin rabbit polyclonal 

antibody was from AbCam (Cambridge, MA). Human apolipoprotein E purified from plasma was purchased from 

Millipore (Billerica, MA).  Human recombinant apoE4 and E3 proteins purified from E. coli were purchased from 
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ProSci Inc. (Poway, CA). An additional source of human recombinant apoE4 was purchased from MBL 

International Corporation (Woburn, MA). His-tagged human recombinant apoE4 purified from E. coli was 

purchased from Biovision Inc. (Milpitas, CA).  Activated human recombinant caspase-3 was purchased from 

Calbiochem (San Diego, CA).  The anti-apoE4 C-terminal rabbit polyclonal antibody was purchased from Abgent 

(San Diego, CA).  The anti-apoE4 N-terminal rabbit polyclonal antibody was purchased from Aviva Systems 

Biology Corp. (San Diego, CA). PHF-1 was a generous gift from Dr. Peter Davies (Albert Einstein College of 

Medicine, Bronx, NY). 

 

Generation of the polyclonal site-directed cleavage antibody to ApoE4.  Polyclonal antibodies were synthesized 

based upon a putative caspase cleavage consensus site (DADD
172

) within apoE4. We chose the 7-mer peptide 

LLRDADD, which represents the N-terminal upstream neoepitope fragment of apoE4 that would be generated 

following cleavage after the terminal aspartic acid residue. Following synthesis, this peptide was coupled to KLH 

and injected into rabbits. The resulting sera (verified by ELISAs) were used to affinity purify antibodies using a 

sulfolink column (Thermo Scientific) coupled with the peptide used as an immunogen.  For this antibody, synthesis 

of peptides, injections of immunogens, and collection of antisera were contracted out to Bethyl laboratories 

(Montgomery, TX). 

 

Cell-free digestion of ApoE4 with caspase-3 

 

To determine whether apoE4 is subject to proteolytic digestion, 40 g of purified human recombinant apoE4 from 

two sources (MBL International and Prosci Inc.) was incubated with active human recombinant caspase-3 at 37°C 

overnight in 2x reaction buffer containing 10 mM DTT. Reactions were terminated by the addition of 5x sample 

buffer and stored at −20°C until analyzed. 

 

Mass Spectrometry 

 

Gel slices were excised from SDS-PAGE gels and digested with trypsin as previously described (Shevchenko et al., 

2006). Briefly, excised bands were destained in 25 mM ammonium bicarbonate/50% acetonitrile overnight at 4
o
C. 

Gel slices were dehydrated in 100% acetonitrile for 10 minutes at room temperature, followed by reduction in 10 

mM DTT for 60 minutes at 37
o
C.  Next, alkalation was performed in 55 mM iodoacetamide for 60 minutes at room 

temperature in the dark. Protein samples were digested with trypsin in 10 mM ammonium bicarbonate overnight at 

30
o
C. Digested peptides were separated using reversed phase chromatography (Thermo Scientific Easy-nLC II) and 

infused into a Velos Pro Dual-Pressure Linear Ion Trap Mass Spectrometer for MS/MS using CID fragmentation. 

Results were analyzed with Thermo Scientific‟s Proteome Discoverer software (v1.3) and the Mascot search engine 

probing the human SwissProt database. Search parameters included carbamidomethyl (C) fixed modification, 

oxidation (M) variable modification, maximum of 2 missed cleavages, and 1.5 Da peptide mass tolerance. 

 

Western blot analysis 

 

Western blot analysis was performed as previously described (Rohn and Catlin, 2011).  Proteins were separated by 

15% SDS-PAGE and transferred to nitrocellulose. Transferred slabs were stained in coomassie blue to verify equal 

loading between samples. Membranes were incubated in nApoE4CF (1:500) or a full-length N-terminal apoE4 

antibody (1:1,000) overnight at 4°C and primary antibodies were visualized using goat anti-rabbit HRP-linked 

secondary, incubated for 1 hour at room temperature (1:5,000; Jackson‟s Laboratory, West Grove, PA), followed by 

ECL detection. 

 

Human subjects 

 

Autopsy brain tissue from the front cortex of eight neuropathologically confirmed AD cases with known ApoE 

isoform genotype and three age-matched control cases were studied. Human brain tissues used in this study were 

provided by the Institute for Brain Aging and Dementia Tissue Repositories at the University of California, Irvine. 

