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Abstract 

Human chronotypes (differences in preference for early or late rising each day) have been 

extensively studied in recent years, but no attempt has been made to compare human 

chronotypes with the chronotypes of other animal species. We evaluated behavioral chronotypes 

in 16 mammalian species along a body size gradient of five orders of magnitude (from mice to 

cattle). Individuals of all species were studied under a 12L:12D photoperiod in a thermoneutral 

environment with food and water available at all times. Rhythms of locomotor activity were 

analyzed for onset time, acrophase, and robustness. Neither of these rhythmic parameters was 

significantly related to body size, but onset time and acrophase varied considerably from species 

to species, thus characterizing diurnal and nocturnal species. Chronotype spreads ranged from 

less than an hour in sheep to almost 24 hours in cats, thus extending both below and above the 

human chronotype spread of 6 hours. The variability of chronotype (as quantified by the standard 

deviation of group means) was much larger between species than within species and also larger 

between individuals of a species than within individuals on consecutive days. These results help 

situate the matter of human chronotypes within the broader context of variability in the phase 

angle of entrainment of circadian rhythms in animals. 

 

Keywords: chronotype, circadian rhythm, locomotor activity, intrasubject variability, 

intersubject variability 
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1. Introduction 

Forty years ago, Horne and Östberg developed a questionnaire to rapidly classify people 

along a continuum from “morning types” to “evening types” [1]. Although not explicitly 

acknowledged by the authors, this classification reflects differences in the phase angle of 

entrainment of the circadian system of an individual in reference to the environmental cycle of 

light and darkness. Animals (including humans) have an endogenous pacemaker that generates 

circadian rhythmicity but that is modulated by environmental stimuli, particularly the light-dark 

cycle. Given the natural speed of the pacemaker, the speed of the entraining environmental cycle, 

and the species-specific sensitivity of the pacemaker to the environmental stimulus, the 

oscillatory pattern of the pacemaker establishes a predictable temporal relationship with the 

environmental cycle that is called the “phase angle of entrainment” [2, 3]. The phase angle of 

entrainment can be defined in reference to any stage of the environmental cycle, although it is 

often defined in reference to either lights-on (sunrise) or lights-off (sunset). “Morning types” 

tend to wake up and be more productive early in the day (and, therefore, have an advanced phase 

angle of entrainment), whereas “evening types” tend to wake up later and be more productive in 

the afternoon and evening (and, therefore, have a delayed phase angle of entrainment). 

The behavioral typology of morningness and eveningness in humans is consistent with 

the timing of the rhythms of body temperature [4, 5], heart rate [6, 7], melatonin secretion [8, 9], 

and other physiological variables. Perhaps because significant correlations have been found 

between morningness-eveningness and several psychological traits [10-14], the classification of 

chronotypes has attracted great attention from social scientists. As of February 2016, Horne and 

Östberg’s original publication was the article with the highest number of citations of any article 

retrieved by the keyword “circadian” in the Web of Science database (produced by Thomson 

Reuters, New York, NY). 
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Because differences in chronotypes are reflections of differences in phase angles of 

entrainment, they are expected to be present not only in humans but in all animal species. Yet, 

despite occasional observations of variation in the phase angles of entrainment of individual 

members of a few species [15-19], no comparative study of chronotypes has been conducted. 

Thousands of studies of the daily rhythm of locomotor activity of individual species have been 

conducted in the wild and in the laboratory [20, 21], but — because of large differences in 

photoperiod, ambient temperature, food availability, presence of predators, and so on — 

comparisons between different species cannot be reliably conducted in a retrospective manner. In 

the present study, we compared the activity rhythms of individuals of 16 different mammalian 

species, ranging in size from mice to cattle, while attempting to provide similar environmental 

conditions for all animals. We analyzed differences in chronotype not only between species but 

also within and between different individuals of each species in order to quantify the extent of 

intra- and intersubject variability of behavioral chronotype. 

 

2. Materials and method 

2.1. Subjects 

Animals of 16 different species served as subjects. The names and numbers of individuals 

of each species are listed in Table 1 in ascending order of body size. The smallest species (Indian 

field mouse) weighs 13 g, whereas the largest species (cow) weighs 700 kg, thus yielding a body 

size gradient of five orders of magnitude. All individuals were non-pregnant young adults. 

