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Abstract

Daily rhythmicity in the locomotor activity of laboratory animals has been studied in great
detail for many decades, but the daily pattern of locomotor activity has not received as much
attention in humans. We collected waist-worn accelerometer data from more than 2,000 
individuals from five countries differing in socioeconomic development and conducted a 
detailed analysis of human locomotor activity. Body mass index was computed from height 
and weight. Individual activity records lasting 7 days were subjected to cosinor analysis to 
determine the parameters of the daily activity rhythm: mesor (mean level), amplitude (half the
range of excursion), acrophase (time of the peak), and robustness (rhythm strength). The
activity records of all individual participants exhibited statistically significant 24-hour 
rhythmicity, with activity increasing noticeably a few hours after sunrise and dropping off
around the time of sunset, with a peak at 1:42 pm on average. The acrophase of the daily 
rhythm was comparable in men and women in each country but varied by as much as 3 h from
country to country. Quantification of the socioeconomic stages of the five countries yielded
suggestive evidence that more developed countries have more obese residents, who are less 
active, and who are active later in the day than residents from less developed countries. These 
results provide a detailed characterization of the daily activity pattern of individual human 
beings and reveal similarities and differences among people from five countries differing in
socioeconomic development.

Keywords: Circadian rhythms, behavior, actigraphy, human mobility, cross-national comparison

Introduction

The locomotor activity of laboratory animals has been studied in great detail for many decades. Research has 
demonstrated that virtually all animal species exhibit daily variation in the amount of activity and that this variation
is generated by an endogenous circadian clock and modulated by environmental cycles, principally the light-dark
cycle (Dunlap et al., 2004; Koukkari & Sothern, 2006; Refinetti, 2006). Further, detailed descriptions of the 
distribution of activity over the hours of a day have been provided for many animal species.

In contrast to the extensive literature on activity rhythms in animals, the daily pattern of locomotor activity has not
received much attention in humans. Laboratory studies have occasionally examined human locomotion of a few 
subjects over days or months (Aschoff et al., 1967; Chandrashekaran et al., 1997; Endo et al., 1999; Gander et al.,
1986; Kriebel, 1974; Natale, 2002), and use of ambulatory accelerometer technology more recently has made it
possible to monitor the activity of individuals living natural lives for a year or longer, but again with a limited
number of subjects (Binkley et al., 1990; Yoneyama et al., 1999). Surveys of sleeping habits have been conducted in
numerous countries (Giannotti et al., 2002; Hébert et al., 1998; Horne & Östberg, 1977; Jean-Louis et al., 2000;
Laberge et al., 2000; Park et al., 1997; Refinetti, 1995; Roenneberg et al., 2003), thus allowing a gross comparison of
activity times around the world, but without real-time resolution. Analysis of mobile phone data has concentrated
on mobility patterns rather than on temporal organization (González et al., 2008; Schneider et al., 2013; Song et al.,
2010). The lack of large scale studies making use of accelerometer technology, with the same methodology in
several countries, has prevented a detailed analysis of daily patterns of locomotor activity and comparison across 
different human populations.

We took advantage of the accelerometer data obtained from more than 2,000 individuals from five countries as part 
of the Modeling the Epidemiologic Transition Study (Luke et al., 2011) to conduct a detailed analysis of human 
locomotor activity. Because the five countries vary greatly in socioeconomic development, we were also able to
identify differences in the daily pattern of activity associated with socioeconomic development, as defined by the
United Nations’ Human Development Index (HDI)(Barro & Lee, 2011). Additionally, we found differences 
associated with gender, age, and body mass index.

