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Abstract

PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud
fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the
regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during
post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the
developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland
during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based
on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during
puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal
development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to
the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and
myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial
and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the
absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.
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Introduction

Mammary development begins during embryogenesis but is

only completed during lactation. Morphogenesis occurs in stages:

a rudimentary duct system is formed before birth; the ductal

system is expanded during puberty; alveolar structures are formed

during pregnancy; and full secretory differentiation is completed at

the beginning of lactation [1,2,3,4]. After weaning, the alveolar

structures involute, but can redevelop with subsequent pregnancies

to support repeated cycles of reproduction. Although mammary

development is well described, the underlying molecular mecha-

nisms that guide ductal and alveolar development are only partly

understood [1,2,3,4]. It has been well established that changes in

the levels of circulating hormones initiate and guide each of the

distinct stages of development noted above. Circulating ovarian

and pituitary hormones act directly on mammary epithelial cells

and also regulate local webs of growth factors and receptors to

orchestrate epithelial-mesenchymal interactions critical to the

integrated morphogenetic responses of the gland [2,3,5,6]. These

interactions between systemic hormones and local growth factor

signaling networks are often deranged during the progression of

breast cancers, so it is helpful to understand the normal effects of

these systems during development in order to better understand

how they go awry in tumors.

Before puberty, the murine mammary duct system consists of

about 10–15 branches limited to that portion of the stromal fat

pad nearest the nipple [2,4,6]. During puberty, under the

influence of hormones, the ducts grow rapidly and directionally

away from the nipple and through the fatty stroma, undergoing a

process of ductal branching morphogenesis that eventually fills the

entire fat pad with mature ducts, which serve as a scaffold upon

which the alveoli form during pregnancy [2,3,6]. Ductal extension

during puberty relies on the formation of highly proliferative,

bulbous structures known as terminal end buds (TEBs) at the tips

of the ducts. TEBs are composed of multiple epithelial cell layers

surrounded by a fibrous stroma and adipocytes [3]. Ductal

extension is completed by about 9 weeks of age, when the primary

ducts have extended to the distal end of the mammary gland fat

pad and the TEBs regress.

Parathyroid hormone-related protein (PTHrP) is a growth

factor that binds to and activates a G protein–coupled receptor

known as the Type 1 PTH/PTHrP receptor (PTHR1) [7].

Disruption of either gene in mice and loss of PTHR1 function in

humans results in the absence of a mammary gland [7,8,9,10,11].

PTHrP is a product of normal embryonic mammary epithelial

cells and the PTHR1 is found on immature mesenchymal cells

located beneath the embryonic epidermis [8,9,10]. PTHrP is

necessary for the formation of specific mammary mesenchyme

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27278



and, in its absence, the embryonic mammary bud fails to form the

neonatal duct system. PTHrP is also produced by mammary

epithelial cells during lactation, where it circulates to increase bone

resorption, liberating skeletal calcium stores that are used for milk

production [12,13].

The PTHrP gene is also expressed in the peripherally located

epithelial cap cells of TEBs during puberty and the PTH1R is

expressed in the stromal cells immediately surrounding TEBs

[14,15]. Overexpression of PTHrP in cap and myoepithelial cells

using the keratin 14 (K14) promoter suggested that PTHrP acts in

a paracrine fashion on stromal cells to slow the rate of ductal

elongation during puberty [14]. PTHrP increased the basal rate of

apoptosis among epithelial cells in TEBs and blocked the ability of

estrogen to stimulate proliferation and decrease apoptosis in these

cells [14]. These data suggested that PTHrP might act as an

endogenous negative regulator of the effects of estrogen on TEBs.

Herein, we report that PTHrP expression is found in the basal cells

of the developing ducts and in the cap cells of terminal end buds

during pubertal development. To address the physiological role of

PTHrP in mammary development during puberty, we generated

two conditional models of PTHrP-deficiency specifically targeted

to the postnatal mammary gland. These mice undergo normal

pubertal and pregnancy-associated mammary development de-

spite the absence of PTHrP, suggesting that PTHrP signaling is

not required for post-natal ductal and alveolar development.

