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Skutterudite materials have been considered as promising thermoelectric candidates due to

intrinsically good electrical conductivity and tailorable thermal conductivity. Options for improving

thermal-to-electrical conversion efficiency include identifying novel materials, adding filler atoms,

and substitutional dopants. Incorporating filler or substitutional dopant atoms in the skutterudite

compounds can enhance phonon scattering, resulting in reduction of thermal conductivity, as well as

improving electrical conductivity. The structures, electronic properties, and thermal properties of

double-filled Ca0.5Ce0.5Fe4Sb12 and Co4Sb12�2xTexGex compounds (x¼ 0, 0.5, 1, 2, 3, and 6) have

been studied using density functional theory-based calculations. Both Ca/Ce filler atoms in FeSb3 and

Te/Ge substitution in CoSb3 cause a decrease in lattice constant for the compounds. As Te/Ge substi-

tution concentration increases, lattice constant decreases and structural distortion of pnictogen rings

in the compounds occurs. This indicates a break in cubic symmetry of the structure. The presence

of fillers and substitutions cause an increase in electrical conductivity and a gradual decrease in

electronic band gap. A transition from direct to indirect band-gap semiconducting behavior is found

at x¼ 3. Phonon density of states for both compounds indicate phonon band broadening by the incor-

poration of fillers and substitutional atoms. Both systems are also assumed to have acoustic-mode-

dominated lattice thermal conductivity. For the Co4Sb12�2xTexGex compounds, x¼ 3 has the lowest

phonon dispersion gradient and lattice thermal conductivity, agreeing well with experimental meas-

urements. Our results exhibit the improvement of thermoelectric properties of skutterudite com-

pounds through fillers and substitutional doping. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4940952]

INTRODUCTION

The combustion of fuel in automobiles is strikingly inef-

ficient where approximately 75% of energy produced during

this process is lost as waste heat. Thermoelectric materials

can be used to recover some of this waste heat by converting

it to useful electrical power for the vehicle. The performance

of these materials is dictated by a dimensionless figure of

merit defined as ZT ¼ S2rT=j, where the electrical proper-

ties are given in the “power factor” term (S2r), S being the

Seebeck coefficient and r being the electrical conductivity,

and the thermal conductivity is given as j. Materials with

higher ZT values (ZT> 1) have greater thermoelectric per-

formance. Such materials must exhibit a high power factor

while having low thermal conductivity. In order to meet

these criteria, it is important to identify novel materials or

substitute existing materials with different species to opti-

mize the ZT value.1–11

One class of materials that has potential for thermo-

electric applications are skutterudite compounds. These are

relatively low-cost and easy to process materials that

intrinsically exhibit good electrical transport properties and

tunable thermal transport properties with site substitu-

tions.2,5,9–16 Skutterudites have the space group Im3 and

consist of cage-like structures with the general formula

A4B12 where A is a transition metal and B is a pnictogen.

Figure 1 shows the crystal structure of a filled skutterudite

featuring M filler atoms and B rings in an A lattice, where

M¼La, Te, Ge, Ba, In, or Yb; A¼ Fe, Ru, Co, Ni, or Os;

B¼ Sb, P, or As. Skutterudite compounds generally have a

ZT value around 1 and maintain large carrier concentrations

and moderate Seebeck coefficients.17,18 The incorporation

of filler atoms reduces its thermal conductivity through the

“rattling motion.” Alkaline earths have previously been

used as fillers5 and Yang et al.19 have shown that a double-

filled skutterudite, having one alkaline earth and one lantha-

nide (Ba and Ce) filler, is even more effective at reducing

the lattice thermal conductivity than using two alkaline

earths (Ba and Sr). The combination of Ca and Ce used in

this report mimics this approach but for elements with

greater mass difference (71% mass difference compared to

just 2%). The structure of a skutterudite also has large

degrees of freedom for doping and alloying. This makes it

attractive for customization and design studies.
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In addition to incorporating filler atoms, substituting B

sites with different species is another approach to improve

the ZT value. Cobalt triantimonide (CoSb3) is a skutterudite

of particular interest for power generation because it can op-

erate at high temperatures (�900 K). Substitutions that have

been investigated for the CoSb3 structure include Cr,20 Ni,21

or Fe22 on the Co site, and Ge or Te on the Sb site. These

substitutions reveal significant changes in transport proper-

ties such as an increase in electrical conductivity and a

decrease in thermal conductivity. Therefore, a fundamental

investigation of fillers and substitutions and their effects on

the thermoelectric properties of skutterudite compounds is

important for materials development.

