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Phase matching for surface plasmon enhanced second harmonic
generation in a gold grating slab

Ngoc Luong,1 Cheng-Wen Cheng,2, 3, 4 Min-Hsiung Shih,2 and Wan Kuang1, a)
1)Dept. of Electrical and Computer Engineering, Boise State University, Boise, ID 83725
2)Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
3)Department of Physics, National Taiwan University, Taipei 10617, Taiwan
4)Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan

Surface plasmon enhanced second harmonic generation in gold grating slabs was investigated. The efficiency is ana-
lyzed with respect to the phase matching at the fundamental and the second harmonic frequencies. A classical electro-
magnetic model was developed under the weak nonlinearity approximation and solved by the finite element method.
The measured zero-th order transmitted second harmonic intensity was found to be in quantitative agreement with nu-
merical results. It is shown experimentally and numerically that proper phase matching at both frequencies improves
the second harmonic efficiency.

Optical second harmonic generation (SHG) in metallic
nanostructures and nanoparticles has received renewed inter-
est lately1,2. In addition to producing localized electromag-
netic fields, periodic arrangements of subwavelength, polariz-
able elements have also been shown to produce a variety of
anomalous properties, such as negative refractive index3 and
zero index4 that could result in advantageous phase matching
processes not easily obtained with natural materials. Current
experiments have investigated enhanced SHG due to field lo-
calization at the fundamental frequency. While high field den-
sity certainly enhances the nonlinear coefficient, an truly ef-
ficient nonlinear process also requires good phase matching.5

In this Letter, we show numerically and experimentally that
proper phase matching at both fundamental and second har-
monic frequencies is important in achieving an efficient SHG.

A number of theoretical approaches6–12 have been pre-
sented in the past for calculating nonlinear coefficients of
periodic structures. Analytical6,7,11 and semi-analytical10,12

approaches are most suited for scenarios where a sub-
wavelength unit cell consists of spatially slow-varying struc-
tures or the wavelengths of interest are significantly larger
than the unit cell. It will be shown that a numerical method is
necessary to accurately model the SHG behavior of these pe-
riodic structures since a small geometrical modification of the
unit cell can have a much stronger influence on it than linear
optical properties. In this Letter, a classical electrodynamic
model is solved for an Au grating slab under the weak nonlin-
earity approximation using the finite element method (FEM).
In the absence of interband transitions, the response of the
conduction electrons to an external electromagnetic field may
be calculated by

m∂vvv/∂ t +m(vvv ·∇)vvv =−e(EEE + vvv×BBB)− vvv/τ. (1)

Compared with a semi-classical hydrodynamic approach, this
classical model ignores the contribution of electron pressure,
which can be shown to have a weaker role in second harmonic
generation than in photon induced voltage, another second-
order nonlinearity.13 Current density due to electron transport

a)Electronic mail: wankuang@boisestate.edu

in the metal JJJ = nevvv and the charge density ρ satisfy charge
continuity ∂ρ/∂ t +∇ · JJJ = 0. Under the weak nonlinearity
approximation, or non-depleted pump approximation, all vari-
ables in Maxwell’s equations can be expanded as a series of
orders where A = A(1)eiω0t +A(2)e2iω0t + · · · and A is either
EEE, HHH, JJJ, or ρ . The vector Helmholtz equations for the funda-
mental frequency and the second harmonic are14,

∇×∇×EEE(1) = k2
0εe f f (ω0)EEE(1) (2)

∇×∇×EEE(2) = 4k2
0εe f f (2ω0)EEE(2)+

2iω0τµ0

1+2iω0τ
SSS(2) (3)

where εe f f (ω) = ε∞ −ω2
p/

(
ω2 − iω/τ

)
and SSS(2) is given by

SSS(2) =
e
m

(
ρ
(1)EEE(1)+ JJJ(1)×BBB(1)

)
+
(

JJJ(1) ·∇
)

vvv(1)

+ vvv(1)
(

∇ · JJJ(1)
)

(4)

