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2Géoazur, Centre National de la Recherche Scientifique (UMR 6526) Observatoire de la Côte d’Azur, Université de Nice Sophia-Antipolis, Valbonne, France
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S U M M A R Y
Using ambient seismic noise for imaging subsurface structure dates back to the development of
the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the
SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3
matrix of correlations between all pairs of three-component motions, called the correlation
matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from
all directions with equal power, the only non-zero off-diagonal terms in the matrix are the
vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves.
Such combinations were not considered in the development of the SPAC method. The method
originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial
autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer
additional ways to measure Rayleigh wave dispersion within the SPAC framework.

Expanding on the results for isotropic incidence, we derive the complete correlation matrix
in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have
advantageous properties in the presence of an out-of-plane directional wavefield compared
to ZZ and RR correlations. We apply the results for mixed-component correlations to a
data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase
velocity from ZR compared to ZZ correlations. This work together with the recently discovered
connections between the SPAC method and time-domain correlations of ambient noise provide
further insights into the retrieval of surface wave Green’s functions from seismic noise.

Key words: Time series analysis; Interferometry; Surface waves and free oscillations;
Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismologists often encounter signals that do not exhibit distinct P- or S-wave phase arrivals. Examples of these signals include oceanic
microseisms (Tanimoto & Alvizuri 2006; Muyzert 2007a,b), the Earth’s hum (Rhie & Romanowicz 2004), glacial earthquakes (Ekström
et al. 2003), volcanic tremor (Ferrazzini et al. 1991; Haney 2010), volcanic explosions (Chouet et al. 2005) and debris flows such as lahars
(Zobin et al. 2009). For these cases, the seismologist’s standard toolbox, based on picking the arrival times and amplitudes of body-wave
phase arrivals, is not applicable. At best, for short duration signals such as regional earthquakes and teleseisms, passing surface waves can
be identified and used to infer structure of the crust and upper mantle (Dorman & Ewing 1962). Recent advances in seismology, including
ambient noise tomography (ANT), have pioneered the use of extended signals lacking body waves for the purpose of imaging Earth structure.
ANT achieves this goal by correlating long-time recordings of ambient seismic noise within the frequency band dominated by the oceanic
microseism (<1 Hz). Although the proliferation of ambient noise techniques has mostly occurred during the past decade, the idea of correlating
long duration seismic signals from spatially extended sources goes back much further. In fact, the basic approach to interstation correlation
originates over 50 yr ago, in seminal papers by Aki (1957, 1965). Aki’s spatial autocorrelation (SPAC) method has subsequently been used
to study shallow subsurface structure using wavefields composed of microseisms (Okada 2003) and volcanic tremor (Ferrazzini et al. 1991;
Chouet 1996; Chouet et al. 1998; Saccorotti et al. 2003). Okada (2003) provided a comprehensive review of the SPAC method, also known
as the microtremor method.
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Recently, Aki’s work has been revisited in light of advances made in the use of ambient noise following the groundbreaking work of
Campillo & Paul (2003). Connections between time-domain ambient noise correlations and the SPAC method have been explored by several
authors (Chávez-Garcı́a & Luzón 2005; Chávez-Garcı́a et al. 2005; Nakahara 2006; Ekström et al. 2009; Prieto et al. 2009; Tsai 2009;
Harmon et al. 2010; Tsai & Moschetti 2010). In the presence of an isotropic noise field, Nakahara (2006) connected the Fourier transform
of the time-domain ambient noise correlation and the spectral correlation coefficient from the SPAC method. Building on this connection,
Ekström et al. (2009) showed that the zeros in the real part of the spectrum of averaged time-domain correlations could be associated with the
spectral zeros predicted by Aki’s SPAC theory. In the case of an anisotropic noise field, Nakahara (2006) derived expressions for time-domain
ambient noise correlations drawing on results derived in the field of acoustics (Cox 1973; Teal et al. 2002). Through these studies, the SPAC
method and time-domain correlations have been shown to be different but largely equivalent ways of using ambient noise to gain information
on the structure of the subsurface.

Despite the connections forged between the two methods, comparisons between SPAC and time-domain correlations have thus far
been limited to discussions of correlations between vertical–vertical (ZZ) components, with some discussion of radial–radial (RR) and
transverse–transverse (TT) components (Chávez-Garcı́a & Luzón 2005). Cho & Tada (2006) and Tada & Cho (2007) have extended the
SPAC method under general conditions for three-component recordings. However, mixed components of polarized waves, such as ZR and
RZ, have not been considered before. This is due in part to the fact that Aki (1957) only discussed ZZ, RR and TT correlations in the original
paper on the SPAC method. In fact, the SPAC method has its name in part because it considers correlations between identical components,
and therefore, a comparison between the complete Green’s tensor of time-domain correlations and the SPAC method cannot be made. Even
so, several authors have presented the full matrix of possible time-domain ambient noise correlations from three-component instruments
(Campillo & Paul 2003; Stehly et al. 2007; Roux 2009; Durand et al. 2011; Roux et al. 2011). Recent work by Van Wijk et al. (2011) on
the mixed components in the time domain suggests these independent results provide additional information that may be more robust than
the diagonal terms. In this work, we extend the SPAC method to the complete matrix of correlation coefficients and compare the result to
time-domain correlations between three-component instruments. Furthermore, we quantify the sensitivity of the different components of the
correlation matrix to out-of-plane, directional ambient noise. To do so, we proceed in the way shown by Nakahara (2006) for unpolarized
waves recorded on a single vertical component.

For isotropic incidence, our results for the off-diagonal components of the Rayleigh φR and Love φL wave correlation coefficient matrices,
combined with Aki’s results for the main diagonal, can be summarized as follows:

φR(r, ω) =

⎡
⎢⎢⎢⎣

φR
ZZ φR

ZR φR
ZT

φR
RZ φR

RR φR
RT

φR
TZ φR

TR φR
TT

⎤
⎥⎥⎥⎦ = PR(ω) ×

⎡
⎢⎢⎢⎣

J0(ωr/cR) −R J1(|ω|r/cR) 0

R J1(|ω|r/cR) R2 [J0(ωr/cR) − J2(ωr/cR)]/2 0

0 0 R2 [J0(ωr/cR) + J2(ωr/cR)]/2

⎤
⎥⎥⎥⎦

(1)

φL(r, ω) =

⎡
⎢⎢⎢⎣

φL
ZZ φL

ZR φL
ZT

φL
RZ φL

RR φL
RT

φL
TZ φL

TR φL
TT

⎤
⎥⎥⎥⎦ = PL(ω) ×

⎡
⎢⎢⎣

0 0 0

0 [J0(ωr/cL ) + J2(ωr/cL )]/2 0

0 0 [J0(ωr/cL ) − J2(ωr/cL )]/2

⎤
⎥⎥⎦ , (2)

where ω is angular frequency, r is radial distance, cR is Rayleigh wave velocity, cL is Love wave velocity, R is the ratio of the horizontal-to-
vertical motion of the Rayleigh waves, PR is the power spectrum of the Rayleigh waves, PL is the power spectrum of the Love waves and J 0,
J 1 and J 2 are Bessel functions of the zeroth, first and second orders, respectively. Note that the correlation matrix for the Love waves lacks
non-zero off-diagonal components in this case. Thus, Aki’s theory for Love waves is complete for isotropic incidence. Moving beyond an
isotropic wavefield, we also derive the Rayleigh and Love wave correlation coefficient matrices for generally anisotropic incidence (Appendix
A). For anisotropic incidence, all off-diagonal components are non-zero in general for both Rayleigh and Love waves.

In the following, we present the theory for Rayleigh wave propagation in 1-D and 2-D and make connections with the time-domain
Green’s functions. We show the robustness of ZR correlations in the presence of out-of-plane ambient noise. With data from two broadband
seismometers at Akutan Volcano, Alaska, we use ZR correlations to obtain Rayleigh wave dispersion curve measurements within the SPAC
methodology that are complementary to measurements from ZZ correlations.

