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Monitoring southwest Greenland’s ice sheet melt
with ambient seismic noise
Aurélien Mordret,1* T. Dylan Mikesell,1† Christopher Harig,2 Bradley P. Lipovsky,3,4 Germán A. Prieto1

The Greenland ice sheet presently accounts for ∼70% of global ice sheet mass loss. Because this mass loss is
associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to
observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance tech-
niques are commonly used; however, they are inadequate for many purposes because of their low spatial and/
or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as
measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal
loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic ve-
locity changes due to poroelastic processes. Our method provides a new and independent way of monitoring
(in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution
to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance
our ability to create detailed space-time records of ice mass variations.

INTRODUCTION

Monitoring large-scale natural phenomena that occur in remote envi-
ronments, such as ice sheet mass balance, with high spatial and tempor-
al resolution is very challenging. Although airborne and spaceborne
techniques have constrained decadal trends in the Greenland ice sheet
(GIS) mass balance (1–3), short-term–like seasonal fluctuations pose
an ongoing challenge. Notable short-term fluctuations include the record-
breaking 2012 melting event (4) (Fig. 1A) and the absence of noticeable
melt in 2013 (5) (Fig. 1B). Such short-term fluctuations may be under-
sampled by airborne or spaceborne techniques and may therefore bias
the long-term decadal trend estimation. The result of an obscured
long-term mass balance trend may be severe: such a situation may
result in bias in sea-level rise projections and potentially have a signif-
icant political and societal impact on vulnerable populations (6–8).

GIS mass balance is currently monitored at a variety of different tem-
poral and spatial scales. Gravity Recovery and Climate Experiment
(GRACE) data have a monthly resolution in time and an approximately
300-km resolution over the entire GIS (9). Airborne and satellite radar
and laser altimetry have much higher spatial resolution but lack the
short-term time resolution of GRACE as they provide at best two to
three data acquisitions per year. Global Positioning System (GPS)
measurement of ice velocity or crustal uplifting provides a spatially nar-
row point measurement of ice or ground motion; it is low-cost, is accu-
rate, and has dense, subdaily sampling in time. Each of these methods
requires certain assumptions to infer ice mass from observed quantities.
GRACE, for example, must be corrected for long-term crustal defor-
mation (3, 10–12). Altimetric methods interpret elevation data as mass
change by making assumptions on the density profile of the snow and
ice or the compaction behavior of firn. These assumptions remain
strongly debated (13).

We propose a new technique to measure ice sheet mass changes
using Earth’s natural seismic field. This seismic-based approach may
be used for continuous, potentially real-time monitoring of the seasonal
ice mass variations of the GIS. We use the correlation of Earth’s am-
bient seismic noise, a technique originally developed to monitor active
volcanoes (14–17) and active fault zones (18–20). With this technique,
we measure seismic wave velocity variations in the Greenland crust
due to ice sheet loading.

RESULTS

Velocity variation observations
We compute daily seismic noise correlation functions. On the basis of
extensive theoretical and experimental work, we interpret the seismic
noise correlation function between two stations as a proxy of Green’s
function between these two stations (21–24). In real Earth data sets,
where the seismic noise is dominated by surface waves, the surface
wave part of Green’s function is the most easily retrieved, provided that
the noise sources are homogeneously distributed around the stations.
Each daily correlation function is then compared to a reference corre-
lation function to assess relative seismic velocity changes (dv/v). In this
monitoring application, a weaker temporal stability of the noise
sources is sufficient for the method to be successful (25–27). The com-
parison is made in the coda part of the correlation function (the latter
part of the signal composed of singly and multiply scattered seismic
waves), which samples Earth over a much longer time than do ballistic
waves. Coda waves are therefore more sensitive to small changes in
the medium (28).