 

Immunohistochemistry and immunofluorescence microscopy 

 

Free-floating 40 µm-thick serial sections were used for immunohistochemical and immunofluorescence studies as 

previously described (Kokoulina and Rohn, 2010). Antibody dilutions were the following: nApoE4CF (1:500), full-
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length N-terminal ApoE4 (1:500), full-length C-terminal ApoE4 (1:100), anti beta-amyloid mAb 1560 clone 6E10 

(1:400), and PHF-1 (mouse monoclonal, 1:1000).  To visualize beta-amyloid staining, sections were pretreated for 5 

minutes in 95% formic acid. Antigen visualization was determined using ABC complex (ABC Elite 

immunoperoxidase kit, Vector labs), followed by DAB (brown) or Vector SG substrate  (blue) (Vector Labs). For 

immunofluorescence co-localization studies, antigen visualization was accomplished using an Alexa fluor 488-

labeled tyramide (green, Ex/Em = 495/519) or streptavidin Alexa Fluor 555 (red, Ex/Em = 555/565), both from 

Invitrogen (Carlsbad, CA). 

 

Quantification and statistical analysis 

 

Statistical difference between the average number of nApoE4CF-positive NFTs in 3 AD cases from each allelic 

combination of ApoE3/ApoE3, ApoE3/ApoE4, and ApoE4/ApoE4A was determined using Student‟s two-tailed T-

test. To determine the percent co-localization, a semi-quantitative analysis was performed as described previously 

(Kokoulina and Rohn, 2010; Rohn et al., 2011; Rohn and Kokoulina, 2009) by taking 20X immunofluorescence, 

overlapping images from three different fields in frontal cortex brain sections of three separate AD cases. Capturing 

was accomplished by using a 2.5x photo eyepiece and a Sony high resolution CCD video camera (XC-77). As an 

example, to determine the percent co-localization between PHF-1 and nApoE4CF, photographs were analyzed by 

counting the total number of PHF-labeled NFTs per 20X field for each case, and the number of NFTs labeled with 

both PHF-1 and nApoE4CF. Data are representative of the average number  (±S.E.M.) of NFTs or NFTs that co-

localized with nApoE4CF in each 20X field (3 fields total for 3 different cases).  Statistical differences in this study 

were determined using Student‟s two-tailed T-test employing Microsoft Office Excel. 
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AD- Alzheimer‟s disease 

A- beta amyloid 

 apoE4- apolipoprotein 4 

APP- amyloid precursor protein  

nApoE4CF- Amino-terminal apoE4 carboxyl-terminal fragment 

MMP- matrix metalloproteinase 

NFTs- neurofibrillary tangles 

PHF- paired helical filaments 
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Fig. 1- Identification of an 18 kDa amino-terminal fragment of apoE4 that is caspase-3-independent. (A and 

B) Recombinant human apoE4 was incubated with or without active caspase-3 overnight at 37 °C.  Samples were 

separated by SDS-PAGE, transferred to nitrocellulose and probed with an amino-terminal full-length antibody to 

apoE4 (1:1,000), (A) or with affinity-purified nApoE4CF antibody (1:500), (B). Western blot analysis indicated the 

antibody, nApoE4CF, predominantly labeled an 18 kDa band in both the control sample (apoE4 alone) and in the 

digested sample (apoE4 + caspase-3). (C) Recombinant His-tagged apoE4 was subjected to western blot analysis 

and probed with the nApoE4CF antibody (left panel), again illustrating the presence of an 18 kDa band under 

control conditions. The presence of this amino-terminal fragment of apoE4 along with the full-length form of apoE4 

at 34 kDa was confirmed utilizing an amino-terminal His-tagged antibody to apoE4 (right panel).  (D) Western blot 

analysis comparing apoE4 purified from human plasma or recombinant apoE4 and E3 from E. coli under control 

conditions utilizing the nApoE4CF Ab (1:100). Notice the presence of several bands in addition to the 18 kDa band 

in lane marked „apoE4 E. Coli‟, all of which were absent in apoE4 purified from human plasma or recombinant 

apoE3 from E. coli. (E) Depicts the transferred gel slab that was stained with Coomassie blue revealing the presence 

of numerous high and low molecular weight bands of recombinant apoE4 that were largely absent in the other two 

samples. 

 

Fig. 2- Confirmation of recombinant apoE4 protein by mass spectrometry.  

(Left Panel) Coomassie stained SDS-PAGE of purified recombinant apoE4 protein from E. coli. The 34-kDa and 

18-kDa bands were independently excised from the gel and digested with trypsin prior to HPLC/MS/MS analysis. 