Because the locomotor activity rhythm of female rodents is often modulated by the estrous cycle 

(with earlier activity onsets on the day of ovulation) [20, 21], only males were used in rodent 

species. The rabbits and cats were also all male. Horses and dogs were 50% male and 50% 

female. Cows and sheep were all female. 
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The farm animals (cow, horse, and sheep) were procured from and studied at the School 

of Veterinary Medicine of the University of Messina, in Sicily, Italy. The domestic animals (dog, 

cat, and rabbit) were also procured from and studied at the University of Messina. Two of the 

wild animals (palm squirrel and field mouse) were trapped in the surroundings of Varanasi, in 

Uttar Pradesh, India, and studied at Banaras Hindu University after quarantine and adaptation to 

captivity. Fox squirrels were captured, fitted with a recording device, and studied in a restricted 

outdoor area under mild weather on the campus of Siena Heights University (Adrian, Michigan). 

Animals of the remaining species were either purchased from Charles River Laboratories 

(Wilmington, Massachusetts) or bred at a regional campus of the University of South Carolina 

(Walterboro, South Carolina) and studied at this latter location. 

2.2. Procedure 

Experiments were conducted in accordance with the regulations of the Guide for the Care 

and Use of Laboratory Animals (U.S. National Research Council, 2011), the Guidelines for the 

Use of Wild Mammals in Research (American Society of Mammalogists, 2011), and European 

Union’s Directive 86/609 CEE.  

Because of the large difference in body sizes of the various species, it was not possible to 

use the exact same procedures of animal husbandry and methods of environmental control and 

activity monitoring in all species. Nonetheless, efforts were made to have experimental 

conditions as similar as possible for all species. Either by automated control of lighting and 

ambient temperature in the laboratory or by selection of the appropriate time of the year in barns, 

animals of all species were exposed to a light-dark cycle with 12 hours of light and 12 hours of 

darkness per day (12L:12D) and an ambient temperature of 20-24 °C (with a daily oscillation of 

less than 4 °C). Food and water were freely available at all times for all species. Fox squirrels 

were free-ranging outdoors, so that ad libitum availability of food and water could not be strictly 
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assured, but maintenance (or increase) of body weight between the beginning and end of data 

recording indicated that the animals were not in negative energy balance. 

Farm animals were housed in individual indoor stalls and were fed hay, oats, corn, and 

barley in abundance (replenished twice a day at 08:00 and 16:00 hours). Because food was 

available in abundance, it is unlikely that food replenishment had an effect on the circadian 

system comparable to the effect of restricted feeding regimes on the circadian system of 

laboratory rodents. Importantly, this feeding regime is a common regime for farm animals and 

reflects standard practice in livestock management. Water was available ad libitum. Locomotor 

activity was recorded with an activity data-logger (Actiwatch, Mini Mitter Co., Bend, OR) 

strapped to the animal’s neck. 

Dogs and cats were housed in individual pens (140 x 200 cm) and were fed a certified 

dog/cat diet replenished daily at 09:00 hours. We have previously shown that the wave forms of 

the daily rhythms of body temperature, heart rate, and blood pressure of the dog are not affected 

by the time of feeding [22]. Water was available ad libitum. Locomotor activity was recorded 

with an activity data-logger (Actiwatch, Mini Mitter Co., Bend, OR) strapped to the animal’s 

neck. 

Rabbits were individually housed in metallic cages (90 cm x 50 cm x 35 cm) and were 

fed rabbit pellets and water ad libitum. Locomotor activity was recorded with an activity data-

logger (Actiwatch, Mini Mitter Co., Bend, OR) strapped to the animal’s neck. 

Free-ranging fox squirrels were equipped with temperature-sensitive data-logger collars 

fitted with iButtons (DS1922L, Maxim Integrated Products, San Jose, CA). Because of changes 

in ambient temperature related to microclimate variations as the animal moves around, the 

monitoring of collar temperature provides an index of locomotor activity similar to that obtained 

by the monitoring of differences in the strength of telemetry signals. 
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Field mice and palm squirrels were housed in individual housing chambers (36 cm x 20 

cm x 14 cm) lined with wood shavings and were fed commercial rodent pellets and water ad 

libitum. Locomotor activity was recorded with running wheels using the Clocklab setup for 

rodent locomotor activity rhythm recording (Coulbourn Instruments, Whitehall, PA). 