2 T H E 1 - D C A S E F O R R AY L E I G H WAV E S

We begin by analysing Rayleigh waves in a 1-D setting. Although the results we derive are not the ultimate findings of our study, the 1-D case
has many conceptual similarities to the 2-D case. In this way, we can demonstrate the extensions we propose to the original SPAC method of
Aki (1957) without some of the complexities of the 2-D case. Our derivation follows closely the development of SPAC in Aki (1957) and we
adopt much of the notation used in that paper. We refer to the original manuscript for detailed discussions on the assumptions inherent to the
method.
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The 1-D case generally consists of Rayleigh waves propagating to the left or right within a single vertical plane. The horizontal ux and
vertical uz displacements associated with the Rayleigh wave satisfy

uz(x, t) =
∞∑

n=−∞
An exp (iρn x) cos (cρnt) +

∞∑
n=−∞

Bn

cρn
exp (iρn x) sin (cρnt) (3)

ux (x, t) =
∞∑

n=−∞
−R Ansgn (ρn) exp (iρn x) sin (cρnt) +

∞∑
n=−∞

R
Bn

cρn
sgn (ρn) exp (iρn x) cos (cρnt) (4)

where c is the wave speed, R is the ratio of the horizontal-to-vertical motion and ρn = 2πn/L is the wavenumber associated with the nth
lateral mode over a finite interval of length L. Eq. (3) has the same form as the solution to the 1-D wave equation presented by Aki (1957). To
analyse Rayleigh waves, we have added the coupled equation for ux in eq. (4). The Rayleigh waves considered here are assumed to consist of
a single vertical mode, for example, the fundamental mode as in Aki (1957). Note that ux is different from uz in the following ways:

(i) It generally has a different amplitude, represented by the ellipticity R.
(ii) It is phase-shifted by 90◦ in time.
(iii) The sense of its motion changes whether the Rayleigh wave is propagating to the left or right.

Since ux and uz are real, the factors An and Bn are the complex conjugates of A−n and B−n. Furthermore, as shown in eq. (4) of Aki
(1957), the amplitudes of the different modes are assumed to be uncorrelated random variables (Lobkis & Weaver 2001):

An Am = |An|2 δn,−m (5)

with an analogous relation for Bn. The symbol δ is the Kronecker delta function and the horizontal bar denotes averaging. Since they are
uncorrelated random variables, the different lateral modes are taken to be in a state of white noise.

We first consider the spatial correlation of the vertical components, which was previously analysed by Aki (1957):

φZZ(ξ, t) = uz(x, t) uz(x + ξ, t). (6)

Based on eq. (5) above, the spatial correlation is given by

φZZ(ξ, t) =
∞∑

n=−∞

[
|An|2 cos2 (cρnt) + |Bn |2

c2ρ2
n

sin2 (cρnt)

]
exp (iρnξ ), (7)

where we have used the property

An Bm = −Am Bn δn,−m (8)

to cancel the two terms with dependence on time as sin (cρnt)cos (cρnt). Note that this is different in form than the analogous property invoked
in eq. (6) of Aki (1957), which was simply An Bm = 0. In subsequent uses of these quantities, we omit the horizontal bar but the averaging is
assumed. Thus, Re (AnB−n) = Re (A−nBn) = 0 as in Aki (1957) but the imaginary parts of these terms are non-zero and opposite in sign.

Aki (1957) explains that the condition An Bm = 0 physically means the initial distributions of displacement and particle velocity are
independent. It is worth noting that the alternative condition we adopt in this paper, eq. (8), also satisfies this physical requirement. The
condition in eq. (8) is less restrictive than the condition from Aki (1957): it implies that the sum of the terms AnB−n and A−nBn is zero instead
of each term being equal to zero individually. This distinction was not important for Aki (1957) since mixed-components were not analyzed,
but will play a major role here.

As pointed out by Aki (1957), the time dependence in eq. (7) can be removed if we assume that

|An |2 = |Bn |2
c2ρ2

n

= |G(ρn)|2 �ρn

2π
. (9)

This is the equipartition condition, with G being a deterministic variable. The equipartition condition physically means that the different
modes contribute an equal amount of energy (Snieder et al. 2010). In this way, eq. (7) loses its dependence on time and becomes

φZZ(ξ ) =
∞∑

n=−∞
|G(ρn)|2 �ρn

2π
exp (iρnξ ). (10)

As shown by Aki (1957), we can transition from the discrete wavenumber ρn to a continuous variable ρ and change the summation to an
integral

φZZ(ξ ) = 1

2π

∫ ∞

−∞
|G(ρ)|2 exp (iρξ ) dρ. (11)

The crux of Aki’s method is that we can map the wavenumber ρ integral to a frequency ω integral by a change of variables ρ = ω/c

φZZ(ξ ) = 1

2π

∫ ∞

−∞
|G(ω/c)|2 exp

( iω

c
ξ
) dρ

dω
dω. (12)

Aki (1957) further argues that the term |G(ω/c)|2 dρ/dω is equal to the spectral power 	(ω). As a result

φZZ(ξ ) = 1

2π

∫ ∞

−∞
	(ω) exp

( iω

c
ξ
)

dω. (13)

C© 2012 The Authors, GJI, 191, 189–206

Geophysical Journal International C© 2012 RAS



192 M. M. Haney et al.

For a narrowband signal centred at ω = ±ω0, 	 (ω) = πP (ω0) δ (ω − ω0) + πP (−ω0) δ (ω + ω0). If P (ω0) = P (−ω0), the correlation
coefficient can then finally be written as

φZZ(ξ, ω0) = P(ω0) cos

[
ω0

c(ω0)
ξ

]
. (14)

This equation shows that in 1-D the correlation coefficient is given by the cosine function (Aki 1957). This result also holds for the correlation
coefficient of the horizontal components φXX, except that φXX is multiplied by a factor equal to the squared ellipticity, R2.

We now analyse the correlation coefficient that results from mixing vertical and horizontal components. These were not considered by
Aki (1957) in his original paper. First we look at the ZX correlation

φZX(ξ, t) = uz(x, t) ux (x + ξ, t). (15)

Similar to eq. (7), we write the expression for the correlation coefficient by exploiting the fact that the different modes are uncorrelated
random variables

φZX(ξ, t) = R
∞∑

n=−∞

[
− An B−n

cρn
sgn (ρ−n) cos2 (cρnt) + A−n Bn

cρn
sgn (ρ−n) sin2 (cρnt)

]
exp (iρnξ ), (16)

where now the equipartition condition in eq. (9) has removed terms with dependence on time as sin (cρnt) cos (cρnt). We previously discussed
that the condition AnB−n = −A−nBn removed the terms with dependence on time as sin (cρnt) cos (cρnt) from the expression for φZZ. Here,
we use the relation AnB−n = −A−nBn to remove the time-dependence from φZX. We arrive at

φZX(ξ ) = R
∞∑

n=−∞
− An B−n

cρn
sgn (ρ−n) exp (iρnξ ) = R

∞∑
n=−∞

An B−n

cρn
sgn (ρn) exp (iρnξ ). (17)

For the term containing the product of AnB−n in the above equation, we substitute the following relationship

An B−n

cρn
= − A−n Bn

cρn
= i|G(ρn)|2 �ρn

2π
. (18)

This relationship agrees with the equipartition condition, eq. (9), in that

An B−n

cρn
× A−n Bn

cρn
= |G(ρn)|4

(
�ρn

2π

)2

(19)

which is the same as

|An|2 × |Bn |2
c2ρ2

n

= |G(ρn)|4
(

�ρn

2π

)2

(20)

as it should be. Furthermore, the condition in eq. (18) reflects the fact that the terms AnB−n and A−nBn are purely imaginary. Finally, the sign
convention we use in eq. (18) is consistent with the convention used to define Rayleigh wave ellipticity in Aki & Richards (1980, 2002), in
which retrograde motion corresponds to a negative value for R. We further demonstrate this consistency in the following section.

