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Abstract

Human consumers of wildlife killed with lead ammunition may be exposed to health risks associated with lead ingestion.
This hypothesis is based on published studies showing elevated blood lead concentrations in subsistence hunter
populations, retention of ammunition residues in the tissues of hunter-killed animals, and systemic, cognitive, and
behavioral disorders associated with human lead body burdens once considered safe. Our objective was to determine the
incidence and bioavailability of lead bullet fragments in hunter-killed venison, a widely-eaten food among hunters and their
families. We radiographed 30 eviscerated carcasses of White-tailed Deer (Odocoileus virginianus) shot by hunters with
standard lead-core, copper-jacketed bullets under normal hunting conditions. All carcasses showed metal fragments
(geometric mean = 136 fragments, range = 15–409) and widespread fragment dispersion. We took each carcass to a separate
meat processor and fluoroscopically scanned the resulting meat packages; fluoroscopy revealed metal fragments in the
ground meat packages of 24 (80%) of the 30 deer; 32% of 234 ground meat packages contained at least one fragment.
Fragments were identified as lead by ICP in 93% of 27 samples. Isotope ratios of lead in meat matched the ratios of bullets,
and differed from background lead in bone. We fed fragment-containing venison to four pigs to test bioavailability; four
controls received venison without fragments from the same deer. Mean blood lead concentrations in pigs peaked at
2.29 mg/dL (maximum 3.8 mg/dL) 2 days following ingestion of fragment-containing venison, significantly higher than the
0.63 mg/dL averaged by controls. We conclude that people risk exposure to bioavailable lead from bullet fragments when
they eat venison from deer killed with standard lead-based rifle bullets and processed under normal procedures. At risk in
the U.S. are some ten million hunters, their families, and low-income beneficiaries of venison donations.
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Introduction

Lead has been impacting the health of humankind since the

Romans began mining it 2500 years ago, and despite early

knowledge of its harmful effects, exposure to lead from a wide

variety of sources persists to this day [1]. Government-based

guidelines for acceptable degrees of exposure prior to the 1970s

were based upon thresholds of overt toxicity and on apparent

acceptance that norms in lead concentrations in a society

enveloped in lead-permeated exhaust fumes and lead paint must

somehow reflect organic tolerance. Medical science has since

concluded that virtually no level of lead exposure can be

considered harmless in consideration of its many sublethal,

debilitating, and often irreversible effects [2]. Lead quantities

formerly regarded as trivial are associated with permanent

cognitive damage in children [3], including those prenatally

exposed [4]. Lead is associated with impaired motor function [5],

attentional dysfunction [6], and even criminal behavior [7,8].

Release of lead stores from bone exposes fetuses during pregnancy

[9], and adults late in life [10,11]. Lead is implicated in reduced

somatic growth [12], decreased brain volume [5], spontaneous

abortion [13], nephropathy [14], cancer, and cardiovascular

disease [15,16].

Ingested residues of lead ammunition are a recently identified

pathway of lead exposure to human consumers of gun-killed game

animals. An analysis of North Dakota residents showed that recent

(#1 mo) consumers of game meat had higher covariate-adjusted

blood lead concentrations than those with a longer interval

(.6 mo) since last consumption [17]. Studies have linked elevated

blood lead concentrations of subsistence hunters in northern

Canada, Alaska, Greenland, and elsewhere to consumption of

shotgun-killed birds [18–25; see 26,27]. The hypothesis that rifle

bullet fragments are an additional source of human lead exposure

is suggested by radiographic studies of deer killed with standard

lead-based bullets, which show hundreds of small metal fragments

widely dispersed around wound channels [28–30]. The possibility

PLoS ONE | www.plosone.org 1 April 2009 | Volume 4 | Issue 4 | e5330



of inadvertent lead contamination in prepared meat consumed by

hunters and their families is noteworthy, considering the millions

of people who hunt big game in the U.S. [31] and the thousands of

deer annually donated to food pantries for the poor [32,33]. In this

report, we test two hypotheses: (1) that fragments of lead from rifle-

bullets remain in commercially processed venison obtained under

normal hunting conditions in the U.S., and (2) humans absorb lead

when they eat venison containing bullet fragments.