Domestic mice, rats, gerbils, Syrian hamsters, Siberian hamsters, degus, and Nile grass 

rats were housed individually in polypropylene cages (36 cm x 24 cm x 19 cm) lined with wood 

shavings and were fed Purina rodent chow and water ad libitum. A metallic running wheel (18 

cm diameter) was attached to each animal cage. Magnetic switches attached to the running 

wheels were connected to data acquisition boards (Digital Input Card AR-B2001, Acrosser 

Technology, Taiwan) linked to desktop computers. 

2.3. Data analysis 

Data were stored and analyzed in 5-min, 6-min, or 10-min bins, depending on the type of 

device used for the recording of locomotor activity. To avoid sampling bias, animals were not 

pre-screened for the quality of their locomotor activity rhythms. However, because weak daily 

rhythmicity due to animal idiosyncrasy cannot be reliably distinguished from weak rhythmicity 

due to illness or to equipment malfunction, all data sets were initially subjected to a test of daily 

rhythmicity. If the data set did not exhibit significant rhythmicity between 23.5 and 24.5 hours, 

as determined both by the Lomb-Scargle periodogram procedure [23] and by cosinor 

rhythmometry [24], the set was excluded. This occurred very rarely (3 individuals total), and the 

sample sizes given in Table 1 do not include these disqualified animals. 

An interval of 10 consecutive days was analyzed for each individual of each species. For 

descriptive purposes, daily wave-form plots of activity were generated for each species by 

averaging, time-bin by time-bin, the 10 consecutive days for each animal and then averaging all 

animals in each species while preserving the temporal resolution of the original data sets. 
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For each individual of each species, three parameters of the activity rhythm were 

analyzed: onset time, acrophase, and robustness. Onset time (the time of initiation of running 

activity each day) is a classic measure of rhythm phase in circadian biology. In the present study, 

onset time was determined by a computer algorithm. First, the time series was smoothed by a 7-

hour moving-averages procedure and phase-advanced by 3.5 hours to correct for the 3.5-hour 

phase-delay caused by the moving-averages procedure. Then, for each 24-hour interval, the onset 

time was computed as the time when the activity level rose above the daily mean. Occasionally 

(i.e., in fewer than 3% of the data sets), the algorithm failed to identify an onset for a given day. 

In these cases, the missing value was replaced with a random number within the range of the 

remaining onsets. 

The second parameter of the activity rhythm to be analyzed was the acrophase (the time 

of the daily peak of the activity rhythm). The acrophase was computed by the single cosinor 

procedure, which fits a cosine wave to the data in order to overcome differences in wave form of 

the time series under analysis [24]. This is particularly important when different species are 

being compared, as the wave form of the activity rhythm is known to vary greatly from species 

to species. The acrophase computed by the cosinor procedure provides a “center-of-gravity” 

measure of the wave form that minimizes the effects of differences in slope, bimodality, etc. 

The third parameter to be analyzed was rhythm robustness. Rhythm robustness refers to 

the strength of rhythmicity and is closely related to the stationarity of the time series [25]. 

Robustness is independent of amplitude, except at the extreme low end of the range, as a rhythm 

with zero amplitude also has zero robustness. Rhythm robustness was computed as the 

percentage of total variance accounted for by the cosine fit [25]. Onset time and acrophase were 

calculated in local time and expressed in clock hours adjusted to lights-on at 07:00 hours and 

lights-off at 19:00 hours. 

8 



 

The spread of individual chronotypes in each of the species was computed as the interval 

containing 95% of the individual chronotypes, which is approximately the interval that goes from 

two standard deviations below the species mean to two standard deviations above the species 

mean. Intrasubject variability was computed as the standard deviation of the mean of the onsets 

over 10 days (calculated for each individual of a species and then averaged over all the 

individuals). Intersubject variability was computed as the standard deviation of the mean of the 

onsets over all individuals of a species (calculated for each of the 10 days and then averaged over 

the 10 days). 

The statistical significance of differences between group means was evaluated by 

analysis of variance (ANOVA) followed by post-hoc pairwise comparisons with Tukey’s HSD 

test [26]. The level of significance (α = 0.05) was maintained at each ANOVA. Correlation 

coefficients were computed by the principle of least squares. 

