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Abstract—Wireless sensor networks (WSNs) have been a sig-
nificant area of research over the past decade. WSN systems
are used in a wide range of applications such as surveillance,
environmental monitoring, target tracking, wildlife tracking,
personal health monitoring, machinery monitoring, and many
others. With such wide ranging applications, there is active
research in nearly every facet of the field including network
topologies, communication protocols, node localization, time
synchronization, and sensor data processing. This movement
has largely been the result of the advances in microelectronics
and low-power radio systems. These advancements have enabled
the design and implementation of small, powerful, low-power,
wireless sensor network systems. Like any emerging technology,
a standard needs to be established to allow the advances in the
field to be directly leveraged rather than requiring reinvention.
This paper outlines the traditional approaches to WSN system
design, and in contrast, proposes the necessary components of
a unified WSN framework that would support the majority
of present applications as well as providing the foundation for
further advancements in the field.

Index Terms—Wireless networks; wireless sensor networks;
software architecture; operating systems; sensor systems

I. INTRODUCTION

Wireless sensor network (WSN) systems have been a signif-
icant area of research over the past decade. This movement has
largely been the result of the advances in microelectronics and
low power radio systems. These advancements have enabled
the design and implementation of small, powerful, and low-
power WSN designs. Wireless sensor networks are composed
of many individual nodes, each of which has (at a minimum)
a small microprocessor, a wireless transceiver system, and a
collection of sensors. The capabilities of the hardware and
software present in WSN systems vary greatly depending on
the application. WSN systems are used in a wide range of
applications such as surveillance [1], environmental monitor-
ing [2], [3], target tracking [4], [5], [6], wildlife tracking
[7], personal health monitoring [8], [9], machinery monitoring
[10], [11], and many others.

Active research is being conducted in nearly every facet
of the field including network topologies, communication
protocols, node localization, time synchronization, and sen-
sor data processing. So, we must ask ourselves: How has
researched shaped the development of WSN technology? In
general, we see technology developed for many independent
applications and research areas that tend to be designed with
only a particular application or research need in mind. This
thinking leads to vertically integrated designs. Of course,

there are certainly advantages to vertical integration. Perhaps
most noteworthy is the fact that such systems generally meet
the needs of their intended application very effectively, and
in many cases this may be more important than any other
consideration. The problem with vertical integration is that
it inherently prevents the research community from directly
leveraging the engineering work of previous systems, thus
slowing the further development of the technology as a whole.
It does this by preventing interoperability between similar
systems, restricting functionality to such specific domains that
they can not be easily adapted to other areas.

Given these considerations, the need for a cross-platform,
general purpose framework to support WSN systems becomes
apparent. A similar problem presented itself during the de-
velopment of modern computers and the Internet [12]. During
that time, many different “standards” were developed by many
vendors, all of which were designed to meet very similar goals.
One could easily argue that the success of modern computers
and the Internet are a direct result of the industry as a whole
embracing a set of standards that meet the needs of the vast
majority of applications. It is with the same motivation that
we seek to define a practical, general purpose framework for
wireless sensor networks. In the following we will take a look
at the issues that are intrinsic to WSN systems in an effort to
identify the key elements that would be required to establish a
general purpose framework capable of both supporting WSN
applications as we understand them today and provide the
foundation for future advances in field. With the primary
issues identified, this paper will conclude with a discussion
about what research is still needed to successfully implement
a unified, general purpose framework for WSN systems.

II. WSN DATA MANAGEMENT

To establish a unified framework, it becomes necessary to
identify the ways wireless sensor networks are being utilized
and by what means the independent solutions solve those
problems. Perhaps one of the most significant issues facing
WSN systems is how to manage the vast amount of data that is
available from sensor networks. Sensor networks range in size
from just a few to thousands of nodes, but there are basically
three schools of thought (although hybrid designs exist, e.g.
[13]) as to how to manage the sensor data:

• Stream data to high-performance machines outside the
sensor network to subsequently be processed [14]



Table I
WSN DATA MANAGEMENT SYSTEMS

WSN Data Management System
Characteristic Stream Processing In-Network Query In-Network Processing

Average Network Traffic High Moderate Application Dependent

Data Access Latency Low Moderate Application Dependent

Computation on Sensor Data No Limited Hardware Dependent

Scalability Limited High High

• Treat the WSN like a distributed database and require
the WSN to send out only the data required to answer
specific structure query language (SQL) database type
queries [15]

• Have the WSN itself process the data in-network, sending
out only relevant information or alerts as needed [16]

Table I summarizes some of the primary differences between
these data management systems.

