
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Mathematics Faculty Publications and 
Presentations Department of Mathematics 

2015 

Image Denoising by a Local Clustering Framework Image Denoising by a Local Clustering Framework 

Partha Sarathi Mukherjee 
Boise State University 

Peihua Qiu 
University of Florida 

This is an Accepted Manuscript of an Article published in Journal of Computational and Graphical Statistics, 2015, 
available online at: 10.1080/10618600.2013.870074 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math
https://doi.org/10.1080/10618600.2013.870074


Image Denoising by a Local Clustering Framework

Partha Sarathi Mukherjee1 and Peihua Qiu2

1Department of Mathematics, Boise State University, Boise, ID 83725

2Department of Biostatistics, University of Florida, Gainesville, FL 32611

Abstract

Images often contain noise due to imperfections of image acquisition techniques. Noise should be re-

moved from images so that the details of image objects (e.g., blood vessels, inner foldings, or tumors in

human brain) can be clearly seen, and the subsequent image analyses are reliable. With broad usage of im-

ages in many disciplines like medical science, image denoising has become an important research area. In

the literature, there are many different types of image denoising techniques, most of which aim to preserve

image features, such as edges and edge structures, by estimating them explicitly or implicitly. Techniques

based on explicit edge detection usually require certain assumptions on the smoothness of the image intensity

surface and the edge curves which are often invalid especially when the image resolution is low. Methods

that are based on implicit edge detection often use multi-resolution smoothing, weighted local smoothing,

and so forth. For such methods, the task of determining the correct image resolution or choosing a reason-

able weight function is challenging. If the edge structure of an image is complicated or the image has many

details, then these methods would blur such details. This paper presents a novel image denoising frame-

work based on local clustering of image intensities and adaptive smoothing. The new denoising method can

preserve complicated edge structures well even if the image resolution is low. Theoretical properties and

numerical studies show that it works well in various applications.

Key Words: Clustering, edges, edge structures, image denoising, image details, jump regression

analysis, local smoothing, nonparametric regression.
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1 Introduction

Over the last few decades, medical science has been using different types of images of human

body parts for better understanding of their functions. Types of medical images include X-rays,

computer tomography (CT), ultrasound, and so forth. Recently, magnetic resonance images (MRI)

become popular. These medical images often contain noise due to hardware imperfections of the

image acquisition techniques. Noise in images prevents the doctors from seeing the image details

(e.g., blood vessels, inner foldings, or tumors in brain) clearly. So, for better medical diagnosis,

noise should be removed in such a way that important image features, including the complicated

edge structures and the fine details of the image objects, are preserved. Because of the increasing

popularity of medical imaging, image denoising with edges and other details preserved has become

an important research area, which is the focus of the current paper.

In the literature, there are various types of image denoising techniques (Gonzalez and Woods

1992, Qiu 2005). One major type aims to preserve edge structures by detecting the edge curves

explicitly. For instance, Qiu and Mukherjee (2010) proposed an image denoising technique that

detected the edges first, estimated them locally by a pair of intersecting half lines, and then locally

smoothed observed image intensities in a neighborhood whose pixels were on one side of the esti-

mated edge curve. Qiu and Mukherjee (2012) proposed a 3-D image denoising method to handle a

similar image denoising problem in 3-D cases. In practice, however, edge structures could be too

complicated to be approximated well by local half lines. Furthermore, the complexity of the true

image intensity surface at different places could be quite different, which is hard to accommodate

by the methods just mentioned. For these reasons, most existing image denoising methods based

on explicit detection of edge pixels would blur complicated edge structures and other fine details

of image objects. Another major type of image denoising techniques does not detect edges ex-

plicitly. Instead, they obtain certain information about edges from the observed image intensities

and use such information in their smoothing processes. For example, bilateral filtering methods
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(e.g., Chu et al. 1998, Tomasi and Manduchi 1998) use the edge information to assign weights in a

weighted local smoothing procedure. Anisotropic diffusion methods (e.g., Perona and Malik 1990,

Barash 2002) use the edge information to control the direction and the amount of local smoothing.

One major drawback of these methods is that even though they assign small weights to certain

pixels in their smoothing procedures, those pixels still get some weights and thus edges would

be blurred, specially around the places with complicated edge structures. The methods based on

Markov random field (MRF) modeling (e.g., Geman and Geman 1984, Godtliebsen and Sebastiani

1994) use the edge information by introducing a line process, whereas the methods by minimizing

the total variation (TV) (e.g., Rudin et al. 1992, Keeling 2003, Wang and Zhou 2006) use the edge

information by introducing a penalty term in their minimization problems. These global smooth-

ing methods often blur local structures as well. Wavelet transformation methods (e.g., Chan et

al. 2000, Portilla et al. 2003) are based on predefined basis functions and the denoised image

is a linear combination of those basis functions. Performance of these methods depends heav-

ily on how the basis functions are selected. Polzehl and Spokoiny (2000) proposed an adaptive

weighted smoothing method where they considered a sequence of circular neighborhoods at each

pixel. This method tries to choose smaller neighborhoods near edges and larger neighborhoods in

the continuity regions. However, it is a challenging task to choose a reasonable neighborhood size,

especially around places with complicated edge structures. Takeda et al. (2007) proposed an adap-

tive smoothing method based on the so-called steering kernel regression, where the shape and size

of the neighborhood for local smoothing depended on local edge information. One major draw-

back of this method is that even though neighborhoods are elongated along the edges, they often

contain pixels on both sides of edges, resulting in image blurring. The non-local means approach

(e.g., Buades et al. 2005, Coupe et al. 2008) and the approach based on jump regression analysis

(e.g., Gijbels et al. 2006, Qiu 1998, 2009) would blur complicated edge structures as well. There

are many other denoising methods in the literature. For example, the point-wise shape adaptive

method by Foi et al. (2007), scale-space methods described in ter Haar Romney (2003), methods
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using channel or orientation spaces by Felsberg (2006), Franken and Duits (2009) and so on. See

Qiu (2005, 2007) and Katkovnik et al. (2006) for a more detailed discussion on this topic.