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 
Chronobiology International, published by Informa Healthcare.  Copyright restrictions may apply.  doi:  10.3109/07420528.2015.1038559 

2



 

Materials and Methods

Participants

Twenty-five hundred adults of African descent (either living in Africa or emigrants to the Americas in the past 400
years), ages 25-45, were enrolled in the Modeling the Epidemiologic Transition Study (METS) between January
2010 and September 2011 (Luke et al., 2011). Five hundred participants, approximately 50% of whom were female, 
were enrolled in each of five study sites: rural Ghana, urban South Africa, urban Jamaica, the small island state of 
Seychelles, and suburban United States (Maywood, a suburb of Chicago). The study sites represented a range of 
socioeconomic development as defined by the United Nations’ Human Development Index (HDI): Ghana is defined
as a high HDI-rank (low development) country, South Africa as middle HDI-rank, Jamaica and Seychelles as low
HDI-rank, and the United States as a very low HDI-rank country (Barro & Lee, 2011). In all locations, individuals 
with obvious infectious diseases and pregnant or lactating women were excluded.

Data Collection

Physical activity was assessed using the Actical accelerometer (Phillips Respironics, Bend, OR, USA). The monitor,
with dimensions of 29 mm x 37 mm x 11 mm and weighing 16 g, was worn at the waist, positioned just behind the
right hip. Participants were asked to wear the monitor at all times for 8 days, except while bathing, showering, or 
swimming. Reliable accelerometer data, recorded continuously for at least a week with 1-min resolution, were 
obtained from 2,316 men and women (Table 1).

Height and weight were measured at the initial clinic examination. Weight was measured without shoes with the 
participant dressed in light clothing to the nearest 0.1 kg using the same model standard calibrated balance at all 5
sites (Seca 770, Hamburg, Germany). Height was measured to the nearest 0.1 cm using a stadiometer (Invicta 
Stadiometer, Invicta, London, UK) without shoes and with the participant’s head held in the Frankfort plane. During
the clinic examination, participants were also asked to report how many hours they usually slept at night.

All protocols for METS were approved by the Institutional Review Board or Ethics Committee of all participating 
institutions. Written informed consent was obtained from all participants in all study sites. All research methods and 
procedures meet the ethical standards of the journal as outlined in Portaluppi et al. (2010).

Data Analysis

Cosinor analysis (Nelson et al., 1979; Refinetti et al., 2007) was conducted for each of the 2,316 data sets. Cosinor 
analysis provides the parameters of the daily activity rhythm: mesor (mean level), amplitude (half the range of 
excursion), acrophase (time of the peak), and robustness (how strong the rhythmic pattern is, calculated as the ratio 
between the variance accounted for by the cosine fit and the total variance). Period (the duration of each cycle)
cannot be meaningfully calculated when the subjects are exposed to a light-dark cycle.

Times of sunrise and sunset for each individual were calculated with basis on the date, latitude, and longitude using
the algorithm provided by Time and Date AS (www.timeanddate.com). Body mass index (BMI) for each individual 
was calculated with basis on body mass and height (mass in kilograms divided by the square of height in meters).
Standard statistics were used for group comparisons (two-way ANOVA with country and gender as factors) and for
correlations between various quantitative variables (Pearson’s correlation coefficient). To maintain the probability 
of a Type I error below 0.05 for the whole study, the level of significance was set at 0.001 for each statistical test.

Results

The activity records of all individual participants exhibited statistically significant 24-hour rhythmicity, as 
determined by cosinor analysis. Typically, activity counts increased noticeably shortly after sunrise and dropped off
around the time of sunset (Fig. 1). Rhythm robustness was much greater when the data were analyzed as averaged
wave forms (with an individual’s records averaged minute-by-minute over the seven days) than when they were 
analyzed as raw 7-day records, but significant 24-hour rhythmicity was detected in both cases. The variance 
associated with the rhythmic component accounted for as little as 1% to as much as 23% of the total variance in raw
records but was as large as 81% for averaged wave forms.
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The acrophase of the daily rhythm (i.e., the time of the daily peak in activity) varied significantly from one national
group to another (Fig. 2). The activity rhythm peaked progressively earlier in Ghanaians than in citizens of 
Seychelles, Jamaica, South Africa, and the United States. A two-way ANOVA for acrophase (with country and 
gender as factors) revealed a strong significant effect of country (F (4, 2306) = 146.28, p < 0.0001), a weaker effect
of gender (F (1, 2306) = 6.095, p = 0.014) that was not significant after correction for multiple testing, and no 
significant interaction between country and gender (F (4, 2306) = 2.059, p = 0.084). The inter-country standard 
deviation of mean acrophases was 1.1 h, a little smaller than the 1.7 h average intra-country standard deviation of
acrophases. The mean acrophase for the countries (in hours) correlated positively with their latitudes (in degrees, 
discarding whether north or south) (Fig. 3).