Results

PTHrP expression during mammary gland development
Embryonic deletion of PTHrP results in a lack of ductal

outgrowth due to a failure in mammary mesenchyme specification

[9]. At later stages of development, the functional role of PTHrP is

not clearly defined. In order to begin to study the function of

PTHrP during postnatal development, we first defined the pattern

of PTHrP gene expression during all stages of mammary

development. Transgenic mice in which the b-galactosidase gene

has been knocked into the PTHrP locus provide a sensitive method

for localizing endogenous PTHrP expression by staining for LacZ

activity [16]. Using PTHrP-lacZ knockin mice (PTHrPlacZ), we

defined PTHrP gene expression during embryogenesis, puberty,

pregnancy and lactation. As shown in Figure 1A, lacZ expression

was detected during mammary placode development in epithelial

cells beginning at embryonic day 11.5 (E11.5). PTHrP expression

also extended along a ‘‘tail’’ of epithelial tails adjacent to and

sometimes between developing placodes within the mammary line.

This pattern suggests that PTHrP gene expression is first activated

in cells within the mammary line as they move towards the

developing placodes and into the mammary buds. As embryonic

development progresses, strong PTHrP expression remains re-

stricted to the epithelial cells of the developing buds (Figure 1B),

and the rudimentary ductal tree at birth (Figure 1C–D).

Expression is absent in the adjacent stromal compartment at all

stages of embryonic development.

Postnatal mammary glands are composed of two epithelial cell

types, luminal and myoepithelial [6]. These two cell lineages form

a bi-layered epithelium with the more centrally located luminal

cells surrounded by a continuous layer of myoepithelial cells. The

ducts are, in turn, surrounded by a few layers of peri-ductal

fibroblasts and are embedded within a fatty stroma. Whole-mount

analysis revealed PTHrPlacZ expression to be restricted to the

epithelial cells within the mammary gland during puberty

(Figure 2A–D). PTHrPlacZ expression was observed in the terminal

end buds (TEBs) as well as the subtending ducts (Figure 2A–D).

Histological sections demonstrated that PTHrPlacZ expression

localized to the cap cells as well as to the monolayer of

myoepithelial cells that line the entire duct system (Fig. 2D),

confirming and extending our previous in situ hybidization data

[15]. PTHrPlacZ expression was not detected in the body cells of the

TEBs, the luminal cells of the ducts, the periductal fibroblasts, or

the stromal adipocytes.

During pregnancy, the mammary epithelium expands dramat-

ically as alveolar structures form at the end of small terminal

ductules that develop from the pre-existing ducts [1,3,6]. Alveolar

structures are specialized for milk production and it is thought that

they arise from multipotent progenitor cells that can give rise to

myoepithelial cells, ductal cells and alveolar cells [17]. During

pregnancy, expression of PTHrP is seen in the myoepithelial cells

of the ducts and in the developing alveolar cells and alveoli

(Figure 2E–G). After pregnancy ends and lactation ensues, PTHrP

expression is also evident in the milk secreting, alveolar epithelial

cells (Figure 2H–J). It is well documented that these cells secrete

large amounts of PTHrP into milk [12,18]. The Xgal staining

during postnatal development is consistent with RT-PCR data

confirming that PTHrP mRNA is expressed at low levels

throughout puberty and until the later stages of pregnancy. At

the onset of lactation, levels increase and then return to baseline

levels with involution (Figure 2K).

