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The semi-enclosed and pressurized nature of the aircraft cabin results in a highly 

dynamic environment. The dynamic conditions establish spatiotemporal dependent 

environmental characteristics. Characterization of aircraft cabin environmental and bleed-

air conditions have traditionally been done with stand-alone measurement systems which, by 

their very nature, cannot provide the necessary sensor coverage in such an environment. To 

this purpose, a prototype wireless sensor network system has been developed that can be 

deployed in the aircraft cabin environment. Each sensor node in the system incorporates the 

ability to measure common aircraft contaminants such as particulate matter and carbon 

dioxide, along with other key environmental factors such as temperature, air pressure, 

humidity, and sound pressure level. The wireless sensor network enables the collection of 

time-correlated results from the aircraft cabin, passing sensor data to a central collection 

point for storage or real-time monitoring. This paper discusses the results of testing this 

sensor system in a mockup of the Boeing 767 aircraft cabin environment. In this series of 

tests, both particulate matter and carbon dioxide were introduced into the simulated aircraft 

environment and measured using an array of 16 wirelessly connected sensor nodes. Two 

different arrangements of sensor nodes targeted both a two-dimensional plane across the 

aircraft cabin space and a localized three-dimensional space centered on two rows of the 

cabin. The test results show successful simultaneous tracking of the particulate matter and 

carbon dioxide concentrations as they disperse over time. 

I. Introduction 

HE quality of the air that we breathe is one of the more noticeable conditions of our environment that impacts 

comfort and health. Maintaining good air quality quickly becomes very important when one cannot simply step 

outside or open a window for fresh air. The confined spaces and close proximity to neighboring passengers 

encountered in aircraft cabins present many challenges for maintaining appropriate air quality
1
. This coupled with 

the potential for contaminants brought into the aircraft from outside can impact comfort and health in many ways
2,3

. 

Concern with the microbial content of cabin air has led to multiple studies regarding infectious disease transmission 

on aircraft
4–6

. Increased understanding of these complex spaces can be realized through the use of advanced 

approaches to air quality monitoring, fusing measurements of particulate matter and contaminant gasses to create an 

enhanced view of this dynamic environment. 

On September 13
th

 2012, Boise State University (BSU) deployed its Wireless Air Quality Monitor (WAQM) 

wireless sensor network within the Kansas State University (KSU) Boeing 767 mock-up cabin. The focus of this 

testing was to verify the capabilities of the BSU system in capturing spatiotemporal measurements of multiple 

contaminants injected into a highly dynamic enclosed environment. Previous testing of a similar system had focused 

on capturing the movement of carbon dioxide in the same environment
7
. This set of tests demonstrates the addition 

of particulate matter sensing to the sensor suite, providing contrast between the movement of gaseous and particulate 

matter contaminants. 

 The deployment of the WAQM sensor network consisted of 16 wireless sensor units and a coordinating base 

station. Each wireless sensor unit was configured to measure five environmental conditions: airborne particulate 

matter, CO2, temperature, humidity, and atmospheric pressure. For testing in the aircraft cabin, two different node 
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arrangements were exercised. First, the sixteen sensor nodes were set out in a two-dimensional array on the tops of 

the seat backs in the cabin. The goal of this test was to cover most of the cabin area with sensors to show large scale 

movement of gas and particulate matter within the space. The second arrangement concentrated the nodes at two 

vertical levels across a pair of rows near the front of the cabin. This more dense arrangement was used to show finer 

scale movement within a smaller area in three dimensions.  

In the sections of this paper that follow, descriptions of the simulated aircraft cabin environment (Section II) and 

the WAQM sensor network (Section III) will be given. Results are then presented from the two-dimensional 

(Section IV) and three-dimensional (Section V) testing. This paper is based, in part, upon the FAA Airliner Cabin 

Environment Research report RITE-ACER-CoE-2013-TBD
8
 and the results presented therein.  