Substituting eq. (18) into the summation in eq. (17) results in a Riemann sum in terms of the discrete wavenumber

φZX(ξ ) = R
∞∑

n=−∞
i|G(ρn)|2 �ρn

2π
sgn (ρn) exp (iρnξ ), (21)

which, as discussed before, can be approximated in the limit as an integral

φZX(ξ ) = R

2π

∫ ∞

−∞
i|G(ρ)|2 sgn (ρ) exp (iρξ ) dρ. (22)

Changing the variable of integration to frequency instead of wavenumber gives

φZX(ξ ) = R

2π

∫ ∞

−∞
i|G(ω/c)|2 sgn (ω/c) exp

( iω

c
ξ
) dρ

dω
dω. (23)

Making use of the result by Aki (1957) that the term |G(ω/c)|2 dρ/dω is equal to the spectral power 	(ω) yields

φZX(ξ ) = R

2π

∫ ∞

−∞
	(ω) isgn (ω) exp

( iω

c
ξ
)

dω, (24)

where we set sgn (ω) = sgn (ω/c) since the phase velocity c is always positive. For a narrowband signal centred at ω = ±ω0, 	(ω) = πP
(ω0)δ(ω − ω0) + πP (−ω0)δ(ω + ω0) and, when P (ω0) = P (−ω0), the correlation coefficient becomes

φZX(ξ, ω0) = −P(ω0)R sgn (ω0) sin

[
ω0

c(ω0)
ξ

]
= −P(ω0)R sin

[ |ω0|
c(ω0)

ξ

]
. (25)

This equation shows that in 1-D the correlation coefficient for the ZX correlation is given by the sine function. An important aspect of this
derivation is the presence of the absolute value for the frequency |ω0| in eq. (25). As we will see, the absolute value ensures that the correlation
function φZX is closely related to the ZX component of the Rayleigh wave Green’s function in 1-D. Since the imaginary parts of the two terms
with An and Bn in eq. (18) are opposite in sign, the XZ component of the correlation coefficient matrix φXZ is equal to the negative of φZX.

Eq. (25) foreshadows the 2-D case since we know from Aki (1957) that the ZZ correlation is the zero order Bessel function J 0. By
analogy between cosine and J 0, we can expect the ZR correlation to be dependent on the first order Bessel function J 1, since J 1 is analogous
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with sine. In a later section, we will rigorously show that this is indeed the case. We can summarize our results for 1-D Rayleigh waves as
follows:

φR(x, ω) =
⎡
⎣ φR

ZZ φR
ZX

φR
XZ φR

XX

⎤
⎦ = P(ω)

[
cos (ωx/c) −R sin (|ω|x/c)

R sin (|ω|x/c) R2 cos (ωx/c)

]
. (26)

In the next section, we discuss the relationship between this matrix and the Green’s function matrix for Rayleigh waves in 1-D.

3 R E L AT I O N T O T H E G R E E N ’ S F U N C T I O N I N 1 - D

As in Nakahara (2006), we now show that there is a relationship between the correlation matrix and the Green’s function matrix. The Green’s
matrix for Rayleigh waves is given by eqs (7.108)–(7.110) in Aki & Richards (1980) or eqs (7.109)–(7.111) in Aki & Richards (2002). The
matrix for the fundamental mode Rayleigh wave is

G(x, ω) =
⎡
⎣ GZZ GZX

GXZ GXX

⎤
⎦ = 1

2cU I1
× c

2ω
×

⎧⎪⎨
⎪⎩

r 2
2 exp

( iω

c
x + i

π

2

)
r1r2 exp

[ iω

c
x + i

π

2
+ isgn (ω)

π

2

]
r1r2 exp

[ iω

c
x + i

π

2
− isgn (ω)

π

2

]
r 2

1 exp
( iω

c
x + i

π

2

)
⎫⎪⎬
⎪⎭ , (27)

where r1 and r2 are values of the horizontal and vertical components of the Rayleigh wave eigenfunction at the surface, U is the group
velocity and I1 is a integral over depth of density weighted by the eigenfunctions at depth. Note the presence of the Hilbert transform operator
exp [−isgn (ω) π

2 ] = −isgn (ω) in the off-diagonal components. For our purposes, we take the normalization as r 2
2 /(2cU I1) = 1, which is

slightly different than the normalization used by Snieder (2002), 1/(8cUI1) = 1. With this normalization, r1/r2 is equal to the ratio of the
horizontal-to-vertical motion, R. Thus the Green’s matrix becomes

G(x, ω) = c

2ω

⎧⎪⎨
⎪⎩

exp
( iω

c
x + i

π

2

)
R exp

[ iω

c
x + i

π

2
+ isgn (ω)

π

2

]
R exp

[ iω

c
x + i

π

2
− isgn (ω)

π

2

]
R2 exp

( iω

c
x + i

π

2

)
⎫⎪⎬
⎪⎭ . (28)

Comparing eq. (26) to eq. (28), Nakahara (2006) found the relationship between the correlation coefficient and the Green’s function in 1-D
to be

φZZ = − iω

c

(
GZZ − G∗

ZZ

) = 2ω

c
Im (GZZ) (29)

for the unpolarized ZZ component. Note that, for this relation to hold, the normalization P (ω) = 1 is used in eq. (26). This relationship shows
that the correlation coefficient is proportional to the time-derivative of the difference between the Green’s function and the time-reversed
Green’s function. Since φZZ and φXX are proportional to each other, this relation holds for the XX component.

We now show that the relationship holds for the off-diagonal components as well. First, consider the ZX component for positive
frequencies ω > 0. From eq. (28), we find that

Im (GZX) = − Rc

2ω
sin (ωx/c) = − Rc

2ω
sin (|ω|x/c). (30)

For negative frequencies ω < 0, we also find

Im (GZX) = Rc

2ω
sin (ωx/c) = − Rc

2ω
sin (|ω|x/c). (31)

such that, in both cases, φZX = (2ω/c) × Im (GZX) = −Rsin (|ω|x/c) and the expression for φZX in eq. (26) is verified. The expression for φXZ

can similarly be verified and the connection between any element of the matrix of correlation coefficients φij and the Green’s function matrix
Gij can be written as

φi j = − iω

c
(Gi j − G∗

i j ) = 2ω

c
Im

(
Gi j

)
. (32)

We now turn to expressions for the correlation coefficient matrix in the time domain. As shown by Nakahara (2006), the expression for
φZZ in the time domain follows as:

φZZ(x, t) = F−1[cos (ωx/c)] = 1

2
δ
(

t − x

c

)
+ 1

2
δ
(

t + x

c

)
, (33)

where F−1 denotes the inverse Fourier transform. In the context of Rayleigh waves, this result is applicable to a homogeneous half-space since
c generally varies as a function of frequency. However, the result is applicable to Rayleigh waves within a narrow frequency band defined by
the power spectrum P (ω0), within which c does not vary greatly. For the φZX component, we need to compute

φZX(x, t) = 1

2π

∫ ∞

−∞
−R sin (|ω|x/c) exp (−iωt)dω = R

4π

∫ ∞

−∞
i

[
exp

(
i|ω|

c
x

)
− exp

(
− i|ω|

c
x

)]
exp (−iωt) dω, (34)

where similarly to φZZ, we have assumed R and c are frequency independent. We proceed by breaking the integral in eq. (34) into two integrals
over positive and negative frequencies

φZX(x, t) = R

4π

∫ ∞

0
i
[
exp

( iω

c
x
)

− exp
(
− iω

c
x
)]

exp (−iωt) dω + R

4π

∫ 0

−∞
i
[
exp

(
− iω

c
x
)

− exp
( iω

c
x
)]

exp (−iωt) dω. (35)
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We then recombine the integrals into two integrals over the entire frequency range

φZX(x, t) = R

4π

∫ ∞

−∞
i sgn (ω) exp

( iω

c
x
)

exp (−iωt) dω − R

4π

∫ ∞

−∞
i sgn (ω) exp

(
− iω

c
x
)

exp (−iωt) dω. (36)

From these expressions, it is clear that we are taking the inverse Fourier transform of the Hilbert transform operator −isgn (ω). This transform
is known as the Hilbert transform H of the delta function, H[δ(t)] = −1/π t. We refer to this function in the shorthand notation H[δ(t)] =
δH (t). As a result, the φZX component in the time domain can be written as

φZX(x, t) = R

2
δH

(
t + x

c

)
− R

2
δH

(
t − x

c

)
. (37)

Whereas eq. (33) consisted of two propagating delta functions, eq. (37) indicates that there are two propagating waveforms which are the
Hilbert transform of the delta function. Although the Hilbert transform of the delta function is an asymmetric wavelet, the two waveforms
are subtracted and so the ZX correlation is symmetric with respect to t = 0. Thus, it is possible to average the positive and negative lags of
the correlation in the time domain to obtain the so-called symmetric component (Lin et al. 2008). The Hilbert transform of the delta function
is the waveform since, relative to φZZ, the ZX component is phase shifted by 90◦. This is a direct result of the elliptical polarization of the
Rayleigh wave, as exploited in Van Wijk et al. (2011).