In this paper, we propose a novel image denoising procedure which can well preserve major

edge structures and other fine details of image objects (e.g., inner foldings and tumors in brain

MRIs). Our proposed procedure is based on local clustering of pixels using their observed im-

age intensities. The rationale of this procedure can be explained intuitively as follows. A 2-D

monochrome image can be regarded as a surface of the image intensity function, and it is rea-

sonable to assume that this surface is piecewisely continuous (c.f., Qiu 2007, Mukherjee and Qiu

2011). For example, in a brain MRI image, there are three major regions: gray matter, white

matter, and cerebro-spinal fluid (CSF). In each region, it is reasonable to assume that the image

intensity surface is continuous. Therefore, a neighborhood of a given pixel often contains more

than one such regions, and we should only smooth data in the region that contains the given pixel

when denoising the image. The proposed method consists of two major steps. First, we cluster

the pixels in a neighborhood into two groups based on their observed image intensity values, and

decide whether the two groups of image intensities are significantly different from each other. Sec-

ond, the true image intensity at the given pixel is estimated by a weighted average of the observed

image intensities at pixels located in the same group as the given pixel.

One major advantage of the proposed method is that it does not require explicit edge detection,

and the complicated edge structures can be preserved well. As a demonstration, let us consider the

following toy example in which the true image of size 64×64 has two intensity levels only. Figure

1 presents a noisy version of that image. To estimate the true image intensity at a given pixel P,

we consider a circular neighborhood N1. It can be seen that there are several disjoint black regions

in N1. The existing methods based on local edge estimation, such as the one in Qiu and Mukherjee

(2010), will not work well in this case because the true edges cannot be approximated well by one

or two lines in N1. If we use a smaller neighborhood N2 to avoid the above problem, then the image

would be under-smoothed in the sense that noise cannot be removed efficiently. Furthermore, as
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mentioned earlier, the task of choosing an appropriate neighborhood size is challenging. As a

comparison, our proposed method first clusters all pixels in N1 into two groups (i.e., the white

group and the black group), and then it estimates the true image intensity at P by a weighted

average of image intensities in the white group of N1 only. As long as the pixel clustering is

reliable, this method can preserve complicated edge structures and other fine details of image

objects well.

The remaining part of the article is organized as follows. The proposed method is described

in detail in Section 2. Some of its statistical properties are discussed in Section 3. Section 4

presents some numerical examples concerning its performance in comparison with some state-

of-the-art image denoising methods. Proofs of the two theorems in Section 3 are provided in a

supplementary file.

2 Proposed Methodology

Although our proposed method can work in both two-dimensional (2-D) and 3-D cases, we de-

scribe it here in 2-D cases only for simplicity. Our description is given in five parts. The un-

derlying regression model of the image denoising problem is described in Section 2.1. The 1-D

classification procedure based on maximizing a separation measure is described in Section 2.2.

An adaptive weighted smoothing procedure based on the 1-D classification is described in Section

2.3. A modification of this smoothing procedure is described in Section 2.4. Selection of some

procedure parameters is discussed in Section 2.5.

2.1 The underlying regression model

As we mentioned in Section 1, a monochrome 2-D image can be regarded as a 2-D image intensity

surface that is usually discontinuous at the boundaries of image objects. In the framework of jump

regression analysis (cf., Qiu 2005), the observed 2-D image can be described by the following 2-D
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regression model

ξi j = f (xi, y j) + εi j, for i, j = 1, 2, . . . , n, (1)

where {(xi, y j) = (i/n, j/n), i, j = 1, 2, . . . , n} are the equally spaced design points (or pixels) in the

design space Ω = [0, 1] × [0, 1], εi j are i.i.d. random errors with mean 0 and unknown variance

σ2, f (x, y) is an unknown regression function denoting the image intensity at (x, y), and N = n2 is

the sample size. We further assume that there exists a finite partition {Λl, l = 1, 2, . . . , P} of the

design space Ω such that (i) each Λl is a connected region in Ω, (ii) f (x, y) is continuous in Λl\∂Λl,

for l = 1, 2, . . . , P, where ∂Λl is the boundary point set of Λl, (iii)
⋃P

l=1Λl = Ω, and (iv) there

exist at most finitely many points {(x∗k, y
∗
k), k = 1, 2, . . . ,K∗} in [

⋃P
i=1 ∂Λi]

⋂
Ω such that for each

point (x∗k, y
∗
k) with k = 1, 2, . . . ,K∗, there are Λ∗k1

,Λ∗k2
∈ {Λl, l = 1, 2, . . . , P} satisfying (a) (x∗k, y

∗
k) ∈

[Λ∗k1

⋂
Λ∗k2

], and (b) lim
(x,y)→(x∗k ,y

∗
k),(x,y)∈Λ∗k1

f (x, y) = lim
(x,y)→(x∗k ,y

∗
k),(x,y)∈Λ∗k2

f (x, y). We call [
⋃P

i=1 ∂Λi]
⋂
Ω the

jump location curves (JLCs) of f (x, y). Obviously, the JLCs are just (step) edge curves in image

processing.

2.2 1-D classification by maximizing a separation measure

To decide whether two regions (Λl’s) intersect within a neighborhood of a given pixel (x, y) ∈ Ω,

let us consider its circular neighborhood

O(x, y; hn) = {(u, v) : (u, v) ∈ Ω,
√

(u − x)2 + (v − y)2 ≤ hn},

where hn is a bandwidth parameter. In O(x, y; hn), we first cluster pixels into two groups based on

their observed intensity values ξi j’s, and then decide whether the observed image intensity values

of the two groups of pixels are significantly different or not. Since the observed image intensity

values are scalars, the first step is actually a 1-D clustering problem in which the number of clusters

is known to be two. In this step, we only consider clustering the pixels into two groups instead of

three or more because of the following two reasons. First, in many real-life images including the
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medical images, the situation that more than two Λl’s intersect near a single point is rare. Second,

consideration of two clusters, instead of three or more, simplifies the procedure and its computation

significantly.