As seen in Table I, each approach to WSN data manage-
ment is compared across several characteristics: amount of
network traffic, sensor data access latency, the ability to do
computations on sensor data, and network scalability. The
network traffic characteristic is based on what level of network
traffic must occur for sensor data, or the results of sensor data
processing, to be made available outside the WSN. The data
access latency characteristic refers to time it takes for sensor
data, or sensor data processing results, to be made available
outside the WSN. The computation characteristic compares the
relative ability to apply complex algorithms to sensor data by
the WSN itself. Finally, the scalability characteristic provides
a comparison of how effectively the network may be expanded
to an arbitrary number of sensor nodes.

From Table I, we can see that in-network processing inher-
ently provides much more control of characteristic behavior as
compared with the other methods of sensor data management.
Both the average network traffic and data access latency
are controlled by the WSN application. The computation
capabilities are limited only by the available computational
resources on the WSN hardware platform, and as with in-
network query, in-network processing can be highly scalable.
However, other issues need to be considered. In the following
sections we will briefly analyze each data management system
and identify issues involved with each methodology.

A. Stream Processing

Stream processing provides several benefits but potentially
many more liabilities. Primary benefits to stream processing
include its relatively simple implementation and its effective-
ness in small networks with a limited number of sensors.
“Smart” control of the wireless channel can reduce the inherent
network congestion. However, there is still an upper limit to
the scalability of a network implementing direct streaming.
This limit is determined by the bandwidth of the receiver and
the bandwidth requirements of each sensor node. Other issues
include packet-loss due to network congestion, inefficiencies
both in terms of transmit power and data duplication, and

finally, the throughput may be too slow to be processed and
acted upon from outside the network. Processing latency issues
arise due to the fact that, typically, no data analysis is done
within a streaming system by the WSN itself. Instead, an
outside system must aggregate data, perform analysis, and
finally, act upon the results. These delays may be significant
depending on the WSN system, and as such, a limited number
of systems can effectively operate in this mode.

B. In-Network Query

In-network query processing provides a high-level abstrac-
tion for interaction with a sensor network. As discussed above,
this system treats the WSN as a database which responds to
SQL-type queries. When a query is injected into the network
(typically one node is responsible for receiving such queries),
the query is propagated through the network so that each
node may supply their part of the result. To make this more
efficient, the network internally keeps tables/indexes updated
(even when no active queries are being processed). This makes
it unnecessary for all sensor nodes to be involved in response
to each individual query. The primary benefit of this type of
communication is that it can allow the natural application of
data aggregation algorithms such as min, max, avg, etc. In-
network query also has the means to potentially reduce overall
network traffic as compared to stream processing since most
of the communication only takes place to answer an injected
query. As we have previously alluded to, one area where in-
network query falters is that, depending on implementation, it
may still require significant continued communication outside
of queries to main up-to-date indexes and tables. Additionally,
there is significant software overhead required for implementa-
tion as well as somewhat limited usefulness for general WSN
applications which require advanced analysis of sensor data
beyond the simple, database-like, aggregation algorithms.

C. In-Network Processing

In-network processing effectively applies both the concepts
of parallel processing and distributed systems to the embedded
systems domain. It requires that each sensor node be capable
of both responding with data directly when requested as well
as accepting computation jobs which must be completed and
returned. The benefits of this type of framework are many:
duplicate data can easily be silenced, data can be aggregated
before sending it out of the network, network communica-
tion can be directly controlled (and thus reduced), advanced



algorithms can be applied to the sensor data, and high-
level abstractions such as in-network query can be supported.
Moreover, this type of management system can support nearly
all common uses of WSN systems as it provides a low-level
control of each sensor node that can easily be abstracted
to provide simple high-level management of the network as
a whole. As with the other methods, in-network processing
has some disadvantages. With sensor nodes participating in
computation there are several side effects. Namely, the sensor
nodes must have greater computational performance, and the
power requirements may be increased since computation must
be done in addition to normal sensor management. Since the
programming interface is flexible, it can be inherently more
complicated to develop programs in such an environment.
Despite the drawbacks, we believe in-network processing is
the best candidate for implementation of a unified framework
that can be applied to the majority of WSN applications.

III. IN-NETWORK PROCESSING REQUIREMENTS

Having established a processing mechanism that can support
many WSN applications, it then becomes necessary to not only
look at the requirements for in-network processing, but also
what other capabilities are needed in a system framework to
support WSN systems as a whole. For in-network processing
itself, there are several key features that are needed including
error tolerant communication, a versatile parallel processing
application programming interface (API), and a time synchro-
nization mechanism.