Mammary-Specific Deletion of PTHrP Does Not Interfere
with the Initial Stages of Mammary Ductal Outgrowth

Previous studies in our lab demonstrated that overexpression of

PTHrP in myoepithelial cells inhibits ductal elongation during

puberty by blocking the ability of estrogen to increase proliferation

and decrease apoptosis in terminal end buds (TEBs) [14,19]. In

order to determine whether these results reflected the function of

endogenous PTHrP during puberty, we disrupted PTHrP

Figure 1. PTHrP expression during embryogenesis. LacZ staining of PTHrP+/lacZ embryos at (A) E11, (B) E12, (C) E15.5 and (D) birth. (A) At E11,
b-galactosidase staining was observed in the mammary placodes but not the surrounding mesenchyme. (B) By E12.5, intense staining was observed
in all five buds. Interestingly, lacZ positive ‘‘tails’’ were observed from each bud (double arrowhead) (B, C). Single arrowheads indicate mammary
placodes and buds. (D) PTHrPlacZ expression remains restricted to the mammary epithelial cells throughout embryonic and neonatal development.
doi:10.1371/journal.pone.0027278.g001

PTHrP during Postnatal Mammary Development
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signaling during pubertal development. Given that PTHrP2/2

animals die at birth and have no mammary glands [11], we

conditionally deleted the PTHrP gene postnatally, after embryonic

mammary development was completed. We used the MMTV-

Cre, line D mice, which express Cre recombinase in both luminal

epithelial and myoepithelial cells, including the body and cap cells

of TEBs, beginning at the onset of puberty [20]. We confirmed

transgene specificity by breeding MMTV-Cre mice to ROSA26R

(R26R) mice (Figure 3A–C) [21]. b-galactosidase staining of whole

mammary glands shows heterogeneous expression of the MMTV-

Cre transgene during puberty, demonstrating that recombination is

not 100% efficient [20]. Therefore, in order to maximally reduce

local PTHrP levels, the MMTV-Cre transgene was bred onto a

compound heterozygous PTHrPlox/lacZ background, with one floxed

PTHrP allele and one PTHrPlacZ allele. MMTV-Cre;PTHrPlox/lacZ

(MMTV-CKO) mice revealed that disruption of both PTHrP

alleles had no effect on the initial mammary outgrowth (Figure 3D,

and data not shown). Ductal extension was assessed morphomet-

rically in MMTV-CKO and control mice (MMTV-Cre and

PTHrPlacZ). As shown in Figure 3F, there were no significant

differences in the degree of ductal extension of the glands. To

ensure that the absence of a mammary gland phenotype was not

due to the lack of efficient Cre-mediated PTHrP deletion in the

mammary gland, we performed quantitative RT-PCR on whole

mammary tissues from virgin control and MMTV-CKO animals

(Figure 3E). These analyses demonstrated appropriate reduction of

PTHrP mRNA in the MMTV-CKO mammary glands.

Disruption of PTHrP in Myoepithelial Cells Does Not Alter
Mammary Ductal Development

Given our data demonstrating that PTHrP is expressed by

myoepithelial cells and given the potential heterogeneous

expression of the MMTV-Cre transgene in these cells during

puberty, we also specifically deleted the PTHrP gene from

myoepithelial cells in a temporally regulated fashion. Myoepithe-

lial and luminal markers are both expressed in all embryonic

mammary epithelial cells [9]. Therefore, in order to avoid

targeting the embryonic mammary buds, we used a tetracycline-

regulated system to initiate Cre expression in myoepithelial cells

only after birth using bitransgenic K14-tTA;tetO-Cre mice

(Figure 4A–B) to generate K14-tTA;tetO-Cre;PTHrPlox/lacZ mice

(K14-CKO mice) [14]. The K14 promoter is strongly expressed in

the basal cells of the gland and in the cap cells of TEBs, coinciding

with the pattern of PTHrP expression as seen in Figure 2. Unlike

the MMTV promoter, the K14 promoter drives uniform Cre

recombinase expression in all myoepithelial cells during puberty as

documented in K14-tTA;tetO-Cre;R26R mice (Figure 4A–B). As

shown in Figure 4D, PTHrP mRNA expression was efficiently

reduced in the mammary glands using this strategy. However, as

with the previous approach, whole-mount analysis from K14-

CKO animals revealed that disruption of one or both PTHrP

alleles had no effect on the initial mammary outgrowth (Figure 4C,

and data not shown). Ductal extension during puberty was normal

in the K14-CKO mice (Figure 4C&E).