In the literature, there are lots of methods for clustering, including the connectivity-based clus-

tering (e.g., Ward 1963, Sibson 1973, Defays 1977), centroid-based clustering (e.g., MacQueen

1967, Lloyd 1957), and distribution-based classification (e.g., Dempster et al. 1977). In our pro-

cedure, theoretically speaking, any reasonable clustering algorithm can be used. Incidentally, our

problem of 1-D classification into two groups is relatively simpler than the general problem of

classifying multi-dimensional data into two or more groups. Here we propose a new clustering

algorithm which is numerically convenient and efficient. We use it in all numerical examples

presented in this paper. Remember that in our clustering problem, we need to classify all pixels

in O(x, y; hn) into two groups based on the observed image intensities ξi j’s. A solution is called

‘optimal’ if the separation of the observed intensity values in the two related groups reaches the

maximum. Intuitively, if O(x, y; hn) indeed contains two continuity regions of the image intensity

surface only, then the within-group variability of the observed image intensities would be small

and the between-group variability would be large. Consequently, the ratio of between-group vari-

ability and within-group variability would be large. On the other hand, if O(x, y; hn) intersects

only one continuity region of the image intensity surface, then that ratio would be relatively small.

Therefore, we can use this ratio as a separation measure of the two groups, and it can also be used

as an indicator whether a given pixel (x, y) is close to a JLC. To classify pixels in O(x, y; hn) into

two groups using the observed image intensities, we can introduce a thresholding parameter s and

decide that the (i, j)-th pixel (xi, y j) belongs to group 1 if ξi j ≤ s and to group 2 otherwise. The

value of s can be chosen from the interval

I(x, y; hn) =
(

min
(xi,y j)∈O(x,y;hn)

ξi j, max
(xi,y j)∈O(x,y;hn)

ξi j

)

7
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For each s value in that interval, it divides O(x, y; hn) into the following two subsets:

O1(x, y; hn, s) = {(xi, y j) : (xi, y j) ∈ O(x, y; hn) and ξi j ≤ s}

O2(x, y; hn, s) = {(xi, y j) : (xi, y j) ∈ O(x, y; hn) and ξi j > s}.

These two subsets are non-empty and disjoint, they may not form connected regions (cf., Figure

1), and thus their boundaries may not be two connected curves. Clearly, the ‘optimal’ value of s

can be approximated by

S 0 = arg max
s∈I(x,y;hn)

T (x, y; hn, s), (2)

where

T (x, y; hn, s) =
|O1(x, y; hn, s)|(ξ1 − ξ)2 + |O2(x, y; hn, s)|(ξ2 − ξ)2∑
(xi,y j)∈O1(x,y;hn,s)

(ξi j − ξ1)2 +
∑

(xi,y j)∈O2(x,y;hn,s)
(ξi j − ξ2)2

, (3)

ξ, ξ1 and ξ2 are the sample averages of the observed image intensities in O(x, y; hn), O1(x, y; hn, s)

and O2(x, y; hn, s), respectively. Please note that the numerator and the denominator on the right

hand side of (3) measure the between-group and within-group variability of the observed image

intensities in O1(x, y; hn, s) and O2(x, y; hn, s), respectively. Also, the value of S 0 depends on (x, y)

and the choice of hn. We skip this information in notation for simplicity. Since the number of

pixels in O(x, y; hn) is finite, S 0 must exist. In practice, we can calculate the values of T (x, y; hn, s)

at G regularly spaced s values in I(x, y; hn), and choose the s value that maximizes the G values

of T (x, y; hn, s) as an approximation of S 0. Of course, the larger the value of G is chosen, the

better the approximation is. From our numerical experience, it works well for most images if we

choose G = 5, and larger values of G can hardly improve the performance of the approximation.

For this reason, in all our numerical examples in this paper, we use G = 5. As we mentioned

earlier, T (x, y; hn, S 0) can also be used as a measure of the likelihood that O(x, y; hn) contains

two continuity regions of the image. To this end, we claim that O(x, y; hn) indeed contains two
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continuity regions of the image if

T (x, y; hn, S 0) > un, (4)

where un is a threshold parameter. Otherwise, we claim that O(x, y; hn) contains only one continuity

region of the image.

One important aspect to note here is that if O(x, y; hn) is contained in a continuity region of

the image intensity surface, then local clustering is not necessary in that neighborhood. Moreover,

we should use a relatively large neighborhood to smooth more observations at such a location for

better removal of the noise. Therefore, the efficiency of the proposed procedure can be improved

by running a rough pilot check to determine whether local clustering is necessary in O(x, y; hn). To

this end, one reasonable approach is to check whether the sample standard deviation of all ξi j’s in

O(x, y; hn) is about the same or smaller than σ. If the answer is positive, then we may decide not to

run local clustering in O(x, y; hn) because the chance to have an edge curve in O(x, y; hn) is small

in such cases. In practice, we usually do not know σ. Instead, it needs to be estimated from the

observed data. One simple estimator of σ is

σ̂ =

√√
1
n2

n∑
i, j=1

(
ξi j − f̂LCK(xi, y j)

)2
, (5)

where f̂LCK(xi, y j) is the local constant kernel (LCK) estimator of f (xi, y j) defined as

f̂LCK(x, y) =
∑

(xi,y j)∈O(x,y;h∗n)

ξi jK
(

xi − x
h∗n
,

y j − y
h∗n

)
, (6)

K is a 2-D density kernel function defined in a unit circle, and h∗n is a bandwidth parameter. In our

numerical examples, we choose K(x, y) ∝ exp[−(x2 + y2)]1(x2 + y2 ≤ 1) which is the truncated 2-D

Gaussian kernel function, and h∗n = 1/n. Here, the selection of K and h∗n is not critical because we

only want a rough estimator of σ. After σ is estimated by σ̂, we can decide that local clustering

in O(x, y; hn) is not necessary if the sample standard deviation of all ξi j’s in O(x, y; hn) is smaller

than or equal to 1.0σ̂. Here, the constant 1.0 is chosen conservatively in the sense that even if it is
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decided that local clustering is necessary in O(x, y; hn), there is still a possibility that the difference

between the two resulting clusters is found to be insignificant by the criterion (4).