A. Communications

The communications stack must support point-to-point,
multi-cast, and multi-hop modes. Additionally, as this com-
munication takes place over a potentially unreliable ad-hoc
wireless link, we can only expect that it operates with
a best-effort guarantee of delivery. As WSNs tend to be
more dynamically formed than traditional networks, automatic
network self-organization is important. The communications
stack must support a wide range of network hierarchies to
ensure that there is great flexibility for different applications
and environments.

B. Parallel Processing API

The unreliable nature of communications in WSNs is a
serious issue that must be directly addressed in any parallel
processing API that is implemented for WSNs. Virtually all
parallel processing APIs designed for traditional computer sys-
tems assume guaranteed delivery of messages. Thus, directly
applying the same methods to the WSN environment is not
feasible. Another complication for parallel processing within
a WSN is the potential for a multi-hop network architecture.
Any parallel processing API for WSNs must take into account
the possibility of messages and data having to traverse several
nodes before being received by the intended recipient.

C. Time Synchronization

Time synchronization in a WSN system is needed to provide
a means of coordinating communication, correlating sensor
data, and establishing coordinated power down sequences
for optimizing power consumption of sensor nodes. The
key features of an effective time synchronization system
for WSNs include low overhead, accuracy, and an in-band
implementation. Traditional time synchronization techniques
such as network time protocol (NTP) do not perform well
in the WSN environment, and the reasons for this are well
outlined in [17]. In general, it is the unreliable nature and
multi-hop architecture of wireless sensor networks that make
the usual algorithms impractical. The required time-keeping
accuracy is generally application specific, and thus, this metric
should be optimized after meeting other requirements. The
absolute accuracy of the time-keeping is not as important as
having the sensor network self consistent to a fine degree of
resolution since we are primarily concerned with scheduling
and differentiating events within the sensor network itself.
Finally, an in-band (i.e., operating within the same channel
as all other communications) implementation is important to
allow the framework to operate on a wide range of hardware
platforms.

IV. EMBEDDED PARALLEL PROCESSING

In-network processing can only be successful if the embed-
ded systems hardware is capable of providing the necessary
computational power. One of the many benefits to the contin-
uous advancement in microelectronics is that microprocessors
continue to get faster, less expensive, and more power efficient.
As such, developing WSN hardware that can meet the compu-
tational and power requirements of many applications is highly
feasible. Moreover, the purpose of implementing parallel pro-
cessing within WSNs is not to provide a high-performance
parallel processing system but rather to provide a means
of dealing with the distributed nature of the data collected
within a sensor network. Much work has been done to show
that parallel processing is possible within wire-networked
embedded systems [18], [19] and FPGAs [20]. Significantly
less research has been done on general purpose parallel
processing with wireless sensor networks. Research on parallel
processing within WSNs has primarily been done on purpose-
built systems, e.g. [21]. While some work proposes general
purpose parallel processing APIs such as [22], [23], [24], few
provide frameworks that can be practically implemented. A
common issue identified by such work is that implementation
is not possible due to poor support for parallel processing
within embedded operating systems. With the limited research
done on general purpose parallel processing in WSNs, it seems
clear that it will be necessary to expand work in this area.

V. A UNIFIED FRAMEWORK

Up to this point we have discussed the general direction
of research in WSNs, and some general characteristics of
WSNs have been outlined. A unified WSN framework will
consist of an embedded operating system (OS), a fault-tolerant



communications stack, a parallel computing API, and a time
synchronization system. In the following sections we will
summarize the characteristics we believe are necessary to
provide an effective WSN framework that could directly suit
the needs of many applications and provide the foundation for
new advancements in WSNs.

A. Embedded Operating System

As discussed previously, an embedded operating system
capable of supporting the unique requirements of WSNs,
including parallel processing, is needed. To be effective as
a general solution to WSN systems, a number of features
must be present in the embedded OS . An embedded OS must
be portable to a wide range of hardware, provide a hardware
independent driver interface, support both real-time and event-
based multi-tasking, support dynamic application loading, and
support a parallel processing API. It is highly probable that
an existing embedded OS can be modified to fit these needs.
Many embedded operating systems implement a subset of the
requirements previously mentioned, thus, simply identifying
those systems and assimilating the essential features is all that
is required.