II. Simulated Aircraft Cabin Environment 

A typical commercial aircraft cabin is an enclosed, ventilated space with a dedicated environmental control 

system. Occupants of the aircraft are exposed to a mixture of recirculated and outside air, usually supplied by a 

bleed air compressor system on the engines. The air quality in the aircraft cabin is dependent on the environmental 

control system to filter contaminants entering from outdoor air and to dilute and filter contaminants generated in the 

cabin. These contaminants can range from urban pollution such as particulate matter and carbon monoxide 

encountered at the airport or during ascent/descent, to ozone encountered at cruising altitude, to particulate matter 

and carbon dioxide generated inside the cabin
1
. The dynamic nature of the combined system of forced ventilation, 

changing air pressure, and diverse contaminant sources in an actively-used aircraft provides a challenging situation 

for effective environmental monitoring. The availability of a controlled, simulated aircraft cabin environment is 

important to the development of such systems. 

The KSU aircraft cabin section is designed to simulate the interior conditions of a portion of a Boeing 767. The 

cabin contains two aisles and eleven rows of seven seats arranged in a 2-3-2 configuration. The interior space is 

approximately 9.6 meters long by 4.7 meters wide by 2.0 meters high and is modeled in shape similar to the actual 

aircraft. Each seat in the cabin is occupied by a simulated human in the form of a mannequin. These mannequins 

include heating elements to mimic the body heat produced by an actual passenger. Figure 1 shows a view from the 

rear of the interior of the aircraft cabin with the WAQM sensor nodes in place on the seatbacks. 

Ventilation for the aircraft cabin is provided by an air supply system that takes in air from outside the test 

facility. This air is first taken through HEPA filters to remove ambient particulate matter and a dehumidifier controls 

the amount of moisture in the air. The air is also conditioned for temperature with heating and cooling elements. Air 

enters the cabin from a set of diffusers in the ceiling arranged above the center section of seats. Gaps along the floor 

on both sides of the cabin allow air to exit as it would on an actual aircraft. The air is not recirculated once it exits 

the cabin, and is instead replaced by fresh air from the ventilation system. 

At the time of testing, two different types of contaminants were available to be released into the cabin: CO2 and 

particulate matter. The CO2 source was a cylinder of compressed gas with a regulated output. When active, the CO2 

 
Figure 1: Interior of the aircraft cabin mockup with WAQM sensors in place for 

two-dimensional testing. 
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source releases 7 liters/minute of undiluted gas. The CO2 is piped into the aircraft cabin to a single point at the front 

of the cabin where it is then released into the air. 

The KSU system has two different methods for generating particulate matter. The first method generates smoke 

through a Chauvet Hurricane 1050 commercial fog generator using an aerosolized mixture of propylene glycol and 

glycerin. This system typically produces a large number of small particles with diameters less than 2.5um. The 

particulate from the fog generator is introduced into the cabin using the same pipe that carries the CO2. During each 

run that it is used the fog generator remains active for approximately five minutes and is then shut down, allowing 

the particulate to clear from the cabin. The second particulate generation method uses talcum powder and a series of 

seven air nozzles that disperse the powder from small containers placed at each seat across a single row. The talcum 

powder particulate is released in a single burst of air. Compared to the fog generator this method produces a much 

smaller total amount of particulate matter with a larger distribution in sizes, with some particles reaching diameters 

greater than 10 um.  

III. Sensor Network 

The Boise State University WAQM system was 

initially developed as part of a project for the National 

Institutes of Health National Children’s Study
9
. 

Continued development with funding from the Federal 

Aviation Administration is targeting the system for 

bleed-air monitoring in aircraft cabins.  

Each sensor node in the WAQM system is 

equipped to measure particulate matter, CO2, CO, 

humidity, pressure, temperature, and sound pressure 

level. The sensor nodes can run from an internal 

lithium-ion battery or from a wall transformer. Data 

collected by each node can be stored locally on the 

device and/or sent through the integrated ZigBee mesh 

network to a central coordinator node. Figure 2 shows 

one of the WAQM sensor nodes used in the testing. 

Sixteen WAQM sensor nodes and one coordinator 

node were used for testing in the KSU simulated 

aircraft cabin. Each of the sensor nodes was configured 

identically, with sensors set to report data according to Table 1. Note that some of the sensors in each node were not 

used, either because the particular contaminant was not of interest in this testing environment or to conserve mesh 

network bandwidth and system power. Particulate matter count was set to a relatively high sample rate to provide 

good temporal resolution. The CO2 sensor was set to a 

longer period since the particular brand of sensor used 

could not meet a 2-second sample rate. 