Equations (2)-(3) were solved by FEM using the commercial
software COMSOL15 in the coupled multiphysics mode. The
nonlinear driving force SSS(2) is modeled as a weak contribu-
tion in COMSOL. The two-dimensional simulation was per-
formed for a single period of an infinitely wide grating slab
using a Bloch-Floquet boundary condition, port boundaries,
and a perfectly matched layer boundary condition.14 The sec-
ond harmonic intensity was calculated for the Au grating slab
shown in the inset of Fig. 1 as a function of wavelength and
incident angle. The grating slab consists of a 50 nm thick Au
film and a 3 nm thick chromium adhesion layer on a fused
silica substrate. The refractive index of the substrate ng is de-
scribed by16

n2
g −1 =

0.696λ 2
0

λ 2
0 −0.0682 +

0.408λ 2
0

λ 2
0 −0.1162 +

0.897λ 2
0

λ 2
0 −9.902 (5)

in the calculation. Periodic grooves with a 1.18 µm spacing
were etched into the Au film by electron beam lithography
and ion beam etching.17 The etching stopped short of com-
pletely removing the Au film to maintain electrical continu-
ity of the grating. The calculation shows that the SHG on
a two-dimensional grating slab is strictly p-polarized for p-
polarized incidence. This result is consistent with analytical
solutions6,11 on a periodically corrugated metal film, which
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Figure 1. Vector diagram representing the phase matching conditions
for various diffraction orders of SHG as a result of the excitation of
surface plasmons. kω

0 is the wave vector of the incident wave and k2ω
m

the SHG wave vector of the m-th order. The incident field forms an
angle of α with respect to the Au grating slab. The grating grooves
are oriented perpendicular to the direction of polarization. The inset
shows the scanning electron microscope image of a Au grating slab.
The orientations of the two graphs are indicated by the respective
coordinates.

shows that no s-polarized SHG exists when the excitation field
is purely s- or p-polarized.

Figure 2 shows the normalized radiation intensity for the
zero-th order transmitted SHG measured at the incident wave-
length of 1200 nm and the incident angle of α = 32.2◦, as
defined in Fig. 1. The intensity as a function of analyzer an-
gle matches closely with the cos2 function expected for a lin-
ear polarization. In the measurements, the incident light was
produced from an optical parametric amplifier (Light Conver-
sion, TOPAS-400) pumped by the second harmonics (Light
Conversion, SHBC) of a Ti:Sapphire regenerative amplifier
(Coherent, Legend Elite). The wavelength was varied from
1.1 µm to 1.3 µm in the measurements. The laser beam was
p-polarized and focused at the sample surface with a beam
width of approximately 0.3 mm. The zero-th order transmitted
light passed through a short-pass filter (Edmund Optics) and
a band-pass filter (Semrock) to remove the optical power at
the fundamental frequency. The SHG intensity was measured
by a thermally cooled CCD camera (Princeton Instruments,
ProEM 512) as a function of incident angle and wavelength.
The pulse duration was 1.2 ps measured by auto-correlation,
and the pulse energy was kept constant for all wavelengths at
2 µJ at the grating surface. Additionally, the transmitted SHG
intensity was found to be in expected quadratic relationship
with the incident power.

Figure 3 shows calculated and measured SHG intensity as
well as absorbance of the Au grating slab. For the sake of
clarity, results from only selected wavelengths are shown in
the figure. Since the calculations were performed in the fre-
quency domain, the results are scaled with the assumption that
the pulse duration for SHG was unchanged. In addition, a
transmission efficiency of 64% was assumed for the emission

Figure 2. Measured polarization and cos2 fit of the zero-th order
transmitted SHG intensity represented as a polar diagram, where 0◦

is oriented to the x direction as shown in Fig. 1.

filters and lenses.14 Two groups of intensity peaks can be ob-
served in Fig. 3 – one near normal incidence and the other
around the incident angle of 32◦. These two groups match
surface plasmon excitations at the Au-air and Au-substrate in-
terfaces, respectively. It is clear that the measured SHG emis-
sion due to Au-air surface plasmons was significantly higher
than numerical results. This behavior is due to surface con-
tamination whose nonlinear response is enhanced by the lo-
calized electromagnetic field. It has been utilized for surface
enhanced nonlinear spectroscopy18 but will be excluded from
the analysis due to the difficulty of characterizing the contam-
inants.