(Right Panel) Proteome Discoverer was used to search the mammalian SwissProt database for peptide spectral 

matches (PSMS) using the Mascot search engine. Upper panel: 86% coverage of ApoE4 (accession: 178853; score: 

86,886; peptide spectral matches: 4410) from the 34 kDa band. Lower panel: 82% coverage of apoE4 (accession: 

178853; score: 14,914; peptide spectral matches: 1009) from the 18 kDa band. Green, red, and yellow highlights 

indicate high, medium, and low peptide confidences, respectively. [The region between the 18 and 34 kDa bands 

was also analyzed and was found to consist of apoE4 protein fragments (data not shown).]  

 

 

Fig. 3- Localization of the nApoE4CF antibody within NFTs of the Alzheimer’s disease brain. In Panels A-D, 

apoE allele AD cases (4/4) were utilized for immunohistochemical analysis. (A and B) Representative staining in 

AD frontal cortex sections utilizing a full-length, N-terminal antibody to apoE4 indicated labeling of blood vessels 

(A), plaques (B, arrowheads), and NFTs (B, arrow).  (C) Identical to above with the exception of employment of a 

C-terminal full-length antibody to apoE4 (. In this case staining was confined to senile plaques (arrowheads) with no 

staining evident within NFTs. (D) Representative labeling of our cleavage-specific antibody, nApoE4CF, revealed 

staining within NFTs of the AD brain (arrows).  (E) Quantitative analysis of the number of nApoE4CF-positive 

NFTs in specific apoE allele AD cases: 3/3 (n=3), 3/4 (n=2), and 4/4 (n=3). (F) Western blot analysis with the 

nApoE4CF antibody in soluble human brain extracts from age-matched controls (Ctl) or Alzheimer‟s subjects (AD). 

Bottom panel F represents loading control blot using a rabbit antibody to beta-actin (1:400).  For all experiments, 

data are representative of three independent experiments. *Denotes significance difference between 4/4 and 3/3 

cases (p= 0.04). All error bars are equivalent to 10 µm.  

Fig. 4- Specificity of the nApoE4CF antibody for NFTs in the Alzheimer’s disease brain. (A) Representative 

staining with the nApoE4CF antibody in an AD frontal cortex section  (apoE allele genotype, 4/4) showing 

numerous NFTs (arrows), whereas staining was largely absent in a representative age-matched control case (apoE 

allele genotype, 3/3) (B). (C and D) Serial AD frontal cortex sections were immunolabeled with immunized serum 

(C) or preimmune serum (D) with staining observed only following application of immunized serum (arrows, C). (E 

and F) Serial AD frontal cortex sections were incubated with nApoE4CF antibody alone (E), or following 

preadsorption with the peptide used as an immunogen (F). Staining was completely prevented following 

preadsorption with peptide (F). In panels C-F, AD cases with the apoE genotype of 4/4 were utilized. All scale bars 

represent 10 µm. 

 

Fig. 5- nApoE4CF co-localizes with the mature tangle marker, PHF-1.  (A) Representative bright field 

microscopy image from frontal cortex AD brain sections utilizing anti-A antibody, clone 6E10 (blue) together with 

the nApoE4CF antibody (brown) revealed specific localization of nApoE4CF within NFTs (arrow).  (B and C) 

Double-label immunofluorescence merged images utilizing PHF-1 (red) and nApoE4CF (green) at high (B) and low 

(C) magnification indicated co-localization between the two markers (yellow, arrows).  The arrowheads in Panel C 

depict NFTs that were labeled with PHF-1 only. (D) Quantification of NFTs double-labeled by PHF-1 and 

nApoE4CF. Data show the total number of NFTs labeled with PHF-1 (bar labeled “Total NFTs”) or together with 



 

 

 9 

NOTICE: this is the author‟s version of a work that was accepted for publication in Brain Research. Changes resulting from the publishing process, 

such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes 
may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Brain Research, 2012.  

DOI: 10.1016/j.brainres.2012.08.003 

nApoE4CF (bar labeled “NFT + nApoE4CF”), identified in a 20X field in frontal cortex AD sections by 

immunofluorescence overlap microscopy (n=3 fields for 3 different AD cases) ±S.E.M, *p< 0.05.  Data analysis 

indicated that roughly 60% of all identified tangles were immunolabeled with nApoE4CF Ab.  All data were 

collected utilizing AD cases identified as having an apoE 4/4-allele genotype. All scale bars represent 10 µm. 
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