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24Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the inter-
25action of changing climate,fire and vegetation along themigrating front of single-leaf pinyon (Pinusmonophylla)
26and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occur-
27rence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals.
28Fire peaks occurred ~10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas
29~9500–7200, 6700–4700 and ~1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled
30episodicfires and debrisflows during the early and late Holocene,whereas drier climates and reduced vegetation
31caused frequent sheetflooding during themid-Holocene. Increased fires during thewetter andmore variable late
32Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon
33colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until
34~700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~850–
35700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in acceler-
36ated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass
37invasion.
38© 2013 Published by Elsevier Inc. on behalf of University of Washington.
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43 Introduction

44 In western North America, ongoing and future climate and land-
45 use change could trigger widespread and possibly abrupt shifts in
46 dominant vegetation, wildfire regimes, and post-fire erosion. These
47 shifts will in turn impact fire and flood risks, conservation efforts, for-
48 est products, water resources, and other ecological goods and
49 services. Our ability to anticipate and adapt to these changes will de-
50 pend on how well we understand the effects of climatic change on
51 vegetation, fire, and geomorphic response, and how these factors in-
52 teract at different spatial and temporal scales (Allen, 2007).
53 Fire regimes are characterized by fuel consumption and fire
54 spread patterns, fire size, and the distribution, frequency, intensity
55 and severity of fire (Keeley et al., 2009). Climate ultimately governs
56 vegetation and fire regimes, and vegetation-driven changes in fuel
57 availability and continuity are primarily responsible for extent and
58 severity of wildfires. Over annual to decadal time scales, climate var-
59 iability controls the availability and moisture content of vegetation as
60 fuel, and affects the frequency and regional synchroneity of wildfires
61 (Heyerdahl et al., 2002; Westerling et al., 2006; Littell et al., 2009).
62 Over decadal to millennial time scales, climate modulates the

63composition and structure of plant populations, and the nature of
64the fire regime, including patterns of fire frequency, intensity, and
65spread (Grissino-Mayer and Swetnam, 2000; Mensing et al., 2006).
66Through strong positive feedbacks, changing fire regimes can also im-
67pact vegetation and fuels. Despite the primary control of climate on
68both fire regimes and vegetation, the causal links, temporal sequenc-
69ing, and lags among climatic change, vegetation, and fire are complex.
70An important objective for multiproxy paleoecological studies is to
71sort out what circumstances determine the order and lags of re-
72constructed changes in vegetation and fire both locally and regionally
73(Clark et al., 1996; Veblen et al., 2003; Unbanhowar, 2004). More sim-
74ply, which comes first, the change in vegetation or the shift in fire
75regime? Directional changes in fire regimes coeval with changing vege-
76tation across the region would implicate a greater role for vegetation
77change (composition and structure). Synchronies in shifting fire re-
78gimes across different vegetation types, some stable and others not,
79would suggest a more direct influence of climate on fire regimes.
80A related issue is how climate and vegetation interact to modify
81the mechanisms and magnitude of fire-related erosion and sedimen-
82tation. Unfortunately, few studies have the appropriate temporal and
83spatial resolution to relate changes in vegetation, fire, and geomorphic
84response throughout the Holocene. Wildfires are known to trigger
85and accelerate hillslope erosion (e.g., Cannon et al., 2001a,b, Meyer
86et al., 2001; Cannon et al., 2010) and the type of geomorphic response
87(e.g., sheetfloods vs. debris flows) can be related to fire severity
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88 (Meyer et al., 2001; Pierce et al., 2004). Although post-fire geomorphic
89 responses ultimately hinge on the occurrence, duration and intensity
90 of rainfall in thewindowof time betweenfire and recovery of vegetation
91 (Cannon et al., 2001a,b), the nature of fire-related erosion is controlled
92 by several factors that include basin topography (Cannon et al., 2001a,
93 b, 2010), vegetation type and structure (e.g., Wilcox et al., 2011), and
94 fire size and severity (Meyer et al., 2001; Pierce et al., 2004; Cannon
95 et al., 2010).
96 We use a novel approach of combining alluvial records of fire-
97 related sedimentation with adjacent fossil woodrat (Neotoma) midden
98 records of vegetation change in south-central Idaho. The City of Rocks
99 National Reserve (CIRO) and adjacent Castle Rocks State Park encom-
100 pass a maze of deeply weathered and towering granite outcrops sepa-
101 rated by alluvial valleys. The numerous rock crevices and shelters
102 preserve fossil woodrat middens and a record of plant migration,
103 while the entrenched streams and arroyos expose fire-related deposits
104 and charcoal in the alluvial stratigraphic sequences. The midden record
105 is the focus of a separate paper (Betancourt, unpub. data), and the
106 paleo-vegetation record is summarized here for comparison with the
107 charcoal and alluvial stratigraphy.
108 CIRO is located along the late-Holocene migration front of Utah ju-
109 niper [Juniperus osteosperma (Torr.) Little] and single-leaf pinyon
110 (Pinus monophylla Torr. & Frém.). Holocene shifts in temperature
111 and precipitation/snowpack, and their annual phasing (seasonal
112 timing), likely drove the northward migration of these two dominant
113 conifers and associated changes in fire regime. The fortuitous preser-
114 vation of fire and vegetation paleorecords within the same and adja-
115 cent drainage basins allows long-term analysis of fire, vegetation, and
116 geomorphic change at CIRO.

117 Study area

118 CIRO is located on the southern slope of the Albion range on the
119 Utah–Idaho border (Fig. 1). The study area spans an elevational range
120 of 1600–2700 m. Mean annual precipitation is 280 mm, where most
121 precipitation falls between April and June (Western Regional Climate
122 Center).
123 Geologically, CIRO is comprised of the Almo granitic pluton
124 (29 Ma) which intruded into the Elba quartzite (1.6 Ga) and Green
125 Creek Complex (2.5 Ga) of metasediments and granitic basement
126 rock (Miller et al., 2008). Granite spires provide world-famous
127 climbing opportunities, although most of CIRO is characterized by
128 gentle to moderate slopes, with a mean slope of 15.6°. Mechanical
129 and chemical weathering and erosion of Almo granite have
130 blanketed CIRO in erodible granite grus (Q5 Pogue and Katz, 2008).
131 Active arroyo cutting and fluvial incision reveal fire-related deposits
132 in six headwater basins that drain into the Raft River, a tributary of
133 the Snake River, Idaho (Table 1; Fig. 2). Livestock grazing and dry
134 farming began at CIRO in 1888 (Morris, 2006), and this sparsely
135 populated region is still primarily a ranching and agricultural
136 community.
137 CIRO is afloristically diversewoodland–steppe ecotone,with over 450
138 documented plant species (John, 1995). Lower elevations (b1800 m) are
139 dominated by big sagebrush (Artemisia tridentata Nutt.), antelope bitter-
140 brush [Purshia tridentata (Pursh) DC] and an understory of native and
141 non-native bunch grasses. Single-leaf pinyon dominates middle eleva-
142 tions (1600–2000 m) with Utah juniper and Rocky Mountain juniper
143 (Juniperus scopulorum Sarg.). Patches of curl-leaf mountain mahogany
144 (Cercocarpus ledifoliousNutt.) and aspen (Populus tremuloidesMichx.) oc-
145 cupy middle to upper elevations (N1800 m). Limber pine (Pinus flexilis
146 James) dominates the higher elevations (N2000 m). The reserve is dis-
147 sected by riparian habitat that includes Rocky Mountain maple (Acer
148 glabrum Torr.), box elder (Acer negundo L.), redosier dogwood (Cornus
149 sericea L.) and narrow leaf cottonwood (Populus angustifolia James)
150 (City Of Rocks National Reserve Vegetation Map).