As a follow-up to our previous work,22 this paper investi-

gates the effect of Ca/Ce filler atoms in Fe4Sb12 and Te/Ge sub-

stitutions on the Sb site in Co4Sb12. The stoichiometry for the

Ca/Ce double-filled system follows the form CaCeFe8Sb24 but

the proper ordering of the Ca and Ce atoms follows that of

Figure 2 which requires a supercell of Ca4Ce4Fe32Sb96 to

describe the system. In Co4Sb12�2xTexGex, six compositions

are considered where x¼ 0, 0.5, 1, 2, 3, and 6. This range of

compositions offers a complete look at the substitution up to a

complete replacement of the Sb atoms (Co4Te6Ge6). To inves-

tigate the atomic structure features, we calculated the lattice

constant, a, for the Ca0.5Ce0.5Fe4Sb12 system and lattice con-

stant, a, and cell angle, c, as a function of x for the

Co4Sb12�2xTexGex system. The atomic, electronic, and phonon

dispersion effects were also investigated for each compound.

This work helps identify the (Fe,Co)Sb3-type compounds with

a stable structure and optimized electrical and thermal conduc-

tivity properties, hence their improved ZT values.

COMPUTATIONAL METHODS

Crystal structure and electronic structure calculations

were performed within the density functional theory (DFT)

through implementation of the Vienna ab-initio software

package (VASP) code.23,40 The spin-dependent generalized

gradient approximation (GGA) functional was used with the

Perdew-Burke-Ernzerhof (PBE) formalism.24 Projector-

augmented wave (PAW) pseudopotentials were employed

with a plane wave expansion cutoff of 500 eV and a 6 � 6 �
6 C-centered k-point mesh for Brillouin zone integration.25,26

Fermi surface broadening was accounted for by a Gaussian

smearing of 0.05 eV for the FeSb3 structures while 0.025 eV

was used for the CoSb3 structures. Atomic positions and lat-

tice vectors were relaxed until the residual forces were

reduced to less than 0.01 eV/Å. Electronic structure calcula-

tions, including density of states (DOS) and band structure

calculations, were carried out on the DFT-optimized struc-

tures. A larger k-point mesh of 12 � 12 � 12 was used for

the Brillouin zone integration. These calculations were per-

formed in order to investigate the effects of Ca/Ce fillers and

Te/Ge-Sb substitution on the electrical conductivity of the

systems. Strong correlation effects were also tested via the

DFTþU scheme for the Fe atoms and Co atoms (on-site

Coulomb potential UFe¼ 4.5 eV and UCo¼ 7.8 eV; exchange

potential JFe¼ 0.89 eV and JCo¼ 0.92 eV).27 This approach

is often used to correct the band gap which is underestimated

with DFT alone.

To estimate the thermal properties of each system, den-

sity functional perturbation theory (DFPT) was used to cal-

culate the necessary force constants by means of the

Parlinski-Li-Kawazoe method.28 The phonon density of

states and phonon dispersion relations were then generated

using the PHONOPY software package.29 Force constant

calculations were performed using an energy cutoff of

400 eV and a k-mesh of 1x1x1 for each structure. To account

for long-range phonon interactions, a supercell convergence

test was performed for each of the Co4Sb12�2xTexGex

structures.

RESULTS

Structural effects

The skutterudite FeSb3-type crystal structure is cubic,

having the space group Im3, and consisting of Fe and Sb at A

and B sites, respectively (Figure 1). It has a cage-like structure

with two icosahedral voids filled with guest atoms M.