While day length varied an hour or less over the year for residents of Ghana and Seychelles, the variation was
greater in Jamaica, South Africa, and the United States. To verify whether variations in day length affected the
acrophases of individuals tested at different times of the year, the relative frequency of acrophases in the United
States (the country with the greatest summer-winter difference in day length) was compared between long days (late 
spring, summer, and early autumn) and short days (late autumn, winter, and early spring). The results showed that
day length had a negligible effect on the acrophase of the activity rhythm (Fig. 4). This was further confirmed by the 
computation of correlations between acrophase and sunrise (and between acrophase and sunset) for subjects of each 
country. The correlations were very small (averaging 0.03) and not statistically significant, despite the high statistical
power resulting from the large sample sizes (averaging 463 individuals per country) (Table 2). A similar analysis 
for a rural population such as that of Ghana was not possible because there is very little seasonal variation in
photoperiod in countries close to the Equator.

In three of the countries, the acrophase varied with age: older people (within the 25-45 year-old range covered in
this study) tended to be active earlier than younger people (Table 2, Fig. 5). In addition to the acrophase, two other
variables varied significantly between countries: body mass index and the mean level of activity (activity mesor) 
(Fig. 6). Men were consistently leaner than women (lower BMI) in the five countries, the difference being 
particularly noticeable in South Africa. Women were on average overweight (BMI > 25) in all five countries, with
women from the United States leading the group and followed by women from South Africa, Jamaica, Seychelles, 
and Ghana. Men were also consistently more active than women (higher activity mesor) in the five groups, with the
most extreme difference being again among South Africans (Fig. 6). The activity mesor varied significantly from 
group to group, although not in the same order as for BMI. Nonetheless, there was a modest but significant negative 
correlation between BMI and activity mesor in each country (Table 2). The lower activity mesor in individuals with
higher BMI was not associated with shorter sleep time, as self-reported sleep time did not correlate significantly 
with activity mesor or BMI (Table 2).

When the five nationalities were arranged by their HDI rankings, suggestive cross- national trends were observed. 
Particularly noteworthy were a negative correlation between BMI and HDI rank, a positive correlation between
activity mesor and HDI rank, and a negative correlation between activity acrophase and HDI rank (Fig. 7). These 
correlations suggest that more developed countries (with lower HDI ranks) have more obese residents (with higher 
BMI scores), who are less active (lower activity mesor), and who are active later in the day (later acrophase).
Because the correlations involve only five countries, the evidence is only suggestive, as correlation coefficients with 
five data points must be as extreme as 0.88 to reach statistical significance.

Discussion

Consistent with the vast literature on animal locomotor activity (Dunlap et al., 2004; Koukkari & Sothern, 2006; 
Refinetti, 2006), our data from 2,316 men and women document robust daily rhythmicity at the individual level,
with higher activity levels during the hours of sunlight. The average acrophase (time of peak activity) was 13.7 h 
(1:42 pm), with a difference of 2.9 h between Ghana and the United States. The timing of behavior at a given
location was determined by social time (local clock time) and was not affected by seasonal variations in the times of
sunrise and sunset. Nonetheless, people living farther from the Equator tended to be active later in the day, as has
been previously observed in Brazil (Miguel et al., 2014) and part of Russia (Borisenkov, 2011). Differences in 
acrophase related to latitude and photoperiod may be partly confounded by the fact that people in many countries
near the Equator tend to include a majority of persons who time their daily work activities according to sunlight
(such as farmers in Ghana), whereas people in countries farther from the Equator are often engaged in time-fixed 
office or industry occupations (such as urban dwellers in the United States). Another confounding factor may be the 
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admixture of European ancestry with African ancestry in the African-American population. Not only is the United
States (Chicago) the northernmost location in this study, but it is also a country where Blacks have approximately
15% European ancestry, which is relevant because Europeans have a slightly longer circadian period than Africans
do and, consequently, are expected to have later acrophases (Eastman et al., 2015).