For comparative purposes, human data were taken from the study by Roenneberg and 

colleagues [27], which involved more than 55,000 participants, mostly from Germany, in an 

online survey of chronotypes. The mean activity onset (wake-up time on free days) for this group 

was 08:45 hours, with a standard deviation of 90 minutes. Natural variation in photoperiod was 

not controlled in Roenneberg’s study, and we assumed a photophase starting at 07:00 hours and 

ending at 19:00 hours, which correspond to the times of sunrise and sunset in Berlin in late 

September (http://www.timeanddate.com). Actual activity data, which were not collected in the 

study, would be required for the computation of acrophases. In the absence of data, we assumed 

that the human acrophase occurs in the middle of the active phase of the daily activity-rest cycle 

(i.e., 8 hours after wake-up time, or 16:45 hours). The assumption of human acrophase occurring 

in the middle of the active phase is consistent with actigraphic data from a sample of 500 
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individuals in the United States [28]. From the latter study, we obtained also an estimate of 

rhythm robustness. 

 

3. Results 

Figure 1 shows the average daily activity rhythms for all 16 species. The curves in each 

panel were generated by averaging, time-bin by time-bin, the data from 10 consecutive days for 

each animal and then averaging the data for all animals in each species. Inspection of the figure 

indicates that whereas some species (such as cow and sheep) exhibit several daily clusters of 

activity other species exhibit unimodal activity patterns with activity concentrated in the light 

phase of the light-dark cycle (such as horse and fox squirrel) or in the dark phase of the light-

dark cycle (such as Syrian hamster and house mouse). Particularly noteworthy is the similarity of 

the activity patterns of the two species of the genus Mus (house mouse and field mouse). 

Figure 2 (top panel) shows the means (± standard errors) of the activity onset times for 

the 16 species in this study and for human subjects in previous studies [27, 28]. With some 

interspecies variability, the onset times are clustered around the time of lights-on (07:00 hours) 

and around the time of lights-off (19:00 hours), thus characterizing a group of diurnal species 

and a group of nocturnal species. The dispersion of onset times shows no relationship with body 

size (r = -0.248, n = 17, p = 0.661). As expected, the acrophases lag behind the onsets by several 

hours (middle panel), but the distinction between diurnal and nocturnal species is much less clear 

in the acrophases than in the onsets, with greater variability of acrophases being particularly 

noticeable among diurnal animals. The bottom panel of Fig. 2 shows rhythm robustness as a 

function of body size. Although robustness varies from species to species, with maximal 

robustness in the field mouse and minimal robustness in humans, the correlation with body size 

does not reach statistical significance (r = -0.181, n = 17, p = 0.506). 
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Figure 3 shows the spread of individual chronotypes in each of the species. The spread 

was computed as the interval containing 95% of the individual chronotypes. The spread is as 

narrow as 40 minutes in sheep and as wide as 23 hours in cats. This means that individual sheep 

initiate activity each day within a 40 minute window around the species mean, whereas 

individual cats initiate activity at very different times of the day. It can be noticed that the human 

chronotype spread of 6 hours is comparable to that of the laboratory rat, is wider than those of 

seven of the species, and is narrower than those of nine of the species. Because greater variability 

of onsets from individual to individual might be a computational artifact resulting from weak 

rhythmicity, we computed a correlation coefficient between chronotype spread and rhythm 

robustness. We found r = -0.439, n = 17, p = 0.075, which does not substantiate the suspicion of 

significantly wider chronotype spreads in species with weaker rhythmicity. 

Figure 4 shows the indices of intrasubject and intersubject variabilities for the 16 species 

in this study. Intrasubject variability refers to how variable the activity pattern of an individual is 

from day to day and was computed as the standard deviation of the mean of the onsets over 10 

days (calculated for each individual of a species and then averaged over all the individuals). 

Intersubject variability refers to how variable the activity patterns of different individuals are and 

was computed as the standard deviation of the mean of the onsets over all individuals of a 

species (calculated for each of the 10 days and then averaged over the 10 days). Intersubject 

variability was particularly large in rabbits and cats and particularly small in Syrian hamsters and 

sheep; it exceeded intrasubject variability in all species except sheep. A two-way ANOVA of the 

variability indices identified statistically significant effects of species (F(15, 304) = 70.202, p < 

0.001), type of variability (intrasubject versus intersubject, F(1, 304) = 131.213, p < 0.001), and 

interaction of the two factors (F(15, 304) = 6.675, p < 0.001). The effect size, as inferred from 

ω2, was much greater for the effect of species (ω2 = 0.65) than for the effect of type of variability 
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(ω2 = 0.08) or for their interaction (ω2 = 0.05). For all 16 species combined, intrasubject 

variability averaged 90 min, which was significantly less than the 150-min average of 

intersubject variability (t(15) = 3.188, p = 0.006).  