Previous work indicated that Ca and Ce atoms as fillers with a

1:1 ratio form Ca0.5Ce0.5Fe4Sb12 compound and exhibit a

FIG. 2. Schematic of the Ca4Ce4Fe32Sb96 crystal structure where Ca (blue),

Ce (green), Fe (black), and Sb (gray) atoms are represented by spheres. The

preferred ordering of the filler atoms is to arrange all Ca atoms along (220)

planes and all Ce atoms along (110) planes in this 4 � 4 � 2 supercell.

FIG. 1. Crystal structure of a filled M2A8B24 skutterudite with filler atom M

in red, B in white, and A in black. The gray substructures outlined by B

atoms are referred to as pnictogen rings.
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higher ZT value than that of other (CaxCe1�x)Fe4Sb12 com-

pounds where x¼ 0, 0.25, 0.75, and 1.22 This is the conse-

quence of large mass difference between Ca and Ce,

generating a wider range of resonant rattling frequencies and

leading to phonon scattering enhancement and thermal con-

ductivity decrease.

This paper further studies the Ca0.5Ce0.5Fe4Sb12 com-

pound. DFT structural calculations indicate a decrease in lat-

tice constant from 9.1805 Å for the unfilled compound to

9.1777 Å (�0.03%) for the double-filled compound, which

agrees well with the experimental lattice constant of

9.149056 Å for Ca0.5Ce0.5Fe4Sb12. As shown in Figure 2, a

large 136 atom 4 � 4 � 2 supercell (i.e., Ca4Ce4Fe32Sb96)

was used where the Ca and Ce were arranged with each

occupying alternating (110) planes (defined using the 2 � 2

� 2 supercell). The structure has average Ca-Sb and Ce-Sb

bond lengths of 3.353 Å and 3.361 Å, respectively; Sb-Ca-Sb

bond angles of 52.00� and 66.85�; and Sb-Ce-Sb bond angles

of 52.09� and 66.82�.
The effects of B-site substitution in skutterudites were

also investigated using the CoSb3 system where two Sb

atoms are incrementally replaced with Te and Ge atoms,

resulting in the formula Co4Sb12�2xTexGex, where x¼ 0,

0.5, 1, 2, 3, and 6. Our optimized crystal structures and cal-

culated lattice constants, a, were compared with experimen-

tal values, determined by the Rietveld refinement technique

and a Rietveld pattern decomposition technique.30,31 Table I

shows the calculated and experimental lattice parameters for

Co4Sb12�2xTexGex to illustrate the structural effects of B-

site substitutions Te/Ge. The lattice constant a appears to

decrease almost linearly as x increases, with the exception of

x¼ 2. This is consistent with Vegard’s law.32,33 These results

are expected, given that the covalent radius of Sb (1.40 Å) is

larger than that of the substituents Te (1.36 Å) and Ge

(1.21 Å).34 Cell angle c slightly shrinks at x¼ 0.5, 1, and 3,

but it enlarges at x¼ 6. These changes indicate that the sym-

metry of the Co4Sb12�2xTexGex compound is no longer per-

fectly cubic with Te/Ge substitution. Our DFT results agree

well with experimental XRD structural analysis results

(<1.0% error).

In order to better understand the atomic structures, we

measured the distances between Co atoms and the rings con-

sisting of Sb/Te/Ge. In experiments, the Co-Sb/Te/Ge dis-

tance decreases from 2.53 Å to 2.49 Å as x increases from 0

to 3. While the average Sb/Te/Ge-Sb/Te/Ge distances in the

4-member rings also decreases from 2.91 Å to 2.86 Å, they

are longer than the typical Sb-Sb distance of 2.80 Å.34 DFT

calculations reveal that the average Co-Sb/Te/Ge bond dis-

tances decrease from 2.54 Å to 2.47 Å from x¼ 0 to 3 and

even further decreased to 2.41 Å at x¼ 6, which is consistent

with experimental results. From x¼ 0.5 to 2, the Co-Ge bond

distance is the shortest compared to the Co-Sb and Co-Te

bonds. However, in the x¼ 3 compound, the Co-Te bond dis-

tance decreases rapidly and becomes the shortest. Te/Ge sub-

stitution at x¼ 3 results in a unique structure. Due to

different Co-Sb/Te/Ge bond distances and large Te/Ge sub-

stitution concentration, the 4-member rings consisting of Sb/

Te/Ge are distorted, and turn into the parallelogram rings

shown in Figure 3. The distortions depend on the concentra-

tion of Te/Ge substitution in the rings. Its angles range from

83
�

to 93
�
.