Bandwidth was of particular concern due to the 

number of nodes involved and the amount of data 

being sampled. The ZigBee mesh network offers a 

relatively low-bandwidth connection, and overtaxing it 

could lead to data loss at the coordinator. A backup 

system of local node logging was in place in case this 

occurred, but in the end no significant data loss was 

experienced by the mesh network. 

Each of the sensor nodes was powered from its 

internal lithium polymer battery during the tests. This 

greatly simplified the setup of the system but caused 

some issues with data loss towards the end of testing. 

One unit in particular had a battery that performed 

much worse than the other units due to its age, causing 

the unit to power down just prior to the end of testing. 

The coordinator node was connected to a monitoring computer using a serial cable that was passed under the 

door of the simulated aircraft cabin. The monitoring computer was used to verify correct operation of the sensor 

 
Figure 2. In-Home Air Quality Monitor. The 

monitor measures 150x150x115 mm and weighs 700g. 

Table 1: Controlled environment testing sensor 

configuration. 

Sensor Sample Period 

CO Disabled 

CO2 5 seconds 

Humidity 5 seconds 

Particulate concentration 60 seconds 

Particulate count 2 seconds 

Performance Disabled 

Pressure 5 seconds 

ZigBee radio status 30 seconds 

Sound Disabled 

Temperature 5 seconds 

Battery voltage 30 seconds 
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Figure 3: WAQM sensor node layout for 

two-dimensional test.  

A B C D E F G

1

2

3

4

5

6

7

8

9

10

11

Sensor Node CO2/Smoke/Humidity 

Injection Point
Coordinator Node

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Front of Cabinnetwork and to allow the operators to understand when 

contaminants had been flushed from the cabin at the end of each 

test. The monitoring computer also stored the aggregated data 

from the coordinator for later processing. 

IV. Two-Dimensional Test Results 

The first set of tests arranged nodes in a two-dimensional 

4x4 array across the body of the simulated cabin as shown in 

Figure 3. The goal of this arrangement was to cover as much of 

the cabin as possible at a level near the typical head-height of 

the passengers. Each node is shown as a green circle with the 

unit’s position reference number indicated inside the circle. A 

set of four nodes was placed on the top of the seat-backs every 

three rows. Spacing between the units was approximately 130 

cm between each column of units and 250 cm between each row 

of units. Particulate matter and CO2 were injected into the cabin 

from a single contaminant injection point approximately 10 cm 

above the top of the seat backs as indicated by the red triangle in 

Figure 3. The coordinator node for the mesh network was 

located near the back of the cabin as indicated by the blue 

pentagon.  

The CO2 and particulate matter were released into the cabin 

concurrently six times over the course of three and one-half 

hours. Table 2 lists the tests conducted for the two-dimensional 

setup, with references for each of the six tests listed in the 

leftmost column of the table. 

The first test, run 0, was performed as a check of the system 

operation. The sensor unit hardware had been shipped to the 

testing facility and needed to be tested for correct operation after 

unpacking. During this run it was discovered that the unit at 

position 12 had a malfunctioning particle counter and was 

Table 2: Two-dimensional testing sequence of events. 

Reference Variables Log (UTC Time) Comments 

Run 0 Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

14:30: Start CO2, smoke release 

14:47: Stop CO2  

Initial test to verify sensor network 

formation and general operation. 

Position 12 (Unit 74) found to have 

malfunctioning particle counter. 

Run 1  Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

15:08: Start CO2, smoke release 

15:28: Stop CO2  

First full run. Unit 74 replaced with 

Unit 79.  

Run 2  Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

15:43: Start CO2, smoke release  

16:09: Stop CO2  

16:11: Stop dehumidifier  

Second full run. 

Run 3  Particulate (smoke)  

CO2 

Dehumidifier inactive 

Humidifier active 

16:25: Start CO2, smoke release, 

humidifier on 

16:50: Stop CO2  

Dehumidifier turned off. 

Humidifier appears to modify air 

currents around CO2/particulate 

cabin input.  

Run 4  Particulate (smoke)  

CO2 

Dehumidifier inactive 

Humidifier active 

17:03: Start CO2, smoke release 

17:18: Stop CO2  

 

Repeat of Run 3 conditions. 