151Methods

152We identified incised streams, incised alluvial fans and arroyos
153using aerial photography in CIRO and nearby Castle Rocks State

Figure 1.Map showing location of CIRO relative to sites of reconstructed paleoclimate and
fire used for comparison in this study. Paleoclimate record sites include: the Bonneville
Basin, UT (Murchison, 1989; Patrickson et al., 2010), Blue Lake Marsh, UT (Louderback
and Rhode, 2009), Bear Lake, ID (Doner, 2009; Moser and Kimball, 2009), Uinta Range,
UT (Gray et al., 2004; Corbett and Munroe, 2010), Lake Cleveland in the Albion Range,
ID (Davis et al., 1986), Idaho Falls SandDunes, Snake River Plain, ID (Rittenour and Pearce,
2011) and Mission Cross Bog, NV (Mensing et al., 2008). Reconstructed fire history sites
include Yellowstone, WY (Meyer et al., 1995), Wood Creek, ID (Nelson and Pierce,
2010), the South Fork of the Payette River, ID (SFP; Pierce et al., 2004), the Middle Fork
of the Salmon River, ID (MFSR; Riley, 2012), and the Sawtooth Range, ID (Svenson,
2010). The Lake Bonneville outline shows the approximate extent of the Bonneville
highstand (20,000–16,000 yr BP; Automated Georeference Center, 2001).

Table 1 t1:1

t1:2Summary of CIRO basin characteristics, number of alluvial charcoal and midden
t1:3sampling sites and number of fire radiocarbon ages per basin.

t1:4Basin
name

Basin
area
(km2)

Lithology # of alluvial
stratigraphy
sites

# of
midden
sites

# of 14C
(fire)
ages

t1:5Almo Creek 57.9 Quartzite to west,
gneiss to east

2 0 3

t1:6Stines Creek 6.9 Quartzite to west,
gneiss to south

1 0 1

t1:7Graham Creek 14 Quartzite to west,
granite to east,
gneiss to south

1 0 1

t1:8Circle Creek 17.4 All granite except
gneiss fin to east

10 18 25

t1:9Heath Canyon 13.9 Granite to north,
quartzite to south

1 0 7

t1:10Emigrant
Canyon

13.3 Quartzite 0 2 0

2 K.N. Weppner et al. / Quaternary Research xxx (2013) xxx–xxx
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154 Park, which are both managed by the National Park Service office in
155 Almo, Idaho. In the field, targeted exposures were cleaned with a
156 shovel and thoroughly examined for alluvial charcoal. Exposures
157 containing charcoal were sampled for radiocarbon dating and macro-
158 fossil analysis.

159To create a spatially representative dataset of fire events, we dated
160charcoal samples from many of the small drainages throughout the
161study area. In exposures containing multiple fire-related deposits,
162we dated charcoal fragments from multiple distinct units. At expo-
163sures containing a few charcoal-rich deposits, we dated the upper-
164most unit (N25 cm depth to avoid surface material that may have
165experienced bioturbation) and the lowermost unit, so that we could
166reconstruct a time frame of fire and deposition at the site. The number
167of charcoal samples collected varied depending on fragment size and
168abundance.
169We used deposit characteristics (e.g., clast sorting, size, orienta-
170tion, and matrix textures) to infer depositional processes (e.g.,
171sheetflood, debris flow, overbank flood, channel flood), and identified
172soil properties according to Birkeland et al. (1991; Table 2 Q6).
173Charcoal-rich deposits are termed “fire-related” and post-fire geo-
174morphic response is inferred from deposit characteristics (e.g.,
175sheetfloods vs. debris flows). Variations in depositional process may
176in turn reflect variations in fire-severity and size. Prior studies of
177fire events preserved in alluvial records (Meyer et al., 1995; Pierce
178et al., 2004), combined with modern studies of post-fire erosional re-
179sponse (e.g., Cannon et al., 2001a), show that severely burned basins
180are more likely to produce large debris flows than similar basins with
181low burn severity, even during 1–2 year storm events. Conversely,
182basins burned in patchy or lower severity fires produce erosional
183events with lower proportions of sediment, such as sheetfloods or
184floods (e.g., Pierce et al., 2004). While other factors such as storm se-
185verity can also control the type of erosional response following fire,
186for a given basin, variations in the types of fire-related deposit can
187be used to infer possible changes in fire severity and extent within a
188given basin.
189We prioritized annually-produced wood (i.e. twigs, leaves, seeds)
190for radiocarbon dating to decrease “inbuilt age,” which is the differ-
191ence between the age of wood formation and date of fire (Gavin,
1922001). We selected angular wood fragments over rounded ones,
193according to Folk (1965), to avoid dating re-worked charcoal
194(e.g., Meyer et al., 1995). Charcoal macrofossils (defined as N1 mg)
195were dated with Accelerator Mass Spectrometry (AMS) 14C. AMS
196

14C dates were calibrated into calendar years before 1950 AD.
197(cal yr BP) using the CALIB 6.0.1 program (Stuiver and Reimer,
1981993) and results are presented as the median of the 1σ and 2σ age
199distributions (Table 3). Individually calibrated fire ages were summed
200and presented as a cumulative probability distribution.
201Given the resolution of radiocarbon dating and inbuilt age of the
202charcoal, it is not possible to determine if charcoal samples with
203overlapping 1σ and 2σ ages were produced from the same fire.

Figure 2. Map showing the CIRO study area, Castle Rocks State Park boundary (north)
and the CIRO park boundary (south), six delineated drainage basins, charcoal sampling
sites, and midden sampling sites. Subbasins within Circle Creek (C5–C14) are not
shown, but include North Fork of Circle Creek, Center Circle Creek, South Fork of Circle
Creek, as well as numerous unnamed small basins. The main fork of Circle Creek is
established near site C14.

Table 2t2:1

t2:2 Summary of deposit characteristics at CIRO.

t2:3 Depositional
process

Deposit characteristics Sorting Texture Clast size range Maximum
clast size

Deposit thickness

t2:4 Sheetflood
deposit

Clast-supported, form
alternating fine/coarse
grained couplets

Moderately-well sorted Fine unit: loam,
sandy-loam, silty-loam,
coarse unit: sand,
loamy-sand, sandy-loam

Fine unit: b20% coarser
than 2 mm, coarse unit:
20–50% coarser than
2 mm

Fine unit: 3 mm,
Coarse unit: 10 mm

Individual
couplets vary
between 0.25
and 6 cm

t2:5 Debris flow
deposit

Matrix-supported,
randomly oriented
clasts floating in a
fine-grained matrix,
form cohesive vertical
and sometimes
overhanging faces in
stratigraphic profile

Poorly-sorted Matrix: loam, silty-loam,
sometimes silty-clay-loam

30% coarser than 2 mm 1–20 cm, rarely
exceed 20 cm

Vary in depth
but can reach
100+ cm

t2:6 Overbank
deposit

Thick, fine-grained units Well-sorted Loam, silty-loam,
silty-clay-loam

5–40% coarser than 2 mm Finer than 10 mm Vary in depth
but can reach
75 cm

t2:7 Channel
flood
deposit

Clast-supported, imbrication Poorly to moderately-well
sorted

Sand 5–50% coarser than 2 mm 30 cm Vary in depth but
can reach 75 cm
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204 Separate sites containing charcoal with similar ages that were geo-
205 graphically distinct (i.e., found in separate tributaries) were assumed
206 to represent periods of multi-basin fires, and large probability peaks
207 were used to denote large, widespread fire events. Small and/or
208 lower severity fires are inferred from fire-related sheetflood deposits,
209 whereas large and/or higher severity fires are inferred from fire-
210 related debris flow deposits (Meyer et al., 2001; Pierce et al., 2004).
211 We applied a stratigraphically-based model to correct the fire re-
212 cord for “taphonomic bias”, which is the over-representation of youn-
213 ger macrofossils relative to older macrofossils due to destructive
214 weathering and erosional processes observed in archeological and
215 geologic records. Surovell et al. (2009) based this empirical model
216 on terrestrial records of volcanic ash deposition where frequency dis-
217 tributions appear to diminish over time and on ice sheet records of

218volcanic deposition that are presumably not subjected to destructive
219terrestrial processes because they do not exhibit characteristics of a
220fading record. The correction is as follows:

nt ¼ 5:73� 106 t þ 2176:4ð Þ−1:39

221222where nt is the number of radiocarbon dates surviving from time t.
223Surovell et al. (2009) recommend application of the taphonomic
224bias correction for samples older than 750 cal yr BP because younger
225samples are least likely to experience decomposition. We suggest that
226the fading fire record at CIRO, however, is primarily a function of
227depth of incision,where fire-related deposits deeper than natural expo-
228sures are not exposed and therefore not sampled. All but one exposure
229with ages b5000 cal yr BP (96%) were sampled from 0–200 cm depth,