Electrical properties

The Ca and Ce filler atoms in FeSb3 affect the electronic

structure as well as the crystal structure. As shown in Figure

4, the electronic DOS for the Fe8Sb24 structure shows that

the material is already electronically conductive because, at

TABLE I. Calculated cell angle c in degrees and lattice parameter a in units

of Å for Co4Sb12� 2xTexGex (x¼ 0, 0.5, 1, 2, 3, and 6). The experimentally

determined lattice parameter a* and the percent error between calculated

and experimental values is also given (* denotes experimental values).31

x c (deg) a (Å) a* (Å) Error %

0 90 9.11086 9.03662 0.82

0.5 89.90 9.08122 9.01633 0.72

1 89.83 9.06154 8.99555 0.73

2 90 8.88705 8.94781 �0.68

3 89.96 8.96417 8.89584 0.77

6 90.26 8.79712 … …

FIG. 3. Model depicting pnictogen rings within the filled skutterudite struc-

ture. Upon Te/Ge substitution, the ring distorts to an angle of up to 83� for

Co4Sb12�2xTexGex at x¼ 3.

FIG. 4. Electronic density of states for the unfilled (black line) and CaCe-

filled (red line) FeSb3 structure. In order to account for the correct Ca-Ce

ordering as shown in Figure 2, a large Ca4Ce4Fe32Sb96 supercell structure

was used. For the sake of comparison, the DOS magnitude for the unfilled

structure is increased by a factor of four. Dotted lines depict the zero values

on both axes and the x-axis is shifted so the zero-point represents the Fermi

level (depicted by the blue dotted line). The up- and down-spin DOS are

given by positive and negative values, respectively. The difference in shape

between spin-up and spin-down is primarily caused by the magnetism of the

Fe atoms in the system. The unfilled Fe8Sb24 (black) results show a band

gap only for the positive DOS while neither the up- nor down-spin CaCe-

filled (red) DOS has a significant band gap.

055101-3 Williamson et al. J. Appl. Phys. 119, 055101 (2016)



the Fermi level, there is low DOS for the spin-up (positive

y-values) and relatively large DOS for the spin-down. The

difference in spin-up and spin-down DOS is caused by the

magnetism of Fe in the system. The Ca/Ce-filled structure,

having the proper Ca-Ce ordering as shown in Figure 2, is

also electronically conductive but with a more subtle differ-

ence between spin-up and spin-down DOS than the unfilled

structure. Experimentally, it is shown that this particular Ca-

Ce ordered structure is not necessarily the most electroni-

cally conductive type of Ca/Ce-filled FeSb3 but is conductive

enough to allow for high ZT values.22 Indeed, in Figure 4 the

presence of a zero-DOS point near the Fermi level could

indicate potential for this material to exhibit semi-metallic

behavior.

Similarly, the electronic conductivity for the CoSb3

structure is affected by the concentration of Te/Ge substitu-

tion. Through electronic structure calculations, we studied

the Te/Ge substitution effect on the band gap of each

Co4Sb12�2xTexGex compound (x¼ 0, 0.5, 1, 2, and 3), which

allowed us to predict the electrical conductivity change.

Comparison with experimental data validated the computa-

tional prediction.30 Further studies of local density of states

provided insight into Co-Te/Ge bonding.