The SHG occurring on a Au grating slab can be qualita-
tively understood by phase matching, as illustrated by Fig. 1.
Surface plasmons are excited according to the phase relation
kkkω

0 sinα + pkkkΛ = kkkω
spp where p is an integer representing the

coupling diffraction order. kΛ = 2π/Λ is the reciprocal lattice
vector, and kkkω

spp is the surface plasmon wave vector. In this ex-
periment, the incident beam impinges on the grating slab at a
direction perpendicular to the grating groove. As a result, kkkΛ,
kkkω

spp, and kω
0 sinα are in the same direction. Hence, the phase

relation is satisfied in a scalar sense. For SHG, two photons
having the same kkkω

0 produces surface plasmons of the identical
kkkω

spp shown as gray arrows in Fig. 1. The excited surface plas-
mon, in turn, radiates at the second harmonic frequency elasti-
cally under the phase matching condition 2kkkω

spp +mkkkΛ = kkk2ω
m ,

where m is an integer representing the coupling diffraction or-
der. A number of SHG diffraction orders can be produced,
two of which, kkk2ω

−1and kkk2ω
−2, are shown in Fig. 1. The length

of kkk2ω
m is 2ngω/c. For transmitted SHG, diffraction orders

that are totally internally reflected at the substrate air interface
cannot radiate to the free space.

In comparing the SHG intensity with the absorbance shown
in Fig. 3, it is clear that SHG is the strongest when the ab-
sorption is the highest. However, the difference in SHG inten-
sity at the λ0 = 1200nm and 1240 nm indicates that factors
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Figure 3. Calculated (curves) and measured (open circles) zero-th
order transmitted SHG intensity for the Au grating slab as a function
of incident angle at the wavelengths of (a) 1240 nm, (b) 1230 nm, and
(c) 1200 nm. (d) - (f) calculated absorbance for the corresponding
wavelengths.

other than absorption also influence SHG efficiency. At the
wavelength of λ0 = 1240nm, surface plasmon excitation oc-
curs due to the diffraction orders of p = 1 and −2 as labeled
in Fig. 3d. For the generation of zero-th order transmitted
second harmonic, which has a wave vector kkk2ω

−2, Fig. 1 shows
that efficient coupling of surface plasmons with the reciprocal
lattice vector of order m = 2 is required. At λ0 = 1240nm,
a mismatch of nearly 10◦ between the two diffraction orders
makes the SHG process inefficient. In contrast, an order of
magnitude more intense SHG can be obtained at λ0 = 1200nm
when the two diffraction orders are achieved nearly simulta-
neously at 32◦. The importance of phase matching can also be
observed at λ0 = 1230nm where the SHG intensity is higher
than that at 1240 nm even with lower absorption. The interac-
tions between two diffraction orders result in multiple peaks,
as observed in Fig. 3b.

From the phase matching analysis, it is expected that the
zero-th order transmitted SHG intensity can be improved by
increasing the strength of second-order diffraction. This can
be achieved by changing the grating profile so that the inci-
dent wave is operated in the near Littrow configuration. Fig-
ure 4 compares the zero-th order transmitted SHG intensity
calculated for a grating slab with a rectangular and trape-
zoidal groove profile under the same incident power density.
The sidewall of the trapezoidal groove forms a 30◦ angle with
the surface normal of the substrate. To focus on the issue of
diffraction strength, the trapezoidal groove is made symmetric
in the calculation to avoid the possibility of second harmonic
enhancement due to the asymmetric distribution of the surface
electromagnetic field along the grating direction. As observed
in Fig. 4, a factor of 3 increase at the wavelength of 1160 nm
can be obtained by simply changing the groove profile from
rectangular to trapezoidal. The total transmitted SHG inten-
sity is also increased.14 Further investigation indicates that the
two grating profiles differ little in terms of absorption which

Figure 4. The calculated zero-th order transmitted SHG intensity as
a function of incident angle at the incident wavelength of 1160 nm
for Au grating slab with rectangular and trapezoidal groove profiles.

rules out the possibility of more efficient surface plasmon ex-
citation. This change of SHG intensity due to a small geomet-
rical modification of the structure indicates that a numerical,
and even microscopic modeling of SHG is necessary.