Humidifier remained active since 

the start of Run 3.  

Run 5  Particulate (smoke)  

CO2 

Dehumidifier inactive 

Humidifier inactive 

17:26: Stop Humidifier 

17:29: Start CO2, smoke release 

17:29: Battery died on Unit 60  

17:45: Stop CO2  

Same conditions as Run 4, with 

humidifier inactive. Confirm 

humidifier modifies CO2, likely 

due to air current changes.  
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replaced with a backup unit before continuing with run 1.  

Figure 4 shows the time-series data for the particulate matter concentration plotted on a logarithmic scale. All 

sixteen units are shown concurrently to give an idea of the distribution seen across the different sensing positions. 

The concentrations tend to be higher towards the front of the aircraft cabin where the particulate matter is injected 

into the environment and fall off moving towards the rear. The largest peaks in particulate matter concentration 

approach 10 million particles per liter when smoke is being actively injected into the cabin and fall off to 1000 

particles per liter or lower in-between testing.  

Note that the particulate matter level between test runs tends to reflect activity in the cabin. For example, the 

humidifier was set up in the cabin at approximately 16:20 prior to run 3. The doors to the cabin were opened and 

several people entered, raising the particulate matter concentration as existing particulate was stirred up and new 

particulate entered through the doors. In contrast, no one entered the cabin in between run 3 and run 4 at 

approximately 17:00 hours. In this case the particulate falls to a very low level as the particulate-laden air from 

testing is replaced by clean air from the ventilation ducts. 

The time-series data for the CO2 concentration is shown in Figure 5. As with the particulate matter, 

concentrations tend to be most intense at the front of the cabin near the contaminant injection point and fall off 

toward the rear. Of particular interest here is the behavior of the sensor node at position 3. This node was located at 

the front of the cabin very near to the contaminant injection point and apparently received high concentration doses 

of the gas as it flowed into the space. With the introduction of the humidifier at the front of the cabin prior to run 3, 

the CO2 concentration seen by this node fell off drastically. This appeared to be due to the forced air from the 

humidifier shifting the air currents in the cabin, deflecting the high levels of CO2 from this sensor node when 

running. This theory was tested by turning off the humidifier for run 5, which caused the high concentrations at 

position 3 to return. 

As noted in the discussion on the particulate matter time-series plot, the humidifier was installed in the cabin at 

approximately 16:20. Two individuals were working on this activity for several minutes in the aisle between 

positions 2 and 3. In Figure 5, the CO2 exhalations of the two individuals involved in this activity can be observed as 

the small peak in concentration at position 2. 

 
Figure 4: Two-dimensional test particulate matter concentration in particles per liter 

for all sixteen sensor nodes on a logarithmic scale. 
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Looking at the contour data across the cabin provides further insight into the distribution and movement of the 

particulate matter and CO2. Figure 6 shows two contour plots along with a time-series plot. The contour plot on the 

left shows the particulate matter count across the area of the aircraft cabin, with row numbers along the left and seat 

letters along the bottom. Similarly, the contour plot on the right shows the CO2 concentration in the cabin. Both 

contour plots use a logarithmic scale to better highlight the concentrations across the entire range that was seen 

during testing. The two contour plots show the data from the time indicated with the vertical black line in the time-

series plot on the far right. This time-series plot of particle counts corresponds to the particulate matter concentration 

plot of Figure 4. The contour plots both show relatively low concentrations of both particulate matter and CO2 in the 

cabin just before the contaminants are released into the cabin. 

 
Figure 5: Two-dimensional tests with particulate and CO2 contour plots just prior to Run 1. 

 

 
Figure 6: Two-dimensional test CO2 concentration in parts per million for all sixteen 

sensor nodes on a linear scale. 
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The time just after the contaminants are introduced into the cabin is shown in Figure 7. It is immediately 

apparent that there is a large difference between the spread of the particulate matter and the CO2 concentrations. 

While this may appear to be significant, it may be due to a difference in response times of the two sensors. The 

particulate matter sensor has a forced air system and will register an increase in particulate matter in as little as two 

seconds from the time it is pulled into the sensor’s air intake. The CO2 sensor on the other hand has a response time 

that is specified as being less than two minutes.  