2.3 Proposed image denoising procedure

After the pixels in O(x, y; hn) are divided into two significantly different groups O1(x, y; hn, S 0) and

O2(x, y; hn, S 0), the true image intensity f (x, y) can be estimated by a weighted average of all ξi j in

the group that contains (x, y), where the weights are determined by a similarity measure between

the pixels (xi, y j) in the related group and the given pixel (x, y). Without the loss of generality, let us

assume that (x, y) belongs to O1(x, y; hn, S 0). One similarity measure can be quantified by consider-

ing small neighborhoods of size h̃n (usually smaller than hn) around the two pixels (xi, y j) and (x, y),

and then calculating the L2 distance of the observed intensity values in those neighborhoods. In this

article, we choose similarity measure W̃i j = exp
(
−‖Õ(xi,y j)−Õ(x,y)‖22

2σ̂2 |Õ(xi,y j)|Bn

)
, where ‖Õ(xi, y j)−Õ(x, y)‖2 is the

L2 distance of the observed intensity values in the circular neighborhoods of radius h̃n around (x, y)

and (xi, y j), and Bn is a tuning parameter controlling the smoothness of the denoising procedure.

Then, our proposed estimator of f (x, y) is

f̂ (x, y) =

∑
(xi,y j)∈O1(x,y;hn,S 0)

W̃i jξi j∑
(xi,y j)∈O1(x,y;hn,S 0)

W̃i j
. (7)

If we decide not to do pixel clustering in O(x, y; hn) because the criterion (4) does not hold, then

f (x, y) can still be estimated by f̂ (x, y) above except that O1(x, y; hn, S 0) needs to be replaced by

O(x, y; hn) in (7).

Regarding h̃n, if it is chosen too large, then some fine details of the image could be lost. On the

other hand, if it is chosen too small, then the estimator f̂ (x, y) could be too noisy. Based on our

numerical experience, we suggest choosing h̃n = 1.0/n at places where we need to go through the

clustering step, and choosing h̃n = 1.5/n at places where we do not need to go through that step.
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2.4 A modification of the proposed image denoising procedure

As mentioned earlier, bigger neighborhoods should be used in the continuity regions of the image,

compared to the neighborhoods used around edges. In Section 2.2, we propose the criterion that

the given pixel (x, y) is considered to be in continuity regions if the sample standard deviation of all

ξi j in O(x, y; hn) is smaller than or equal to 1.0σ̂, where σ̂ is the estimated error standard deviation.

So, in such cases, we consider using a bigger circular neighborhood of radius c1hn. Then, we

further check whether the sample standard deviation of all ξi j in O(x, y; c1hn) is still smaller than

1.0σ̂. If the answer is positive, then we use the formula (7) to compute f̂ (x, y), after O1(x, y; hn, S 0)

is replaced by O(x, y; c1hn) and Bn is replaced by c2Bn. Otherwise, we compute f̂ (x, y) by (7)

with O1(x, y; hn, S 0) replaced by O(x, y; hn). Typically, c1, and c2 should be chosen larger than 1.0.

From our numerical experience, we suggest using c1 = 3.0, and c2 = 10.0, and these values are

used in all numerical examples presented in this article. The modified image denoising procedure

is summarized as follows.

Modified Image Denoising Procedure

Step 1: Get an estimate of σ by the formula (5).

Step 2: For a given pixel (x, y), calculate the sample standard deviation S D(x, y; hn) of all ξi j

in O(x, y; hn). If S D(x, y; hn) ≥ σ̂, go to Step 3. Otherwise, calculate S D(x, y, c1hn). If

S D(x, y; c1hn) < σ̂, then compute f̂ (x, y) by (7) after O1(x, y; hn, S 0) is replaced by O(x, y; c1hn)

and Bn is replaced by c2Bn. On the other hand, if S D(x, y; c1hn) ≥ σ̂, then compute f̂ (x, y) by

(7) after O1(x, y; hn, S 0) is replaced by O(x, y; hn).

Step 3: Cluster the pixels in O(x, y; hn) using their observed image intensity values by the pro-

cedure described in Section 2.2. If T (x, y; hn, S 0) ≤ un, then compute f̂ (x, y) by (7) after

O1(x, y; hn, S 0) is replaced by O(x, y; hn). Otherwise, compute f̂ (x, y) by (7) directly.
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2.5 Selection of procedure parameters

Our proposed image denoising procedure contains three parameters hn, un, and Bn. Because the

performance of the proposed procedure depends on the values of these parameters, they should

be chosen properly. One commonly used approach in the image processing literature is to try

different values of the parameters and choose the ones with the best visual impression. Of course,

this approach is usually subjective and inconvenient to use. In this paper, we suggest using the

cross-validation (CV) procedure to choose the parameters. By this procedure, we first define the

CV score

CV(hn, un, Bn) =
1
n2

n∑
i, j=1

(
ξi j − f̂−i,− j(xi, y j)

)2
, (8)

where f̂−i,− j(xi, y j) denotes the estimate of f (xi, y j) when the (i, j)-th pixel (xi, y j) is not used in

the estimation step. Then, the minimizers of CV(hn, un, Bn) defined in (8) are used as the chosen

values of hn, un, and Bn. There are some other methods for choosing these parameters, including

the Mallow’s Cp, bootstrap, and so forth (e.g., Marron 1988, Loader 1999, Hall and Robinson

2009). In this paper, the above CV procedure is used for its simplicity.

3 Some Statistical Properties

In this section, we discuss some statistical properties of the proposed image denoising procedure.

In our discussion, a point (x, y) is called a singular point if one of the following two conditions are

satisfied. (i) There exists some ν > 0 such that, for any 0 < ν̃ < ν, the circular neighborhood of

(x, y) with radius ν̃ contains more than two Λl’s (cf., Section 2.1). (ii) The jump size of f at (x, y)

is 0, i.e. (x, y) is one of those (x∗k, y
∗
k), k ∈ {1, 2, . . . ,K∗} defined in Section 2.1. Next, we introduce
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some notations.