In summary, surface plasmon enhanced SHG on a Au grat-
ing slab was investigated numerically and experimentally. A
classical electrodynamic model was solved under the weak
nonlinearity approximation and found to be in good agree-
ment with the measurements. It was shown that proper phase
matching can achieve significant improvement in SHG effi-
ciency.

This work has been supported by grants from NSF CA-
REER ECCS-0846415 and NSF MRI ECCS-0923541 and by
DARPA under contract N66001-01-C-80345. The authors ac-
knowledge helpful discussions with E. Graugnard.
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The supplemental material includes �nite element modeling with COMSOL using multi-

physics model and more detailed results not shown in the manuscript.

I. COMSOL MODELING

The vector Helmholtz equations with respect to E for the fundamental frequency and

the second harmonic are [1]

∇×∇×E(1) = k2
0

(
ε∞ −

ωp
ω2

0 − iω0/τ

)
E(1) (1)

∇×∇×E(2) = 4k2
0

(
ε∞ −

ω2
p

4ω2
0 − 2iω0/τ

)
E(2) +

2iω0τµ0

1 + 2iω0τ
S(2) (2)

= k2
0

(
4ε∞ −

2ω2
p

2ω2
0 − iω0/τ

)
E(2) +

2iω0τµ0

1 + 2iω0τ
S(2) (3)

= k2
(2)

(
ε∞ −

ω2
p

ω2
(2) − iω(2)/τ

)
E(2) +

iω(2)τµ0

1 + iω(2)τ
S(2) (4)

In the Cartesian coordinate, the nonlinear driving force S(2) can be written as,

S(2) =
eρ(1)

m

(
E(1)
x x̂+ E(1)

y ŷ + E(1)
z ẑ
)

+
e

m

[(
J (1)
y B(1)

z − J (1)
z B(1)

y

)
x̂+

(
J (1)
z B(1)

x − J (1)
x B(1)

y

)
ŷ +

(
J (1)
x B(1)

y − J (1)
y B(1)

x

)
ẑ
]

+

[(
J (1)
x

∂

∂x
+ J (1)

y

∂

∂y
+ J (1)

z

∂

∂z

)
v(1)
x + v(1)

x

(
∂J

(1)
x

∂x
+
∂J

(1)
y

∂y
+
∂J

(1)
z

∂z

)]
x̂

+

[(
J (1)
x

∂

∂x
+ J (1)

y

∂

∂y
+ J (1)

z

∂

∂z

)
v(1)
y + v(1)

y

(
∂J

(1)
x

∂x
+
∂J

(1)
y

∂y
+
∂J

(1)
z

∂z

)]
ŷ

+

[(
J (1)
x

∂

∂x
+ J (1)

y

∂

∂y
+ J (1)

z

∂

∂z

)
v(1)
z + v(1)

z

(
∂J

(1)
x

∂x
+
∂J

(1)
y

∂y
+
∂J

(1)
z

∂z

)]
ẑ

or

S(2)
x =

e

m

(
ρ(1)E(1)

x + J (1)
y B(1)

z − J (1)
z B(1)

y

)
− 1

en0

(
J (1)
x

∂J
(1)
x

∂x
+ J (1)

x

∂J
(1)
x

∂x
+ J (1)

y

∂J
(1)
x

∂y
+ J (1)

x

∂J
(1)
y

∂y
+ J (1)

z

∂J
(1)
x

∂z
+ J (1)

x

∂J
(1)
z

∂z

)
(5)

S(2)
y =

e

m

(
ρ(1)E(1)

y + J (1)
z B(1)

x − J (1)
x B(1)

z

)
− 1

en0

(
∂J

(1)
x J

(1)
y

∂x
+
∂J

(1)
y J

(1)
y

∂y
+
∂J

(1)
y J

(1)
z

∂z

)
(6)
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Figure 1: Schematic for setting up COMSOL port boundary.