Figure 2. PTHrP expression during postnatal mammary gland development. (A) At the onset of puberty (3 weeks), PTHrPlacZ expression is
seen throughout the ductal tree. (B) As development ensues, –mount Xgal staining is evident in the ducts and TEBs at 5 weeks, specifically in the
myoepitheial cells and the cap cells (C). By 8 weeks, when TEBs have regressed, LacZ expression is restricted to myoepithelial cells in the ducts (D).
During late pregnancy (E–G), LacZ expression is seen in the ducts and is also evident in the developing alveoli. During lactation (H–J), LacZ is
expression is seen in the milk secreting cells. High levels of PTHrPlacZ staining remain in the ducts and the alveoli during lactation. (K) Developmental
survey of PTHrP mRNA expression in whole mammary glands as measured by qRT-PCR. PTHrP mRNA is expressed at low levels in whole mammary
glands throughout virgin postnatal development and throughout pregnancy. At the onset of lactation, PTHrP levels increase, and at involution return
to virgin levels. wks = weeks; P = pregnancy day; L = lactation day; I = involution day. Relative expression: 5 weeks = 1. H&E staining (G, J).
doi:10.1371/journal.pone.0027278.g002

PTHrP during Postnatal Mammary Development
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Ablation of Endogenous PTHrP has no Effect on TEB Cell
Turnover

Previous experiments had demonstrated that overexpression of

PTHrP in cap and myoepithelial cells blunted the effects of

exogenous hormones on cellular proliferation and apoptosis within

the TEBs, raising the possibility that endogenous PTHrP might

normally act to modulate the effects of steroid hormones on TEBs

during puberty [14]. Therefore, we predicted reciprocal changes

in TEB cell turnover in the absence of PTHrP expression (i.e.

enhanced proliferation and reduced apoptosis). We studied mice

during early puberty (5 weeks of age) at baseline and after 48 h of

treatment with exogenous estrogen and progesterone. Cell

proliferation and apoptosis were quantified using EdU (5-

ethynyl-29-deoxyuridine) incorporation and TUNEL staining,

respectively (Figure 5 and data not shown). At baseline, 18% of

epithelial cells in wild-type TEBs incorporated EdU. Hormone

treatment increased TEB proliferation such that 24% of epithelial

cells within TEBs were labeled. As shown in Figure 5A, ablation of

PTHrP did not affect either baseline or hormone-treated rates of

proliferation within the TEBs; there were no differences between

wild-type mice and MMTV-CKO or K14-CKO mutants. Similar

results were seen for measurements of apoptosis (Figure 5B). In

TEBs from WT mice, 3% of epithelial cells were TUNEL-positive

at baseline and 2.4% of the cells were TUNEL-positive after

hormone treatment. There were no significant differences in the

rate of apoptosis in TEBs at baseline or in response to hormone

treatment in either MMTV-CKO or K14-CKO mice as

compared to controls.

Ablation of Endogenous PTHrP has no Effect on
Mammary Epithelial Cell Lineage

Deletion of the PTHrP gene from embryonic mammary

epithelial cells results in reversion of these cells to an epidermal

phenotype. Given the specific expression of PTHrP in myoepithe-

lial cells, we next asked whether PTHrP was needed to maintain

the basal lineage in postnatal epithelial ducts. In order to assess

lineage specification, we stained mammary glands in both PTHrP

conditional mutants using antibodies against K14 and p63, which

Figure 3. MMTV-Cre deletion of PTHrP in the mammary gland does not impair ductal development. (A) MMTV-Cre activity is
heterogeneous in the pubertal gland. Whole-mount Xgal staining of a 5 week old gland. Sections of stained glands demonstrating that luminal and
myoepithelial cells in the ducts (C), as well as body and cap cells of TEBs (B) are targeted for recombination. (D) Whole-mounts of mammary glands
from MMTV-cre and MMTV-cre;PTHrPlox/lacZ mammary glands at 5 weeks of age. (E) PTHrP mRNA expression is decreased in MMTV-cre;PTHrPlox/lacZ

mammary glands. (F) Ductal outgrowth was measured in Control (n = 6) and MMTV-cre;PTHrPlox/lacZ (n = 12) as % of fat pad filled.
doi:10.1371/journal.pone.0027278.g003