The final issue we discuss for the 1-D case concerns the correlation coefficients when the incident energy is anisotropic. Although we
did not point it out at the time, our assumption in the discussion after eq. (13), that the power spectrum was an even function of frequency (or,
by ρ = ω/c, an even function of wavenumber), is equivalent to assuming that the incident energy is equal from both directions. When this is
not the case, we find the general form for φZZ(x, ω0) to be

φZZ(x, ω0) = P(ω0)

2
exp

( iω0

c
x
)

+ P(−ω0)

2
exp

(
− iω0

c
x
)

, (38)

where P (ω0) �= P (−ω0). If we set P (ω0) = 2A and P (−ω0) = 2B and transform to the time domain, we find, in agreement with Nakahara
(2006), that

φZZ(x, t) = Aδ
(

t − x

c

)
+ Bδ

(
t + x

c

)
. (39)

In other words, the delta functions at negative and positive time-lags do not have the same amplitude. The presence of anisotropic incident
energy in 1-D does not cause there to be acausal ‘ghost’ waveforms, as exist for anisotropic incident energy in 2-D (Nakahara 2006). By
analogy with φZZ, we find that the general form for φZX(x, ω0) in 1-D is given by

φZX(x, ω0) = iR

[
P(ω0)

2
sgn (ω0) exp

( iω0

c
x
)

+ P(−ω0)

2
sgn (−ω0) exp

(
− iω0

c
x
)]

. (40)

Again setting P (ω0) = 2A and P (−ω0) = 2B and transforming to the time domain, we find the general form to be

φZX(x, t) = R
[

BδH
(

t + x

c

)
− AδH

(
t − x

c

)]
. (41)

Just as seen with φZZ, the right- and left-going waveforms in this case are not equal in amplitude. Before leaving the 1-D case, note that the
difference between the expressions in eqs (13) and (24) is the presence of the term Risgn(ω) within the integrand of eq. (24). This means that
φZX is related to φZZ by multiplication by R and a Hilbert transform. We utilize this property in the 2-D case to simplify the derivation for the
vertical–radial correlation φZR.

4 T H E 2 - D C A S E F O R R AY L E I G H WAV E S

We turn our attention to Rayleigh waves along a 2-D surface. The previous development of the 1-D case serves as a useful guide for the 2-D
case. This was also the approach taken by Aki (1957) in the original derivation of SPAC. By analogy with eqs (3) and (4), the three-component
displacements associated with Rayleigh waves in 2-D satisfy

uz(x, y, t) =
∑

n

∑
m

Anm exp [iρnr cos (θm − ψ)] cos (cρnt) +
∑

n

∑
m

Bnm

cρn
exp [iρnr cos (θm − ψ)] sin (cρnt) (42)

ur (x, y, t) = R
∑

n

∑
m

−Anm cos (θm − ψ) exp [iρnr cos (θm − ψ)] sin (cρnt)

+ R
∑

n

∑
m

Bnm

cρn
cos (θm − ψ) exp [iρnr cos (θm − ψ)] cos (cρnt) (43)

uψ (x, y, t) = R
∑

n

∑
m

−Anm sin (θm − ψ) exp [iρnr cos (θm − ψ)] sin (cρnt)

+ R
∑

n

∑
m

Bnm

cρn
sin (θm − ψ) exp [iρnr cos (θm − ψ)] cos (cρnt), (44)

where r =
√

x2 + y2 and ψ = tan −1(y/x) are the radial distance and azimuthal angle describing the relative positions of the two seismometers.
In contrast to the 1-D case, the displacements are now the result of two summations over the radius ρn and polar angle θm for the wavenumber.
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Another difference with the 1-D case is that the factor sgn(ρn) does not appear in eqs (43) and (44) as it did in eq. (4). This is because the
sign change due to different propagation directions is implicitly handled by the factors cos (θm − ψ) and sin (θm − ψ). Finally, note that
the Rayleigh waves in eqs (42)–(44) do not necessarily propagate along the direct path between the receivers and, as a result, the horizontal
particle motion is in general not strictly radial.

We first consider the spatial correlation of the vertical components (ZZ) before moving on to the mixed-component ZR correlation

φZZ(r, ψ, t) = uz(x0, y0, t) uz(x0 + r cos ψ, y0 + r sin ψ, t). (45)

Similar to the 1-D case, we find that

φZZ(r, ψ, t) =
∑

n

∑
m

[
|Anm |2 cos2 (cρnt) + |Bnm |2

c2ρ2
n

sin2 (cρnt)

]
exp [iρnr cos (θm − ψ)]. (46)

The equipartition condition in 2-D relates the Anm and Bnm coefficients as

|Anm |2 = |Bnm |2
c2ρ2

n

= |G(ρn, θm)|2 ρn�ρn�θm

(2π )2
. (47)

Inserting this into eq. (46), we obtain the following expression

φZZ(r, ψ) =
∑

n

∑
m

|G(ρn, θm)|2 ρn�ρn�θm

(2π )2
exp [iρnr cos (θm − ψ)]. (48)

As shown previously in 1-D, we can transition from the discrete wavenumber ρn and discrete polar angle θm to the continuous variables ρ

and θ . This transition changes the summation to an integral

φZZ = 1

(2π )2

∫ ∞

0

∫ 2π

0
|G(ρ, θ )|2 exp [iρr cos (θ − ψ)]ρ dρ dθ. (49)

From Cox (1973), the exponential in this equation can be expressed as a summation over cylindrical harmonics

exp [iρr cos (θ − ψ)] =
∞∑

m=−∞
im Jm(ρr ) exp [−im(θ − ψ)]. (50)

Inserting this infinite series into eq. (49) gives

φZZ = 1

2π

∫ ∞

0

∞∑
m=−∞

im Jm(ρr )

[
1

2π

∫ 2π

0
|G(ρ, θ )|2 exp [−im(θ − ψ)] dθ

]
ρ dρ. (51)

We further assume that G can be split into separate terms dependent on ρ and θ as |G(ρ, θ )|2 = |G(ρ)|2p (θ ). Inserting this into the above
expression results in

φZZ = 1

2π

∫ ∞

0
|G(ρ)|2ρ

∞∑
m=−∞

im Jm(ρr ) γm dρ, (52)

where the angular variation determines the following factor γ m

γm = 1

2π

∫ 2π

0
p(θ ) exp [−im(θ − ψ)] dθ. (53)

As in the 1-D case, we implement the change of variables ρ = ω/c to obtain

φZZ = 1

π

∫ ∞

0

1

2
|G(ω/c)|2 ω

c

dρ

dω

∞∑
m=−∞

im Jm

(ω

c
r
)

γm dω. (54)

As shown by Aki (1957), we find that the spectral power is given by

	(ω) = 1

2
|G(ω/c)|2 ω

c

dρ

dω
dω (55)

and upon substituting this expression into eq. (54), we find that

φZZ = 1

π

∫ ∞

0
	(ω)

∞∑
m=−∞

im Jm

(ω

c
r
)

γm dω. (56)

Finally, we take the wavefield to be narrowband by assuming 	(ω) = πP (ω0) δ (ω − ω0), which yields

φZZ = P(ω0)
∞∑

m=−∞
im Jm

(ω0

c
r
)

γm . (57)

Since p(θ ) is real, γ−m = γ ∗
m and the two-sided infinite series can be rewritten as

φZZ = P(ω0)
∞∑

m=0

εmim Jm

(ω0

c
r
)