Ωε = [ε, 1 − ε] × [ε, 1 − ε],

Jε = {(x, y) : (x, y) ∈ Ω, dE((x, y), (x∗, y∗)) ≤ ε for some (x∗, y∗) ∈ D},

S ε = {(x, y) : (x, y) ∈ Ω, dE((x, y), (x∗, y∗)) ≤ ε for a singular point (x∗, y∗) ∈ D},

ΩJ̄,ε = Ωε\Jε ,

ΩS̄ ,ε = Ωε\S ε ,

where ε is a small positive constant, dE denotes the Euclidean distance, and D denotes the set of

points on the JLCs. Then, we have two theorems stated below, and their proofs are provided in a

supplementary file.

Theorem 1 Assume that f has continuous first-order derivatives over (0, 1) × (0, 1) except on

the JLCs, its first order derivatives have one-sided limits at non-singular points of the JLCs, {εi j}
are i.i.d. and have the common distribution N(0, σ2), where 0 < σ < ∞, hn = o(1), 1/nhn = o(1),

un = κ + δ, where κ =
(

φ2(0)
Φ(0)(1−Φ(0))

) /[
1 −
(

φ2(0)
Φ(0)(1−Φ(0))

)]
, δ is any positive number, and φ and Φ are

the probability density function and the cumulative distribution function of the N(0, 1) distribution,

respectively. Then, we have

(i) if (x, y) ∈ ΩJ̄,ε , then T (x, y; hn, S 0) ≤ un, a.s.

(ii) on the other hand, if a non-singular point (x, y) ∈ Jhn, and the minimum jump size of the JLC

within O(x, y; hn) is larger than 4κσ2, then T (x, y; hn, S 0) > un, a.s.

Theorem 2 Under the assumptions in Theorem 1, if we further assume that Bn = O(h1/2
n ), then

for any non-singular (x, y) ∈ ΩS̄ ,ε , we have f̂ (x, y) = f (x, y) + O(h1/2
n ), a.s.
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4 Numerical Studies

In this section, we present some numerical results concerning the performance of the proposed

image denoising method, denoted as NEW, in comparison with three state-of-art image denoising

methods that are widely used in the literature. The three competing methods include the image

denoising method based on total variation minimization (cf., Rudin et al. 1992), denoted as TV,

the adaptive image smoothing method using the steering kernel (cf., Takeda et al. 2007), denoted

as ASSK, and the optimized non-local means image denoising method (cf., Coupe et al. 2008),

denoted as ONLM. The TV method has a regularization parameter, which controls the amount

of smoothing and edge preservation. The ASSK method is accomplished by adaptive smoothing

using various neighborhoods with different shapes and sizes determined by the observed image

intensities. This is an iterative procedure, and it has two parameters to choose: one is a global

smoothing parameter and the other is the number of iterations. The ONLM method has two band-

width parameters and another smoothing parameter to choose. Our proposed denoising method

NEW has three parameters hn, un, and Bn to choose.

The numerical study presented here includes one artificial image, one real fingerprint image,

and one real magnetic resonance image (MRI) of human brain. First, the true artificial image with

64 × 64 pixels is presented in the first image of Figure 2. Its image intensities range from 0 to

1.3125. This image has a comb-like fine structure near the right boundary, several thin lines, and

a rectangular object. Moreover, there is a small ‘L’-like structure in the lower-middle part of the

image. Then, we generate noisy versions of the true artificial image by adding i.i.d. noise from the

N(0, σ2) distribution with σ = 0.05, 0.10, 0.15 and 0.20. These noisy versions are presented in the

second, third, fourth, and fifth panels of Figure 2.

Because the methods TV, ASSK, and ONLM do not provide data-driven procedures to chose

their procedure parameters, to make a fair comparison, we search their procedure parameters by
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minimizing the estimated MISE value, defined to be the sample mean of

ISE( f̂ , f ) =
1
n2

n∑
i=1

n∑
j=1

(
f̂ (xi, y j) − f (xi, y j)

)2
,

computed from 100 replicated simulations, where f̂ denotes the denoised image by a related de-

noising method. While the MISE criterion measures the overall performance of an image denoising

procedure, it cannot tell us how well the edges and other fine details of the image are preserved. To

measure the preservation of such fine details of the image, Hall and Qiu (2007) defined a measure

of jump size (JS) of an image. Its discretized version for the true image intensity function f can be

written as

JS( f ) =
1

(n − 2)2

n−1∑
i=2

n−1∑
j=2

| f (x′i , y
′
j) − f (x′′i , y

′′
j )|,

where (x′i , y
′
j) and (x′′i , y

′′
j ) are two immediately neighboring pixels of (xi, y j) on its two different

sides along the estimated gradient direction of f at (xi, y j). Obviously, if (xi, y j) is an edge pixel,

then | f (x′i , y
′
j) − f (x′′i , y

′′
j )| is close to the jump size of f at (xi, y j). If (xi, y j) is a continuity pixel of

f , then | f (x′i , y
′
j)− f (x′′i , y

′′
j )| is close to 0. Thus, JS( f ) is a reasonable measure of the accumulative

jump magnitude of f along the JLCs. After f̂ is obtained by an image denoising method, we can

compute JS( f̂ ) using the estimated gradient directions of f . Then,

EP( f̂ ) = |JS( f ) − JS( f̂ )|/JS( f )

is a reasonable measure of the edge preservation for the image denoising method in question. In

the literature, there are a number of different methods to estimate the gradient of f . Since we are

interested in the gradient directions rather than their magnitudes, a computationally simple filter

should serve our purpose well. In all numerical examples presented in this paper, the 3 × 3 Sobel

filter (cf., Qiu 2005, Section 4.4.3) is used when estimating f ′x and f ′y .

The numerical results for the artificial image is presented in Table 1, where the first row in each

entry presents the estimated MISE value and its standard error (in parenthesis), the second row

presents the estimated EP value and its standard error (in parenthesis), and the third row presents
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the searched procedure parameter values. When comparing two methods in terms of MISE, if their

estimated MISE values are MISE1 and MISE2 with standard errors SE1 and SE2, respectively, and

if MISE1 < MISE2, then a commonly used practical guideline is that we conclude that method 1 is

significantly better than method 2 when MISE2 −MISE1 > ν(SE1 + SE2), where ν > 0 is a given

number. In practice, people often choose ν from the interval [1, 3]. In our numerical examples, we

use ν = 2. Similar comparisons can be made among different methods in terms of EP. We consider

the performance of the denoising method 1 to be better than method 2 if (i) MISE1 < MISE2

significantly, or (ii) MISE1 ≈ MISE2 and EP1 < EP2 significantly.