We analyze 2 years (2012–2013) of vertical-component continuous
1-Hz seismic data recorded in Greenland by seven stations in the
GLISN network (29): NRS, IVI, NUUK, SFJ, DY2G, ILULI, and
NUUG (Fig. 1B). These stations are located on the western side of
Greenland, and we analyze only the station pairs separated by less
than 400 km and with a signal-to-noise ratio (SNR) higher than 30
in the considered frequency band. Pairs with larger interstation
distances did not have a SNR that was sufficiently high to provide
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accurate seismic velocity variation measurements (fig. S1). Given the
peculiar characteristic of the seismic noise around Greenland (30), we
analyze the seismic data in the frequency band 0.1 to 0.3 Hz, where
the SNR of the correlations is the highest (fig. S1) and where the
correlations are least biased by seasonal variations of the seismic
noise (see “Seismic data analysis and processing” section in Materials
and Methods and figs. S2 and S3). Moreover, in this frequency range,
the seismic waves mostly sample the Greenland crust between depths
of 3 and 10 km. After analysis of the different parameters involved in
the dv/v measurements (see “dv/v measurement tests” section in
Materials and Methods and associated figures), we chose to measure
dv/v with the “stretching” technique (14, 25) using a 300-s-long window
starting at 1.3 × t0, where t0 is the direct Rayleigh wave arrival time. Only
on the most energetic side of each correlation did we measure in the
coda, and the daily correlations were first averaged over a 90-day
moving window to stabilize the results and suppress the influence
of transient perturbations such as tectonic (19, 20) or glacial (31)
earthquakes. The raw time series of the dv/v variations for each of
the seven pairs of stations analyzed are shown in Fig. 1C.

We observe a clear, coherent decrease of seismic velocity during the
summermonths (Fig. 1, A to C). This decrease is less systematic in 2013
(Fig. 1, B andC). A denser seismic networkwould be necessary to assess
whether this latter observation is due to actual regional differences in ice
sheet melting or to errors in the velocity variation estimation process.
For example, the strong decrease observed in 2013 for station pairs
ILULI-NUUG and ILULI-DY2G could be due to the strong melt of
the Jakobshavn glacier, which was heavily melting in 2013 although

the rest of the ice sheet was not (32). ILULI station is located only a
few kilometers away. The noise source variations during summer
months introduce higher uncertainties (Fig. 1D); however, they do
not interfere with our interpretations (see “Seismic data analysis and
processing” section in Materials and Methods).

Given the sparsity of our network, we do not have the spatial reso-
lution to interpret individual station pair measurements. Instead, we av-
erage dv/v over the seven pairs of stations and interpret a single,
spatially averaged velocity change time series. This time series is as-
sumed to be representative of the entire southwest Greenland region.
We observe a velocity decrease (−0.05%) during the summer of 2012
and a smaller decrease (−0.025%) during the summer of 2013 (Fig. 2).
We compare the raw, spatially averaged velocity variation time series to
GRACE measurements (Fig. 2), and we find that seismic velocities lag
behind changes in ice sheet mass inferred from GRACE measurements
by ∼2 to 3 months. For an annually periodic loading cycle, this
corresponds to a phase lag of ∼90°. We next explore two mechanical
models to explain these observations.

Mechanical origin of the observed velocity variation
The Greenlandic crust responds to seasonal loading and unloading
of the annual snow pack by subsiding and uplifting. This forcing
strains the crust and the underlying mantle. Strain may be accommo-
dated by a variety of processes, including poroelastic and viscoelastic de-
formation [for example, pore pressure variations, opening and closing of
cracks, and/or viscous flow in the mantle (33)]. However strain is ac-
commodated, it translates into perturbations in the effective elastic
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Fig. 1. Icemass balance andmeasured velocity variations. (A) Map of the ice mass changes over southwest Greenland in 2012. The stations used in this
study are indicated by inverted triangles; the other Greenland stations of the Greenland Ice SheetMonitoring Network (GLISN) are indicated by red dots. The
colored lines between the stations show the dv/v averaged over the summermonths June, July, and August (JJA). The black contours show the ice thickness
at a 1000-m increment; the dashedblack curve shows the contour used to integrate the icemass changes fromGRACEdata. (B) Same as (A) for 2013. (C) Time
series of the relative velocity variations. (D) Time series of the relative velocity variation uncertainties. The summermonths are between dashed vertical lines.
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moduli of the bedrock (34–36). We consider two end-member models
of the crustal response to seasonal loading. In the first model, the
crust-mantle system responds as a viscous medium, and in the second
model, the crust responds as a poroelastic medium.