S(2)
z =

e

m

(
ρ(1)E(1)

z + J (1)
x B(1)

y − J (1)
y B(1)

x

)
+

1

en0

(
∂J

(1)
x J

(1)
z

∂x
+
∂J

(1)
y J

(1)
z

∂y
+
∂J

(1)
z J

(1)
z

∂z

)
(7)

The form of the equation for electric �eld Helmholtz equations, Eqs. (1) and (2), is somewhat

simpler than that for the magnetic �elds. The two Helmholtz equations (1) and (4) are solved

by two COMSOL models referred to as emw1 and emw2 in the following context. emw1 is

for the �eld propagation at the fundamental frequency and emw2 for the electromagnetic

radiation at the second harmonic. The two models are coupled by S(2) as shown in Eq. (4).

For the emw1 model, it is set up for one unit cell of the grating slab with Bloch-Floquet

boundary conditions describing the periodicity. The condition states that the solution on

one side of the unit equals the solution on the other side multiplied by a complex-valued

phase factor. The phase shift between the boundaries is evaluated from the component

of the wave vector perpendicular to the Bloch-Floquet boundaries. Because the periodic

boundaries are parallel with the y-axis, only the x-component is required. For a plane wave

incidence, the phase shift between the Bloch-Floquet boundaries also determines the incident

angle. It shall be noted that the phase factor for the refracted and re�ected beams is the

same as for the incident wave due to the continuity of the �eld. The emw1 model computes

transmittance and re�ectance for the refraction, specular re�ection, and di�ractions.
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cosα′ exp (−inαk0 sinα
′x) x

sinα′ exp (−inαk0 sinα
′x) y

0 z

Table I: Port mode settings for re�ected di�racted beams. nα is the refractive index of the incident

medium, α′ is the angle of di�raction for the m-th order given by cosα′ = (nαk0 sinα+mkΛ) /nαk0

.

cosβ exp (−inβk0 sinβx) x

-sinβ exp (−inβk0 sinβx) y

0 z

Table II: Port mode settings for transmitted di�racted beams. nβ is the refractive index of

the transmitted medium, β is the angle of di�raction for the m-th order given by cosβ =

(nαk0 sinα+mkΛ) /nβk0.

The top and bottom boundaries of the calculation domain are terminated by port bound-

aries. Port conditions are used both for specifying the incident wave and for the scattering

�eld leaving the domain without any non-physical re�ections. To achieve perfect transmis-

sion through the port boundaries, one port for each mode (p = 0, p = −1, p = 1, etc) in

each direction must be present. The input to each port condition is an electric �eld vector

and a propagation constant. The electric �eld describes the specular re�ection of the mode

that the port should transmit, as shown in Fig. 1. This convention makes it possible to

have the input port automatically transmit the specular re�ection of the incident wave. The

propagation constant is the component along the outwards-facing normal, which should be

positive for all transmitted waves. For re�ected di�racted beams, the port mode settings

are shown in Table I. For transmitted di�racted beams, the port mode settings are shown in

Table II. A total of 3 and 5 ports are de�ned for the top and bottom boundaries, respectively.

The periodic boundary conditions require the mesh to be identical on the boundaries

when dealing with vector degrees of freedom, as is the case in the TM mode propagation.

This is accomplished by copy edge meshes of the corresponding boundaries. Since the

electromagnetic �eld is localized at and near the Au �lm, it is desirable to increase the mesh

density accordingly. This is particularly important for the emw2 model because a smaller

mesh size is necessary to properly calculate the spatial derivatives of the electromagnetic
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Figure 2: The structure employed in COMSOL modeling. The inset shows an increased mesh

density near the edge of the groove.

