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Fig. 1. The DFS method applied to the globe. (a) The land masses on the surface of earth.
(b) The projection of the land masses using latitude-longitude coordinates. (c) Land masses after
applying the DFS method. This is a BMC-I “function” that is periodic in longitude and latitude.

function that is bi-periodic but is not constant at the poles, i.e., along the lines θ = 0
and θ = π.2 We define BMC functions with this property as follows.

Definition 2.2 (Type-I BMC functions). A function f̃ : [−a, a]× [−b, b]→ C is
a Type-I BMC (BMC-I) function if it is a BMC function and it is constant when its
second variable is equal to0 and ±b, i.e., f(·, 0) = α, f(·, b) = β, and f(·,−b) = γ.

For the sphere, we are interested in BMC-I functions defined on [−π, π]2 that are
bi-periodic for which f takes the same constant value when θ = ±π. For the disk we
are interested in so-called BMC-II functions [45].

Our approximation scheme and subsequent numerical algorithms for the sphere
preserve BMC-I structure and bi-periodicity of a function strictly, without exception.
By doing this we can compute with functions on [−π, π]2 while keeping an interpre-
tation on the sphere.

The DFS method has been used since the 1970s in numerical weather predic-
tion [11, 17, 24, 28, 31, 35]; it has recently found its way to the computation of
gravitational fields near black holes [3, 8, 39] and to novel space-time spectral analy-
sis [36].

3. Low rank approximation for functions on the sphere. In [42], low rank
techniques for numerical computations with bivariate functions was explored. It is
now the technology employed in the two-dimensional (2D) side of Chebfun [14] with
benefits that include a compressed representation of functions and efficient algorithms
that heavily rely on 1D technology [44]. Here, we extend this framework to the
approximation of functions on the sphere.

A function f̃(λ, θ) is of rank 1 if it is nonzero and can be written as a product of
univariate functions, i.e., f̃(λ, θ) = c1(θ)r1(λ). A function is of rank at most K if it
can be expressed as a sum of K rank 1 functions. Here, we describe how to compute
rank K approximations of BMC-I functions that preserve the BMC-I structure.

2The bi-periodic BMC function f(λ, θ) = cos(2θ) cos(2λ) is not constant along θ = 0 or θ = π.
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Pointwise evaluation. The evaluation of f(x, y, z) on the surface of the sphere,
i.e., when x2 + y2 + z2 = 1, is computationally very efficient. In fact this immediately
follows from the low rank representation for f̃ since

f(x, y, z) = f̃(λ, θ) ≈
K∑
j=1

djcj(θ)rj(λ),

where λ = tan−1(y/x) and θ = cos−1(z/(x2 + y2)1/2). Thus, f(x, y, z) can be calcu-
lated by evaluating 2K 1D Fourier expansions (4.1) using Horner’s algorithm, which
requires a total of O(K(n+m)) operations [49].

The Spherefun software allows users to evaluate using either Cartesian or spherical
coordinates. In the former case, points that do not satisfy x2+y2+z2 = 1 are projected
to the unit sphere in the radial direction.

Computation of Fourier coefficients. The DFS method and our low rank
approximant for f̃ means that the FFT is applicable when computing with f̃ . Here,
we assume that the Fourier coefficients for cj and rj in (4.1) are unknown. In full
tensor-product form the bi-periodic BMC-I function can be approximated using a 2D
Fourier expansion. That is,

f̃(λ, θ) ≈
m/2−1∑
j=−m/2

n/2−1∑
k=−n/2

Xjke
ijθeikλ.(4.2)

The m× n matrix X of Fourier coefficients can be directly computed by sampling f̃
on a 2D uniform tensor-product grid and using the 2D FFT, costing O(mn log(mn))
operations. The low rank structure of f̃ allows us to compute a low rank approxima-
tion of X in O(K(m logm+n log n)) operations from uniform samples of f̃ along the
adaptively selected skeleton from section 3. The matrix X is given in low rank form
as X = ADBT , where A is an m×K matrix and B is an n×K matrix so that the
jth column of A and B is the vector of Fourier coefficients for cj and rj , respectively,
and D is a K×K diagonal matrix containing dj . From the low rank format of X one
can calculate the entries of X by matrix multiplication in O(Kmn) operations.

The inverse operation is to sample f̃ on an m×n uniform grid in [−π, π]× [−π, π]
given its Fourier coefficient matrix. If X is given in low rank form, then this can be
achieved in O(K(m logm+ n log n)) operations via the inverse FFT.

These efficient algorithms are regularly employed in Spherefun, especially in the
Poisson solver (see section 5). The Fourier coefficients of a spherefun object are
computed by the coeffs2 command and the values of the function at a uniform λ-θ
grid are computed by the command sample.

Integration. The definite integral of a function f(x, y, z) over the sphere can be
efficiently computed in Spherefun as follows:∫
S

f(x, y, z)dx dy dz=

∫ π

0

∫ π

−π
f̃(λ, θ) sin θ dλ dθ ≈

K∑
j=1

dj

∫ π

0

cj(θ) sin θ dθ

∫ π

−π
rj(λ) dλ.