Poroelastic model
We consider a nonlinear poroelastic model (34) that relates pore pres-
sure variation to dv/v.We assume that the pore pressure variationsPp(t)
at the base of the glacier are approximately equal to glaciostatic pressure
variations Pg(t)

Pp tð Þ ≈ Pg tð Þ ¼ MiðtÞg
Si

ð1Þ

whereMi(t) is the detrended ice mass variations measured by GRACE
over southwest Greenland, Si is the area of the GIS from which we
integrated the ice mass (Fig. 1), and g is the gravitational acceleration.
Here, we use the detrended version of the mass variation curve because
our 2-year study period is too short to reliably extract long-term trend
information from the seismic noise. Ice mass change, corrected from its
quadratic trend and filtered between 4 and 17 months, is shown in Fig. 2.

Pp(t) is then input into a modified version of the poroelastic
model derived by Tsai (34), which includes a thin, incompetent layer
at the surface with hydraulic properties different from the bedrock.
On the basis of glaciology literature (37, 38), we give this layer the
hydraulic properties of glacial till, which can exist between the
glacier and the bedrock. We obtain the relative velocity variation
dv/v(t) as

dv=v tð Þ ¼ A tð Þe�kz

� 1� 2n
E

1� kzð Þ þ lþ 3mþm
m

1� 2nð Þ sin kx

� �� �
ð2Þ

where A(t) is given by

A tð Þ ¼ 1þ n
1� n

kaPp t � Dtð Þ
ffiffiffiffiffi
Kc

w

r
e
p
4�wDt ð3Þ

and the time delay Dt between the pore pressure at the surface and
the velocity variation is given by

Dt ¼ ztffiffiffiffiffiffiffiffiffiffi
2wKt

p þ
cot�1 Kck2

w

� �
2w

ð4Þ

The first term in Eq. 4 is the delay due to the till layer, and the second
term is the delay due to pore pressure diffusion in the bedrock. In Eq. 2, the
parameters are as follows: k is the wave number of the surface pressure

field; z is the depth sampled by the seismic wave; n ¼ 0:5�ðVs=VpÞ2
1�ðVs=VpÞ2 , is

Poisson’s ratio of the upper crust, withVp andVs being the P- and S-

wave velocities in the upper crust, respectively; E ¼ rcVp
2ð1þnÞð1�2nÞ

1�n is

Young’s modulus, with rc being the density of the upper crust;

l ¼ En
ð1þnÞð1�2nÞ and m ¼ E

2ð1þnÞare Lamé’s parameters;m is the second
Murnaghan third-order elastic constant; and x is the horizontal position
of the seismometer taken as a representative distance from the melting
ice sheet giving the largest dv/v signal. In Eq. 3, a is Biot’s coefficient, Kc

is the hydraulic diffusivity of the crust, andw is the angular frequency of
the main period of the signal. In Eq. 4, zt is the thickness of the till layer
andKt is the hydraulic diffusivity of the till. The numerical value of each
parameter is given in Table 1, along with the references where they can
be found. As already stated by Tsai (34), the modeled dv/v requires a
Murnaghan constant value outside the realistic range to fit the data.
However, this parameter is poorly constrained in the literature; there-
fore, we fit the predicted dv/v to themeasured dv/v by adjusting the value of
theMurnaghan coefficientm and the thickness of the till layer through a
grid search. The results shown in fig. S5 givem/m =−94.4×104 and2.85m
of glacial till, with m = 29.4 GPa, the shear modulus of the Greenland
crust. The best-fit model using these values is shown in Fig. 2 and cor-
relates with the dv/v data filtered in the 4- to 17-month period at 91%.