Table 3t3:1

t3:2 Data table summarizing 1) site and sample identification, 2) uncalibrated ages and associated errors, 3) calibrated ages including 1σ and 2σ error ranges, 4) median calibrated age,
t3:3 5) associated depositional processes abbreviated as SF = sheetflood deposit, DF = debris flow deposit, OB = overbank deposit, CF = channel flood deposit and BS = buried soil,
t3:4 6) location in stratigraphic profile, 7) wood type, 8) charcoal species abbreviated as J = juniper, SB = sagebrush and P = pine with relative percentages of each vegetation type
t3:5 shown in parentheses and ordered respectively, 9) and charcoal abundance within the deposit.

t3:6 Site ID Lab ID Sample ID 14C
age BP

Analytical
error ±

Calibrated age
(cal yr BP)

Error (1σ) Error (2σ) Deposit
type

Depth
(cm)

Charcoal
type

Burned vegetation-type
(%) (J) (SB) (P)

Charcoal
abundance

t3:7 Drainage Basin: Almo Creek
t3:8 A1 80536 KWCA02-2-3A 485 20 520 512–527 506–535 SF 130 Twig (17) (67) (17) Abundant
t3:9 AA88400 KWCA02-5 2428 39 2470 2370–2514 2362–2582 SF 185 Wood (40) (40) (20) Present
t3:10 A2 80537 AHCA06B-3 900 20 810 767–839 756–886 SF 135 Wood (0) (100) (0) Scarce
t3:11
t3:12 Drainage Basin: Stines Creek
t3:13 S3 80538 AHCA04 10,875 35 12,740 12,656–12,803 12,626–12,887 BS/DF 105 Wood Not identified Scarce
t3:14
t3:15 Drainage Basin: Graham Creek
t3:16 G4 AA88389 KWCR06-3 1655 37 1560 1521–1609 1418–1468 DF 90 Twig (50) (7) (43) Abundant
t3:17
t3:18 Drainage Basin: Circle Creek, location: North Fork of Circle Creek
t3:19 C5 AA88388 SPCR03-1 180 35 180 132–208 103–300 DF 50 Wood (38) (25) (38) Present
t3:20 C6 AA88390 NCCR01-1 415 35 490 485–495 480–500 SF 80 Twig (40) (50) (10) Present
t3:21 AA88391 NCCR01-4 356 35 400 377–428 314–498 DF 135 Wood (28) (40) (32) Abundant
t3:22 AA88397 NCCR04-5B 846 42 760 708–790 681–802 SF 160 Twig (0) (89) (11) Present
t3:23
t3:24 Drainage Basin: Circle Creek, location: Middle Fork of Circle Creek
t3:25 C7 AA88398 KWCR15-1 913 36 830 781–880 750–917 OB 95 Wood (15) (69) (15) Abundant
t3:26
t3:27 Drainage Basin: Circle Creek, location: South Fork of Circle Creek
t3:28 C8 AA88396 TRCR02-2B 786 36 710 682–724 671–752 DF 75 Wood (40) (60) (0) Present
t3:29 80,524 TRCR02-4A 3990 20 4490 4483–4512 4418–4450 SF 160 Branch (35) (35) (41) Present
t3:30 80525 TRCR05A-1 8605 25 9550 9535–9567 9519–9588 DF 175 Wood not identified Scarce
t3:31 80526 TRCR05C-4 9155 25 10,290 10,250–10,319 10,240–10,319 SF 250 Wood (67) (11) (22) Abundant
t3:32 80527 TRCR05B-5 9390 25 10,620 10,572–10,657 10,549–10,702 SF 300 Wood (100) (0) (0) Scarce
t3:33 C9 AA88384 KRCR01-1A 308 35 390 358–430 298–469 SF 25 Needle (47) (27) (27) Abundant
t3:34 AA88385 KRCR01-7B 425 35 490 468–516 430–531 SF 150 Pod (7) (57) (36) Abundant
t3:35 C10 AA88387 KWCR04-1 3393 41 3640 3607–3687 3554–3725 SF 50 Twig (50) (50) Scarce
t3:36 AA88392 KWCR11-1 9469 56 10,720 10,598–10,783 10,553–10,869 OB 230 Wood (100) (0) (0) Present
t3:37 C11 80534 KWCR03-2-1A 2250 20 2290 2288–2327 2182–2331 DF 75 Wood (33) (0) (67) Abundant
t3:38 80535 KWCR03-2-2 2050 20 2020 1988–2019 1972–2033 CF 140 Wood not identified Abundant
t3:39 C12 80518 TRCRO4-1C 375 20 450 334–349 325–363 SF 60 Seed (32) (32) (37) Abundant
t3:40 80519 TRCRO4-2B 660 20 610 567–584 562–594 SF 115 Branch (33) (67) (0) Abundant
t3:41 80520 TRCR04-3B 770 20 690 676–699 674–727 DF 145 Seed (23) (46) (31) Abundant
t3:42 80521 TRCR04-5 5995 20 6830 6792–6866 6761–6897 DF 250 Wood (0) (33) (67) Present
t3:43 80522 TRCR04-6A 6090 20 6950 6928–6980 6894–7007 DF 335 Wood (8) (46) (46) Abundant
t3:44 80523 TRCR04-7B 6280 60 7210 7154–7290 7012–7330 SF 380 Wood (0) (45) (55) Abundant
t3:45 C13 80539 AHCR19-3 175 20 184 150–189 268–282 DF 75 Twig (40) (40) (20) Abundant
t3:46
t3:47 Drainage Basin: Circle Creek, location: Main Fork of Circle Creek
t3:48 C14 80528 CCCR01-2-1 4135 20 4680 4602–4684 4580–4801 SF 83 Wood (0) (100) (0) Scarce
t3:49 AA88386 CCCR01-2B 5864 45 6680 6632–6733 6549–6782 SF 180 Wood (0) (43) (57) Present
t3:50 80529 CCCR02-4 6165 20 7080 7017–7128 6989–7167 SF 230 Wood (0) (72) (28) Abundant
t3:51
t3:52 Drainage Basin: Heath Canyon
t3:53 H15 AA88394 KWCR17-1 189 34 180 147–191 136–225 SF 30 Twig (25) (0) (75) Abundant
t3:54 80531 KWCR18-2-2B 2230 20 2240 2185–2243 2169–2318 BS/DF 290 Wood (0) (67) (33) Abundant
t3:55 80532 KWCR18-2-3B 5905 20 6720 6714–6743 6670–6756 DF 350 Pod (33) (0) (67) Abundant
t3:56 80533 KWCR18-2-3C 6230 25 7170 7137–7214 7041–7227 DF 420 Wood (92) (0) (8) Abundant
t3:57 AA88393 KWCR12-4B 8862 59 9970 9882–10,148 9728–10,148 DF 500 Wood (92) (0) (8) Abundant
t3:58 AA88395 KWCR18-3 10,034 56 11,540 11,395–11,643 11,278–11,770 DF 560 Twig (71) (12) (18) Abundant
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230 while 77% of samples with ages N5000 cal yr BP are exposed between
231 200 and 600 cm. One debris flow deposit containing sparse charcoal
232 was dated 12,700 cal yr BP. Several fire-related deposits older than
233 9000 cal yr BP, however, contain abundant charcoal, suggesting that
234 charcoal decomposition is not as important as stratigraphic exposure,
235 or that charcoal preservation varies on a site-by-site basis (Table 3).
236 Based on these age–depth relationships, taphonomic bias likely plays
237 a secondary role in the CIRO record. Accordingly, the Surovell et al.
238 (2009) correction was applied only to ages N5000 cal yr BP, when
239 ages are under-represented due to lack of exposure.
240 We binned the radiocarbon-dated and stratigraphically-inferred
241 ages of deposits (based on location within the profile, upper and
242 lower age constraints, and depositional characteristics) into 500-year
243 bins to identify Holocene trends in fire-related sedimentation, and sep-
244 arated debris flow deposits, sheetflood deposits and overbank deposits
245 to examine changes in depositional process over time. We identified
246 and classified charcoal macrofossils (10–200 mg) using a 20× power
247 microscope as “pine”, “juniper” or “sagebrush” based on wood charac-
248 teristics (see Weppner, 2012) by comparison with magnified images
249 and descriptions of burned wood (Adams and Murray, 2011). Based
250 on first appearance in the woodrat midden record, we assumed that
251 pine charcoal prior to 2800 cal yr BP belongs to limber pine, and after
252 that date to either limber pine or single-leaf pinyon. We assumed that
253 juniper charcoal before 3800 cal yr BP was Rocky Mountain juniper,
254 whereas charcoal since then was Utah juniper or Rocky Mountain
255 juniper.
256 Thirty fossil woodrat middens were collected, dated and analyzed,
257 spanning the last 45,000 yr, using well-established methods detailed
258 in Betancourt et al. (1990). Here we focus primarily on the occurrences
259 of Utah juniper and single-leaf pinyon plant macrofossils, and the in-
260 ferred colonization and expansion history of these two trees. In addi-
261 tion, we infer periods of high ecosystem productivity during the
262 Holocene (i.e., times whenwoodrat populations flourished andmidden
263 construction increased) from relative abundances of radiocarbon ages
264 in middens from CIRO, Oneida Narrows in southeastern Idaho and the
265 Lost River Range in south-central Idaho (Webb and Betancourt, 1990;
266 Smith and Betancourt, 2003). Midden ages were not corrected for taph-
267 onomic bias because middens are typically preserved in rock shelters
268 and therefore less susceptible to erosion and weathering processes.