PTHrP during Postnatal Mammary Development

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27278



recognize cap cells and myoepithelial cells [14,22], and gata3 and

K18, which identify body and ductal luminal cells [23]. As shown

in Figure 6 (and data not shown), loss of PTHrP did not appear to

affect the overall bilayered architecture of the ducts or the relative

locations of luminal and myoepithelial cells in either conditional

knockout model.

PTHrP is not required for Terminal Differentiation of
Alveolar Epithelial Cells

The PTHrP gene is expressed during pregnancy in alveolar

epithelial cells (Figure 2E). We have previously demonstrated that

PTHrP deletion during late pregnancy and lactation had no effect

on alveolar terminal differentiation [12]. Nevertheless, we next

Figure 4. K14-tTA;tetO-Cre deletion of PTHrP in the mammary gland does not impair ductal development. K14-tTA;tetO-Cre activity is
specific to the myoepithelial cells of the ducts and the cap cells of TEBs (A, B). (A) Whole-mount Xgal staining of a 4 week old gland. (B) Section of
stained gland demonstrating that myoepithelial cells are targeted for recombination in the ducts. (C) Whole-mounts of mammary glands from K14-
tTA;tetO-Cre and K14-tTA;tetO-Cre;PTHrPlox/lacZ mammary glands at 5 weeks of age. (E) PTHrP mRNA expression is decreased in K14-tTA;tetO-
Cre;PTHrPlox/lacZ mammary glands. (F) Ductal outgrowth was measured in Control (n = 4) and K14-tTA;tetO-Cre;PTHrPlox/lacZ (n = 6) as % of fat pad filled.
doi:10.1371/journal.pone.0027278.g004
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examined whether deletion of PTHrP during pubertal develop-

ment might affect alveolar development. Whole-mount analysis

and histological examination revealed normal alveolar develop-

ment on day 18 of pregnancy in both conditional knockout models

of PTHrP deficiency (Figure 7A–F). In addition, histological

analysis of lactating glands demonstrated normal alveolar

differentiation with milk production. Both conditional mutant

strains were able to sustain pups throughout lactation. We did not

observe any weight differences between pups from MMTV-CKO,

K14-CKO or control mothers (data not shown). Finally, no

detectable defects in alveolar development were present even after

multiple round of pregnancy and lactation.

Discussion

PTHrP has important functions during embryonic breast

development and during lactation. In the embryo, PTHrP is

produced by mammary epithelial cells and it interacts with the

PTHR1 on surrounding mesenchymal cells to support proper

mammary mesenchyme differentiation and outgrowth of the

mammary bud [4,9,11]. During lactation, PTHrP is produced by

mammary epithelial cells and is secreted both into milk and into

the maternal circulation, where it regulates systemic calcium and

bone metabolism during lactation and contributes to the

mobilization of calcium for milk production [12,13]. PTHrP also

contributes to the pathophysiology of breast cancer through its

actions on tumor cells themselves, on the tumor microenvironment

and on bone cells to promote the development of osteolytic bone

metastases [24,25,26,27]. Thus, PTHrP is intimately involved in

the regulation of breast development, breast physiology and breast

cancer pathophysiology. In this report, we examined whether

PTHrP is also important for the development of the postnatal

mammary gland.