Bevis et al. (12) showed that the atmospheric pressure variation
component in Greenland was of the same order of magnitude as the
ice mass pressure variations, and the atmospheric pressure variation
was necessary to explain the annual fluctuations of crustal displacement
observed by GPS. However, atmospheric mass variations have a much
larger spatial wavelength (∼1000 km) than the ice mass variations and
are therefore negligible in our poroelastic modeling.

The theoreticaldv/v time series is anegative, amplitude-scaled, and time-
delayed version of the (detrended) pore pressure input derived from
GRACE. It has to be noted that this poroelastic model does not actually
satisfy the fully coupledgoverningequationsof linearporoelasticity.Further-
more, the prescribed-pressure boundary condition is also an approximation
that may require more detailed analysis in the future. However, given the
uncertainty in the data, this first-order approach should be sufficient.

Viscous rebound model
We consider a model where the observed phase lag between velocity
perturbations and ice mass loading arises due to the viscous response
of the crust-mantle system. We describe this system using the linear
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Fig. 2. Velocity variation modeling. The thick red curve is the ice mass
variation corrected from its quadratic trend and filtered in the 4- to 17-
month period band. The green curve is the poroelastic modeling of dv/v
based on the red curve. The black curve is the result of the viscoelastic
modeling. The blue curve is the dv/v measurements averaged over all sta-
tion pairs and filtered in the 4- to 17-month period, whereas the pale blue
dots and the thin pale blue curves are the raw average dv/vmeasurements
and the corresponding average uncertainties, respectively.
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stress-strain relation s ¼ h _D for stress s, strain rate _D, and viscosity h.
We note that a viscous response may be justified in the short-time
limit of the more general Kelvin viscoelastic rheology. Such an ap-
proximation is justified because we expect the viscoelastic relaxa-
tion time (T ≡ h/E ≈ 1011 s (39), where E is Young’s modulus) to be
much longer than the period of annual forcing.

This linear stress-strain relation predicts a 90° phase shift between an
applied ice load and straining at depth. As described in the previous
section, we observe a phase delay of several months between ice mass
loading and seismic velocity changes at depth (Fig. 2). Within this vis-
cous model, the phase lag is explained as the time required for viscous
strains to accumulate in response to ice mass fluctuations.

We further quantify the predictions of this viscous model by
calculating strain amplitudes at depth. We calculate the spatial pattern
of stress changes due to the uniformly distributed glaciostatic pressure
Pg(t) at the bed of the ice sheet (fig. S4) (40). Stresses rapidly decrease
away from the ice sheet, with a length scale proportional to the
wavelength of pressure change ∼50 km. We then calculate the volume-
averaged stress change in this region sampled by our observations: the
upper 5 km of Earth’s crust in a 50-km region centered at the ice sheet
margin. The average stress change is found to be≈ 0.5Pg(t), giving
a velocity-stress sensitivity of∼ 10−7 Pa−1 (velocity-strain sensitivity,

0.5% per microstrain), in agreement with values found in other stu-
dies (41–43).

The estimated viscoelastic seismic velocity variations are shown by
the black curve in Fig. 2. The phase shift between the ice loading and the
velocity variations is overestimated by∼20 days and gives a correlation of
77% with the dv/v data filtered in the 4- to 17-month period band.

DISCUSSION

Wedeveloped two end-membermodels to explain the observed seismic
velocity changes in Greenland. Because of the geological characteristics
of the studied area (fluids and presence of till) and because of the better
fit with our data, we favor the poroelasticmodel. However, it is probable
that the observed velocity changes are a combination of both poroelastic
and viscoelastic effects, and we need more data to definitively address
this question. In the case of the poroelastic model, we interpret the ob-
served velocity changes as the effect of a pore pressure wave diffusing in
the Greenland crust and beingmodulated by the pressure variations of the
ice changes at the surface (Fig. 3). The observed delay between the surface
pressure and the velocity variations is mainly controlled by the hydraulic
properties of the till layer and of the bedrock. Although the best model

Table 1. Parameters used in the dv/v modeling.