269 Results

270 The midden record indicates that Rocky Mountain juniper, limber
271 pine and sagebrush have occupied CIRO since ~45,000 cal yr BP. Utah
272 juniper colonized CIRO ~3800 cal yr BP and single-leaf pinyon
273 ~2800 cal yr BP (Fig. 5a). Single-leaf pinyon is abundant in middens
274 from ~2800–2400 cal yr BP, but absent in ones dated ~2400–
275 700 cal yr BP. This suggests that either slow expansion or colonization
276 occurred as two events, with the first event as a failed invasion and
277 the second event successfully establishing single-leaf pinyon as the
278 dominant species after 700 cal yr BP. (Fig. 5b). Summed probability dis-
279 tributions of midden radiocarbon ages from CIRO, Oneida Narrows, and
280 the Lost River Range record a peak between 5000 and 1500 cal yr BP.
281 No midden ages are recorded between ~1500 and 1100 cal yr BP, but
282 increase again 700–300 cal yr BP (Fig. 5c; Smith and Betancourt, 2003).
283 Alluvial charcoal radiocarbon ages show five episodes of enhanced
284 fire activity during the Holocene (Fig. 5d). The first episode (~10,700–
285 9500 cal yr BP) records five fires in Circle Creek and Heath Canyon
286 over a ~1000 year period, the second fire episode ~7200–6700 cal yr BP
287 records seven fires in Circle Creek and Heath Canyon during a ~500 year
288 timeframe, and the third fire period (~2400–2000 cal yr BP) records
289 five fires in Circle Creek, Heath Canyon and Almo Creek during a
290 ~400 year period. The two most recent fire episodes are the most geo-
291 graphically widespread (fires burned in all basins except Graham
292 Creek) and occurred 850–700 and 550–400 cal yr BP recording 15 fires

293during ~450 yr. No fires were recorded between 9500–7200 and
2946700–4700 cal yr BP (see Weppner, 2012 for more details).
295Two stratigraphic profiles (C6 and C11) produced stratigraphically-
296inverted radiocarbon ages from distinct deposits with clear boundaries.
297Because 1σ and 2σ age errors do not overlap (Table 3), we infer that
298older macrofossils were transported from an earlier fire. Although
299these ages cannot date depositional process, they do represent timing
300of past fires because all ages are from charcoal fragments.
301Charcoal identification, where possible, showed mostly juniper
302(79%; cf. J. scopulorum) between 11,500 and 9900 cal yr BP, while
303pine (cf. P. flexilis) and sagebrush account for 14% and 7%, respectively.
304Between 7200 and 6700 cal yr BP, macrofossils consist of 20% juniper
305(cf. J. scopulorum), 40% sagebrush and 40% pine (cf. P. flexilis). At
3064700–1500 yr BP, which includes the period during first colonization
307of J. osteosperma and P. monophylla, was split roughly three ways
308among juniper (cf. J. scopulorum/J. osteosperma), sagebrush, and pine
309(P. flexilis/P. monophylla). Between 850–700 and 550–400 cal yr BP,
310however, the majority of the charcoal samples were sagebrush (Fig. 5e).
311Deeply-incised arroyos that contain abundant fire-related de-
312posits are common in granitic and gneissic basins at CIRO (Table 1).
313However, fire-related deposits are limited in deep arroyos formed in
314quartzite basins (Table 1). This suggests that hillslopes formed in
315more resistant quartzite are less susceptible to fire-related erosional
316events. For example in 2000, a mixed-severity crown fire burned
317~8.5 km2 in quartzite terrain of southern CIRO (Monitoring Trends
318in Burn Severity, 2011). Local residents observed increased fire-
319related surface erosion during a storm event a few days following
320this fire (Morris, 2006), which probably was due to surface rilling
321(Skakesby and Doerr, 2006). There was no field evidence, however
322for large-scale, post-fire erosion, such as sheetflood or debris flow de-
323position. The quartzite terrain, now characterized by standing dead
324pinyon and juniper, has since been invaded by cheatgrass. By con-
325trast, field observations in granitic and gneissic basins indicate active
326arroyo cutting and regular sheetflood transport of sediments from
327upstream channels and arroyos. During a two-week storm totaling
3282 cm of precipitation (July–August 2010; Western Regional Climate
329Center), 30 cm of material was eroded from the base of arroyo C12,
330fresh incision occurred at arroyos C8 and H15, and sheetfloods were
331deposited elsewhere. Debris flows, however, are rare in the modern
332record because no large fires have burned in granitic basins. In the
333paleorecord, sheetflood deposits comprise 57% of total measured allu-
334vial thickness, whereas debris flow deposits and overbank deposits
335make up 37% and 6% of alluvial thickness, respectively (Fig. 5f).
336Between 6500 and 2500 cal yr BP, only 4% of alluvial thickness was
337deposited, and debris flow deposition was minimal (Fig. 5f). Four thin
338(b10 cm), muddy debris flow deposits containing fine-grained clasts
339were identified during this time. These deposits are notably different
340from the thick (N40 cm) debris flow deposits containing coarser clasts,
341four of which were deposited before 9500 cal yr BP, and fourteen were
342deposited after 2400 cal yr BP. (Figs. 3 and 5f). Stratigraphic age gaps
343were observed at C12 between ~700 and 7000 cal yr BP, which is sep-
344arated by 100 cm of undated charcoal-poor sheetfloods, and at H15 be-
345tween 2200 and 6800 cal yr BP (Fig. 3). Neither site, however, shows
346stratigraphic evidence of erosion (e.g., cut-and-fill or unconformable
347contacts between deposits), and dated units are laterally continuous
348within exposures.
349Although modern soils at CIRO are poorly developed, with absent to
350weakly developed B-horizons ( Q7USDA et al., 2011), we observed four
351well-developed Holocene soils (Weppner, 2012). At site S3, A and Bt
352horizons developed on a 12,700 cal yr BP debris flow deposit that was
353subsequently buried by sheetfloods and capped by an undated debris
354flow deposit that also exhibits extensive soil development. At H15, A
355and Bt horizons are developed on a ~2230 cal yr BP debris flow deposit
356buried under b300 cal yr BP sheetflooddeposits. Another soil containing
357a Bt horizon was developed on a 2290 cal yr BP fire-related debris flow
358deposit exposed in streambank site C10/C11.
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359 Discussion

360 Holocene fire and vegetation at CIRO

361 The CIRO alluvial charcoal record shows both discrete peaks in fire
362 activity and intervals of no fire-related sedimentation over the last
363 13,000 yr. Examination of the fire record within the context of vege-
364 tation change from local and regional woodrat midden series indi-
365 cates that some peaks in fire activity correspond temporally with
366 vegetation shifts. Independent regional records of Holocene climate
367 change suggest that climate drives shifts in vegetation, fire regime
368 and fire-related deposition. Below we discuss these trends within
369 four characteristic time periods of the Holocene (Fig. 6).