From Table 1, we see that in the cases when σ = 0.05, 0.10, and 0.15, the proposed method

NEW outperforms all of its competitors in terms of both MISE and EP. When σ = 0.20, NEW is

better than ASSK in terms of both MISE and EP, it is better than TV in terms of MISE, but TV has

a smaller EP value than NEW, and ONLM is better than NEW in terms of both MISE and EP. One

realization of each of the denoised images by NEW and its three competitors when σ = 0.10 are

presented in the first row of Figure 3. Their mean deviation images, defined as
∑100

r=1( f̂r − f )/100

are presented in the second row of Figure 3. If an image denoising method performs well, then

there should not be any non-random pattern in the corresponding deviation image. From Figure 3

we see that NEW indeed performs better than its competitors in this case.

Next, we consider a real fingerprint image with 346×346 pixels and a real MRI image of human

brain with 319 × 342 pixels. In both images, the image intensity values range from 0 to 255, and

i.i.d. noise from the distribution N(0, σ2) is added to them, where σ is chosen to be 5, 10, 15,

and 20, representing different levels of noise. The noiseless images and several noisy versions are

shown in Figure 4. Then, we apply the four image denoising procedures to these two examples,

and their parameters are chosen in the same way as those in the previous example. The results

corresponding to Table 1 and Figure 3 are presented in Tables 2 and 3 and Figures 5 and 6.

From Table 2, we see that NEW uniformly outperforms ASSK in terms of both MISE and EP

in the fingerprint example. NEW is better than ONLM when σ = 5, 10, and 15 in terms of both
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MISE and EP. When σ = 20, ONLM is better than NEW in terms of MISE but its EP value is

larger than that of NEW. It seems that TV is better than NEW in terms of both MISE and EP when

σ = 5, their performance is similar when σ = 10, and NEW is slightly better than TV in terms

of MISE and much better than TV in terms of EP when σ = 15 or 20. From Figure 5, it seems

that the mean deviation image of NEW shows less prominent pattern, compared to the other mean

deviation images. Please note that in the mean deviation image of ASSK, although the non-random

pattern is also weak, it contains much noise. This observation is consistent with the results in Table

2 where the MISE value of ASSK is large when σ = 10. From Table 3, in the MRI brain image

example, we see that NEW outperforms TV in terms of MISE and EP in all cases except the case

when σ = 5 where TV is slightly better in terms of MISE. ASSK is much better than NEW at all

noise levels in terms of EP, but it is only slightly better than NEW in terms of MISE when σ = 5

and worse than NEW at all other noise levels. The performance of ONLM and NEW is quite

similar. From Figure 6, we can see that the denoised image by NEW is the best when σ = 10. This

can be better seen from the images shown in the second row which are zoomed-in images of the

middle portions of the ones shown in the first row. It can be seen that NEW removes noise well

and preserves fine details better than its competitors. The mean deviation images in the third row

of Figure 6 show that the one of NEW has the least prominent pattern compared to the ones of

other methods, and the one of ASSK contains much noise.

In practice, the noise distribution may not be normal. Next, we consider the case when the image

is generated by a Poisson distributed observations as in cases of digital images and radiographic

images. We still use the three test images as before. For the artificial image, since the image

contrast is only 1.3125, we first multiply all the intensity values by 100 and round the resulting

values to the nearest integers. Then, at each pixel, we generate a random integer from a Poisson

distribution with the mean being the same as the true intensity value at that pixel. Finally, we scale

the image back by dividing all generated intensity values by 100. For each pixel in the fingerprint

and brain images, we directly generate random numbers from a Poisson distribution with the mean
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being the same as the true intensity value at that pixel. The first column of Figure 7 shows the noisy

images. An interesting nature of these noisy images is the noise heterogeneity: the amount of noise

in the background is smaller than that in the foreground. The image denoising methods are then

applied to the noisy images in the same way as before. The corresponding results are presented in

Table 4 and Figure 7. From Table 4, we see that NEW is better than its competitors in all cases

in terms of MISE. Similar to the cases with the Gaussian noise, ASSK seems to preserve edges

better in the case with the MRI brain image with the price of a weaker noise removal ability. This

is confirmed by Figure 7, and the results are not much different from those in the Gaussian noise

cases. The performance of the proposed method when the noise is uniform on a certain interval is

similar, and the results are presented in the supplementary file.

In Section 2.5, we proposed a CV procedure for choosing the parameters of the proposed image

denoising method NEW. Next, we apply NEW to all the examples discussed so far involving

Gaussian noise and choose its parameters by minimizing the CV score in (8). The results based

on 100 replicated simulations are presented in Table 5. By comparing the results in this table with

the corresponding ones in Tables 1–3, we can have several conclusions. (i) For the artificial image,

NEW still outperforms the optimal performance of its competitors when σ = 0.05, 0.10 and 0.15

even if its parameters are chosen by the CV procedure. When σ = 0.20, the performance of NEW

is similar to its optimal performance. (ii) For the fingerprint image, NEW is still better than ASSK

and ONLM when σ = 5 and 10, it is better than ASSK when σ = 15, and it is better than TV and

ASSK when σ = 20. (iii) For the MRI brain image, NEW is still better than ONLM when σ = 5,

it is better than TV when σ = 10, it is better than TV and ASSK when σ = 15, and it is better

than TV when σ = 20. The denoised images by NEW when its parameters are chosen by the CV

procedure at the same noise levels considered by Figures 3, 5 and 6 are shown in Figure 8. By

visual comparison, we can see that its denoised images in such cases look similar to those in the

case when its parameters are chosen to be optimal.