Parameter Symbol Value Reference

Glaciostatic pressure Pg 1600 Pa From data

Ice area Si 6.5 × 1011 m2 From data

Gravitational acceleration g 9.81 m/s2

Pressure field wave number k 2p/(60 km) Jiang et al. (11)

Depth of investigation z 5 km From data

S-wave velocity Vs 3300 m/s Kumar et al. (56)

Vp/Vs ratio Vp/Vs 1.8 Kumar et al. (56)

Upper-crust density rc 2700 kg/m3 Schmidt-Aursch and Jokat (57)

P-wave velocity Vp = Vs(Vp/Vs) 5940 m/s

Poisson’s ratio n 0.2768

Young’s modulus E 7.5 × 1010 Pa

Mantle viscosity h 1021 Pa⋅s

Viscoelastic relaxation time T 1011 s

Lamé’s first parameter l 3.65 × 1010 Pa

Shear modulus m 2.94 × 1010 Pa

Murnaghan constant m −2.77 × 1016 Pa From inversion

Distance from the ice x 12.5 km

Biot’s coefficient a 0.7 Tsai (34)

Hydraulic diffusivity of the crust Kc 0.5 m2/s Shapiro et al. (58)

Angular frequency w 2p/(365 days)

Till layer thickness zt 2.85 m From inversion

Hydraulic diffusivity of till Kt 5 × 10− 6 m2/s Iverson et al. (38)

R E S EARCH ART I C L E

Mordret et al. Sci. Adv. 2016; 2 : e1501538 6 May 2016 4 of 8

http://advances.sciencemag.org/


suggests a 2.85-m till layer, the dv/v uncertainties are too large to de-
termine whether this parameter is necessary, given the poorly known
Murnaghan constant. Using more data such as the records from the
horizontal components of the seismic sensors could help reduce this
uncertainty.

Moreover, it is possible that the seismic noise correlation technique
may not be sensitive to the long-term decrease of icemass. The reduction
of the ice sheetmass induces a decrease in pore pressure at depth. How-
ever, this pore pressure decrease is limited by the complete closure of
the cracks in the bedrock: even if the icemass continues to decrease, the
seismic velocity can no longer increase once all cracks and pores are
sealed.Nevertheless, an increase of icemass can always increase the pore
pressure and reopen the pores, whatever the former pressure state of the
crust, leading to a seismic velocity decrease. The seismic noise correlation
techniquemay, therefore, bemore sensitive to the relativemass variations
between winter and summer than to the absolute ice mass changes.

Our analysis demonstrates that the seismic noise correlation technique
can be used to continuously monitor the changes occurring in the GIS.
Our successful modeling of the observed seismic velocity variations sug-
gests that, knowing the long-term trend of ice mass loss variations,we can
retrieve the GIS ice mass change locally from seismic data. The sparsity of
our network does not allow us to interpret with certainty the spatial
variations of seismic velocity from individual pairs of stations. However,
we propose that, with a denser seismic network, one could produce accu-
rate tomographic maps (20) of ice mass changes over the whole GIS. This
methodmight also be used to infer the local thickness of a till layer, a poorly
known parameter that strongly influences ice dynamics (37, 44).

MATERIALS AND METHODS

Seismic data analysis and processing
The seismic noise in Greenland is highly variable, mostly due to the
presence of sea ice in winter. Sergeant et al. (30) extensively studied
the distribution of seismic noise sources aroundGreenland as a function