We first examined the expression of PTHrP. Previous studies

using in situ hybridization had suggested that PTHrP was expressed

within the cap cells of TEBs during puberty [15]. For the current

studies, we made use of a mouse in which the b-galactosidase gene

was knocked into the PTHrP gene locus in order to improve the

sensitivity and spatial resolution of detecting PTHrP expression

[16]. Importantly, our studies confirm the expression of PTHrP

within epithelial cells of the embryonic mammary bud as well as

demonstrate PTHrP gene expression within segments of the

mammary line, especially between buds 2 and 3, and buds 4 and

5. We confirmed that PTHrP is expressed within cap cells of the

TEBs, but also now demonstrate that PTHrP is expressed within

the mature myoepithelial cells in the adult mammary gland during

puberty and throughout the reproductive cycle. These findings are

consistent with previous reports of PTHrP expression exclusively in

basal cells isolated from both human and mouse mammary glands

[28,29]. The PTHrP gene is not expressed in luminal or alveolar

epithelial cells until pregnancy, when lacZ expression was detected

within the developing alveolar epithelial cells. Importantly, PTHrP

is expressed only in mammary epithelial cells; we did not detect its

expression in stromal cells within the mammary fat pad at any

time. These data demonstrate that, after embryogenesis, the

PTHrP gene is expressed only by myoepithelial/cap cells until

Figure 5. Effects of PTHrP deletion on cell turnover in terminal end buds during puberty. (A) End bud cell proliferation in 5-week-old mice
as defined by the percentage of epithelial cells incorporating EdU within TEBs of control, K14-tTA;tetO-Cre;PTHrPlox/lacZ and MMTV Cre;PTHrPlox/lacZ

mice. (B) Apoptosis was measured by TUNEL staining in the TEBs of control, K14-tTA;tetO-Cre;PTHrPlox/lacZ and MMTV Cre;PTHrPlox/lacZ mice. Red bars
represent the baseline rates of proliferation and apoptosis in 5-week-old placebo-treated mice and blue bars represent rates of proliferation and
apoptosis in 5-week-old mice treated with exogenous estradiol and progesterone for 48 h. EdU incorporation was significantly greater in each group
of mice treated with hormones. There were no differences in the response to hormones in control mice as compared to the two types of CKO mice.
There were no differences in apoptosis among control or CKO mice at baseline versus treated with hormones.
doi:10.1371/journal.pone.0027278.g005

Figure 6. Cell lineage is not disrupted by PTHrP deletion in the mammary gland. Expression of the luminal marker, Gata3 and myoepithelial
marker, K14, showed normal mammary gland architecture in both PTHrP MMTV-CKO (C) and K14-CKO (D) as compared to controls (B). (A) IgG control
staining with secondary antibodies.
doi:10.1371/journal.pone.0027278.g006
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pregnancy and lactation, when alveolar epithelial cells also

produce PTHrP.

The expression of PTHrP in cap and myoepithelial cells in close

proximity to the expression of the PTHR1, which is expressed on

stromal cells, suggests that PTHrP might regulate epithelial/

mesenchymal interactions important for ductal extension and

branching. In fact, overexpressing PTHrP in cap and myoepithe-

lial cells using the keratin 14 promoter impaired ductal elongation

by altering TEB cell proliferation and apoptosis in response to

estrogen and progesterone [14,30]. Overexpression of PTHrP also

impaired ductal side-branching in this model [14,30]. Therefore,

we expected that disruption of the PTHrP gene in mammary

epithelial cells would result in a reciprocal phenotype of

accelerated ductal elongation and increased ductal side-branching.

In contrast, MMTV-Cre/PTHrPlox/lacZ mice had normal rates of

ductal elongation and a normal mammary ductal branching

pattern. Additionally, they had normal rates of TEB proliferation

and apoptosis, both at baseline and in response to exogenous

hormones. This was also the case when we disrupted the PTHrP

gene specifically within cap and myoepithelial cells using

tetracycline-regulated bitransgenic expression of Cre recombinase.

K14-tTA;tetO-Cre;PTHrPlox/lacZ mice also had normal ductal

extension and branching as well as normal TEB cell proliferation

and apoptosis. Both models of conditional PTHrP gene disruption

also displayed normal alveolar development during pregnancy and

both types of mice lactated normally (data not shown). Therefore,

it appears that PTHrP expression is not necessary for post-natal

mammary development.