Figure 8 shows the concentrations at the peak of the contaminant dispersal during run 1. The particulate 

concentration is relatively high and spreads down the length of the cabin. It is apparent that the cabin airflow moves 

the contaminants across the width of the cabin much more effectively than down the length. Even more than six 

minutes from the first appearance of the particulate matter in the cabin, it has still not equalized down the length. 

The evacuation of air from the vents at the sides of the cabin must be removing the particulate before it can spread. 

Similarly, the CO2 concentration spreads across the width of the cabin much more strongly than down the length.  

Comparing the concentrations of the two contaminants, one can see a similar shape to the flow down the length 

of the cabin. It appears that there is more movement of contaminants along the right side (seats F and G) compared 

to the left (seats A and B) towards the rear of the cabin. The correlation between the two different sensors may 

indicate an actual difference in airflow. After a period of time the smoke from the fog generator starts to dissipate 

and the CO2 is turned off at the source. Eventually, the contaminant is cleared from the cabin and conditions return 

to those similar to what is shown in Figure 6.  

 
Figure 7: Two-dimensional tests with particulate and CO2 contour plots at the beginning of 

contaminant dispersal. 

 

 

 
Figure 8: Two-dimensional tests with particulate and CO2 contour at the peak of contaminant 

dispersal. 
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From the time-series plots of Figure 4 and Figure 5, we can see evidence of human activity in the cabin between 

runs. This can also be seen in the contour plots from the same time frame. The contour plot on the left of Figure 9 

shows the introduction of particulate matter along the aisle on the left side of the aircraft cabin as the individuals 

move up and down this aisle while bringing the humidifier into the cabin. Note that the concentration is much lower 

than an event caused by the fog generator. The individuals were active at the front-left of the aircraft cabin as they 

worked to activate the humidifier. The contour plot on the right of Figure 9 shows this as an increase in CO2 at this 

location as the individuals exhale. As with the particulate concentration, the CO2 increase caused by the individuals 

is much lower than that of the pure CO2 injection. 

The impact of humidity on the contaminant movement in the cabin was also tested by turning off the 

dehumidifier in the ventilation system and adding a humidifier at the front of the cabin. The biggest impact of this 

change appears to be more due to the forced airflow of the humidifier than any impact of the moisture content of the 

air. This shows up mostly in the CO2 concentration as it appears to remove the large peaks seen by the sensor node 

at position 3. This is presumably due to the change in airflow pushing the CO2 away from the sensor at position 3. 

Figure 10shows the contour data from run 4. The intense peak of CO2 is now missing from position 3, but there does 

not appear to be much else that is different from runs with low humidity. There is still the same increase in 

concentration on the right side of the cabin in comparison to the left with both contaminants. Run 5, the final run of 

the test period, was executed with the humidifier turned off to verify that the CO2 peaks would return to the sensor 

node at position 3. This was the case, which can be most clearly seen in Figure 5. 

 
Figure 10: Two-dimensional tests with particulate and CO2 contours showing human activity in 

the aircraft cabin. 

 

 

 
Figure 9: Two-dimensional testing with the dehumidifier off and the humidifier on. 
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Figure 11: WAQM Sensor Node Layout for 

Three-Dimensional Test. 
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V. Three-Dimensional Test Results 

 

The second set of tests arranged sixteen nodes in a 4x2x2 

three-dimensional array at the front of the cabin with two 

vertical layers covering two rows of seats. The goal of this 

arrangement was to cover an area near the contaminant injection 

point with a dense matrix of nodes in an attempt to look at the 

three-dimensional movement of particulate and CO2 in the 

aircraft cabin. Figure 11 shows the layout of the sensor nodes in 

the cabin for this test, with the head-height layer at top and the 

tray-height layer at the bottom. The top layer of sensor nodes 

was suspended from the ceiling at a height above head level for 

a seated passenger, and the bottom layer was placed on the tray 

table of each seat. Spacing between the units was approximately 

130 cm between each of the four columns of units, 80 cm 

between the two rows of units, and 80 cm between the two 

vertical layers. As with the two-dimensional test, CO2 and 

particulate matter from a fog machine were injected at the front 

of the cabin. Additionally, the talcum powder dispersion system 

was tested that had injection points across the second row of 

seats in the cabin. The mesh network coordinator node remained 

at the rear of the cabin, passing data to an external computer 

over a serial cable.  