370Early Holocene (13,000–9500 cal yr BP)

371Beginning ~11,500 cal yr BP at CIRO, post-glacial climate warmed
372abruptly (Davis et al., 1986; Murchison, 1989; Madsen et al., 2001;
373Doner, 2009; Louderback and Rhode, 2009) and frequent fires pro-
374duced charcoal mostly identified as juniper, which we assumed to
375be Rocky Mountain juniper (Figs. 5a, 6). Regionally, lake charcoal re-
376cords indicate that fire frequency increased throughout a wide range
377of ecosystems in response to the drying and dying of Pleistocene veg-
378etation (e.g., Millspaugh et al., 2000; Q8Power et al., 2008a,b; Marlon et
379al., 2009; Whitlock et al, 2012). Regional vegetation reconstructions
380from pollen and midden records indicate increases in southern or
381lower elevation plants 11,500–9500 cal yr BP (Fig. 6; Jackson et al.,

Figure 3. Summary illustration of the stratigraphic characteristics of each charcoal sampling site. Stratigraphic correlations between sites are shown by solid black lines for visible
stratigraphic correlations and by dotted gray lines for inferred stratigraphic correlations. A black/white vertical scale is provided on each side of the figure.
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382 2005; Doner, 2009; Louderback and Rhode., 2009). During the same
383 time, CIRO experienced a reduction in the dominance of limber pine
384 and extirpation of mixed-conifer and subalpine elements. Seven
385 fires were recorded at CIRO before 9500 cal yr BP. Given the poor
386 preservation of charcoal and the lack of exposure of early Holocene
387 stratigraphy, the actual number of fire-related sedimentation events
388 probably was much higher (Surovell et al., 2009), indicating an inter-
389 val of widespread and severe fires at CIRO.

390 Early to Middle Holocene (9500–6500 cal yr BP)

391 No fires were recorded at CIRO between 9500 and 7200 cal yr BP
392 (Fig. 5c)when regional climatewas characteristicallywetter and cooler,
393 as indicated by lake records from Bear Lake, Idaho and the Uinta Range,
394 Utah (Fig. 6; Moser and Kimball, 2009; Corbett and Munroe, 2010) and
395 by a 8300 cal yr BP Lake Bonneville highstand, possibly 60 m higher
396 than the Gilbert shoreline (Fig. 6;Q9 Oviatt, 1997; Patrickson et al.,
397 2010). The highstand and other regional climate correspond to the
398 “8.2 ka cool interval”, a widely-recognized Heinrich event (e.g., Alley
399 et al., 1997) that increased local snowpacks (Dean et al., 2002).
400 Climate began to warm 8200–4000 cal yr BP (Louderback and
401 Rhode, 2009)when regionalmidden records indicate decreased ecosys-
402 tem productivity (Fig. 5b; Smith and Betancourt, 2003), Lake Bonneville
403 was periodically low (Murchison, 1989), and pinyon–juniper (PJ)
404 woodlands in the Great Basin inhabited elevations 500 m higher than
405 today (Miller and Tausch, 2001). Records from Lake Bonneville and
406 Bear Lake, however, suggest briefly wetter, cooler conditions beginning
407 7500 cal yr BP (Fig. 6; Murchison, 1989; Doner, 2009; Louderback and
408 Rhode, 2009) that may have increased fuels for frequent fires between
409 7200 and 6700 cal yr BP at CIRO. Post-Mazama (~7700 cal yr BP;
410 Zdanowicz et al., 1999) increases in lake sediment charcoal 20 km
411 north at higher elevation Lake Cleveland (Davis et al., 1986) corroborate
412 the CIRO record, suggesting large and widespread fires (Fig. 6). Alluvial
413 charcoal records from lodgepole forests in Yellowstone, south-central

414Idaho sagebrush steppe, central Idaho lodgepole-dominated forests,
415and central Idaho ponderosa forests also show increasedfire activity be-
416tween 7500 and 6200 cal yr BP (Fig. 7; Meyer et al., 1995; Q10Meyer and
417Pierce, 2003; Pierce et al., 2004; Nelson and Pierce, 2010; Riley, 2012)
418during extended warmer, drier climate in the Rockies (Shuman et al.,
4192009).
420Middle Holocene fires at CIROmaymark structural changes in vege-
421tation; sampled charcoal macrofossils switched from mostly Rocky
422Mountain juniper to 20% Rocky Mountain juniper, 40% sagebrush and
42340% limber pine (Table 3; Fig. 5a). The geomorphic response also shifted
424from episodic debris flows to frequent fire-related and charcoal-poor
425sheetflooding events. Charcoal-poor sheetflooding suggests increased
426hillslope erosion on sparsely vegetated (fuel-limited) hillslopes (Pierce
427et al., 2004). In central Idaho, analogous post-fire sheetflooding was
428recorded in the South Fork Payette andMiddle Fork Salmon River drain-
429ages during the 7500–6200 cal yr BP fires (Pierce et al., 2004; Riley,
4302012). Unlike CIRO, the Payette and Salmon watersheds are character-
431ized by steep, granitic hillslopes prone to post-wildfire debris flows.
432However during this fire-prone period, debris flow activity was limited
433and frequent sheetflood deposition occurred at the base of what are
434now debris flow-prone, north-facing, and forested slopes (Meyer et al.,
4352001; Pierce et al., 2004; Riley, 2012).

436Middle to Late Holocene (6500–2500 cal yr BP)

437Nofireswere recorded at CIRObetween6700 and 4700 cal yr BP dur-
438ing regional, prolongeddrought (Fig. 6;Murchison, 1989; Louderback and
439Rhode, 2009; Shumanet al., 2009; Corbett andMunroe, 2010;Whitlock et
440al., 2012), when upper treeline in the Albion Mountains reached maxi-
441mum elevations at 4500 cal yr BP (Davis et al., 1986). At CIRO, low vege-
442tation densities following previous fires, sustained by persistent drought,
443inhibited fuel accumulation on hillslopes. Similar fire-free periods are reg-
444istered in other alluvial charcoal records, suggesting that low fuel supplies
445were regionally persistent (Fig. 7; Pierce et al., 2004; Nelson and Pierce,

Figure 4. Arroyo site H15. Unit A consists of charcoal-rich sheetflood deposits that are younger than 300 cal yr BP. Unit B is a buried soil developed on a 2240 cal yr BP charcoal-rich
debris flow deposit that forms abrupt upper and lower boundaries. Units C and D are both thin, muddy charcoal-rich debris flow deposits dated 6720 and 7170 cal yr BP, respec-
tively. Both units overlie thick packages of undated, charcoal-poor sheetflood deposits which we infer to have been deposited during the drier middle Holocene on sparsely veg-
etated hillslopes. Unit E is a tephra unit that was not dated because it was contaminated by significant mixing. Unit F is a 9970 cal yr BP charcoal-rich debris flow deposit. Unit
G is a thick 11,540 cal yr BP charcoal-rich debris flow deposit.
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446 2010; Svenson, 2010). In northeastern Yellowstone, however, fire activity
447 increased beginning ~6500 cal yr BP in a moist, densely vegetated eco-
448 system where past fires have been correlated with severe drought
449 (Fig. 7; Meyer et al., 1995).
450 Fires at CIRO were infrequent between 4700 and 3600 cal yr BP
451 when regional midden records suggest a return to cooler, wetter cli-
452 mate ~4500–2000 cal yr BP (Fig. 5b; Smith and Betancourt, 2003).
453 Lake Bonneville shorelines elevated (Q11 Murchison, 1989), upper treeline
454 descended in the Albion Mountains (Davis et al., 1986) and other re-
455 gional paleoclimate records suggest cooler, wetter climate (Fig. 6;
456 Madsen et al., 2001; Mensing et al., 2008; Louderback and Rhode,
457 2009). During this time, Utah juniper migrated to CIRO 3800 cal yr BP,
458 followed by single-leaf pinyon 2800 cal yr BP (Fig. 5c).
459 Westerling et al. (2011) predicts that as climate warms, fire rotation
460 times will progressively decrease until there is insufficient time for for-
461 est regeneration between fire events. Eventually, fire strips the land-
462 scape of available fuels. This paradigm may be reflected in the CIRO
463 record when frequent fires during the interval 7200–6700 cal yr BP
464 were followed by no recorded fires until 4700 cal yr BP, potentially
465 due to exhaustion of fuels accumulated during the earlier wetter inter-
466 val. Prior to the ~7200–6700 cal yr BP fires, limber pine, Rocky