of the seismic wave period. They showed that the influence of sea ice is
not negligible for periods smaller than 4 s. In the presence of sea ice,
short-period seismic noise is strongly attenuated, and it becomes more
energetic as the sea ice disappears. However, this effect is weaker near
the southern stations that we used in this study. This is clearly illustrated
by comparing the spectrograms of station KULLO (74.5805°N,
−57.2201°W; not used in this study) and stationNRS (fig. S2). Inwinter,
sea ice prevents wave interference (45) in Baffin Bay, where the shallow
bathymetry enhances short-period seismic noise. The other short-period
sources, south of Greenland, are too far away; this energy is attenuated
before it reaches the northern stations. However, in summer, without
sea ice, short-period seismic noise is easily excited in Baffin Bay and the
short-period noise level reaches the level of the long-period noise (5 to
10 s). In general, the 3- to 10-s band contains the most energy. At
periods longer than 10 s, the seismic noise again shows a strong seasonal
trend, with a clear minimum in summer. Moreover, at these long
periods, the Greenland crust should be weakly scattering; this would
produce a short and weak coda in the correlations, leading to little ve-
locity variation information.

We used the MSNoise Python package (46) to compute daily noise
correlations between seven pairs of stations separated by less than 400 km
(sorted by increasing interstation distance): NRS-IVI, DY2G-SFJ, ILULI-
SFJ, ILULI-NUUG, NUUK-SFJ, DY2G-NUUK, and DY2G-ILULI. We
downloaded the data from the Incorporated Research Institutions for
Seismology (IRIS) facility anddeconvolved the instrument responseusing
obspyDMT software (47). The noise preprocessing is as follows: each dai-
ly trace is cut into 4-hour-long segments (48, 49), and the segments are
demeaned, detrended, and filtered between 0.01 and 0.4 Hz. Then, ampli-
tudes larger than 3 standard deviations are normalized, and each seg-
ment is spectrally whitened between 0.01 and 0.4 Hz. The segments are
finally correlated between the different pairs of stations, and the correla-
tions are stacked to obtain daily cross-correlations. Figure S3 shows that
seasonal variation in seismic noise does affect the coherency of the daily
correlations, with a lower coherency in summer. Indeed, in the 3- to 10-s
period band in summer, most of the noise sources are in the Southern
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Hemisphere. The new sources appearing where the sea ice melts near
Greenland are higher frequencies and do not strongly contribute to
the coherency of the correlations. However, the seasonal variations
mostly influence the frequency domain amplitude spectra. Although
we found small changes in the frequency spectrum, the main frequency
peaks remain observable throughout the analyzed period (fig. S3, D and
E). This indicates that noise preprocessing is efficient inmitigating noise
source variations and that velocity changemeasurements should not be
influenced by noise source variations. As shown by the evolution of the
SNR of the correlations, with respect to different frequency bands (fig.
S1), the period band of 3 to 10 s is the most energetic, with the SNR
decreasing at longer and shorter periods. Therefore, we restrained our
analysis to the period band of 3 to 10 s. The SNR was computed as the
ratio between the maximum amplitude of the correlation in the 2- to
4-km/s direct wave arrival window and the root mean square of the
coda slower than 2 km/s.

dv/v measurement tests
The dv/vmeasurements were performedwith both the doublet (50) and
stretching (14, 25) methods over the same window in the coda part of
the correlations. This window has a winlength length in seconds,
starting at a time tminpercent times the time of themaximumamplitude
of the correlation, which is the direct surface wave arrival t0. Tests show
that performing the dv/vmeasurement on both sides of the correlation
simultaneously resulted in nonstable estimates of dv/v because the noise
source distribution is not homogeneous. In the following, we only dis-
cuss the difference in measuring dv/v on the most energetic side of the
correlation or on the symmetrized correlation (that is, after stacking the
two sides). The reference correlation is the average of all daily correla-
tions over the study period. The correlation for a specific day thatwe use
for dv/v measurement is the average correlation of that day with the
daystack-1 previous daily correlations. The influence of the parameters
in italic font is discussed in the following.