In three of the countries, older people tended to be active earlier than younger people (within the 25-45 year-old
range covered in this study). This observation is consistent with findings of survey studies of human chronotypes, in 
which a gradual advance in wake-up and bed times in older individuals has been repeatedly observed (Roenneberg
et al., 2007). It is not evident why the age effect was not observed in residents from the United States and
Seychelles, but, because these are the two countries with highest socioeconomic development (lowest HDI ranks), it
is possible that aging effects do not become noticeable until later in life in these countries. Also, it is possible that
younger people are engaged more often that older people in time-fixed office or industry occupations in countries
where a large segment of the workforce is engaged in farming or non-formal occupations (thus contrasting Ghana 
with the United States and Seychelles).

Differences between nationalities were also found in BMI and activity mesor (mean level of activity). Differences in
BMI in this cohort have been previously described (Luke et al., 2014). When activity was quantified with discrete 
categories applied to waking hours, the relationship between BMI and activity was not consistently identified within
each country (Luke et al., 2014), but cosinor analysis in the present study allowed the identification of modest yet
significant negative correlations between BMI and activity mesor in all five countries. Of course, the direction of 
causality cannot be determined from these cross-sectional data. Overweight and obesity may induce a reduction in
locomotor activity, or reduced activity may lead to energy conservation and weight gain. Either way, our data 
indicate that only 4% of the variance in one variable is explained by the other variable.

The large (though not significant) correlations that we found between BMI and HDI rank, between activity mesor
and HDI rank, and between activity acrophase and HDI rank across the five national groups suggest that more
developed countries have more obese residents, who are less active, and who are active later in the day. The 
distribution of work types (e.g., farmer vs. office worker) varies in countries with different HDI ranks and may 
partially account for the observed correlations. The higher incidence of obesity in developed countries has been
widely reported in characterizations of the metabolic syndrome (Spalding et al., 2009), and a reduction in physical 
activity accompanying the progression of the metabolic syndrome has been documented as well (Church et al.,
2011). The finding that individuals in more developed countries are phase-delayed compared to individuals in less
developed countries is novel, however. The availability of electricity for night-time illumination could be a
contributing factor for the later acrophase in more developed countries. In less developed countries such as Ghana,
30% to 40% of the population does not have access to electricity (Energy Information Administration, 2014).
Studies involving a larger number of countries across the HDI range would be necessary to confirm the correlation
found here and to evaluate possible mechanisms responsible for it. In such studies, attention should be paid to 
differences in the occupations of the participants (such as farmers versus office workers).
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Table 1. Country and participant characteristics

Ghana South Africa Jamaica Seychelles United States

HDI Rank

135 123 80 52 4

Latitude

5 N 34 S 18 N 4 S 42 N

Men

Sample size 187 236 178 202 246

Age (years) 34.9 ± 6.7 33.7 ± 5.6 34.2 ± 6.1 36.5 ± 5.3 42.6 ± 2.4

BMI (kg/m2) 22.4 ± 3.6 22.4 ± 4.3 23.6 ± 4.7 26.3 ± 4.8 30.2 ± 8.7

Sleep duration (h) 7.7 ± 1.5 10.3 ± 1.7 7.1 ± 1.7 7.1 ± 1.3 6.7 ± 1.3

Women

Sample size 255 260 251 248 253

Age (years) 34.2 ± 6.7 33.1 ± 6.0 34.7 ± 6.2 35.6 ± 6.2 42.6 ± 2.0

BMI (kg/m2) 25.8 ± 5.6 32.4 ± 9.9 29.4 ± 6.8 27.4 ± 5.9 34.6 ± 13.2

Sleep duration (h) 8.0 ± 1.4 10.4 ± 1.7 7.5 ± 1.7 7.4 ± 1.2 6.8 ± 1.4

HDI: Human Development Index BMI: Body mass index
Values for age, BMI and sleep duration are means ± standard deviations
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Table 2. Correlations between various variables in the study.