467Mountain juniper and sagebrush occupied CIRO. Although single-leaf
468pinyon had not yet arrived, estimates for post-fire regeneration of PJ
469woodlands are 150–200 yr (Goodrich and Barber, 1999), while post-
470fire sagebrush recovery takes 35–100 yr (Baker, 2006) and N500 yr
471are estimated for regeneration of limber pine forests (Rebertus et al.,
4721991). During the 7200–6700 cal yr BP fires, CIRO burned a minimum
473of seven times. Although this frequency applies to the entire study
474area (not individual basins), synchronous fire activity at nearby Lake
475Cleveland (Davis et al., 1986) suggests widespread fires. This high fire
476frequencymay have exceeded the time interval needed for the regener-
477ation of limber pine and Rocky Mountain juniper, and persistent warm
478and dry conditions after ~6700 cal yr BP likely continued to reduced
479vegetation densities and suppress fire.

480Late Holocene (2500 cal yr BP-present)

481Recent Holocene fires at CIRO burned when ecosystem productiv-
482ity was high (e.g., denser forest and continuous fuels; Smith and
483Betancourt, 2003; Fig. 5b) and correspond to regional droughts that
484were preceded by above average moisture (Fig. 8). Frequent fires

Figure 5. Summary of results from fire, vegetation and depositional processes data plotted versus time. Relative abundance of a) Utah juniper and b) single-leaf pinyon plant mac-
rofossils in CIRO woodrat middens; c) calibrated radiocarbon ages for middens in southern Idaho as an indicator of ecosystem productivity, d) calibrated radiocarbon ages for
alluvial charcoal with N5000 cal yr BP ages corrected according to Surovell et al., 2009, e) relative percent of charcoal species, plotted as discrete points and binned per mean
age of fire interval (dashed lines simply connect points), and f) stratigraphic record of percent alluvial thickness per depositional process.
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485 burned during PJ expansion, indicating that fuel availability was likely
486 no longer limiting fire at CIRO.
487 Fires that burned at CIRO between 2400 and 2000 cal yr BP corre-
488 spond to ~2 ka drought (inferred from dune activation in the Snake
489 River Plain, ID, Rittenour and Pearce, 2011), and to multidecadal
490 droughts (2500 and 2200 cal yr BP) at Mission Cross Bog, NV (Fig. 8;
491 Mensing et al., 2008). Comparison of CIRO fires after 1600 cal yr BP
492 with reconstructed PDSI (Cook et al., 2004) indicates that all recorded
493 fires were preceded by wetter than average conditions but ignition oc-
494 curred during drought. These reconstructed PDSI droughts are corrobo-
495 rated by multiple climate records (Fig. 8; Gray et al., 2004; Stahle et al.,
496 2007; Rittenour and Pearce, 2011). No fires were recorded between
497 1500 and 1000 cal yr BP, when PDSI reconstruction indicates warmer
498 but less variable climate (Fig. 8; Cook et al., 2004).
499 After its arrival, single-leaf pinyon expanded slowly and did not es-
500 tablishdominance across CIROuntil 700 cal yr BP.Macrofossil evidence
501 (Fig. 5a) suggests fires ~850–700 and 550–400 cal yr BP burnedmostly
502 in stands of sagebrush; reduction in sage cover could have facilitated
503 single-leaf pinyon infilling in rocky areas and encroachment on adja-
504 cent sagebrush stands that occupy deeper soils (Q12 Chambers, 2001).
505 Increased forest densities during the Little Ice Age (LIA) likely
506 supplied fuel for the greatest recorded fire peak at CIRO 550–
507 400 cal yr BP, a fire peak that is also recorded in multiple regional al-
508 luvial charcoal records across a range of ecosystems in Idaho includ-
509 ing the sagebrush steppe of Wood Creek (Nelson and Pierce, 2010),
510 the ponderosa and Douglas fir dominated South Fork of the Payette
511 (Pierce et al., 2004), the lodgepole pine to rangeland ecosystems of
512 the Middle Fork of the Salmon River (Riley, 2012), and the lodgepole
513 and mixed conifer forests of the Sawtooths (Fig. 7; Svenson, 2010).

514While the timing of this fire peak is similar, these separate ecosys-
515tems likely burned differently; for example, in the South Fork Payette,
516frequent, low-severity fires typical of ponderosa pine and Douglas fir
517forests were prevalent, although some of these fires were likely
518stand-replacing (Fig. 7; Pierce et al., 2004). At CIRO, a new fire regime
519likely took hold, and high-severity fires typical of PJ woodlands
520(Baker and Shinneman, 2004; Romme et al., 2009) and sagebrush
521steppe (Kauffman and Sapsis, 1989) produced multiple, fire-related
522debris flow and sheetflood deposits that account for approximately
52350% of the total measured alluvial thickness (Fig. 5f).

524Holocene shifts in fire-related geomorphic response

525The nature of Holocene alluvial deposits may reveal shifts in past
526hillslope vegetation densities and the nature and severity of wildfires.
527Unlike lake charcoal records, alluvial charcoal records are not contin-
528uous; however, the episodic nature of alluvial deposition provides in-
529sight into both fire activity and landscape response. For example,
530modern and paleorecords of fire-related deposition have shown that
531sheetfloods are characteristically deposited following low-severity
532fires or following storms/fires on drier or south-facing slopes, where-
533as post-fire debris flows often follow high-severity fires burning for-
534ested slopes (Cannon et al., 2001a,b; Meyer et al., 2001; Pierce et al.,
5352004). Cannon et al. (2010) identified a 16.7° slope threshold for de-
536bris flow formation. Mean slopes at CIRO are ~15.6° indicating past
537fires may not have generated debris flows on most hillslopes. Yet,
538our record shows that episodic fire-related debris flows were depos-
539ited during the early and late Holocene, but were rare between 7000

Figure 6. Summary of regional and global climate conditions compared with the CIRO fire record. The top of the figure references time periods discussed in the text and general fire
trends from the CIRO charcoal record. The upper text of the climate summary shows widely recognized climatic variations within the Holocene (e.g., Lamb, 1972; Berger, 1978;
Alley et al., 1997; Bianchi and McCave, 1999;Q2 Grove, 2001; Dean et al., 2002; Kaufman et al., 2004). RCO refers to the Roman Climate Optimum, MCA refers to the Medieval Climatic
Anomaly and LIA refers to the Little Ice Age. Regional and local climate events are also shown (Davis et al., 1986; Murchison, 1989;Q3 Oviatt, 1997; Madsen et al., 2001; Dean et al.,
2002; Smith and Betancourt, 2003; Gray et al., 2004; Jackson et al., 2005; Doner, 2009; Louderback and Rhode, 2009; Moser and Kimball, 2009; Shuman et al., 2009; Corbett and
Munroe, 2010; Patrickson et al., 2010; Rittenour and Pearce, 2011).
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540 and 2500 cal yr BP when sheetfloods comprise the majority of de-
541 posits (Fig. 5d).
542 At CIRO, the notable absence of fire-related debris flow deposition
543 between 7000 and 2500 cal yr BP during warmer, drier climate
544 (Fig. 4D) suggests several scenarios that are not mutually exclusive: 1)
545 a discontinuous fuel source restricted fire size and severity; 2) frequent
546 sheetflooding limited colluvial storage and soil development of in
547 situ-weathered silt and clay-sized particles; and 3) the drier climate of
548 the mid-Holocene restricted storm events needed to ignite fires and
549 produce debris flows (Fig. 9). Unless the combined conditions of severe
550 fire, adequate silt and clay-rich colluvium, and storms are met, our re-
551 cords indicate that debris flows are not common at CIRO.
552 The July insolation maximum (Berger, 1978) was manifested by
553 regionally warmer, drier climate between ~8 and 4 ka that likely re-
554 duced hillslope vegetation density (Murchison, 1989; Louderback
555 and Rhode, 2009; Shuman et al., 2009; Corbett and Munroe, 2010).
556 Enhanced erosion rates have been attributed to drought-induced
557 reductions in vegetation (Allen and Breshears, 1998). At CIRO, charcoal-
558 poor sheetfloods constrained by deposits dated 6700–3600 cal yr BP in-
559 dicate that while enhanced sheetflood deposition occurred during
560 droughty climate (Fig. 5d), this hillslope erosion was not triggered by
561 fire. Despite dry conditions during this time, fire activity at CIRO was
562 limited.