For the doublet measurements, we followed the procedure of Clarke
et al. (50), implemented in the MSNoise package (46). Inside the large
winlength second-long window, we used small sliding windows with a
length 10 times the central period of the signal. The small windows
overlapped by 95%. For each small window, the cross-spectrum be-
tween the current and the reference correlation was computed. From
this cross-spectrum, the coherence and the phase between the two
signals as a function of the frequency were extracted. A weighted linear
regression (weighted by the coherency) was performed on the phase in
the frequency band 0.1 to 0.3 Hz to extract the phase delay between the
reference and current correlation, as well as an error estimate in the
slope. Thus, for each small sliding window, we obtained three values:
a time delay (tdelay, in seconds), an error for the time delay (errtdelay,
in seconds), and the average coherency between the two signals (coh).
Then these measurements were used in a second step to evaluate the
relative velocity variation dv/v = −dt/t between the reference and the
current correlation.Aweighted linear regression on the timedelayswith
respect to the central time of the windows was used to calculate the final
dv/v value and its uncertainty for a specific frequency band. Only the
time delays tdelay < 0.5 s with errors errtdelay < 0.5 s and coherency coh
> 0.75 were used in the final linear regression to estimate dv/v.

The stretching technique is based on the assumption that, if a small
velocity change occurs homogeneously in themedium, then the current
correlation will simply be a stretched or compressed version of the
reference correlation. The stretching coefficient is therefore the relative

velocity variation dv/v. Before the stretching measurement, the
reference and current correlations were filtered in the frequency band
0.1 to 0.3 Hz. The measurement was performed using a grid search on
the stretching coefficients. We sampled 100 stretching coefficients lin-
early spaced between −2 and 2%. For each coefficient, the time axis of
the current correlation was stretched, and then the current correlation
was interpolated onto this new time axis. The correlation coefficient be-
tween the window of the stretched current correlation and the reference
correlation was then computed and stored. The best dv/vmeasurement
was chosen as the stretching coefficient that maximized the correlation
coefficient between the current stretched and reference correlations. To
refine the estimation of dv/v, we used the maximum correlation co-
efficient and its nearest left and right neighbors. We performed a qua-
dratic interpolation of these three points and took the stretching
coefficient corresponding to the maximum of the interpolated curve.
The error estimate was obtained from the expression derived byWeaver
et al. (51). The error is related to themaximumcorrelation coefficient, the
size and the position of thewindow in the coda, the frequency bandwidth,
and the inverse of the central frequency of the signal.

Figure S6 shows the influence of the number of days used in the
averaging to compute the current correlation. This sliding-window av-
erage is necessary to increase the coherence between the reference and
the current correlation and to stabilize thedv/vmeasurement. Below30days,
the results are not stable enough, and above 90days, they are too smooth
and lack structure to interpret (52).

The correlations are strongly asymmetric because of a nonhomo-
geneous distribution of noise sources around Greenland (30). It is pos-
sible that the less energetic side of the correlation did not converge
towardGreen’s function and is likely composed of random fluctuations.
Therefore, we tested two measurement schemes: performing the mea-
surements on (i) the most energetic side of the correlation and (ii) the
symmetric part of the correlation (average of the causal and acausal
parts). In our case, and as already observed by Witek et al. (53), aver-
aging both sides of the correlations led to a decrease of coherency and a
degradation of the signal. Even when the results were similar in both
cases, we observed that the measurements from the symmetric part have
larger uncertainties (fig. S7). Moreover, the difference between the
doublet and stretchingmeasurements wasmore pronounced in the sym-
metric case. Consequently, we chose to interpret only the measurements
from the most energetic side, and on average, the dv/v measurements
from the most energetic side appeared smoother and produced smaller
errors. Next, we discuss the choice of the analysis window.