�eld required by the nonlinear driving force S. In this calculation, both emw1 and emw2

models share the same mesh. A maximal mesh size of 0.2 nm is enforced around the edges

of the grating groove, as shown in Fig. 2. To avoid the computational di�culty with the

�eld localization at sharp corners, the edges of the grating groove is �llet by a polyline with

an e�ective radius of 5 nm.

For the emw2 model, the calculation is also performed on the same unit cell of the grating

slab with Bloch-Floquet boundary condition. Due to the conservation of momentum, the

phase factor for the emw2 model shall be twice of that de�ned for the emw1 model. In order

to couple the solution from the emw1 model, a weak contribution, Sx ∗ test
(
E

(2)
x

)
+ Sy ∗

test
(
E

(2)
y

)
+ Sz ∗ test

(
E

(2)
z

)
, is added to the otherwise source-less Helmholtz equation.

Since the generated electric �eld consists of all vector components in general, the modeling

of SHG will be performed on three-component Helmholtz equation rather than on TE or TM

�eld separately. As a result, de�ning port boundaries for the emw2 model is not practical.

Instead, perfectly matched layers (PMLs) are added to the top and bottom of the calculation

domain to allow the �eld radiating out of the domain without re�ection. The re�ected and

transmitted SHG intensity for each di�raction order is calculated by projecting the solution

to a sum of plane wave solutions. For the TM mode, the electric �eld consists of a scalar

quantity Ez (x, y). In a periodic structure, the �eld at any given y0 can be written as a sum

5
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Figure 3: Calculated transmitted SHG intensity as a function of incident angle for various di�raction

orders.

of spatial harmonics,

Ez (x) =
∑
m

cme
−ik(m)

x x =
∑
m

cme
−ik(0)

x xe−i
2mπ

Λ
x (8)

where

cm =
1

Λ

ˆ Λ

0

Eze
ik

(m)
x xdx (9)

The power density for each spatial harmonic is a constant, given by

Sm =
1

2
Z0 |cm|2 (10)

where Z0 is the impedance of the medium. The power density assumes the direction of(
k

(m)
x x̂+ k

(m)
z ẑ

)
/k0. The total power carried by each spatial harmonic for a period is

Pm =
k

(m)
z Z0

2k0Λ

ˆ Λ

0

Eze
ik

(m)
x xdx (11)

Figure 3 shows the transmitted SHG intensity as a function of incident angle for di�erent

di�raction orders. The zero-th transmitted SHG intensity has a di�raction order of m = −2.

Equations (1)-(4) applies to both dielectric and metallic materials. For metallic mate-

rials, it is described by plasmon frequency ωp and plasmon lifetime τ in addition to its

nondispersive dielectric constant ε∞. The nondispersive dielectric constant is a �tting pa-

rameter to minimize the di�erence between the Drude model and the measured dielectric

constant of the metal. In practice, the dielectric constant of a metal is a�ected by many

factors, such as, surface preparation and deposition method. Drude model is only a very

6
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crude approximation of its optical properties. For Au, the following parameters are used in

simulation

ωp = 1.367× 1016 rad/s (12)

τ = 1.544× 10−14 s (13)

ε∞ = 1 (14)

after the reference [1]. For dielectric media, the materials possess an e�ective lifetime τ = 0.

Hence without the presence of metal, Eqs. (1) and (2) decouple. It indicates that the

classical model derived herein produces zero nonlinear e�ect without the existence of surface

plasmon resonance.The computation is performed with frequency domain analysis in the 2D

electromagnetic wave module (radio frequency). In principle, the frequency of the incident

electromagnetic wave can be speci�ed by freq directly. But for SHG calculation where

the wavelengths at the fundamental frequency and the second harmonics need to be swept

in tandem, it would be more convenient to de�ne a parametric sweep step. The sweep

parameter in the parametric sweep step is selected from the constants de�ned in the global

parameters section. By default, COMSOL solves the two sets of equations simultaneously.

Since Eq. (1) and Eq. (2) are decoupled under the weak nonlinearity approximation, the two

equations are to be solved sequentially in COMSOL. This requires creating a new COMSOL

study for Eq. (2) and remove the same equation from the original study that COMSOL

automatically creates.