563Between 8000 and 4000 cal yr BP, sagebrush, RockyMountain juni-
564per and limber pine occupied CIRO (Fig. 5a). These trees and shrubs do
565not typically sustain low-severity fires during drier climate when
566ground fuels are discontinuous (Baker and Shinneman, 2004; Mensing
567et al., 2006; Romme et al., 2009). Fuel suppression by drought and/or
568lack of ignition during convective storms may explain no-fire (and
569low-fire) intervals during the bulk of this time frame. Mid-Holocene
570fires (that produced thin,muddy debris flows and sheetfloods) were ig-
571nited during drought following brief periods of increased moisture,
572when accumulated fine fuels increased fuel connectivity for fire spread
573on an otherwise sparsely-vegetated landscape. Nevertheless, low collu-
574vial supply, diminished by frequent sheetflood deposition (10,600–
5757200 cal yr BP), may have inhibited development of larger debris
576flows. This combination of evidence (prolonged dry climate, thin
577deposits, and limited fire-related deposition) 6700–4700 cal yr BP sug-
578gests that the landscape had limited fuel, and low sediment supply on
579hillslopes.
580After 2400 cal yr BP, Utah juniper and single-leaf pinyon expanded
581during wetter, cooler climate, fire activity increased and erosion shifted
582back to episodic debris flow deposition. This erosional shift may be en-
583tirely attributable to denser vegetation that changed fire regimes from
584low-severity to high-severity fires. Evidence of soil development
585~12,700, 2300 and 2200 cal yr BP also indicatesmore densely vegetated

Figure 7. Regional alluvial charcoal records (moving top to bottom) from Yellowstone National Park, WY (Meyer et al., 1995), the Sawtooth Mountains, Idaho (Svenson, 2010),
Middle Fork of the Salmon River, ID (MFSR; Riley, 2012),Wood Creek, ID (Nelson and Pierce, 2010), the South Fork of the Payette River, ID (SFP; Pierce et al., 2004) and the
CIRO record. The general modern ecosystem characteristics (elevation and forest-type) are shown along the left side of the figure and correspond to the alluvial charcoal data
shown on the right side. The sum of probability axes vary between records and sample population sizes are given for each record. As demonstrated in the text, the Surovell
et al. (2009) correction should be applied to each study area based on individual study area characteristics, therefore the CIRO data and the other included alluvial charcoal data
have not been corrected for taphonomic bias in this figure.
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586 and stabilized hillslopes. Stable well-developed soils would increase silt
587 and clay content through loess-trapping and pedogenic processes,
588 which also would increase the thickness of colluvium. Thick, well-
589 developed soils, combined with ash production from fires, would pro-
590 vide both the mobile regolith and the fine-textural component neces-
591 sary for debris flow development.

592Broad-scale linkages among climate, vegetation and fire

593Over the last few centuries in most areas in western North Amer-
594ica, years of widespread burning in the observational or tree-ring re-
595cord are associated with winter/spring drought, advanced timing of
596snowmelt and greenup, and hot summers (Westerling et al., 2003,
5972006; Heyerdahl et al., 2008; Littell et al., 2009; Falk et al., 2010;
598Trouet et al., 2010; Q13Gedalof, 2011). Well-resolved proxies for temper-
599ature, precipitation and associated fire occurrence are too spotty in
600the region to evaluate fire–climate relationships through the entire
601Holocene.
602Controls on fire–climate relationships, such as precession-driven
603changes in insolation and the seasonal timing of moisture delivery,
604have not been constant over the Holocene (e.g., Berger, 1978), and
605changes in the seasonality of precipitation and summer convective
606storms could broadly influence fire activity throughout the western
607U.S. (e.g., Minckley et al., 2012; Brunelle et al., 2013). More impor-
608tantly perhaps, precessional changes likely produced gradual shifts
609in the annual phasing of regional temperatures. This may have affect-
610ed the dominant controls of seasonal climate on wildland fire during
611the Holocene, including the severity of winter/spring drought, the
612timing of spring, and the intensity of summer heat loads. For example,
613the shift from cooler to warmer winters into the late Holocene could
614have advanced the onset of spring snowmelt and vegetative growth,
615exhausting soil moisture and flammability earlier in the dry summer.
616Finally, hydroclimatic areas with coherent, long-term variations in
617temperature or precipitation, and thus decadal-scale or longer pat-
618terns in fire synchrony, likely shifted with ocean temperatures over
619the Holocene ( Q14Kitzberger et al., 2007).
620CIRO (~42°N) lies in the transition zone (40–42°N) of a north–
621south dipole in regional precipitation ( Q15Dettinger et al., 1998; Brown
622and Comrie, 2004; Wise, 2010; Pederson et al., 2011). During the
62320th century, both the width and location of this transition shifted,
624though the transition is most stable in the northern Great Basin,
625where CIRO is located (see Shinker, 2010). The location of CIRO near
626this dipole complicates comparison of the climatic controls on fire

Figure 8. A 2800-yr comparison of the CIRO fire record (bottom black line) to Palmer Drought Severity Index reconstructed from tree rings (upper black line; Cook et al., 2004), and
to records of drought from the Snake River Plain, ID (Rittenour and Pearce, 2011), Mission Cross Bog, NV (Mensing et al., 2008), Uinta Range, UT (Gray et al., 2004) and the Mid-
western U.S. (Stahle et al., 2007). To highlight longer term trends, fire and PDSI data were smoothed using a 50 year moving average in Microsoft Excel (50-yr moving avg).