Re [γm] (58)

where ε0 = 1 and εm = 2 for m �= 0. For an isotropic wavefield, one in which energy propagates equally in all directions, p(θ ) = 1, γ 0 = 1
and γ m = 0 for m �= 0. In this case,
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φZZ = P(ω0)J0

(ω0

c
r
)

(59)

which is the well-known result of Aki (1957) for unpolarized waves.
Using the methodology demonstrated above for the ZZ correlation, we now consider the ZR correlation given by

φZR(r, ψ, t) = uz(x0, y0, t) ur (x0 + r cos ψ, y0 + r sin ψ, t). (60)

The derivation in this case follows similar logic as the above derivation for φZZ and therefore we only point out the differences for φZR. Due
to the term cos (θ − ψ) in eq. (43), the factor γ m is different from the φZZ case and is given by

γm = 1

2π

∫ 2π

0
p(θ ) cos (θ − ψ) exp [−im(θ − ψ)] dθ. (61)

As pointed out in the 1-D case, φZR is different from φZZ in that the term R isgn(ω) acts as an additional frequency filter for φZR. This results
in the following expression for φZR

φZR = R

π

∫ ∞

0
i sgn (ω)	(ω)

∞∑
m=−∞

im Jm

(ω

c
r
)

γm dω. (62)

Again, we take 	(ω) = πP (ω0) δ (ω − ω0), resulting in

φZR = R P(ω0) i sgn (ω0)
∞∑

m=−∞
im Jm

(ω0

c
r
)

γm . (63)

Since p(θ ) is real, γ−m = γ ∗
m and the two-sided infinite series can be rewritten as

φZR = R P(ω0) i sgn (ω0)
∞∑

m=0

εmim Jm

(ω0

c
r
)

Re [γm], (64)

where as before, ε0 = 1 and εm = 2 for m �= 0.
For an isotropic wavefield, p(θ ) = 1, γ 1 = 1/2 and γ m = 0 for m �= 1. In this case,

φZR = −R P(ω0)J1

(ω0

c
r
)

sgn (ω0) = −R P (ω0) J1

( |ω0|
c

r

)
, (65)

where the absolute value follows from the fact that Jm(x) is an odd function of x if m is an odd number, with Jm(x) an even function otherwise.
This result shows that the correlation function for the ZR component is given by the first-order Bessel function J 1 in the case of an isotropic
wavefield as opposed to the zeroth-order Bessel function for the ZZ component. Although results for SPAC are often given as normalized
correlation functions, with the normalization at r = 0 (Aki 1957; Chouet 1996), here we can see that such a normalization is not possible
for the ZR correlation since φZR is equal to 0 at r = 0. As a result, we have chosen to present correlation functions that are not normalized
throughout this paper. The lack of normalization means that all of our expressions contain the spectral power at the reference frequency
P (ω0).

As we saw previously for the 1-D case, it can be shown that the RZ correlation is the negative of the ZR correlation. Although the two
correlations are equal to each other in magnitude, they do constitute independent measurable quantities since they utilize different components
of the wavefield. Thus it is correct to consider both the ZR and RZ correlations as independent quantities. The RR and TT correlations were
considered previously by Aki (1957) for an isotropic Rayleigh wavefield and shown to be given by

φRR = R2 P(ω) [J0(ωr/cR) − J2(ωr/cR)]/2, (66)

and

φTT = R2 P(ω) [J0(ωr/cR) + J2(ωr/cR)]/2. (67)

Note that Aki (1957) used normalized correlation functions whereas these are not normalized. A surprising result from Aki (1957) is that the
TT correlation in the presence of an isotropic Rayleigh wavefield is not zero. It is important to remember that asymptotically J 2(x) = −J 0(x)
for large x. Thus, in the far field, φTT = 0 and φRR is proportional to φZZ by a factor of R2, that is φRR = R2P (ω) J 0(ωr/cR). However, in the
near field, φTT is non-zero. Due to the connections with the time-domain Green’s function, as shown in the next section, this means that in
the near-field of a transverse force source, Rayleigh waves are measured on a transverse receiver.

The remaining correlations involve combinations of Z or R components with the transverse component: ZT , TZ, RT and TR. For an
isotropic wavefield, all of these terms are equal to zero. In Appendix A, we show the γ m for these components in the case of generally
anisotropic incidence. For isotropic incidence, the γ m for these components are given in Appendix B by setting the angular range variable
� = 180◦. Following this procedure for the ZT , TZ, RT and TR components shows that they are indeed equal to zero for isotropic
incidence.

As shown previously, we can summarize the results for Rayleigh waves in 2-D in the presence of isotropic incidence with the complete
correlation matrix

φR(r, ω) =

⎡
⎢⎢⎢⎣

φR
ZZ φR

ZR φR
ZT

φR
RZ φR

RR φR
RT

φR
TZ φR

TR φR
TT

⎤
⎥⎥⎥⎦ = PR(ω) ×

⎡
⎢⎢⎣

J0(ωr/cR) −R J1(|ω|r/cR) 0

R J1(|ω|r/cR) R2 [J0(ωr/cR) − J2(ωr/cR)]/2 0

0 0 R2 [J0(ωr/cR) + J2(ωr/cR)]/2

⎤
⎥⎥⎦ , (68)
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where PR(ω) is the power spectrum of the Rayleigh waves. As shown in Appendix A, anisotropic incidence generally causes the off diagonal
terms that are zero for isotropic incidence to become non-zero. Anisotropic incidence also causes the correlation matrix to become complex-
valued. For Love waves, all off-diagonal terms are zero in the case of isotropic incidence, meaning that only RR and TT components exist
since ZZ is equal to zero. Thus, the results of Aki (1957) for the main diagonal are complete for Love waves. Note that, in the presence of
both Rayleigh and Love wave energy, the ZZ, ZR and RZ components are not affected by the Love waves. This is in contrast to the RR and TT
coefficients, which are sensitive to both Rayleigh and Love waves, at least within the near-field as described above. In Appendix A, we give
expressions for both Rayleigh and Love wave correlation matrices in the case of generally anisotropic incidence.

5 R E L AT I O N T O T H E G R E E N ’ S F U N C T I O N I N 2 - D

As in the 1-D case, we now show that there is a relationship between the 2-D correlation matrix and the Green’s function matrix. The Green’s
matrix for Rayleigh waves is given in the far-field by eq. (7.146) in Aki & Richards (1980) or eq. (7.147) in Aki & Richards (2002). The
matrix for the fundamental mode Rayleigh wave is

G(x, ω) =
⎡
⎣GZZ GZR

GRZ GRR

⎤
⎦ = 1

8cU I1
×
√

2c

π |ω|r ×

⎧⎪⎪⎨
⎪⎪⎩

r 2
2 exp

[ iω

c
r + i sgn (ω)

π

4

]
r1r2 exp

[
iω

c
r + i sgn (ω)

3π

4

]

r1r2 exp
( iω

c
r − i sgn (ω)

π

4

]
r 2

1 exp
[ iω

c
r + i sgn (ω)

π

4

]
⎫⎪⎪⎬
⎪⎪⎭ , (69)

where r1 and r2 are values of the radial and vertical components of the Rayleigh wave eigenfunction at the surface, U is the group velocity and
I1 is a integral over depth of density weighted by the eigenfunctions at depth. Note that the Green’s matrix in Aki & Richards (1980, 2002)
is a 3 × 3 in terms of the three Cartesian coordinates x, y and z. Here, we use a 2 × 2 matrix in terms of the radial and vertical components,
r and z, since the Rayleigh waves only exist on those components in the far-field. We again take the normalization as r 2

2 /(2cU I1) = 1. With
this normalization, r1/r2 is equal to the ratio of the horizontal-to-vertical motion, R. Thus the Green’s matrix becomes

G(r, ω) = 1

4
×
√

2c

π |ω|r

⎧⎪⎪⎨
⎪⎪⎩

exp
[ iω

c
r + i sgn (ω)

π

4

]
R exp

[
iω

c
r + i sgn (ω)

3π

4

]

R exp
[ iω

c
r − i sgn (ω)

π

4

]
R2 exp

( iω

c
r + i sgn (ω)

π

4

]
⎫⎪⎪⎬
⎪⎪⎭ . (70)

Nakahara (2006) found a relationship between the correlation coefficient and the Green’s function in 2-D. For the unpolarized ZZ correlation,
the relation between the two is

H [φZZ] = −2(GZZ − G∗
ZZ), (71)

where H denotes the Hilbert transform operator exp [−isgn (ω) π

2 ] = −isgn (ω). As in the 1-D case, the normalization P (ω) = 1 is used for
φZZ in this expression. We point out that there is a difference in sign between eq. (71) and the result of Nakahara (2006). This stems from
the fact that there is a sign difference in the definition of the 2-D Green’s function in eq. (18.23) of Snieder (2001), on which the result of
Nakahara (2006) was based, and the Rayleigh wave Green’s function in eq. (7.100) of Aki & Richards (1980). The sign difference arises
because the forcing terms shown in these two references are on opposite sides of the 2-D wave equation. Note that there was no difference
in sign for the previously considered 1-D case, eq. (29), and the corresponding result of Nakahara (2006). This is because, in addition to the
sign difference, a sign error exists in the expression for the 1-D Green’s function in eqs (18.55) and (18.56) of Snieder (2001).