The CO2 and particulate matter from the fog machine were 

released into the cabin concurrently three times during the first 

part of the testing period. During the latter portion of the testing 

period, the talcum powder dispersion system was used to release 

particulate matter into the cabin twice without the injection of 

CO2. Table 3 lists the tests conducted for the three-dimensional 

setup, with references for each of the five tests listed in the 

leftmost column of the table. The dehumidifier was on for all tests except for run 4, and the humidifier remained off 

for the entire set. 

Figure 12 shows the time-series plot of the particulate matter concentration for the three-dimensional testing 

plotted on a logarithmic scale. The first three large peaks correspond to runs 1, 2, and 3 in Table 3, in which a fog 

Table 3: Three-dimensional testing sequence of events. 

Reference Variables Log (UTC Time) Comments 

Run 1  Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

20:00: Start CO2, 

smoke release 

20:15: Stop CO2  

First test of 3-D arrangement.  

Run 2  Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

20:28: Start CO2, 

smoke release  

20:45: Stop CO2  

Second test of 3-D arrangement. Units at positions 11 

and 16 swapped. 

Run 3  Particulate (smoke)  

CO2 

Dehumidifier active 

Humidifier inactive 

20:55: Start CO2, 

smoke release 

21:14: Stop CO2  

Third test of 3-D arrangement. 

Run 4  Particulate (talcum)  

Dehumidifier 

inactive 

Humidifier inactive 

21:25: Door open 

(powder load) 

21:31: Door closed 

21:33: Powder released 

First talcum powder based particulate test. 

Run 5  Particulate (talcum)  

Dehumidifier active 

Humidifier inactive 

21:45: Door open 

(powder load) 

21:49: Door closed 

21:09: Powder released 

Second talcum powder based particulate test. 
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generator was used for the injection of particulate matter. These tests exhibit curves similar to what was seen in the 

two-dimensional testing. The last three large peaks correspond to testing with talcum powder. Note that the first of 

these talcum powder peaks was a demonstration using just a single of the seven talcum powder dispersal locations, 

and is not considered a formal test. The remaining two peaks correspond to runs 4 and 5 in Table 3. Note that the fog 

generator creates peaks in particulate matter that are nearly two orders of magnitude higher in concentration than the 

talcum powder dispersal system. The talcum powder peaks are also much shorter in duration, since they are released 

in a burst and have no sustained source of generating material. 

Compared with the two-dimensional testing, the particulate matter concentrations for the three-dimensional tests 

are much closer in magnitude across the set of sensor nodes. This is likely due to the close proximity of the nodes in 

the cabin for the three dimensional testing, especially in the direction of the axis of the airplane. Much of the 

variation between sensor nodes in the two-dimensional tests came from the change in concentration down the length 

of the cabin. Since the layout of the nodes in the three-dimensional test only covers two rows in this direction, one 

might expect that the nodes would observe a smaller difference in concentration. 

The time-series data for the CO2 concentration is shown in Figure 13. As with the particulate data, there is less of 

a distribution of concentrations across the sensor nodes, likely due to the dense clustering near to the contaminant 

injection point. The node at position 11 exhibits very high spikes of CO2 during the first three test runs. This is 

similar to what was seen with the node at position 3 during the two-dimensional testing and corresponds to roughly 

the same position though at the tray table level rather than at the top of the seat back. To make sure that this was not 

a phenomenon specific to the sensor node at this point, the sensors at positions 11 and 15 were swapped after run 1. 

The high concentration peaks followed the position and not the specific sensor node, verifying that this was likely 

due to proximity to the contaminant injection point. 

The two smaller peaks in CO2 concentration at approximately 21:30 and 22:00 were due to human activity in the 

aircraft cabin, as no CO2 was released during the talcum powder testing. The highest concentrations came from 

positions 2 and 10 at the tray table and head height units at the front of the left aisle in the cabin. This corresponds to 

locations where individuals were working in the cabin in between test runs. 