Materials and Methods

Ethics statement
Nine licensed hunters provided the deer carcasses analyzed in

this study, and obtained them during the established hunting

season and in accordance with normal practices as permitted

under the authority of the Wyoming Game and Fish Commission,

Cheyenne, Wyoming. The latter institution also granted permis-

sion to the authors to convey the processed meat from each carcass

to the Washington Animal Disease Diagnostic Laboratory at

Washington State University, Pullman, for analysis. The Wa-

shington State University Institutional Animal Care and Use

Committee approved the lead bioavailability experiment involving

eight swine.

Deer collection
Hunters used conventional center-fire hunting rifles to kill 30

white-tailed deer (Odocoileus virginianus) under normal hunting

conditions in Sheridan County, Wyoming in November 2007. All

bullets were of 7-mm Remington Magnum caliber and of identical

mass (150 grains, 9720 mg); cartridges were of a single brand

reported in local mass-market vendor interviews as the most

widely sold to deer hunters. Bullets consisted of a lead core (68% of

mass) and a copper jacket (32%); lead was exposed only at the 1.7-

mm-diameter tip of the bullet. Reported shot distances averaged

116 m (range = 25–172 m). All deer were eviscerated according to

the hunters’ normal practice. Weights of 29 eviscerated deer

averaged 33.8 kg (SD = 7.1). We recorded the positions of bullet

entry and exit wounds; 26 deer (87%) were shot in the thorax, and

some portion of the projectile exited the animal in 92% of shots.

We removed the skin and head, and we excised from each animal

a $4 cm section of tibia for isotope analyses and a $30 g sample

of muscle (shank) along the tibia to determine background lead

levels in each deer.

Carcass radiography
We radiographed with conventional veterinary equipment the

area of the wound channel (lateral view) of eviscerated deer and

adjusted exposures to maximize contrast. We included along the

margin of each radiograph a strip of clear plastic tape containing

arrayed samples of lead bullet fragments (obtained by shooting

through light plastic jugs filled with water), comparably-sized

samples of bone fragments, and locally-obtained sand and gravel;

only the lead fragments were clearly visible in the radiographs at

the applied settings. We scanned radiographs into digital format

and counted unambiguous metal fragments under 400% magni-

fication. We did not attempt to distinguish between copper and

lead in fragment counts.

Commercial processing
We transported each deer carcass to a different commercial

meat processing plant in 22 towns throughout Wyoming and

requested normal processing into boneless steaks and ground meat

in 2-pound (0.91 kg) packages; we retrieved the processed, frozen,

and packaged meat usually within 4 days.

Radiography of processed meat
We used digital radiography (EDR6 Digital Radiography, Eklin

Medical Systems, Santa Clara, California) and fluoroscopy (MD3

Digital Fluoroscopy, Philips Medical Systems, Best, Netherlands)

to scan all the thawed ground meat packages (N = 234); we

scanned an additional 49 loin steak packages from 16 carcasses in

which radiography had revealed fragments near the spine. We

unwrapped every package showing visible radiodense fragments in

a subsample of 13 deer, flattened the meat to c. 1-cm thickness on

a light plastic plate, and rescanned. We marked the vicinity of each

visible fragment with a stainless steel needle and then used a 2.8-

cm diameter plastic tube as a ‘‘cookie-cutter’’ to obtain samples of

meat with radiodense fragments.

Analysis of metal samples
Each of the fragment-containing meat samples was weighed and

then divided into approximately 5-g subsamples, each of which

was completely digested in a known volume of concentrated nitric

acid. Inductively coupled plasma (ICP) analysis was then used to

measure the concentrations of lead and copper in each subsample.

The lower detection limit for both metals was 2 mg/g. The analysis

was performed commercially by the Analytical Sciences Labora-

tory, University of Idaho, Moscow, where quality management

conforms with applicable Federal Good Laboratory Practices (40

CFR Part 160); the Laboratory is accredited through the

American Association of Veterinary Laboratory Diagnosticians,

which stipulates ISO 17025 quality assurance measures.