In the following, we show that the relation in eq. (71) holds for the ZR component in 2-D. In contrast to the 1-D case, we rely on
asymptotic approximations of Bessel functions to show this and therefore the demonstration applies to the far-field. This is necessary since
the Green’s matrix eq. (69) is derived in the far-field. From Snieder (2001), we know that the Bessel function of any order can be written as
the sum of Hankel functions of the same order of both the first and second kind

Jm

(ω

c
r
)

= 1

2

[
H (1)

m

(ω

c
r
)

+ H (2)
m

(ω

c
r
)]

. (72)

For large values of ωr/c, this can be expressed in the far-field as the sum of exponentials

Jm

(ω

c
r
)

∼ 1

2

√
2c

π |ω|r
{

exp

[
iω

c
r − i

(
m + 1

2

)
sgn (ω)

π

2

]
+ exp

[
− iω

c
r + i

(
m + 1

2

)
sgn (ω)

π

2

]}
. (73)

For ω > 0, we use this expression for m = 1 and find that

−R J1

( |ω0|
c

r

)
= − R

2

√
2c

π |ω|r
[
i exp

(
− iω

c
r
)

− exp
( iω

c
r
)]

exp
( iπ

4

)
. (74)

For the Green’s function, we take the following expression from the matrix in eq. (70) for ω > 0

GZR = 1

4
×
√

2c

π |ω|r R exp

(
iω

c
r + i

3π

4

)
(75)

to find that

−2(GZR − G∗
ZR) = − R

2

√
2c

π |ω|r
[
i exp

( iω

c
r
)

+ exp
(
− iω

c
r
)]

exp
( iπ

4

)
. (76)
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Eqs (74) and (76) can be made equal to each other if eq. (74) is multiplied by a factor of −i. This factor is the Hilbert transform operator −isgn
(ω) for the case we are currently considering, ω > 0. The equivalence we have just shown for ω > 0 is demonstrated for ω < 0 in Appendix
C. Therefore, we have shown that

H [φi j ] = −2(Gi j − G∗
i j ) (77)

holds for all components of the correlation matrix and the Green’s function matrix.

6 R E S I L I E N C Y T O G H O S T S

The ZR and RZ correlations have advantageous properties compared to the ZZ correlation in the presence of anisotropic ambient noise. We
demonstrate these properties theoretically here, but this has also been shown observationally by Van Wijk et al. (2011). To investigate the
robustness of the ZR correlation, we proceed in the manner of Nakahara (2006) and study the theoretical time-domain correlation functions
within a cone of times prior to the arrival of the direct wave. Since a relationship exists between correlation functions and the Green’s function,
there should ideally be no high-amplitude arrivals prior to the direct wave. As we show here, such arrivals—called ‘ghost’ arrivals—do occur
when the noise wavefield is highly anisotropic in the out-of-plane direction between two seismometers. The ghost arrivals are more pronounced
in ZZ correlations compared to ZR correlations and as a result, the ZR correlations can be considered to be more robust.

The situation we consider is shown in Fig. 1, where two stations are subjected to highly directional seismic noise centred about the
azimuth φ0 and spanning an angular range of 2�. From Nakahara (2006), the time-domain expressions for the ZZ correlation and its Hilbert
transform are given for |t| < r/c as

φZZ(r, t) = 1

π

m=∞∑
m=0

εmRe [γm]
Tm(ct/r )√
(r/c)2 − t2

(78)

and

H [φZZ(r, t)] = 2c

πr

m=∞∑
m=1

Re [γm]Um−1

(
ct

r

)
, (79)

where we take the azimuth between the stations to be 0◦. In these expressions, Tm(ct/r) and Um −1(ct/r) are the mth order Chebyshev
polynomials of the first kind and (m − 1)th order Chebyshev polynomials of the second kind, respectively. Nakahara (2006) showed that for
a restricted angular range � of incident energy in a cone centred about azimuth φ0, the coefficient γ m is given by

Re [γm] = cos [m(φ0 − ψ)] sinc (m�). (80)

This result is also given in eq. (B1) in Appendix B along with other angular integrals for incident energy within a range of angles.
For the expression for the ZR correlation in the time domain, we take advantage of the fact that the main differences with the ZZ

correlation are that the ZR correlation is

(i) Hilbert transformed compared to the ZZ correlation.
(ii) Multiplied by the ratio of the radial-to-vertical motion R.
(iii) Subject to a different γ m coefficient given by eq. (61) instead of eq. (53).

Taking these differences into account, we find that the time-domain expressions for the ZR correlation and its Hilbert transform are
given for |t| < r/c as

φZR(r, t) = −2cR

πr

m=∞∑
m=1

Re [γm] Um−1

(
ct

r

)
(81)

and

H [φZR(r, t)] = R

π

m=∞∑
m=0

εm Re [γm]
Tm(ct/r )√
(r/c)2 − t2

(82)

Figure 1. Angles used to demonstrate the effect of anisotropic incidence on correlations.
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Figure 2. Comparison of ghosts in ZZ and ZR correlations for φ0 = 75◦ and four types of directional noise: isotropic incidence (� = 180◦), incidence from
a half-plane (� = 90◦), a cone of angles given by � = 30◦, and a narrow cone of � = 5◦. The correlations φZZ and φZR are given as dashed lines, with
their Hilbert transforms shown as solid lines. Time has been normalized by distance and phase velocity as in Nakahara (2006). A normalized time of unity is
therefore equal to the arrival time of the direct wave between the stations.

with the coefficient γ m derived from eq. (B2) in Appendix B and given as

Re [γm] = cos [(m − 1)(φ0 − ψ)] sinc [(m − 1)�]

2
+ cos [(m + 1)(φ0 − ψ)] sinc [(m + 1)�]

2
. (83)

In Fig. 2, we evaluate and plot the theoretical expressions for the ZZ and ZR correlations and their Hilbert transforms in eqs (78), (79),
(81) and (82) by taking terms in the summations up to m = 10 000. The plots are shown for a noise azimuth of φ0 = 75◦ and four types of
directional noise: isotropic incidence (� = 180◦), incidence from a half-plane (� = 90◦), a cone of angles given by � = 30◦ and a narrow
cone of � = 5◦. Comparison of the ZZ and ZR correlations shows that the ZR correlation is less susceptible than ZZ to acausal ghost arrivals
that develop for � = 30◦ and � = 5◦. The resiliency to ghosts for ZR correlations is due to the γ m coefficient in eq. (61). The polarization of
the waves in the ZR case acts as a spatial filter that dampens the out-of-plane ghost arrivals. This makes the ZR correlations more desirable
when considering relatively short time windows for the correlations, when the condition of isotropic incidence has a smaller likelihood of
being satisfied. In practice, the length of the time window in time-lapse noise correlation studies involves a tradeoff between convergence
to the ideal Green’s function and the desire to have adequate time resolution. For example, in Haney (2009), correlations of infrasound
noise averaged over 10 hr were able to detect day-long variations in sound speed due to changing atmospheric conditions. The robustness
demonstrated in Fig. 2 means the ZR correlations are a better candidate for use in detecting time-lapse changes with seismic noise than ZZ
correlations. Fig. 3 shows the case when the waves propagate perpendicular to the line of receivers, when φ0 = 90◦. The dampening effect
of the acausal ghost arrivals is observed to be even more powerful for ZR compared to ZZ. Note that in the presence of both Rayleigh and
Love wave noise, the ZZ and ZR correlations are unaffected by the Love waves, even in the near field when the two stations are within a
wavelength of each other. Therefore, these results hold for general ambient noise conditions, when the noise is comprised of both Rayleigh
and Love waves.
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Figure 3. Comparison of ghosts in ZZ and ZR correlations for φ0 = 90◦ and 4 types of directional noise: isotropic incidence (� = 180◦), incidence from
a half-plane (� = 90◦), a cone of angles given by � = 30◦, and a narrow cone of � = 5◦. The correlations φZZ and φZR are given as dashed lines, with
their Hilbert transforms shown as solid lines. Time has been normalized by distance and phase velocity as in Nakahara (2006). A normalized time of unity is
therefore equal to the arrival time of the direct wave between the stations.