 

 
Figure 12: Three-dimensional test particulate matter concentration in particles per liter 

for all sixteen sensor nodes on a logarithmic scale. 
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The contour data for the three-dimensional testing is somewhat challenging to present. Figure 14 shows a set of 

four contour plots and two time-series plots. The plots on the left side of the figure show the particulate matter 

concentration, and those on the right show the CO2 concentration. The two contour plots at the top of the figure 

show the particulate matter and CO2 concentrations for head-level sensors, and the two contour plots in the middle 

show concentrations for the tray-level sensors. The black vertical line on each of the time-series plots shows the 

 
Figure 14: Three-dimensional test CO2 concentration in parts per million for all sixteen 

sensor nodes on a linear scale. 

 

 

 

 
Figure 13: Three-dimensional smoke and CO2 test with particulate and CO2 contour 

plots at the beginning of contaminant injection. 
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point in time from which the contour plot data is taken. As with the two-dimensional contour data, the plots use a 

logarithmic scale to better highlight the concentrations across the entire range that was seen during testing. Figure 14 

shows the concentrations of particulate and CO2 at the start of contaminant injection for run 1. As with the two-

dimensional testing, the particulate matter contaminant begins to appear earlier than the CO2. This is likely due to 

sensor differences as explained above. The particulate matter first appears at sensor position nearest to the injection 

point at the front-center of the cabin. It is not clear why there is some initial response in particulate matter from the 

two sensors at the front-left of the cabin, but this appears to happen in runs 2 and 3 as well. It is possible that the 

airflow in the cabin is forcing some particulate into this corner early in the cycle, bypassing the sensors immediately 

to the left of the outlet. 

The increase in particulate matter contaminant shows some interesting spatial trends early in the run. Figure 15 

shows the particulate building up to higher concentrations toward the front of the cabin at both head and tray levels. 

The concentration has spread more quickly to the sides than across the seats into the third row. Also, the 

contaminant appears to have moved further to the right side of the cabin at the head-level, yet stays more 

concentrated around the injection point at the tray-level. This might be due to the ventilation inlet diffusers at the 

centerline of the ceiling pushing the particulate outwards nearer to the ceiling. The sensors are still not detecting the 

increase in CO2 at this point in time. 

 
Figure 16 shows that, as the test run progresses, the sensors begin to register the increase in CO2 concentrations 

in the cabin. The particulate matter has built up to relatively high concentrations in the cabin, tending to move more 

strongly to the right side of the cabin than the left and spreading laterally more quickly than down the length of the 

cabin. This increased concentration down the right side of the cabin matches what was seen across a larger area in 

the two dimensional testing. Also notable is the larger difference between highest and lowest concentrations at the 

tray-level in comparison to head-level. This may again be due to the seats inhibiting the airflow at the tray-level. The 

CO2 concentration does not build at the head-level nodes in the same way that is seen with particulate matter when it 

first appears. The sensor at position 3 that saw an early peak in particulate matter does not register much of an 

increase in CO2. This could be due to the lack of forced airflow in the CO2 sensor or even the differences in height 

between the two sensor types within the sensor node. 

  

 
Figure 15: Three-dimensional smoke and CO2 test with particulate and CO2 contour 

plots as contaminant injection continues. 
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Figure 17 shows a view of the cabin at the peak of contaminant injection for run 1. The particulate matter has 

spread through the cabin, with marked differences between the left and right sides of the cabin. The concentration 

differences again appear larger at the tray-level than at head-level. The minimum in particulate matter at position 14 

in row 3 on the left side of the cabin appears to be similar to the minimum seen in the CO2 data. While the large 

peaks in CO2 at position 11 tend to push the other contours down in scale, there does still appear to be a 

concentration that is more intense along the right side of the cabin. The CO2 at head-level does appear to concentrate 

 
Figure 17: Three-dimensional smoke and CO2 test with particulate and CO2 contour 

plots as CO2 begins to appear. 

 

 

 

 

 
Figure 16: Three-dimensional smoke and CO2 test with particulate and CO2 contour 

plots at the height of contaminant injection. 
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more toward the sides of the cabin, with the contour lines running closer to parallel to the cabin centerline as 

opposed to what is seen with the particulate matter. 