II. RESULTS

The calculation was performed in the frequency domain for a single period of the grating

slab, as shown in Fig. 2. Hence, the numerical results needed to be scaled in order to compare

with the measurement. Using the port boundary, the calculation assumed a power of 1 W

for the incident plane wave. For 2D modelings, COMSOL assumes the third dimension (in

the z direction) to be 1 m. As a result, the incident power density is

Sn =
1W

1m× 1.18µm
≈ 84.7W/cm2
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Figure 4: Transmitted zero-th order SHG intensity versus incident laser power on a log-log scale

measured at 1240 nm. The straight line is a �t to the measurement and has a slope of 1.8.

It is obvious that this power density is much lower than that employed in the experiments,

which can be estimated by

Se =
2µJ/1.2ps

π × (0.03cm)2 ≈ 0.6GW/cm2

Because SHG intensity is quadratically related to the incident power density for classical

electromagnetic calculations, the calculated SHG power density can be simply scaled by

(Se/Sn)2 for the incident power employed in the experiments. As a result, the calculated

SHG intensity is the product of the scaled power density, the device area (350µm×400µm),

and the pulse duration.

A. SHG intensity v.s. incident power

The SHG intensity as a function of incident pulse energy is shown in Fig. 4 for Au grating

slab at the wavelength of 1240 nm. It cab be seen that SHG intensity maintains a nearly

quadratic relationship with the incident power, as expected for SHG.

B. SHG by Trapezoidal Grating

For Au grating slabs with rectangular and trapezoidal groove pro�les, the calculations

showed that the two gratings di�er little in terms of absorption, as shown in Fig. 5. It
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Figure 5: The absorptance as a function of incident angle and incident wavelength for Au grating

slab with (a) rectangular and (b) trapezoidal groove pro�les.

suggests that the enhanced zero-order transmitted SHG intensity is not due to an increased

absorption. The degenerate resonant frequency for trapezoidal grating is approximately 5

nm blue-shifted than the rectangular grating, suggesting a subtle change in surface electro-

magnetic modes.

As a result of the resonance frequency shift due to di�erent grating pro�le, the transmitted

zero-th order SHG intensity also displays a similar frequency shift. In Fig. 6, the zero-th

order transmitted SHG intensity is shown as a function of incident angle and wavelength for

both groove pro�les. Even though the calculation is not performed for the wavelength shorter

than 1160 nm, it is clear that peak SHG intensity is achieved over a broader wavelength

range for trapezoidal grating slab.

Finally, the total transmitted SHG intensity as a function of incident angle and wavelength

is calculated for grating slabs of both groove pro�les. This includes SHG intensity of all

propagating di�raction orders. Figure 7 shows that the total SHG intensity is enhanced by

the change of groove pro�le but to a smaller extent than the zero-th order transmitted SHG

intensity.

[1] Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, Phys. Rev. B 79, 235109 (2009).
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Figure 6: The zero-th order transmitted SHG intensity as a function of incident angle and incident

wavelength for Au grating slab with (a) rectangular and (b) trapezoidal groove pro�les.
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Figure 7: The total transmitted SHG intensity as a function of incident angle and incident wave-

length for Au grating slab with (a) rectangular and (b) trapezoidal groove pro�les.

10

elizabethwalker
Text Box
Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 100(18) and may be found at DOI: 10.1063/1.4710546.


	Boise State University
	ScholarWorks
	4-30-2012

	Phase Matching for Surface Plasmon Enhanced Second Harmonic Generation in a Gold Grating Slab
	Ngoc Luong
	Cheng-Wen Cheng
	Min-Hsiung Shih
	Wan Kuang

	Kuang - Phase matching
	Phase matching for surface plasmon enhanced second harmonic generation in a gold grating slab
	Abstract


	kuang - Phase matching SUPPL
	COMSOL Modeling
	Results
	SHG intensity v.s. incident power
	SHG by Trapezoidal Grating

	References