7 S PA C W I T H Z R C O R R E L AT I O N S AT A K U TA N V O L C A N O

Recently, Ekström et al. (2009) demonstrated the connection between the SPAC method and time-domain correlations of ambient noise
between vertical components (ZZ). Namely, the zeros of the real part of the spectrum can be associated with the zeros of the zeroth-order
Bessel function. Here, we show that our results allow the same methodology to be applied to ZR correlations as well, by associating the zeros
of the real part of the spectrum with the zeros of the first-order Bessel function.

We use data from two broadband, three-component seismometers located at Akutan Volcano, historically one of the most active volcanoes
in the Aleutian Island chain (Lu et al. 2000). The two sensors, AKMO and AKLV, are both Guralp CMG-6TD instruments (Dixon et al.
2008) that exist within the network operated by the Alaska Volcano Observatory. The location of Akutan Island and the seismic stations
are given in Fig. 4. We compute time-domain correlations between all components (Z, N and E) over 40 d beginning on 2007 November 1.
The correlations are done in a manner that maintains the relative amplitudes between the three-components associated with a single station
(Haney et al. 2011). This is accomplished by applying identical time-normalization and frequency-normalization filters to each of the three
components. For the time-normalization, a moving average window of rms amplitude is computed at each time sample for each of the three
components associated with a single station. We use a time-window of 10 s for the moving averages. A single time-normalization filter is
formed from the maximum of the three moving-averages at each time sample. The three-component seismograms are then divided by the
same value of the time-normalization filter at each time sample. Note that this balancing of amplitude in time normalization is impossible
if the sign-bit type of normalization is applied to each of the three components individually. Hour-long time-normalized seismograms
are then subjected to frequency normalization by forming smoothed versions of the amplitude spectra for each of the three components. The
smoothing is done over a frequency range of 0.025 Hz. A frequency-normalization filter is formed from the maximum of the three smoothed
amplitude spectra at each discrete frequency between 0.1 and 0.7 Hz. The spectra for each of the three components are then divided by the
same frequency-normalization filter at each discrete frequency. Outside of this frequency band, the frequency spectrum of the signals are
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Figure 4. A regional map showing the location of Akutan Volcano (upper panel) and a local map of Akutan Island (lower panel). The locations of the two
stations used to compute cross correlations are given on the local map. Bold contours are plotted at 0 and 850 m elevation; light contours are shown between
150 and 675 m elevation in intervals of 175 m. The highest contour line, at 850 m, clearly marks the location of the summit caldera at Akutan Volcano.

tapered to zero. Once the signals have been time and frequency normalized, all combinations of hour-long, three-component seismograms
are correlated between the stations. Once we compute the correlation matrix between the stations in the (Z, N , E) coordinate system, we
transform to (Z, R, T) by applying a tensor rotation⎡
⎢⎢⎣

ZZ ZR ZT

RZ RR RT

TZ TR TT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

ZZ ZE ZN

EZ EE EN

NZ NE NN

⎤
⎥⎥⎦×

⎡
⎢⎣

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎦ , (84)

where θ is the azimuth (in degrees counter-clockwise from east) between the stations. The importance of this type of processing is that the
angular rotation can be performed after the cross-correlation step. This means that for an array of stations, the rotations into the (Z, R, T)
coordinate system can be done on-the-fly after computing the correlations. Also note that, had the correlations not been done in such a way
as to balance the three-component amplitudes, the rotation to the (Z, R, T) coordinate system would not have been accurate.

In Fig. 5, we plot the real part of the frequency spectrum of the time-domain correlations for both ZZ and ZR. It is clear that the zeros
of ZZ and ZR do not coincide. This is expected since the zeros of the ZZ spectrum are associated with the zeros of the zeroth-order Bessel
function, with the zeros of the ZR spectrum given by the first-order Bessel. Over the frequency band from 0.1 to 0.7, we pick four zeros
in both the ZZ and ZR spectra, as shown in Fig. 5. We compute the phase velocities c at these zeros by setting the argument of the Bessel
functions equal to their kth zero
ωkr

c
= zk, (85)

where r = 8.7 km is the interstation distance and zk is the kth zero of the zeroth or first order Bessel function, depending on whether ZZ or ZR
is being analysed. It is clear from Fig. 5 that the lowermost frequency, 0.1 Hz, is low enough to capture the first zero crossing on the vertical
component. For greater interstation distances, the lowermost frequency must be decreased in order to detect the first zero crossing. If seismic
noise does not exist for lower frequencies, there can be some ambiguity in the association of zero-crossings with a particular zero.

We plot the computed phase velocities at Akutan in Fig. 6 along with the Rayleigh wave dispersion curve for a 1-D model of Okmok
Volcano developed by Masterlark et al. (2010). The phase velocities at Akutan are in good agreement with the Okmok model, showing that
the values are generally consistent with those obtained at a nearby volcano in the Aleutian Arc. Uncertainty estimates are also plotted for the
phase velocities in Fig. 6. The errors are obtained by fitting lines to the ZZ and ZR spectra in the immediate vicinity of the zero crossings.
Close to the zero-crossings, the spectra should be almost linear, just as a sine function is linear near its zero-crossings. From the linear fit,
we obtain error estimates (variances) for the slope and the y-intercept directly as well as the covariance between the slope and y-intercept
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Figure 5. The real part of the frequency spectrum for the average time-domain correlation between stations AKMO and AKLV at Akutan Volcano for ZZ (top
panel) and ZR (bottom panel). The spectrum is tapered to zero below 0.1 Hz. The zeros of the real part of the frequency spectrum are shown for both ZZ and
ZR by vertical lines. Rayleigh wave phase velocities, measured at the locations of the zero crossings of ZZ and ZR, are shown in Fig. 6.

Figure 6. Rayleigh wave phase velocities at Akutan Volcano measured from the first four ZZ (red squares) and ZR (red circles) zero-crossings. The phase
velocities are obtained by associating the ZZ zero-crossings with J0 and the ZR zero-crossings with J1. Uncertainties in the phase velocities are also plotted
as described in the text. The blue curve is the Rayleigh wave phase velocity dispersion curve for a 1-D model at nearby Okmok Volcano (Masterlark et al.
2010). The Okmok dispersion curve shows that the phase velocities obtained at Akutan volcano are consistent with structure inferred at a nearby volcano in
the Aleutian Arc.

estimates. Finally, the errors for the x-intercept (i.e. zero-crossing), indicated by the symbol p, are estimated from the variances and covariance
for the slope m and y-intercept b by simple propagation of errors