Figure 18 shows data from a point in time after the particulate matter concentration has peaked and is starting to 

be cleared out of the cabin by the ventilation system. The concentration of this contaminant appears to move away 

from the centerline, with the exception of a local maximum near the contaminant injection point. This peak may be 

due to residual smoke flushing from the injection system, or due to air being constrained by the seats in the cabin. 

The CO2 again shows a trend at head-level to move toward the sides of the cabin away from the centerline. The 

largest peak remains at tray-level near the injection point, with a minimum that matches the particulate matter on the 

left side of the cabin at position 14. At this point in time there is a fairly good match in concentration distribution at 

the tray-level for both particulate matter and CO2. This may suggest that, at this level, the airflow constraints caused 

by the cabin seating may be overcoming any differences between the sensor types within each node. 

 

The KSU aircraft cabin simulator included the ability to test particulate matter using a talcum powder injection 

system that released particulate in a very short burst. The last two runs of the three-dimensional testing used this 

method for particulate matter injection without the use of CO2. The injection points consisted of 7 nozzles across 

row 2 of the cabin, with one nozzle centered in each seat at a level just above the seat armrests.  

Figure 20 shows the start of run 4, which is the first of the two talcum powder tests. The particulate matter first 

appears at the sensor nodes in row 2, which is where the talcum powder injection nozzles are located. It appears that, 

for both talcum powder runs, the sensors at positions 3 and 10 were the first to pick up the increase in particulate. 

The contaminant then moves over the seats to the sensors at head-level along row 3. This can be seen in Figure 21 

where the concentrations are relatively high at head level along row 3 but remain lower at the tray-level. The 

minimum again appears at position 14 as it did when testing with smoke. Note that CO2 never increases in the 

measurement area since it is not injected into the cabin during the talcum powder tests. 

After the initial injection of particulate, the concentrations rapidly spread and begin to be removed by the 

ventilation system. Figure 22 shows the contour data as the concentrations abate. The particulate does appear to 

move outwards from the center to the sides as it is replaced by clean air from the ventilation system, again likely 

being pushed outward from the diffusers along the centerline. 

  

 
Figure 18: Three-dimensional smoke and CO2 test with particulate and CO2 contour 

plots as contaminant injection tapers off. 
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Figure 20: Three-dimensional talcum powder test with particulate and CO2 contour 

plots as the contaminant spreads. 

 

 

 

 

 

  

 
Figure 19: Three-dimensional talcum powder test with particulate and CO2 contour 

plots at the start of contaminant injection. 
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It is not possible to make a qualitative comparison of the two different types of particulate matter contaminant 

used in the testing. The amounts and distributions of the two contaminants were quite different, and resulted in 

concentration peaks that were different by nearly two orders of magnitude. While there may be differences in the 

behavior of the two materials, further testing with similar concentrations and injection points would be required to 

make an attempt at any definitive statements along these lines. 

VI. Conclusion 

Advanced air quality measurement systems can bring visibility into complex environments where previously 

only single point measurements were available. These multi-point systems can track contaminants as they move 

through a space, allowing direct observation of their dispersal and providing significant data as to their sources. As 

demonstrated by the data above, the WAQM high-performance wireless data acquisition system may be used to 

meet the needs of aircraft bleed-air and environmental monitoring. This new system has been tested in a Boeing 767 

mock-up cabin and has been shown to be capable of tracking multiple environmental variables simultaneously in 

two and three dimensions. The particulate matter sensor has shown itself capable of detecting different types of 

particulate matter from multiple sources. Spatial correlation has been demonstrated between two different airborne 

contaminants when released concurrently from the same location. 

The flexibility of the WAQM wireless sensor network allows simple setup in configurations covering areas in 

two and three dimensions. Furthermore, the wireless sensor network can provide the necessary coverage and inter-

node cooperation to effectively monitor the aircraft cabin environment. The inclusion of a particulate matter sensor 

coupled with contaminant localization will enable differentiation of bleed-air sourced and other cabin sourced 

contaminants. The WAQM system provides a new tool that will improve our ability to characterize and monitor air 

quality in the highly dynamic aircraft cabin environment.  
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Figure 21: Three-dimensional talcum powder test with particulate and CO2 contour 

plots near the end of contaminant injection. 
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