 

4. Discussion 

The daily activity patterns of the 16 species investigated in this study reflected the 

diversity of activity patterns described in previous studies of individual species [20, 21]. Some of 

the patterns that we found were unimodal (such as those of squirrels and hamsters), some were 

bimodal (such as those of dogs and cats), some were multimodal (such as those of sheep and 

cows), some were predominantly diurnal (such as those of squirrels and Nile grass rats), some 

were predominantly nocturnal (such as those of hamsters and mice), and some were almost 

evenly distributed over the night and day (such as those of rabbits and degus). By standardizing 

environmental conditions such as photoperiod, ambient temperature, and food availability, as 

well as the analytical procedures, we were able to increase confidence in the inference that 

interspecies differences are due mostly to the peculiarities of the circadian systems of the various 

species. Particularly instructive was the similarity of the activity patterns of the two species of 

the genus Mus (house mouse and field mouse). We found the mean activity patterns of these two 

types of mice to be almost identical (Fig. 1) despite the facts that the two types of mice are 

distinct species, that M. musculus has been bred in the laboratory for many generations whereas 

M. booduga was caught in the wild, and that the two species were studied with similar but 

distinct apparatuses in laboratories located in two different continents. 

Analysis of the activity patterns based on onset times and acrophases revealed no 

significant correlation between these parameters and the body sizes of the various species (Fig. 

2). Onset time was more effective than acrophase in separating diurnal species from nocturnal 
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species, although the meaning of this difference is not evident. Although dog, sheep, human, 

horse, and cow exhibited activity onsets shortly after lights-on, their acrophases were late in the 

day or early in the evening. These five species happen to be the five largest species out of the 16 

species studied, and it is possible that larger diurnal mammals generally have later acrophases 

than smaller diurnal species even though their onset times are not much different from those of 

the smaller species. Studies of a larger number of species would be necessary to clarify the 

matter. Later acrophases despite similar onset times could be the result of longer active periods 

(alpha) or might simply reflect variations in the wave form of the activity rhythms. 

Although the robustness of the activity rhythm tended to be greater in smaller species, 

this trend did not reach statistical significance (Fig. 2). For the body temperature rhythm, a 

significant increase in robustness was found in larger animals rather than in smaller animals [29], 

but greater robustness of the temperature rhythm in larger animals could be a simple 

consequence of thermal inertia and have no implications for the activity rhythm. 

Chronotype spreads (the time windows containing 95% of the individual chronotypes 

within a species) were found to vary greatly from 40 minutes in sheep to 23 hours in cats (Fig. 

3). The chronotype spread previously reported for humans (6 hours) [27] is neither in the short 

nor in the long end of the continuum. The human chronotype spread is most similar to the 

chronotype spread of the laboratory rat. A chronotype spread of 6 hours means that most people 

wake up within a 6-hour window in the morning, with “larks” waking up as early as 6 o’clock 

and “owls” waking up as late as noon. Although the expression “sheep mentality” usually refers 

to intellectual conformity, the narrow chronotype spread that we found in sheep indicates that 

sheep conform to a species-specific activity-onset time situated very close to 90 minutes after 

sunrise. In contrast, individual cats exhibit great independence from one another and initiate 

activity each day at times that differ greatly from one individual to another. 
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The notion of chronotype spread serves to erode the distinction between diurnal and 

nocturnal species. It is true that a species with a narrow spread centered at a time after lights-on 

(such as sheep) can be unequivocally called “diurnal,” whereas a species with a narrow spread 

centered at a time after lights-off (such as the Syrian hamster) can be called “nocturnal.” 

However, species that have wide chronotype spreads will have some individuals that are mostly 

active during the day and some that are mostly active during the night, and the proportion of 

“diurnal” and “nocturnal” individuals will depend on the time of day around which the spread is 

centered. Dogs and Mongolian gerbils, for example, have about the same chronotype spread, but, 

because the spread is centered further into the light phase in dogs, every dog could be said to be 

diurnal, whereas Mongolian gerbils would be 50% diurnal and 50% nocturnal. The diurnal-

nocturnal dichotomy applies only to a limited number of species [30]. 

Except in sheep (which exhibited very little intersubject variability of onset times), 

intersubject variability was found to be consistently greater than intrasubject variability (Fig. 4). 