It is not clear why disruption of the PTHrP gene had no effect

on development of the gland given the effects of PTHrP

overexpression on ductal morphogenesis. There are two main

possibilities. First, it is possible that the spatial or temporal pattern

of PTHrP gene disruption was insufficient to eliminate PTHrP

function entirely. While the expression of Cre is somewhat

heterogeneous in the MMTV-Cre mice, the expression of Cre in

myoepithelial and cap cells is very uniform as measured by the

ability to activate lacZ expression when these transgenes were bred

onto an R26R reporter mouse (see Figure 4). Furthermore, RT-

PCR analysis of PTHrP mRNA expression in whole mammary

glands documented effective reductions of PTHrP mRNA

expression (Figure 3E and 4D). Thus, a technical explanation

for our findings is unlikely. Instead, we believe that while PTHrP

contributes to the regulation of ductal morphogenesis, its functions

are likely redundant and other signaling systems are able to

compensate for its loss. This does not necessarily mean that

PTHrP is unimportant in mammary epithelial cells or that the

K14-PTHrP overexpression phenotype is an artifact. In fact, since

PTHrP levels are often upregulated in breast cancer cells, the

Figure 7. Loss of PTHrP has no Effect on Alveolar Development. Whole-mount analysis and histological H&E sections of control (A, D, G, J),
MMTV-CKO (B,E,H,K) and K14-CKO (C,F,I,L) mice during late pregnancy (A–F) and lactation (G–L).
doi:10.1371/journal.pone.0027278.g007
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results of PTHrP overexpression in the mammary gland may shed

light on its effects on tumor cells. In various studies, a higher level

of PTHrP expression has been shown to be associated with either

worse or better outcome in patients with breast cancer [31,32].

Likewise, PTHrP appears to inhibit tumor formation in the

MMTV-Neu transgenic model [26], but to promote tumor

formation in the MMTV-polyoma middle T (MMTV-PyMT)

transgenic model [33]. Therefore, depending on the context,

upregulation of PTHrP expression may have differing effects on

the biology of breast cancer. While normal epithelial cells do not

express the PTHR1 gene, breast cancer cells often do. In addition,

PTHrP can traffic to the nucleus and exert effects on cell

proliferation and survival [27,34]. As a result, autocrine and/or

intracrine PTHrP signaling may affect breast cells in different ways

depending on cell lineage or stage of transformation. Overexpres-

sion models will be necessary to sort out these issues.

In summary, we find that the PTHrP gene is expressed in

myoepithelial and cap cells during post-natal mammary develop-

ment. During pregnancy and lactation, the gene is also expressed

by the secretory alveolar cells. Disruption of the PTHrP gene in all

mammary epithelial cells using the MMTV-Cre transgene or only

in myoepithelial and cap cells using a bitransgenic K14-tTA;tetO-

Cre system, results in no discernable developmental phenotype. We

conclude that PTHrP signaling is not required for post-natal

mammary development.

Materials and Methods

Mouse strains and breeding
MMTV-Cre (line D), tetO-Cre and ROSA26R mice were

purchased from Jackson Laboratories [20]. K14-tTA transgenic

mice were previously generated in our laboratory [14]. PTHrPlacZ

knockin mice were a kind gift from Arthur Broadus [16].

PTHrPlox/lox mice have been described elsewhere [35]. All animals

were outcrossed more than 10 generations and maintained on a

CD1 background (Charles River Laboratories, Wilmington,

Massachusetts, USA). TetO-Cre transgene expression was sup-

pressed by feeding all pregnant bitransgenic mice 150 mg/ml

tetracycline hydrochloride (Roche, Indianapolis, IN, USA) in 5%

sucrose water until birth. All animal experimentation was

conducted in accord with accepted standards of humane animal

care and approved by the Yale IACUC. All experiments

performed were approved in advance by Yale University’s

Institutional Animal Care and Use Committee (protocol #07834).