The analysiswindow is chosen in the coda part of the correlation, after
the ballistic arrival, because coda waves are more sensitive to small
changes in the medium. For instance, for a typical surface wave traveling
at 3 km/s and a typical path of 300 km, the waves arriving 200 s after the
direct wave have traveled a distance three times longer than the direct
wave and are therefore three times more sensitive to changes in the me-
dium.Moreover, the coda waves aremuch less sensitive to changes in the
noise source properties and distribution (54). The velocity variationmea-
surements performedon the codawaves are thereforemuchmore reliable
than the measurements performed on the direct waves (55). There are
also trade-offs between the size and position of the window in the coda
and the quality of the measurement. A window in the early coda benefits
from the high coherency of the signal but suffers from the difficulty in
measuring very small time delays. Later in the coda, the time delays
are larger, but the poor coherency makes the measurement less reliable.
The size of the window is not of major importance for the doublet
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measurements because the most uncertain values are discarded before
estimating dv/v. However, the size of the window matters for the
stretching technique because it directly influences the uncertainty estima-
tion (51). At the frequencies used in this study (between 0.1 and 0.3 Hz),
the Greenland crust was weakly scattering, resulting in a short coda with
rapidly decreasing coherency (red curve above the reference correlation
in figs. S3 and S6). In general, we observed that, 500 s after the direct wave
arrival time, the average coherency between the reference and current
correlations reaches the background noise level. Thus, the size of the
window should be limited and should not extend past 500 s.

We tested two different approaches for the choice of the analysis
window: a constant-lengthwindow and a variable-lengthwindowbased
on local coherency. For the variable-length window, we chose to end
the windowwhen local coherency went below 0.5. Figure S8 shows that
the constant-length window (here, 300 s and starting 30% later than the
direct arrival) exhibited smaller uncertainties. In the following analysis,
we chose a 300-s-long window and tested different starting times in the
coda (0, 10, 30, 50, 100, 150, and 200% the time of the direct arrival).
Results are shown in fig. S9 for the station pair ILULI-NUUG. We ob-
served that the first-order information was consistent for most of the
windows, except for the window encompassing the main arrival (0%)
and the very late coda (200%). We also observed that the uncertainties
increased with the time in the coda, which was expected as the coher-
ency decreased rapidly. From this analysis, it appeared that thewindows
starting at 10, 30, or 50% of the main arrival were the best compromise
between stability of the retrieved variations, uncertainty level, and posi-
tion in the coda.

Finally, at first order, the results from doublet and stretching
methods appeared to be similar for individual pairs of stations (figs.
S6, S10, and S11). However, the doubletmeasurements presented larger
uncertainties and the stretching measurements were smoother and
more easy to interpret. Moreover, the stretching measurements, using
a long window in the coda, were more sensitive to large-scale, nonlocal
changes, the type of changes that we were interested in. We thus
continued using only the stretching measurements.

GRACE data processing
We localizedGRACECSR (Center for Space Research) RL05 time-variable
gravity data to a region in southwestGreenlandusing spherical Slepian basis
functions (9). This method projects themonthly spherical harmonic coeffi-
cients (degree and order 60) onto a sparse basis of seven Slepian functions
created specifically for this region (Fig. 1, main text). The Slepian functions
optimally maximize their energy within the region of interest. With this
method, we estimated the local gravity field changes within the region
and minimized influence from the area outside the region, increasing the
local SNR. The data were then spatially integrated across the chosen region,
and the time series was detrended and filtered in the period band from 4 to
17 months, to be used as input to the poroelastic and viscous forward
models.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/5/e1501538/DC1
fig. S1. SNR of the reference correlations.
fig. S2. Seismic noise spectrograms.
fig. S3. Characteristics of the analysis window used to measure the velocity variations for each
station pair.
fig. S4. Viscoelastic modeling: Vertical distribution of stress due to the ice sheet load.

fig. S5. Estimation of zt and m/m.
fig. S6. Influence of the number of correlations stacked.
fig. S7. Influence of the symmetrization of the correlation on the dv/v measurements (ILULI-SFJ).
fig. S8. Influence of the analysis-window length on the dv/v uncertainties.
fig. S9. Effect of the analysis-window start time for the pair ILULI-NUUG (60-day stack, 0.1- to
0.3-Hz band, 300-s window).
fig. S10. Example of doublet measurements for NRS-IVI and comparison with the stretching method.
fig. S11. Example of doublet measurements for ILULI-SFJ and comparison with the stretching
method.
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