Finally, we generalize our method directly to 3-D cases for denoising 3-D images. To check the

18

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Journal of
Computational and Graphical Statistics, published by Taylor and Francis.  Copyright restrictions may apply.  doi:
10.1080/10618600.2013.870074



performance of the proposed method in 3-D cases, we first download a noiseless T1-weighted 3-D

brain phantom image from the BrainWeb database of the address http://www.bic.mni.mcgill.ca/brainweb/

(Cocosco et al. 1997, Kwan et al. 1996, 1999, Collins et al. 1998). This image has 20% intensity

non-uniformity. We then consider a 32 × 32 × 32 portion around the middle of the image to inves-

tigate the detail-preserving ability of various denoising methods considered. The image contrast

of that portion is 546.4886. Next, we generate its noisy version by adding random numbers from

the distribution N(0, 202). Then, we apply the 3-D versions of NEW, TV and ONLM to the noisy

image in the same way as that in the 2-D case. Their MISE values based on 100 replicated simu-

lations are 112.6, 155.0 and 119.4, respectively. Two cross-sections of the original 3-D image, its

noisy version, and the denoised images are shown in Figure 9. From Figure 9, we see that NEW

preserves image details better than its competitors in this case as well. In 3-D imaging applications,

computation time is also an issue to consider because of a large number of voxels involved. Our

proposed method can be improved in that regard if we can efficiently identify voxels where voxel

clustering is necessary and we can improve the clustering algorithm. Moreover, in 3-D images, the

edge structure can be complicated. Therefore, clustering voxels in a neighborhood into more than

two groups can potentially improve the performance of our proposed method.

5 Concluding Remarks

We have presented an image denoising procedure based on local pixel clustering. Theoretical

properties and numerical results show that it should work well in applications. This procedure can

be generalized to denoise other types of images used in medical science. However, there are still

many places in this method that can be improved. For example, our proposed method uses the

same smoothing parameters (e.g., hn, un, and Bn) in the entire image. Intuitively, these parameter

values should change over location, larger bandwidths should be chosen in continuity regions

of the image, and smaller bandwidths should be chosen around edges and other image structures.
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Computation time to denoise high resolution 3-D images should also be improved. Furthermore, in

the current proposed image denoising procedure, pixels/voxels in a neighborhood of a given point

are partitioned into two groups only. In some cases, specially in cases with 3-D images, three or

more groups could be considered, although such a generalization would increase the computational

complexity of the entire procedure. All these issues need to be addressed in our future research.
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Table 1: In each entry, the first line presents the estimated MISE value based on 100 simulations
and the corresponding standard error (in parenthesis), the second line presents the value of EP and
its standard error (in parenthesis), and the third line presents the searched procedure parameter
values. This table is about the artificial image shown in Figure 2. The best method in each case is
indicated by italicized numbers.

σ TV ASSK ONLM NEW
0.0010 (0.0000) 0.0011 (0.0001) 0.0009 (0.0001) 0.0001 (0.0000)

0.05 0.0038 (0.0028) 0.0841 (0.0050) 0.0165 (0.0043) 0.0034 (0.0025)
40.0 0.14, 5 8, 1, 0.05 0.0938, 2.0, 3.0

0.0038 (0.0002) 0.0037 (0.0001) 0.0017 (0.0001) 0.0004 (0.0001)
0.10 0.0299 (0.0078) 0.1732 (0.0121) 0.0610 (0.0090) 0.0064 (0.0052)

20.0 0.18, 5 8, 1, 0.10 0.0938, 2.0, 3.0
0.0082 (0.0003) 0.0067 (0.0003) 0.0030 (0.0002) 0.0019 (0.0003)

0.15 0.0513 (0.0137) 0.1810 (0.0167) 0.0957 (0.0117) 0.0457 (0.0093)
13.0 0.21, 6 10, 1, 0.15 0.0938, 2.0, 2.0

0.0137 (0.0006) 0.0112 (0.0006) 0.0055 (0.0004) 0.0097 (0.0012)
0.20 0.0925 (0.0187) 0.2500 (0.0245) 0.1003 (0.0173) 0.1712 (0.0212)

10.0 0.23, 6 10, 1, 0.20 0.0938, 2.0, 1.0

Table 2: In each entry, the first line presents the estimated MISE value based on 100 simulations
and the corresponding standard error (in parenthesis), the second line presents the value of EP and
its standard error (in parenthesis), and the third line presents the searched procedure parameter
values. This table is about the fingerprint image shown in Figure 4. The best method(s) in each
case is/are indicated by italicized numbers.

σ TV ASSK ONLM NEW
12.4 (0.1) 24.7 (0.1) 18.8 (0.1) 13.6 (0.2)

5 0.0024 (0.0003) 0.0561 (0.0003) 0.0459 (0.0003) 0.0074 (0.0003)
0.5 0.0025, 3 1, 1, 0.5 0.0043, 2.0, 0.025

41.0 (0.3) 85.3 (0.3) 63.3 (0.5) 42.1 (0.4)
10 0.0131 (0.0006) 0.0917 (0.0007) 0.0174 (0.0005) 0.0132 (0.0006)

0.2 0.0035, 4 10, 1, 15 0.0043, 2.0, 0.2
84.5 (0.6) 166.1 (0.7) 89.2 (0.6) 82.9 (0.7)

15 0.0616 (0.0008) 0.1075 (0.0009) 0.0324 (0.0008) 0.0136 (0.0008)
0.1 0.0040, 4 10, 1, 25 0.0058, 3.0, 0.5

135.9 (0.9) 257.6 (1.0) 113.0 (0.9) 134.0 (1.0)
20 0.0641 (0.0012) 0.1071 (0.0013) 0.0337 (0.0010) 0.0129 (0.0011)

0.08 0.0040, 4 10, 1, 30 0.0101, 3.0, 1.5
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Table 3: In each entry, the first line presents the estimated MISE value based on 100 simulations
and the corresponding standard error (in parenthesis), the second line presents the value of EP and
its standard error (in parenthesis), and the third line presents the searched procedure parameter
values. This table is about the MRI brain image shown in Figure 4. The best method in each case
is indicated by italicized numbers.