ß-Galactosidase assay
ß-galactosidase activity was measured in embryonic and adult

mammary tissue as previously described [14].

RNA isolation and RT-PCR
Mammary glands were excised from mice, flash frozen in liquid

nitrogen and total RNA was isolated using TRIzol (Invitrogen,

Carlsbad, CA) as per the manufacturers’ instructions. Contami-

nating DNA was removed using the RNeasy Minikit and DNase 1

treatment (QIAGEN, Inc., Valencia, CA). Two-step quantitative

real-time-PCR was performed using the High Capacity cDNA

archive kit (Applied Biosystems, Foster City, CA) and the Full-

Velocity SYBR-Green QPCR Master Mix kit (Stratagene, La

Jolla, CA) in the Opticon 2 DNA Engine (MJ Research, Waltham,

MA). The relative expression levels were determined using the

comparative 22DDCT method. Glyceraldehyde-3-phosphate dehy-

drogenase was the endogenous reference gene, and the average

22DDCT of the samples from virgin mice served as a calibrator

sample to which all individual samples were normalized. Each

sample was run in triplicate. The following primers were used:

mouse glyceraldehyde-3-phosphate dehydrogenase, forward, 59-

CGTCCCGTAGACAAAAATGGT-39 and reverse, 59-TCAAT-

GAAGGGGTCGTTGAT-39; mouse PTHrP, forward 59-TTC-

AGCAGTGGAGTGTCCTG-39 and reverse, 59-TTGCCCTT-

GTCATGCAGTAG-39.

Whole-mount analysis and Tissue Processing
Whole-mount analysis was performed on mammary tissue as

previously described [19]. Briefly, the no. 4 inguinal mammary

glands were removed and mounted on a microscope slide. The

tissue was fixed in acid ethanol for 1 h at room temperature,

washed in 70% ethanol and distilled water and incubated in

carmine aluminum stain (0.2% carmine, 0.5% aluminum

potassium sulfate) overnight at room temperature. After staining,

the mammary glands were dehydrated through graded ethanol

and defatted in acetone and toluene before being mounted under

glass coverslips using Permount (Fisher Scientific, Fair Lawn, NJ,

USA). Histomorphometry was performed on whole mounts and

the following parameters were measured: total duct length was

measured from the nipple region to the leading edge of the most

distal end bud; the percentage of fat pad penetration was

calculated by dividing the total duct length by the distance from

the nipple region to the most distal aspect of the fatty stroma.

For light microscopy, mammary tissue was fixed in 4%

paraformaldehyde, embedded in paraffin and sectioned at 5 mm

for hematoxylin & eosin (H&E) staining or immunohistochemistry.

Hormone Treatment and Immunohistochemistry
Five-week-old mice were injected (i.p.) with an aqueous solution

of estradiol (24 mg/day) and progesterone (1.2 mg/day) for 2 days

before injection of EdU. Control mice were injected with PBS

[19]. EdU (Invitrogen) was injected 2 hrs before the animals were

sacrificed, after which the no. 4 inguinal mammary glands were

harvested, fixed in 4% paraformaldehyde overnight, washed in

70% ethanol, embedded in paraffin and sectioned at 5 mm. The

sections were then deparaffinized, rehydrated through graded

ethanol to distilled water and put in pressure cooker for 1 minute

in 10 mM sodium citrate buffer. Sections were then processed for

EdU Click-It and immunofluorescence for the lineage markers,

K14, p63, gata3, K18. Fifteen TEBs from a total of five mice per

genotype were counted for each experimental condition. Rates of

TEB proliferation and apoptosis were calculated by dividing the

number of EdU positive nuclei by the total number of nuclei

within five TEBs from each of five animals for each genotype.

Statistics
The differences of the mean values between PTHrP mutant and

control groups were compared using an unpaired t test. All t tests

were two-tailed. All statistical analyses were carried out using

Graph Pad Prism 4.0 for Windows (Graph-Pad Software, San

Diego, CA).
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