Figure 5(a) shows DOS for Co4Sb12�2xTexGex. Fermi

energy is shifted to 0 eV. At x¼ 0, the compound is semicon-

ducting with a band gap of�0.16 eV. As x increases to 0.5,

the band gap decreases. Interestingly, when Te/Ge concen-

tration continues increasing, the band gap first opens wider

but then completely closes at x¼ 3. Such band gap changes

reveal the affect of Te/Ge substitution on the electrical con-

ductivity of the compound. The compound at x¼ 0 is

expected to have the smallest electrical conductivity while

the highest electrical conductivity occurs at x¼ 3 due to no

band gap. From x¼ 0.5 to 1, the electrical conductivity

should slightly decrease due to the wider band gap. These

computational predictions are consistent with experimental

measurements which show that increasing Te concentration

in Ge-doped CoSb3 increases the electrical conductivity.35,36

We further studied the local DOS (LDOS), which pro-

jected the density on each metal site. Through this approach,

the density of states can be split into contributions from each

individual atom. When these corresponding plots overlap, it

suggests that each atom is contributing to the density of

states at that given energy level, implying orbital hybridiza-

tion. Figure 5(b) illustrates the orbital hybridization through

the energy bands of �13 eV to 5 eV between Co and Te/Ge

substitution at x¼ 0.5. It indicates the covalent characteris-

tics of Co-Te/Ge bonds due to the overlap of orbital energies.

As Te/Ge substitution concentration increases, the average

Co-Te/Ge bond distances decrease because of its stronger

covalent characteristics.

Further analysis of band alignment facilitates the engi-

neering of the skutterudite compounds for specific thermoelec-

tric applications. The band structures of Co4Sb12�2xTexGex for

x¼ 0, 0.5, and 3 were calculated along lines connecting high-

symmetry points in the Brillouin zone as shown in Figure 6.

The perfect CoSb3 (x¼ 0) is a direct band gap semiconductor

with a calculated gap of 0.16 eV. The valence band maximum

(VBmax) and conduction band minimum (CBmin) are both

located at the C point. There also exists an indirect gap

between some lower-symmetry point having a local maximum

between M and C that is separated from the CBmin by 0.50 eV.

As Te/Ge substitutions are introduced (x¼ 0.5), the material

remains a direct band gap semiconductor but with a narrower

size of 0.13 eV. This is caused by the decrease in CBmin at the

C point from 0.084 eV to 0.066 eV. Also, the local maximum

at the M point increases (from �0.536 eV to �0.355 eV), giv-

ing rise to a shorter indirect gap of 0.42 eV that now exists

from M ! C high-symmetry points. This implies that with

adjusting x values, the compound could shift from a direct to

an indirect band gap semiconductor, creating more potential

applications for the compounds. To confirm our prediction, we

observed x¼ 3 (Figure 6(c)) which shows the smaller band

gap of 0.11 eV, suggesting a high electrical conductivity. Both

the VBmax peak and CBmin trough at the C point split, forming

an indirect gap.

The electronic structure results indicate a strong Te/Ge

substitution dependence in Co4Sb12�2xTexGex, motivating

us to investigate further increasing x to the full substitution

of Sb with Te/Ge (x¼ 6 or Co4Te6Ge6). Figure 7 shows

FIG. 5. Electronic density of states (DOS) for Co4Sb12-2xTexGex, Fermi energy¼ 0: (a) Total DOS for x¼ 0, 0.5, 1, 2, and 3; and (b) local DOS (LDOS) for

Co8Sb22 (black), Te (red), and Ge (blue) in Co8Sb22TeGe (i.e., Co4Sb11Te0.5Ge0.5 with x¼ 0.5). DOS results in (a) indicate that the band gap decreases with

increasing x. Part (b) shows an interaction between the local Te and Ge densities indicating orbital hybridization. This implies covalent characteristics of the

Co-Te/Ge bonds which could explain the decreased Co-Te/Ge bond distances.

055101-4 Williamson et al. J. Appl. Phys. 119, 055101 (2016)



electronic DOS for x¼ 6 (full substitution) in comparison

with that for x¼ 3 (half substitution) and different atomic

arrangements for Sb, Te, and Ge. In Figure 7(b), the black

line depicts the electronic DOS for x¼ 6, where there is no

band gap and the local minimum in DOS at the Fermi level

also has a higher value than that of x¼ 3 (see Figure 7(a)).