Age x Mesor Age x Amplitude Age x Acrophase Age x Robustness

Ghana 0.032 0.050 -0.270* 0.107

Jamaica 0.024 0.020 -0.286* 0.119

United States 0.007 -0.026 -0.023 -0.045

South Africa -0.046 -0.027 -0.265* 0.049

Seychelles -0.011 -0.047 -0.082 0.032

BMI x Mesor BMI x Amplitude BMI x Acrophase BMI x Robustness

Ghana -0.245* -0.224* -0.110 -0.010

Jamaica -0.205* -0.197* -0.088 -0.004

United States -0.173* -0.162* -0.017 0.011

South Africa -0.263* -0.256* -0.004 0.043

Seychelles -0.152* -0.136* 0.007 0.082

Acrophase x Sunrise Acrophase x Sunset Sleep Duration x Mesor Sleep Duration x BMI

Ghana -0.006 -0.060 -0.035 -0.128

Jamaica 0.014 -0.004 -0.018 -0.020

United States -0.005 0.052 0.041 -0.088

South Africa 0.125 -0.109 -0.086 -0.102

Seychelles -0.003 0.006 -0.076 -0.065

All values are Pearson correlation coefficients. Asterisk denotes p < 0.001.
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Fig. 1. Sample activity record from a waist-worn sensor of an individual subject from the United States (a suburb of
Chicago). The data were averaged minute-by-minute over seven consecutive days to yield an average wave form.
The horizontal dark and white bars at the top denote the duration of night and day, respectively. A clear daily pattern
of activity is evident, with more activity during the day than during the night. Cosinor analysis of the averaged wave 
form indicated the presence of significant 24-h rhythmicity (p < 0.000001) with acrophase at 13.5 h (1:30 pm). The 
cosine pattern accounted for 53% of the total variance.
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Fig. 2. Relative frequency distributions of acrophases of the activity rhythm (measured with waist-worn
accelerometers) in the five countries. Class sizes are 1 hour. The horizontal dark and white bars at the top of each 
panel denote the average duration of night and day at that location. The mean acrophase for each country (in hours of
local time) is shown under the country’s name.
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Fig. 3. Linear regression of acrophase on latitude for the five countries. There is a strong positive correlation 
between acrophase and latitude (r = 0.915, p = 0.028).

Fig. 4. Relative frequency distributions of acrophases of the activity rhythm (measured with waist-worn
accelerometers) in the United States during long days of late spring, summer, and early autumn (14.3 hours of light 
per day, N = 278) and short days of late autumn, winter, and early spring (10.7 hours of light per day, N = 130). The
spread of the distributions, and the modal and mean acrophases, are similar despite the difference in day length.
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Fig. 5. Linear regression of acrophase on age in Jamaica. There is a moderate but significant negative correlation 
between acrophase and age (r = -0.29, N = 429, p < 0.001).
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Fig. 6. Mean ( SEM) body mass index (Panel A) and activity mesor (Panel B) for males and females in each of 
the five countries. A two-way ANOVA for body mass index revealed a significant effect of country (F (4, 2306) =
73.00, p < 0.0001), of gender (F (1, 2306) = 227.19, p < 0.0001), and of their interaction (F (4, 2306) = 30.30, p <
0.0001). Likewise, a two-way ANOVA for activity mesor revealed a significant effect of country (F (4, 2306) =
31.72, p < 0.0001), of gender (F (1, 2306) = 298.44, p < 0.0001), and of their interaction (F (4, 2306) = 13.31, p < 
0.0001).
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Fig. 7. Linear regression of body mass index, activity mesor, and activity acrophase on the human development
index rank of the five countries represented in this study. The countries, from left to right, are the United States,
Seychelles, Jamaica, South Africa, and Ghana.
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