σ 2
p = σ 2

b

(
∂p

∂b

)2

+ σ 2
m

(
∂p

∂m

)2

+ 2 covmb

(
∂p

∂b

)(
∂p

∂m

)
, (86)

where the derivatives are computed according to the relation p = −b/m.
In Fig. 6, the phase velocity estimations from both ZZ and ZR correlations are overall consistent with each other and show a decreasing

phase velocity with increasing frequency. Note how the values of phase velocity from the ZR correlations naturally interpolate the values
from the ZZ correlation. The agreement between the ZZ and ZR measurements below 0.4 Hz supports the theoretical results derived in this
paper. Above 0.4 Hz, there is some discrepancy between the phase velocities estimated from the ZZ and ZR correlations as the estimates
from the ZR correlations appear to be slightly larger. This is likely related to the wavelength of the Rayleigh waves at 0.4 Hz approaching the
interstation distance. For a nominal phase velocity of 2.5 km s−1, the wavelength at 0.4 Hz is 6.25 km which is comparable to the interstation
distance of 8.7 km. The assumption that the subsurface is an effective homogeneous medium between the stations becomes progressively less
applicable as the frequency increases and the wavelength becomes smaller than the interstation distance. At higher frequencies, ray-bending
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and scattering may also become more important. Ray-bending, in particular, poses a problem since the ZR correlation assumes the azimuth
and backazimuth of Rayleigh wave propagation between the stations are directed along the interstation azimuth. Another possible cause
for the discrepancy at frequencies above 0.4 Hz is if the source distribution is not close to being isotropic and the zeros of the ZZ and ZR
correlations are not determined simply from the first order term, either J 0 for ZZ or J 1 for ZR. These issues deserve further attention in future
work.

Additional challenges for future work would involve fitting the observed spectra over the entire frequency band for a source power
distribution and a generally anisotropic incident wavefield instead of only using the zeros of the spectra. Alternatively, the J 1 dependence
would be evident for the ZR correlation within a small-aperture array of several seismometers in which the spatial sampling was dense enough
to observe the correlation coefficient as a function of interstation distance.

8 C O N C LU S I O N

We have extended the SPAC method to the full matrix of correlation coefficients that exists between three-component seismometers.
Applications of the theory include the use of ZR and RZ correlations within the SPAC methodology and the demonstration of increased
robustness for ZR and RZ correlations in the presence of anisotropic noise distributions. A clear relationship exists between the time-domain
correlations of ambient noise and the results of the SPAC method for the entire matrix of three-component correlation coefficients. Future
topics to be explored include the extension of the 1-D and 2-D theories presented here to the 3-D case with P and S waves, inversion of
the correlation spectra for the noise distribution, and the use of ZR and RZ correlations for imaging and monitoring the structure of the
subsurface.
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A P P E N D I X A : G E N E R A L F O R M F O R A N I S O T RO P I C I N C I D E N C E

For Rayleigh waves, the expression for the correlation function for generally anisotropic incidence is the following:

φi j = PR(ω0)Mi j

∞∑
m=0

εmim Jm

(ω0

c
r
)

Re [γ i j
m ], (A1)

where PR(ω0) is the power spectrum of the Rayleigh waves, the indices i, j take on values of either Z, R or T, Mij is a multiplier given by

MZZ = 1

MZR = MZT = Ri sgn (ω0)

MRZ = MTZ = −Ri sgn (ω0)

MRR = MRT = MTR = MTT = R2 (A2)

and the angular integrals are given by

γ Z Z
m = 1

2π

∫ 2π

0
p(θ ) exp [−im(θ − ψ)] dθ

γ Z R
m = γ RZ

m = 1

2π

∫ 2π

0
p(θ ) cos (θ − ψ) exp [−im(θ − ψ)] dθ

γ Z T
m = γ T Z

m = 1

2π

∫ 2π

0
p(θ ) sin (θ − ψ) exp [−im(θ − ψ)] dθ

γ R R
m = 1

2π

∫ 2π

0
p(θ ) cos2 (θ − ψ) exp [−im(θ − ψ)] dθ

γ T T
m = 1

2π

∫ 2π

0
p(θ ) sin2 (θ − ψ) exp [−im(θ − ψ)] dθ

γ RT
m = γ T R

m = 1

2π

∫ 2π

0
p(θ ) sin (θ − ψ) cos (θ − ψ) exp [−im(θ − ψ)] dθ.

(A3)
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In the above expressions, R is the ratio of the horizontal-to-vertical motion. Also, note that the factor isgn (ω0) does not appear for
MRR, MRT, MTR and MTT since the radial and transverse motions are not elliptically polarized, as is the case for the vertical and either of the
horizontal motions.

For Love waves, the vertical displacement is zero and the horizontal displacements are

ur (r, ψ, t) =
∑

n

∑
m

Anm sin (θm − ψ) exp [iρnr cos (θm − ψ)] sin (cρnt) +
∑

n

∑
m

− Bnm

cρn
sin (θm − ψ) exp [iρnr cos (θm − ψ)] cos (cρnt),

(A4)

and

uψ (r, ψ, t) =
∑

n

∑
m

−Anm cos (θm − ψ) exp [iρnr cos (θm − ψ)] sin (cρnt) +
∑

n

∑
m

Bnm

cρn
cos (θm − ψ) exp [iρnr cos (θm − ψ)] cos (cρnt).

(A5)

Applying the analysis to the RR, RT, TR and TT correlations gives the following general form

φi j = PL(ω0)
∞∑

m=0

εmim Jm

(ω0

c
r
)

Re [γ i j
m ] (A6)

where PL(ω0) is the power spectrum of the Love waves, the indices i, j take on values of either R or T, and the angular integrals are given by

γ R R
m = 1

2π

∫ 2π

0
p(θ ) sin2 (θ − ψ) exp [−im(θ − ψ)] dθ

γ T T
m = 1

2π
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0
p(θ ) cos2 (θ − ψ) exp [−im(θ − ψ)] dθ

γ RT
m = γ T R

m = 1

2π

∫ 2π

0
p(θ ) sin (θ − ψ) cos (θ − ψ) exp [−im(θ − ψ)] dθ. (A7)

A P P E N D I X B : A N G L E I N T E G R A L S OV E R A N I N T E RVA L

For incident energy that is constant (p(θ ) = 1) over an angular range of 2� centred on the angle φ0, the angular integrals are given by the
following expressions. The azimuth between the seismometers is denoted by ψ .

γ ZZ
m = 1

2�

∫ φ0+�

φ0−�

exp [−im(θ − ψ)] dθ = exp [−im(φ0 − ψ)] sinc (m�). (B1)
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2
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2
. (B2)
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exp [−i (m − 2) (φ0 − ψ)] sinc [(m − 2)�]

4

+ i
exp [−i (m + 2) (φ0 − ψ)] sinc [(m + 2)�]

4
. (B4)

γ RR
m = 1

2�

∫ φ0+�

φ0−�

cos2 (θ − ψ) exp [−im(θ − ψ)] dθ = exp [−i (m − 2) (φ0 − ψ)] sinc [(m − 2)�]

4
+ exp [−im(φ0 − ψ)] sinc (m�)

2

+ exp [−i (m + 2) (φ0 − ψ)] sinc [(m + 2)�]

4
(B5)

γ TT
m = 1

2�

∫ φ0+�

φ0−�

sin2 (θ − ψ) exp [−im(θ − ψ)] dθ = −exp [−i (m − 2) (φ0 − ψ)] sinc [(m − 2)�]

4
+ exp [−im(φ0 − ψ)] sinc (m�)

2

− exp [−i (m + 2) (φ0 − ψ)] sinc [(m + 2)�]

4
. (B6)
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For ω < 0, we find that

−R J1

( |ω0|
c

r

)
= R

2

√
2c

π |ω|r
[

exp

(
− i|ω|

c
r

)
+ i exp

(
i|ω|

c
r

)]
exp

(
− iπ

4

)
. (C1)

For the Green’s function, we take the following expression from the matrix in eq. (70)

GZR = 1

4
×
√

2c

π |ω|r R exp

(
− i|ω|

c
r − i

3π

4

)
(C2)

to find that

−2(GZR − G∗
ZR) = − R

2

√
2c

π |ω|r
[

exp

(
i|ω|

c
r

)
− i exp

(
− i|ω|

c
r

)]
exp

(
− iπ

4

)
. (C3)

Eqs (C1) and (C3) can be made equal to each other if eq. (C1) is multiplied by a factor of i. This factor is the Hilbert transform operator −isgn (ω)
for the case we are currently considering, ω < 0.
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