This suggests a generally increasing conductivity with

increasing x. Interestingly, we found that atomic arrange-

ments for Sb, Te, and Ge in the pnictogen rings affect the

band gap size. As seen in Figure 7(c), configuration 1

involves the least amount of “order” where the Sb, Te, and

Ge atoms are randomly arranged throughout the Sb sites.

FIG. 6. Electronic band structure dia-

grams of Co4Sb12�2xTexGex for (a)

x¼ 0, (b) x¼ 0.5, and (c) x¼ 3. Blue

arrows indicate the changes in the

direct and indirect band gaps. As sub-

stitution increases, the band gap

decreases from (a) 0.16 eV to (b)

0.13 eV, and eventually to (c) 0.11 eV

for the highest doped structure investi-

gated (x¼ 3). Also note the transition

from direct to indirect band gap semi-

conducting behavior in part (c).

FIG. 7. Density of states plots for Co4Sb12� 2xTexGex where (a) x¼ 3 and (b) x¼ 6. Fermi energy is zero. The black, green, and blue plots depict the randomly

ordered (configuration 1), the partially ordered (configuration 2), and fully ordered (configuration 3) pnictogen ring configurations. The pnictogen ring ordering

increasingly opens up the band gap. An example of each pnictogen ring configuration (depicted using the x¼ 3 structure) is shown in part (c) where the blue

line shows Co-Co bonds and the gray, yellow, and red spheres depict Sb, Te, and Ge atoms, respectively.

055101-5 Williamson et al. J. Appl. Phys. 119, 055101 (2016)



This is the configuration used for all substituted structures in

Figure 5(a). Ordering refers to having some pnictogen rings

composed of entirely Sb and/or having some only 2Te/2Ge

rings arranged such that the Te and Ge atoms are at alternat-

ing sites around the ring. Configuration 2 is an example of

this for the x¼ 3 system. Finally, configuration 3 involves no

randomly ordered rings, demonstrating that all Sb atoms are

only sharing Sb rings at x¼ 3 and all Te and Ge atoms are

only sharing 2Te/2Ge rings arranged as explained above. As

a result, pnictogen ring “ordering” increases from configura-

tion 1 to configuration 3. We found that increasing the ring

ordering opens up a band gap (green line) and further

increases the gap (blue line) to as much as 0.32 eV and

0.33 eV for x¼ 3 and x¼ 6, respectively (see Figures 7(a)

and 7(b)). Our computational results emphasize the impor-

tance for understanding the atomic structure of these materi-

als and the atomic structure-electrical property relationships.

Phonon properties

The scattering of phonon modes in a material hinders

thermal transport, which results in reduced lattice thermal

conductivity jl. There are a variety of methods for increasing

phonon scattering, including nanostructuring, alloying, intro-

ducing more disorder or interfaces, and changing the struc-

ture or composition.37 By analyzing the phonon dispersion

relations of a material, one can estimate the effects of fillers

or substitutions on the resulting lattice thermal conductivity.

For example, the phonon group velocity vkk can be estimated

by observing the slopes or gradients of the phonon dispersion

data through the equation

vkk ¼
@x
@k

; (1)

where x is the phonon frequency and k is the wave vector.

The phonon group velocity is then related to the lattice ther-

mal conductivity through the following equation:

jl ¼
1

3VNk

X

kk

ckkv2
kkskk; (2)

where V is the volume of the unit cell, Nk is the number of k-

points, c is the heat capacity, and s is the phonon relaxation

time for the given phonon branch, k.38,39 From this, the lat-

tice thermal conductivity can be estimated qualitatively by

analyzing the slope of the phonon dispersion results. Figure

8 shows phonon density of states data for the large 136-atom

Ca4Ce4Fe32Sb96 compound compared to that of Fe8Sb24.

Phonon dispersion data were also calculated but due to the

large number of modes (136� 3¼ 408 modes) for the CaCe-

filled system, the results were more clearly displayed via the

phonon density of states instead. We found that the incorpo-

ration of Ca and Ce filler atoms broadens the phonon bands,

implying an increase in phonon scattering typically observed

in filled skutterudite systems. The optical modes are also sig-

nificantly flatter than the acoustic modes, indicating that the

lattice thermal conductivity for this material is dominated by

the acoustic modes.