Hence, the approximation of the integral of f over the sphere reduces to 2K 1D
integrals involving 2π-periodic functions.

Due to the orthogonality of the Fourier basis, the integrals of rj(λ) are given as∫ π

−π
rj(λ) dλ = 2bj0, 1 ≤ j ≤ K,
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Similar reasoning shows that ∂/∂λ and multiplication by sin θ can be discretized as
XDn and MsinX, where Msin is given in (4.8). Therefore, we can discretize (5.2) by
the following Sylvester matrix equation:

(5.5)
(
M2

sinD
2
m +McosMsinDm

)
X +XD2

n = F,

where F ∈ Cm×n is the matrix of 2D Fourier coefficients for (sin θ)2f̃ in an expansion
like (5.4).

We note that (5.5) can be solved very fast because Dn is a diagonal matrix and
hence each column of X can be found independently of the others. Writing X =[
X−n/2 | · · · |Xn/2−1

]
and F =

[
F−n/2 | · · · |Fn/2−1

]
, we can equivalently write (5.5)

as n decoupled linear systems,

(5.6)
(
M2

sinD
2
m +McosMsinDm − (D2

n)kkIm
)
Xk = Fk, −n/2 ≤ k ≤ n/2− 1,

where Im denotes the m×m identity matrix.
For k 6= 0, the linear systems in (5.6) have a pentadiagonal structure and are

invertible. They can be solved by backslash, i.e., \, in MATLAB that employs a
sparse LU solver. For each k 6= 0 this requires just O(m) operations, for a total of
O(mn) operations for the linear systems in (5.6) with −n/2 ≤ k ≤ n/2−1 and k 6= 0.

When k = 0 the linear system in (5.6) is not invertible because we have not ac-
counted for the integral constraint in (5.3), which fixes the free constant the solutions
can differ by. We account for this constraint on the k = 0 mode by noting that∫ π

0

∫ π

−π
ũ(λ, θ) sin θdλdθ ≈ 2π

m/2−1∑
j=−m/2

Xj0
1 + eiπj

1− j2 ,

which can be written as 2πwTX0 = 0, where the vector w is given in (4.3). We impose
2πwTX0 = 0 on X0 by replacing the zeroth row of the linear system (M2

sinD
2
m +

McosMsinDm)X0 = F0 with 2πwTX0 = 0. We have selected the zeroth row because
it is zero in the linear system. Thus, we solve the following linear system:

(5.7)

[
wT

P
(
M2

sinD
2
m +McosMsinDm

)]X0 =

[
0

PF0

]
,

where P ∈ R(m−1)×m is a projection matrix that removes the zeroth row, i.e.,

P
(
v−m/2, . . . , v−1, v0, v1, . . . , vm/2−1

)T
=
(
v−m/2, . . . , v−1, v1, . . . , vm/2−1

)T
.

The linear system in (5.7) is banded with one dense row, which can be solved
in O(m) operations using the adaptive QR algorithm [30]. For simplicity, since solv-
ing (5.7) is not the dominating computational cost we use the backslash command in
MATLAB on sparse matrices, which requires O(m) operations.

The resulting Poisson solver may be regarded as having an optimal complexity
of O(mn) because we solve for mn Fourier coefficients in (5.4). In practice, one may
need to calculate the matrix of 2D Fourier coefficients for f̃ that costs O(mn log(mn))
operations if the low rank approximation of f̃ is not exploited. If the low rank structure
of f̃ is exploited, then since the whole m× n matrix coefficients F is required in the
Poisson solver the cost is O(mn) operations (see section 4).

In Figure 7 (left) the solution to ∇2u = sin(50xyz) on the sphere is shown. Here,
we used our algorithm with m = n = 150. Before we can apply the algorithm, the
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Fig. 7. Left: Solution to ∇2u = sin(50xyz) with a zero integral constraint computed by f =
spherefun(@(x,y,z) sin(50*x.*y.*z)); u = spherefun.poisson(f,0,150,150);, which
employs the algorithm above with m = n = 150. Right: Execution time of the Poisson solver as a
function of the number of unknowns, nm/2, when m = n.

matrix of 2D Fourier coefficients for sin(50xyz) is computed. Since the BMC-I function
associated with sin(50xyz) has a numerical rank of 12 this costs O(mn) operations.
In Figure 7 (right) we verify the complexity of our Poisson solver by showing timings
for m = n. We have denoted the number of degrees of freedom of the final solution as
mn/2 since this is the number that is employed on the solution u. Without explicit
parallelization, even though the solver is embarrassingly parallel, we can solve for 100
million degrees of freedom in the solution in 1 minute on a standard laptop.6

Conclusions. The double sphere method is synthesized with low rank approx-
imation techniques to develop a software system for computing with functions on
the sphere to essentially machine precision. We show how symmetries in the resulting
functions can be preserved by an iterative variant of Gaussian elimination to efficiently
construct low rank approximants. A collection of fast algorithms are developed for
differentiation, integration, vector calculus, and solving Poisson’s equation. Now an
investigator can compute with functions on the sphere without worrying about the
underlying discretizations. The code is publicly available as part of Chebfun [14].
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