Lead isotope analysis
We analyzed bullet, bone, and meat samples for lead isotope

compositions. Bullet fragments were cleaned in dilute (1 M) HCl,

leached with 2 ml of 7 M HNO3, and then removed from the acid

leachate. The leachate was then dried and treated with 2 drops of

14 M HNO3. Bone and meat samples were digested in 14 M

HNO3, dried and treated with 2 drops of 14 M HNO3. Lead was

separated using standard HBr and HCl on an anion-exchange

column (Bio Rad, AG 168). Isotope compositions were deter-

mined with a ThermoFinnigan Neptune MC-ICPMS at the

Washington State University GeoAnalytical Laboratory. Repro-

ducibility of the lead standard (NBS-981), run before, during, and

after the samples, was ,0.012% (2 SE, n = 4) for 206Pb/204Pb,

and ,0.018% for 208Pb/204Pb. Lead concentrations in the

procedural blanks were negligibly small.

Bioavailability experiment
We tested the bioavailability of ingested bullet fragments by

feeding processed venison known by radiography to contain

radiodense fragments to pigs. The latter were considered a good

model for the absorption of lead from the human gastrointestinal

tract [34]. We used eight female Yorkshire/Landrace and

Berkshire/Duroc cross-bred pigs, 70–82 days of age and weighing

28.2–32.7 kg (mean 30.3 kg) at the termination of the experiment.

All were initially fed 1.36 kg of standard pelleted pig grower ration

divided into two meals per day, then acclimated for 7 days to

consuming cooked ground commercial beef patties mixed with the

pellet ration. We gradually increased the amount of ground meat

from 113 g per meal to 500 g, as pellet amounts were

correspondingly decreased. We withheld all food for 24 hours

prior to the venison feeding trial.

Ground venison and venison steaks from four deer were used in

the feeding trial. Each of the eight pigs consumed 1.26–1.54 kg of

meat over two feedings 24 hours apart on days 0 and 1 of the

experiment; no pig consumed meat from more than one deer.

Bullet Fragments in Venison
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Four pigs received venison containing fluoroscopically visible

metal fragments. The total amount of lead fed to each pig was

unknown, but quantitative analysis of similar packages from other

deer in the study showed 0.2–168 mg (median 4.2 mg) of lead.

The four control pigs were simultaneously fed equivalent amounts

of venison with no fluoroscopically visible fragments from the same

four deer. We assessed background levels of lead in each deer from

shank meat, collected well away from any potential bullet

contamination. All venison for the test and control pigs was either

already ground, or finely chopped if steaks, and cooked in a

microwave oven until brown. For feeding, we mixed the cooked

venison in a bowl with small amounts of pig ration to improve

palatability. We verified that all meat was eaten, and we

monitored the pigs for signs of illness.

We collected anticoagulated blood samples (2 ml whole blood in

EDTA) from each pig at 1 hour prior to feeding venison on day 0,

and on days 1, 2, 3, 4, 7 and 9 after feeding venison, and stored the

samples at 4uC until testing. Lead levels were determined by

inductively coupled plasma mass spectrometry (ICP-MS) with a

lower detection limit of 0.5 mg/dL; we assigned all values below

the detection limits as 0.5 mg/dL. We compared mean blood lead

concentrations between control pigs and test pigs on days 0

through 9 using 2-way ANOVA with repeated measures and

restricted maximum likelihood (REML) estimation; we performed

linear group contrasts for each day. A single outlier datum among

control pigs on day 4 (6.8 mg/dL) was an order of magnitude

higher than a retest of the same sample (0.54 mg/dL); the latter

was consistent with all other control samples. We omitted both

results from statistical analysis, resulting in a sample of three rather

than four control pigs on day 4. We used JMP (SAS Institute,

Cary, NC, USA, Vers. 7.0.1) for all statistical analyses.

Results

Bullet fragments in venison
Wound radiographs of all 30 eviscerated deer showed metal

fragments (median = 136 fragments, range = 15–409) and offered a

measure of fragment dispersion, albeit two-dimensional. Extreme

distance between fragment clusters in standard radiographs

averaged 24 cm (range6SD = 5–4369 cm), and maximum single

fragment separation was 45 cm. Radiography revealed visible

metal fragments in the ground meat of 24 (80%) of the 30 deer. At

least one fragment was visible in radiographs of 74 (32%) of 234

packages of ground meat; 160 (68%) revealed no fragments, 46

(20%) had one, 16 (7%) had two, and 12 (5%) showed 3–8

fragments. An average of 32% of ground meat packages (N = 3–15

packages, mean 7.8) per deer showed metal fragments (range = 0–

100% of packages). The ground meat derived from one deer

showed more fragments (N = 42) than counted in the radiograph

of the carcass (N = 31), and two ground meat packages (2 deer)