This means that, in 15 of the 16 species, there was less day-to-day variability in the onset times 

of individual animals than there was variability between the mean onset times of different 

individuals. In other words, there was greater consistency in onset times within individuals 

(mean SD = 1.5 hours) than between individuals (mean SD = 2.5 hours). Interspecies consistency 

in onset times (mean SD = 5.7 hours) was less than intraspecies consistency. 

Although comparisons of intra- and intersubject variabilities in circadian rhythms have 

rarely been conducted, previous studies of the variability in the free-running periods of various 

species have found smaller intrasubject variability than intersubject variability [31-34], which is 

consistent with our findings. Distinguishing the two types of variability has important 

implications for the management of individual needs, such as in clinical practice in veterinary or 

human medicine. If intersubject variability is greater than intrasubject variability, then treatments 
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designed for an “average” patient may turn out to be too weak (or too strong) for a patient who is 

not average. On the other hand, if intrasubject variability is greater than intersubject variability, 

then the notion of an average patient may be useful, but the administration of the treatment to 

patients may have to be adjusted on a daily or weekly basis. Our finding that intersubject 

variability of chronotype is larger than intrasubject variability indicates that the concept of an 

average patient should be avoided in all the studied species except sheep. This discussion is 

clearly pertinent to human patients, as disruption of the normal phase angle of entrainment (such 

as that associated with transcontinental travel, with shift work, or even with the extensive use of 

artificial light in the modern 24-hour society) has been shown to have serious negative health 

effects, such as cardiovascular disease [35], higher incidence of breast cancer [36], increased 

occurrence of psychiatric disorders [37], and development of metabolic syndrome [38]. Although 

the health effects of circadian disruption have not been studied in non-human individuals so far, 

it is reasonable to expect that similar effects will be found in other mammalian species. As one 

example, pet dogs and cats are currently experiencing an obesity epidemic similar to that 

experienced by their human owners in industrialized nations [39]. 

Although studies of human chronotypes rarely acknowledge it, the classification of 

individuals along the morningness-eveningness continuum is a reflection of differences in the 

phase angle of entrainment of the circadian system as it relates to the environmental cycle of 

light and darkness [2, 3]. By analyzing the spread of chronotypes in 16 other mammalian species, 

the present study provided valuable information to allow placement of the topic of human 

chronotypes within the broader context of variability in the phase angle of entrainment of 

circadian rhythms in animals. We showed that chronotype spreads can range from less than an 

hour in sheep to almost 24 hours in cats, thus extending both below and above the 6-hour spread 

of human chronotypes. 
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Table 1. The 16 species used in the study. 

 

Species Scientific name Body mass 

(kg) 

Sample 

size 

Field mouse Mus booduga 0.01 11 

House mouse (C57BL/6) Mus musculus 0.03 19 

Siberian hamster Phodopus sungorus 0.05 14 

Mongolian gerbil Meriones unguiculatus 0.06 11 

Nile grass rat Arvicanthis niloticus 0.12 18 

Palm squirrel Funambulus pennanti 0.15 10 

Syrian hamster Mesocricetus auratus 0.16 16 

Degu Octodon degus 0.24 8 

Laboratory rat (Wistar) Rattus norvegicus 0.36 16 

Fox squirrel Sciurus niger 0.8 8 

Rabbit Oryctolagus cuniculus 3 16 

Cat Felis catus 4 3 

Dog Canis familiaris 30 6 

Sheep Ovis aries 40 4 

Horse Equus caballus 550 13 

Cow Bos taurus 700 3 
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Fig. 1. Average daily activity rhythms of the 16 species. Each panel was constructed by 

averaging 10 consecutive days for each animal time-bin by time-bin and then averaging the data 

for all animals in the same species. The horizontal black and white bars at the top denote the dark 

and light phases of the prevailing light-dark cycle. 
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Fig. 2. Means (± SEM) of the onset times (top panel), acrophases (middle panel), and robustness 

(bottom panel) of the activity rhythms of various mammalian species as a function of body mass. 

The horizontal dashed lines indicates the times of lights-on (07:00 hours) and lights-off (19:00 

hours). Human data are from Roenneberg and colleagues [27] and Sani and colleagues [28]. The 

abscissas are in logarithmic scale. 
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Fig. 3. Chronotype spreads for humans and 16 animal species arranged in ascending order. The 

chronotype spread for each species is the interval containing 95% of the individual chronotypes. 

 

 

24 



 

Fig. 4. Mean (± SEM) intrasubject and intersubject variabilities of activity onsets of the 16 

species in this study. Variability is expressed as the standard deviation of the mean. 
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