Figure 9. Conceptual model of feedbacks amongwet climate vs. dry climate, vegetation,
fire, and fire-related erosional response from burned hillslopes.
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627 in this ecosystem with other studies investigating the climate drivers
628 of fire in the western U.S.
629 In the introduction, it was suggested that multiproxy (climate,
630 vegetation, fire, and alluvial) records like the one at CIRO, in compar-
631 ison with other similar records across the region, could be used to sort
632 out the chronological order and causal links between climate, vegeta-
633 tion, fire and erosional processes. Both the CIRO study and regional
634 paleorecords lack the necessary specificity and resolution to fully ac-
635 count for the order and causality of multiple events and processes
636 throughout the Holocene, but they do permit a few generalizations.
637 Throughout the Holocene, synchronous periods of fire activity
638 throughout a range of diverse ecosystems in the northern Rockies in-
639 dicate that widespread climate change, not specific vegetation migra-
640 tions, drives fire activity. Other asynchronous fires periods suggest
641 that local vegetation change (e.g., migrations or changes in fuel
642 conditions) and/or regional climate variability also drives fires. For
643 example, the prominent peak in fire activity in the CIRO record
644 ~10,700–9500 cal yr BP is consistent with a pronounced peak in fire
645 throughout many ecosystems (e.g.,Q16 Power et al., 2008a,b; Marlon
646 et al., 2009; Whitlock et al., 2012) in response to broadscale dieoffs
647 of Pleistocene vegetation, consumption of the dead biomass by large
648 and roughly synchronized fires, and accelerated erosion and sedi-
649 mentation associated with broadscale biomass burning. The profound
650 changes in both composition and structure of vegetation have been
651 mostly directional and associated with regional warming, the decline
652 of Pleistocene vegetation, and post-glacial reorganization (including
653 plant migrations from both the south and lower elevations).
654 Whilemany lake charcoal records showa general decrease infire ac-
655 tivity following the Pleistocene–Holocene transition (e.g.,Q17 Power et al.,
656 2008a,b; Marlon et al., 2009;Whitlock et al., 2012), alluvial charcoal re-
657 cords from CIRO and throughout the Northern Rocky Mountain region
658 (e.g., Meyer et al., 1995; Pierce et al., 2004; Nelson and Pierce, 2010)
659 are characterized bymulti-century episodes of elevated fire occurrence
660 punctuatingmulti-millennial intervals with little or no fire-related sed-
661 imentation. While most lake charcoal records do show this general de-
662 crease in fire activity following the Pleistocene–Holocene transition,
663 both alluvial and lake records record a notable peak in fire activity dur-
664 ing the mid-Holocene (~7500–5000 cal yr BP). For example, elevated
665 charcoal levels were recorded ~7500–6500 cal yr BP at both CIRO and
666 at higher elevation Lake Cleveland, ~20 km north of CIRO (Davis et al.,
667 1986). This mid-Holocene peak is recorded in other alluvial charcoal re-
668 cords in central Idaho (Pierce et al., 2004; Riley, 2012), and in lake char-
669 coal records throughout the Northern Rocky Mountains (e.g.,Q18 Power et
670 al., 2011), likely in response to regional drought conditions (Fig. 6;
671 Murchison, 1989; Louderback and Rhode, 2009; Shuman et al., 2009;
672 Corbett and Munroe, 2010; Whitlock et al., 2012).
673 Asynchronous peaks in fire activity among different vegetation types
674 during the late Holocene likely indicate that local vegetation and climate
675 changes also play an important role in driving regional pulses in fire and
676 fire-related sedimentation. At CIRO, however, we cannot precisely order,
677 and therefore relate, the late Holocene colonization and expansion by PJ
678 woodland with peaks in the alluvial charcoal record 2400–2000, 850–
679 700, and 550–400 cal yr BP. At CIRO, and elsewhere along the northern
680 peripheries of PJ woodlands, fire and other ecological disturbances asso-
681 ciated with regional multi-decadal droughts during the Medieval Cli-
682 mate Anomaly could have enhanced colonization and expansion of
683 Utah juniper and single-leaf pinyon. The densification of pinyon–juniper
684 (PJ) woodland at CIRO over the last millennium likely and uniquely in-
685 creased the likelihood of local crown fires. In the future, the combination
686 of dense PJ woodland and cheatgrass invasion at CIRO could, in fact, pro-
687 duce a sustained shift in fire and fire-related erosion and sedimentation.

688 Management implications

689 Consistent with historical observations of PJ expansion in the
690 western U.S. (Romme et al., 2009), repeat photography documents

691PJ density increases and downslope infilling at CIRO during the last
692~150 yr (Morris, 2006). Our study documents accelerated PJ infilling
693at CIRO beginning 700 cal yr BP, long before Euro-American settle-
694ment of CIRO commenced in 1888 AD. This long-term PJ expansion
695at CIRO relates largely to climate-driven expansion and/or natural
696post-glacial vegetation colonization, and falls within the natural
697range and variability of this system. However, PJ expansion is often
698attributed to land use practices that include fire exclusion and live-
699stock grazing, which may be enhancing modern tree densities
700(e.g., Shinneman and Baker, 2009; Q19Powell et al., 2013).
701At CIRO,fire has been a natural component of PJwoodlands since col-
702onization, and fires were most frequent after PJ populations expanded
703700 years ago. High-severity fires in dense PJ stands shifted erosional
704processes from sheetflooding tomore catastrophic debrisflows.Modern
705stand densities suggest increased risk of severe fires. For example, dur-
706ing the summer of 2001, a 71-km2 mixed-severity fire that burned
707into the southern portion of CIROwas indeed stand-replacing and light-
708ning caused, indicating that given adequate ignition, the CIRO PJ wood-
709lands are ripe to burn. Along with fire damage, fire-related debris flows
710would likely extend beyond burned areas, threatening park structures
711and infrastructure.

712Conclusions

713Climatically-modulated changes in vegetation, fire regimes and
714geomorphic processes during the last 13,000 yr are inferred from al-
715luvial charcoal and woodrat midden records from CIRO. These records
716reveal fuel and drought controlled fire peaks in the early and late Ho-
717locene, and low fire activity in the dry fuel-limited mid-Holocene. In
718addition, alternations between debris flows and sheetfloods exposed
719in alluvial stratigraphic records reveal variations in erosional re-
720sponse to intense stand-replacing fires burning dense vegetation vs.
721less severe fires burning lower fuel-loads.
722Fires (10,700–9500 cal yr BP) that produced thick debris flow de-
723posits containing abundant Rocky Mountain juniper macrofossils cor-
724respond to warming climate of the Pleistocene–Holocene transition.
725Dense late-glacial juniper forests supplied fuel and colluvium for ep-
726isodic debris flow deposition following large, high severity fires. Re-
727gional climate records indicate an overall cooler/wetter climate
72812,700–8000 cal yr BP, particularly when compared with middle
729and late Holocene climates. This suggests that 10,700–9500 cal yr BP
730fires burned dense fuels that were ignited during episodic drought.
731During the warmer, drier climate of the mid-Holocene (~8000–
7324000 cal yr BP), fire activity was generally low, with the notable ex-
733ception of the interval between 7200 and 6700 cal yr BP. Thick pack-
734ages of fire-related sheetfloods from this interval contain macrofossils
735of limber pine, Rocky Mountain juniper and sagebrush. Other regional
736records show a peak in fire activity ~7.5–6 ka, possibly due to in-
737creased fuel loads and/or increased ignitions during a wetter interval
738in the otherwise dry and stable mid-Holocene.
739According to Great Salt Lake and other paleorecords, arrivals of Utah
740juniper (~3800 cal yr BP) and single-leaf pinyon (~2800 cal yr BP)
741was associated with cooler, wetter conditions during the late Holocene.
742Note, however, that in theWyoming Basins, late Holocene Utah juniper
743migration was associated instead with drought in the central Plains
744(Lyford et al., 2003). It is unclear whether this signifies regional differ-
745ences between the northern Great Basin and the Great Plains, or more
746likely the northward expansion of Utah juniper (and pinyon) is being
747driven by synchronous warming across both regions.
748Nevertheless, following PJ migration, clusters of debris flow-
749producing fires were recorded at 2400–2000, 850–700, and 550–
750400 cal yr BP that burned during annual to decadal droughts preceded
751by annual to decadal intervals of above average moisture (Cook et al.,
7522004). This suggests that variable climate shifted both vegetation and
753fire regime, where high severity fires in dense PJ were no longer limited
754by fuel availability but rather by likelihood of ignition. PJ expansion
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755 stabilized hillslopes and provided ample colluvial supply for post-fire
756 debris flow deposition. Although the gently-sloping, granitic terrain at
757 CIRO is not conducive to debris flow development, episodic fire-related
758 debris flows deposited during the early and late Holocene suggest that
759 fire has pushed erosional responses past geomorphic thresholds.
760 Fires recorded ~550–400 cal yr BP at CIRO and in multiple region-
761 al alluvial charcoal records (Pierce et al., 2004; Nelson and Pierce,
762 2010; Svenson, 2010; Riley, 2012) implies significant regional climate
763 forcings. During the LIA, large fires that produced debris flows burned
764 when cooler, wetter conditions were punctuated by severe droughts
765 (Cook et al., 2004). Although these fires burned at roughly the same
766 time under similar climate conditions, the nature of these fires varied
767 according to ecosystem and pre-fire fuel conditions.
768 At the beginning of this paper,we raised the question ofwhich comes
769 first, the shift in fire and erosion regime or the change in vegetation?Our
770 record indicates since PJ colonization of CIRO, high-severity wildfires
771 have burned dense fuel loads that accumulated and subsequently dried
772 during periods of variable climate. In the last ~150 yr, PJ woodlands
773 have increased in density and expanded into neighboring vegetation
774 communities at CIRO (Morris, 2006) and throughout the western U.S.
775 (Romme et al., 2009). High tree densities and near-continuous cheat-
776 grass cover through the woodland and adjacent open lands have in-
777 creased the risk of crown fires and fire-related debris flows at CIRO.
778 This elevatedfire riskwill be exacerbated by earlier andwarmer growing
779 seasons, and an increased potential for climate extremes in both precip-
780 itation and temperatures caused by amplified levels of atmospheric
781 greenhouse gases (e.g., Groisman et al., 2005; Duffy and Tebaldi, 2012).
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