each contained a single shotgun pellet which had not been

detected on the carcass radiographs. No relationship was apparent

between the number of metal fragments counted in carcasses and

those subsequently counted in ground meat from the same

individual (correlation coefficient 0.06). In the aggregate, we

observed 155 metal particles in the ground meat packages, 3.1% of

the 5074 we counted in the carcasses. Of 16 deer carcasses with

metal fragments near the spine, four (25% of selected deer, 8% of

49 packages) showed fragments in processed loin steaks (1–9

fragments). Additional fragments may have occurred in 220

unscanned packages of steaks derived from all animals.

ICP analysis of radiodense fragments excised from ground meat

packages from 13 deer identified lead in 25 (93%) of 27 samples;

aggregate lead fragment mass per package averaged 17.2 mg

(range6SD = 0.2–168639.8 mg) or 0.03% of the lead component

of bullet mass. Nine samples contained copper at levels above

background values, including the two samples with no detectable

lead. Lead concentrations in unprocessed muscle tissue collected

from the shank and well away from the bullet path of the same 13

deer were all below the detection limit of 2.0 mg/g and served as

internal controls for measures of lead in ground meat.

The ratio of lead isotopes 206/204 plotted against 207/204

ratios (Fig. 1(a)) and 208/204 ratios (Fig. 1(b)) showed that meat

samples with elevated lead levels from four deer, and lead from

bullets from the same boxes (N = 3) supplying the bullets used to

kill those deer, formed tight clusters distinct from ratios of

background lead in tibial bone. Variation in the bone ratios

apparent in Fig. 1 likely represent long term, cumulative lead

exposure encompassing varied sources of natural and anthropo-

genic lead.

Figure 1. Plots of lead isotope ratios in ground meat samples containing radiodense fragments from four deer. Ratios from lead-in-
meat samples clustered with those of unfired bullets but were distinct from bone lead ratios. Note that there are four meat data points (open
triangles) in each graph, but two have almost identical positions and are superimposed.
doi:10.1371/journal.pone.0005330.g001

Bullet Fragments in Venison
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Bioavailability experiment
All the pigs consumed all the venison provided to them within

2 hours. None of the experimental animals showed any signs of

lead toxicosis or other illness for the duration of the experiment;

none exhibited vomiting or diarrhea which might have affected

gastrointestinal physiology or retention times in the stomach or

intestines.

Blood lead concentrations in the four control pigs ranged from

below the level of ICP-MS detection (0.5 mg/dL) to 1.2 mg/dL

throughout the experiment (mean6SD = 0.6360.19 mg/dL;

Fig. 2). Blood lead concentrations in pigs fed metal fragment-

containing venison ranged from below the level of detection to

1.4 mg/dL on day 0, immediately prior to feeding venison. The 2-

way ANOVA revealed a significant interaction between treatment

(feeding venison either with fragments or no fragments) and day

(F6,35.32 = 3.413, P = 0.009; Fig. 2). Mean blood lead concentra-

tions in the pigs fed fragment-containing venison were significantly

elevated above those of control pigs on days 1, 2 and 3 post-

exposure (linear contrast: F1,39.79 = 10.39, P = 0.003,

F1,39.79 = 17.76, P = 0.0001, and F1,39.79 = 14.71, P = 0.0004,

respectively; Fig. 2); the maximum observed value was 3.8 mg/

dL. Blood lead concentrations did not differ (P.0.05) between the

control pigs and exposed pigs on days 0, 4, 7 and 9 (Fig. 2).

Discussion

Our findings show that people risk exposure to bioavailable lead

when they eat venison from deer killed with standard lead-based

rifle bullets and processed under normal commercial procedures.