1) Hardware Portability: The operating system should be
portable to a wide range of hardware, enabling its use on
many different WSN systems. This requires that the operating
system utilize as little hardware specific assembly language as
possible. Additionally, a hardware independent driver interface
is needed to ensure that WSN applications can be loosely
coupled to the hardware that it was originally written to use.
By providing a well defined driver interface, application pro-
gramming is simple and identical across hardware platforms.
Of course, hardware portability is often a primary goal of
operating system designers. Thus, this requirement is easily
met with most general purpose embedded operating systems.

2) Multi-tasking System: Support for both real-time and
event-based tasks are important as there are many applications
where one or both are required. In WSN systems, certain tasks
may allow loose timing constraints. In such cases, tasks will
operate correctly on a purely event-based system. On the other
hand, tasks such as controlling certain types of sensors require
servicing at precise intervals to avoid inaccurate results or
damage to a sensor. When timing is critical, real-time task
control is essential. Many WSN specific embedded operating
systems choose to exclusively implement one or the other
task management system. However, many general purpose
embedded operating systems provide facilities for both type
of scheduling.

3) Dynamic Applications: Dynamic application loading is
needed particularly for large WSN systems. It is logistically
difficult to update application software on each WSN node by
taking each node offline. Often, sensor nodes are not easily
accessible which compounds the problem. Remote application
loading provides a solution to these problems. This feature can
be difficult to implement as most embedded operating systems
require that the application software be compiled with the
operating system and then deployed to the hardware. Dynamic

loading requires that the operating system, or at least a small
part of the operating system is resident in a boot-loading
section of memory so that, on power-up, the resident program
may load the new application.

4) Data Storage: Typical embedded microprocessors have
RAM capacities on the order of 0.5-96KB and program
memory capacities on the order of 1-512KB. As such, it is
necessary that the operating system work with limited memory
resources. With such constraints, support for additional data
storage is needed to temporarily buffer and process sensor
data. Many embedded microprocessors support off-chip RAM
expansion and physical interfaces for high-capacity storage
mediums. In general, most any microcontroller will be capable
of utilizing storage mediums such as Secure Digital (SD) or
MultiMediaCard (MMC) to store data. The operating system
should have support for easily storing and recalling data from
a wide range of storage mediums.

B. Fault-Tolerant Communications
Fault-tolerant communication is an important feature for

WSNs. WSNs are often dynamically formed, and furthermore
the nodes themselves may not be statically located. The tran-
sient nature of WSN makes reliable communication difficult.
If a node moves out of range of the current network formation
then any outstanding results from sensor data requests or
computing jobs can not be relied upon by the network. Much
work has been done to build reliable communications in this
type of environment utilizing low-power wireless systems
such as IEEE 802.15.4 (Zigbee) [25]. Zigbee provides fault-
tolerance in that it is able to dynamically re-route traffic
around unresponsive nodes, and it is resistant to RF and
multipath interference [26]. A WSN centric communications
management system is still needed to ensure successful high-
level interaction with any parallel processing framework that
operates over the wireless channel.

C. Parallel Computing Framework
With an embedded operating system that supports parallel

processing we, of course, need to outline a general purpose
parallel computing framework to enable in-network processing
applications. For parallel processing to be useful within WSNs,
the programming environment must be similar to larger par-
allel computing frameworks, allowing researchers to leverage
existing software knowledge when developing applications for
the WSN environment.

1) Message Passing Interface: Perhaps the most ubiquitous
platform for general purpose parallel processing is the message
passing interface (MPI). For many years parallel processing
was only performed within proprietary programming environ-
ments. Now, the MPI framework may be considered the de
facto standard of cluster programming APIs. MPI is a language
independent framework that supports a wide range of commu-
nications methods for inter-node communications. While MPI
provides all of the required facilities to implement in-network
parallel programming, the specification makes assumptions
about its operating environment that are not necessarily true
within WSNs.



2) MPI in WSNs: Several characteristics if WSNs make
direct implementation of MPI difficult. As described earlier,
MPI assumes there is guaranteed delivery of messages since
it was designed to operate over TCP/IP based wired networks.
As discussed in section V-B, such guarantees can not be made
in wireless systems as there are many reasons that node-to-
node communication may fail in a WSN. Power consumption
and sensor tasks must take precedence over MPI tasks to
ensure each sensor node remains effective. Sensor networks do
not have the data storage resources of typical cluster systems,
and moving data across the network is expensive in terms of
both power and time. Clearly, each of these issues will need
to be addressed for an MPI implementation within WSNs.