Similarly, the effects of substitution on lattice thermal

conductivity were also estimated by analyzing the phonon

properties. Figure 9(a) shows the phonon dispersion relation

for the Co4Sb12�2xTexGex compound at x¼ 0. Figure 9(b)

compares the acoustic modes for the Co4Sb12�2xTexGex

compounds at x¼ 0, 3, and 6, where the x-axes for each data

set is normalized to the values of the compound at x¼ 6 (for

the purpose of comparison). The compound at x¼ 3 has the

lowest phonon dispersion gradient, so it should exhibit the

lowest lattice thermal conductivity. Figure 9(c) compares the

phonon density of states for the three compounds. It shows a

broadening of the phonon bands, particularly for the higher-

frequency band, for the compounds with Te and Ge substitu-

tions at x¼ 3 and 6. Ge substitutions contribute to the higher

frequency modes since Ge has a lower atomic weight than

Sb. In contrast, the modes at the lower frequencies are asso-

ciated with the heavier Te substitutions. x¼ 0 exhibits a siza-

ble gap between the higher-frequency band and the lower

band. As substitution increases, this gap decreases and is

eventually eliminated at x¼ 6. This spreading of optical

modes indicates a reduction in lattice thermal conductivity.

For either x¼ 3 or x¼ 6, the optical modes are significantly

flatter than the acoustic modes, suggesting that the lattice

thermal conduction is likely dominated by the acoustic

modes in these compounds.

CONCLUSION

We have investigated the crystal structures, electrical

properties, and thermal properties of filled Ca0.5Ce0.5Fe4Sb12

and substituted Co4Sb12�2xTexGex compounds (x¼ 0, 0.5, 1,

2, 3, and 6) using a DFT-based approach. The stable Ca/Ce

ordering required the use of a large Ca4Ce4Fe32Sb96 super-

cell with each filler atom occupying alternating (110) planes.

For the Co4Sb12�2xTexGex compounds, structural distortion

occurs with Te/Ge substitution. At x¼ 3 (i.e., 1:1 Sb:Te/Ge

ratio) four-member pnictogen square rings have the largest

distortion and become parallelograms with an angle of 83�.

FIG. 8. Phonon density of states for unfilled Fe8Sb24 (black) and CaCe-filled

Ca4Ce4Fe32Sb96 (blue). To account for the proper Ca/Ce filler atom ordering

which provides the most stable structure (and most promising thermoelectric

performance) of the Ca0.5Ce0.5Fe4Sb12 system, the larger 136-atom supercell

was used for the “CaCe-filled” structure.
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Electronic structure calculations indicate that the Ca/Ce

double-filled FeSb3 is conductive with no band gap. The

band gap of Co4Sb12�2xTexGex varies with Te/Ge substitu-

tion concentration leading to a reduction in band gap and

therefore an increase of electrical conductivity. The cova-

lent characteristics of Co-Te/Ge bonds account for orbital

hybridizations between Co and Te/Ge. Band structures ex-

hibit the change of band alignments near the Fermi energy

as x increases. At x¼ 3, the compound transfers from a

direct to indirect band-gap semiconductor. We also found a

strong correlation between the ordering/configuration of

pnictogen rings and the electronic band gap for these com-

pounds. We predicted the thermal conductivity change

through the analysis of phonon density of states and pho-

non dispersion relations for the compounds. The phonon

bands are broadened with the incorporation of either fillers

or substitutions. Lattice thermal conductivity change is

controlled by the acoustic phonon modes in both cases. For

the Co4Sb12�2xTexGex compounds, phonon scattering and

acoustic mode gradient change are evident as substitution

increases. The compound at x¼ 3 is expected to have the

lowest lattice thermal conductivity. Our work exhibits

improved thermoelectric properties via filler and substitu-

tional doping. More work will be conducted to confirm the

predictions through further ZT calculations and experimen-

tal measurements.
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