Evidence includes a high proportion (80%) of deer showing at least

one bullet fragment in one or more ground meat packages, a

substantial frequency of contamination (32% of all ground meat

packages), a majority (93%) of assayed fragments identified as lead,

isotopic homogeneity of bullet lead with that found in the meat,

and increased blood lead concentrations in swine fed fragment-

containing venison. Considering that all the carcasses we brought

to the processors contained fragments (15–409 fragments counted

in radiographs), the high rate of removal evident in the ground

meat implies meticulous care on the part of the processors to avoid

contamination, but an apparent inability of 80% of them to do so

entirely. We conclude that, in a majority of cases, one or more

consumers of a hunter-killed, commercially-processed deer will

consume bullet lead.

We interpret the absorption of lead into the bloodstream of all

four test pigs as clear evidence of the bioavailability of lead from

ingested bullet fragments (Fig. 2), and we infer that human

consumption of venison processed under prevailing standards of

commerce results in increased blood lead concentrations. The rate

of bioavailability cannot be calculated from our experiment

because the exact amounts of lead in the meat packages were

unknown. Rather, we directed our test at the condition

experienced by human consumers of venison from rifle-killed

deer of variable amounts of lead patchily distributed as fragments

in ground meat or steak.

Depuration of lead in blood does not imply its excretion, but

rather the sequestration of a substantial proportion in soft tissues

and ultimately in bone from which it may eventually be mobilized,

as during pregnancy [9] or in old age [10]. The observed

elevations in blood lead concentrations, while not considered

overtly toxic, would nevertheless contribute to cumulative lead

burdens, and would be additive with further meals of contami-

nated venison. Observed blood lead concentrations of up to

3.8 mg/dL, and daily means of 2.3 and 2.2 mg/dL in the

experimental animals, do approach what is considered significant

with respect to adverse effects in humans by contemporary

assessments [35,36]. Whereas the CDC advisory level for

intervention in individual children is 10 mg/dL in blood [37],

studies now associate as little as 2 mg/dL with increased risk of

cardiovascular mortality in adults [15] and impaired cognitive

function in children [38]. Hauser et al. [12] detected an impact

threshold of 5 mg/dL on male maturation rates, and Lanphear et

al. [3] concluded that ‘‘…lead exposure in children who have

maximal blood lead concentrations ,7.5 mg/dL is associated with

intellectual deficits.’’ These latter values would appear attainable

Figure 2. Mean blood lead concentrations observed during swine feeding experiment. Mean (6SE) blood lead concentrations (mg/dL) in
four pigs fed venison containing radiographically dense fragments (Fragments) compared with four control pigs fed venison without visible
fragments (No Fragments) on days 0 and 1. Asterisks indicate days when means differed significantly between test and control groups.
doi:10.1371/journal.pone.0005330.g002

Bullet Fragments in Venison
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with the repeated consumption of venison possible among deer

hunting families, especially those incurring additional exposure

from other sources.

Factors that may influence dietary lead exposure from spent

lead bullets include the frequency and amount of venison

consumption, degree of bullet fragmentation, anatomical path of

the bullet, the care with which meat surrounding the bullet wound

is removed, and any acidic treatments of the meat that would

dissolve lead, i.e., coating the hanging carcass with vinegar or the

use of acidic marinades in cooking. Exposure to lead from spent

bullets is easily preventable if health-minded hunters use lead-free

copper bullets now widely available and generally regarded as fully

comparable to lead-based bullets for use in hunting [39]. The

potential for toxic exposure to copper from these bullets is

presumably insignificant because little or no fragmentation occurs

[28], and there is no meat wastage from having to discard tissue

suspected of contamination.

Fragmenting lead bullets have been in use for hunting since the

early 1900s [40]. Although hunter numbers have diminished

slightly in recent years, there were 10.7 million big game hunters

in the United States in 2006, the majority of whom still use lead-

based bullets [31,41]. Many state wildlife agencies annually issue

multiple deer harvest permits to individuals, effectively offering

venison as a year-round protein staple for some families; game

meat is the principal source of protein for a considerable

proportion of Alaska’s population [42]. Hunter-donated venison

to food pantries and shelters for low income families in most states

produced an estimated minimum of 9 million venison meals

associated with the 2007/08 hunting season [33]. With these

concerns, we anticipate that health sciences will further examine

the bioavailability of lead from bullets and shot, the epidemiology

of exposure, and the possible consequences among hunters, their

families, and others who consume venison.
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