Limited work has focused on MPI implementations for
WSNs. Most MPI implementations applied to embedded sys-
tems do not utilize a wireless communications channel. Some
work utilizes message passing algorithms in WSNs, but the
systems are highly focused on particular applications rather
than on providing a general purpose framework that can be
used for a wide range of applications.

D. Time Synchronization

As discussed in section III-C, we believe a successful
time synchronization system will operate in-band to dispose
of special purpose hardware. Of course, the WSN system
designer has the prerogative to include special hardware for
time synchronization, but a general purpose framework should
not depend on such hardware. Several in-band protocols are
promising for use in WSNs including RBS [27], TSPN [28],
FTSP [29], and others. Various algorithms will need to be
tested to establish a solution that provides the best compro-
mise in terms of accuracy, resolution, overhead, and power
consumption.

VI. ASSEMBLING THE FRAMEWORK

As outlined in section V, many potential components of
the framework are already well researched, however, several
practical issues need to be solved before a unified framework
can be effectively implemented. The primary issues include:
1) developing a new framework architecture that provides
both complete abstraction of underlying hardware and online
application loading, 2) adapting a fault-tolerant MPI API
to the WSN domain, and 3) identifying a method to allow
computation and sensor operations to coexist on a WSN node
while operating on a strict power budget.

A. Framework Architecture

The architecture of a framework is pivotal to providing
hardware independent and thus, portable applications. Es-
sentially the goal is to provide hardware independence for
WSN applications similar to the way traditional computer
systems provide hardware independence for general applica-
tions. Traditional computer system programming environments
allow applications to be deployed to many different hardware
platforms because the underlying operating system hides the

Figure 1. Framework Architecture

differences from the application layer. With the correct frame-
work architecture, we believe that online application loading
can also be achieved while meeting the other requirements
previously discussed. A standardized hardware driver interface
packaged in combination with the operating system and ap-
plication loader would allow new applications to be deployed
to sensor nodes without removing them from the network.
Figure 1 shows a simplified graphical representation of the
envisioned system to better illustrate the relationships between
the framework components.

As shown in Figure 1, the device drivers provide a stan-
dardized interface to the underlying WSN hardware for the
application loader and operating system. Only the device
drivers and the operating system need to interact with the WSN
hardware directly. Only a small part of the operating system
needs to be hardware specific. The hardware dependent part
of embedded operating systems is typically within the context
switching and interrupt handling components. From Figure 1,
we also see that the application and application level APIs
are completely hardware independent, including time synchro-
nization, sensor device access, power management, network
management, compute management, and MPI. Finally, the data
storage component in the diagram is shown to highlight the
fact that this component will be accessed by most of the other
subsystems. However, the data storage component remains
hardware independent via the hardware driver interface.

B. MPI for Wireless Sensor Networks

As discussed in section V-C2, adapting an MPI framework
to function reliably within a wireless sensor network is not
a trivial problem. It is likely that only a subset of MPI will
be practical to implement on WSN systems. Several groups
have already simplified the standard MPI API for embedded
systems, e.g. [18], [19], [20], [30]. Thus, we can build on
this work to establish a MPI framework that is optimized for
the WSN environment. Optimization of MPI for WSN systems
will largely be associated with controlling power consumption
and system resources to prevent computation from interfering
with other sensor node operations.

C. Measurement with Computation

The issue of assigning wireless sensor nodes the respon-
sibilities of both collecting sensor data and processing data



will require utilizing the multi-tasking features of the under-
lying embedded operating system. Many embedded operating
systems provide robust multi-tasking mechanisms which will
make managing both measurement and computation respon-
sibilities easier. Beyond leveraging operating system multi-
tasking, a computation management system is needed that can
gracefully pause and resume (i.e., checkpoint) its operations
(for resource sharing/power management) and interface with
the WSN optimized MPI system.

VII. CONCLUSION

Based on the current state of development in wireless sensor
networks, it seems clear that there is a need for a framework
that provides a general solution for WSN systems. A number
of areas still need to be investigated to establish such a
framework. Many of the base components of such a framework
are already well researched such as WSN time synchronization
and WSN optimized communication protocols. This makes
much of the development a matter of identifying components
and determining the best way to interface them into a cohesive
system. Primary research will need to be focused on expanding
an embedded operating system to support both parallel pro-
cessing and dynamic application deployment. Additionally, a
practical MPI-like parallel processing API must be developed
that is optimized for in-network processing in embedded
systems. The culmination of this research will provide a means
to unify WSN operating software across applications, and thus,
provide a foundation on which to support current applications
and future advancements in the field.
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