σ TV ASSK ONLM NEW
14.4 (0.1) 15.3 (0.1) 18.0 (0.1) 16.1 (0.2)

5 0.0630 (0.0006) 0.0156 (0.0006) 0.0666 (0.0006) 0.0545 (0.0006)
0.40 0.0045, 3 10, 1, 5 0.0088, 10.0, 0.5

38.7 (0.2) 38.8 (0.2) 34.0 (0.2) 34.5 (0.2)
10 0.1253 (0.0009) 0.0182 (0.0009) 0.0861 (0.0010) 0.0784 (0.0010)

0.15 0.0045, 5 10, 1, 10 0.0088, 10.0, 2.0
65.8 (0.5) 66.4 (0.4) 54.3 (0.5) 56.0 (0.4)

15 0.1448 (0.0012) 0.0441 (0.0013) 0.0955 (0.0015) 0.0822 (0.0016)
0.10 0.0055, 5 10, 1, 15 0.0117, 10.0, 2.0

93.8 (0.6) 93.3 (0.6) 79.1 (0.6) 77.5 (0.6)
20 0.1739 (0.0017) 0.0461 (0.0016) 0.0993 (0.0019) 0.1172 (0.0017)

0.07 0.0060, 5 10, 1, 20 0.0117, 10.0, 3.5

Table 4: In each entry, the first line presents the estimated MISE value based on 100 simulations
and the corresponding standard error (in parenthesis), the second line presents the value of EP
and its standard error (in parenthesis), and the third line presents the searched procedure parameter
values. This table is about the cases when the noise follows a Poisson distribution. The best method
in each case is indicated by italicized numbers.

Image TV ASSK ONLM NEW
0.0025 (0.0001) 0.0034 (0.0003) 0.0014 (0.0002) 0.0002 (0.0001)

Artificial 0.0116 (0.0058) 0.1182 (0.0100) 0.0105 (0.0061) 0.0045 (0.0038)
25.0 0.13, 9 10, 1, 0.10 0.0938, 2.0, 3.0

73.1 (0.5) 160.9 (0.7) 75.6 (0.5) 68.4 (0.6)
Fingerprint 0.0271 (0.0008) 0.1140 (0.0009) 0.0102 (0.0006) 0.0192 (0.0009)

0.12 0.0040, 4 10, 1, 20 0.0058, 3.0, 0.4
47.5 (0.3) 41.5 (0.3) 41.6 (0.3) 39.6 (0.3)

Brain 0.1289 (0.0010) 0.0304 (0.0011) 0.1296 (0.0012) 0.0904 (0.0013)
0.14 0.0045, 5 5, 1, 15 0.0117, 10.0, 2.0
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Table 5: In each entry, the first line presents the estimated MISE value based on 100 simulations
and the corresponding standard error (in parenthesis), the second line presents the value of EP and
its standard error (in parenthesis), and the third line presents the searched procedure parameter
values by the CV procedure described in Section 2.5. This table considers the examples with
Gaussian noise only.

Image σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.20
0.0001 (0.0000) 0.0004 (0.0001) 0.0022 (0.0003) 0.0097 (0.0012)

Artificial 0.0034 (0.0025) 0.0095 (0.0061) 0.0810 (0.0103) 0.1712 (0.0212)
0.0938, 2.0, 3.0 0.0938, 2.0, 2.0 0.0938, 2.0, 1.0 0.0938, 2.0, 1.0
σ = 5 σ = 10 σ = 15 σ = 20

13.6 (0.2) 46.1 (0.3) 95.7 (0.8) 137.4 (1.2)
Fingerprint 0.0124 (0.0003) 0.0268 (0.0006) 0.0076 (0.0009) 0.0049 (0.0013)

0.0029, 3.0, 0.025 0.0029, 3.0, 0.2 0.0145, 3.0, 0.15 0.0173, 3.0, 0.3
16.8 (0.1) 38.6 (0.3) 62.0 (0.4) 91.3 (0.8)

Brain 0.0176 (0.0007) 0.0666 (0.0011) 0.0844 (0.0014) 0.0937 (0.0021)
0.0029, 10.0, 1.0 0.0175, 3.0, 1.0 0.0175, 3.0, 2.0 0.0175, 3.0, 2.5
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Figure 1: A toy example with a true image of two intensity levels, where the two neighborhoods
N1 and N2 are considered when estimating the true image intensity at a given pixel P.

Figure 2: The first panel presents the true artificial image, the second, third, fourth, and fifth panels
present its noisy versions when εi j

i.i.d.∼ N(0, σ2), where σ = 0.05, 0.10, 0.15, and 0.20, respectively.

28

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Journal of
Computational and Graphical Statistics, published by Taylor and Francis.  Copyright restrictions may apply.  doi:
10.1080/10618600.2013.870074



Figure 3: The first row shows the denoised images by TV, ASSK, ONLM and NEW in the artificial
image example when σ = 0.10. The second row shows corresponding mean deviation images
defined as

∑100
r=1( f̂r − f )/100, where f̂r’s are the denoised images by a method in consideration.

Figure 4: The first image in the first row shows the true fingerprint image, and the second, third,
fourth, and fifth images are its noisy versions with σ = 5, 10, 15, and 20, respectively. The second
row shows the corresponding images in the MRI brain image example.

29

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Journal of
Computational and Graphical Statistics, published by Taylor and Francis.  Copyright restrictions may apply.  doi:
10.1080/10618600.2013.870074



Figure 5: The first row shows the denoised fingerprint images by TV, ASSK, ONLM and NEW
when σ = 10. The second row shows their mean deviation images.
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Figure 6: The first row shows the denoised MRI brain images by TV, ASSK, ONLM and NEW
when σ = 10. The second row shows the zoomed-in middle portions of the denoised images. The
third row shows the mean deviation images.
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Figure 7: The columns from the left to the right present the noisy images and the denoised im-
ages by TV, ASSK, ONLM and NEW, respectively, in cases when the noise follows a Poisson
distribution.

Figure 8: The left, middle, and right panels present the denoised images by NEW when its pa-
rameters are chosen by the CV procedure described in Section 2.5 and when Gaussian noise with
levels 0.10, 10, and 10, respectively, is added to the true test images.
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Figure 9: The columns from left to right present two cross-sections of a 32 × 32 × 32 portion
around the middle of a noiseless 3-D brain phantom, its noisy version and the denoised images by
TV, ONLM and NEW, respectively.
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