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Abstract 

This paper explores the effectiveness of network attack when the attacker has imperfect information about the 

network. For Erdös-Rényi networks, we observe that dynamical importance and betweenness centrality-based 

attacks are surprisingly robust to the presence of a moderate amount of imperfect information and are more effective 

compared with simpler degree-based attacks even at moderate levels of network information error. In contrast, for 

scale-free networks the effectiveness of attack is much less degraded by a moderate level of information error. 

Furthermore, in the Erdös-Rényi case the effectiveness of network attack is much more degraded by missing links as 

compared with the same number of false links.  

I. Introduction 

Many complex dynamical processes are supported by networks of interconnections between a large number 

of individual elements (e.g., epidemics [1-4], cancer spread [5],electrical power distribution [6,7], etc.). 

Interventions that seek to degrade [8-13] or protect [13-16]  network connectivity are thus of great interest. In 

particular, strategies for network attack by node or link removal have been intensively studied. Key issues have been 

the dependence of the attack effectiveness upon network topology and the strategy for selecting nodes or links for 

removal. We note, however, that, while such previous studies have predominantly presumed the attacker to have 

perfect knowledge of the network to be attacked, this is very often not the case. Specifically, networks inferred from 

measurements typically have false links and miss true links. One might suppose that these errors could very much 

lower the effectiveness of attack strategies. The purpose of this paper is to address this important issue for the case 

of node removal attacks of undirected networks (directed networks are treated in Appendix A).  

One example of a network attack problem is an attempt to stop the spread of a disease with a limited 

number of vaccinations: the people who receive the vaccinations are chosen on the basis of their position in the 

social network [8-13]. Another example is that of deriving gene therapies for cancer. Here the goal is to select those 

genes whose disabling would most inhibit cancer cell survival and proliferation [5,17]. Yet another example is the 

study of the resilience of the Internet to intentional attack [8,12]. The typical attack strategy is to calculate some 

centrality measure of each node, and to then attack (disable, vaccinate, or remove) those nodes with the highest 

values of this measure. However, an attacker with imperfect network information will determine values of these 

centrality measures with some error, and using these would be expected to degrade the effectiveness of his attack. 

Imperfect network information is ubiquitous in applications and can arise in various ways. Examples of link errors 

can be found in online social networks, where a friendship may be indicated despite the two subjects having never 

personally met, or inversely, if no online friendship exists between two face-to-face friends. In the previously cited 

example of cancer gene therapy, genes are selected for disabling based upon an estimated gene interaction network 

inferred from noisy measurements (e.g., measurements of gene expression [18,19]). Recently, Platig et al. studied 

the effects of link errors on the correlation between network centrality measures inferred from true and erroneous 

network information [20]. 

One conclusion of past work for the case where the network is exactly known is that a strategy based on the 

globally dependent node centrality measure of betweenness (defined subsequently) is particularly effective [9]. On 

the other hand, one might suspect that more effective globally-based strategies are also less robust to error in 

network knowledge. Our main conclusions are as follows: 
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(i) For Erdös-Rényi networks, strategies based on global information are surprisingly robust and maintain a clear 

advantage over the simple node degree-based attack up to moderate amounts of network error. 

 

(ii) Scale-free networks display much less dependence on the attack strategy (for strategies based on sensibly chosen 

centrality measures) and much less degradation of attacks by network information error. 

 

(iii) For Erdös-Rényi networks attack effectiveness is degraded much more by missing links as compared with the 

same number of false links. 

 

(iv) Comparing the two global strategies that we test, namely betweenness [21,22] and dynamical importance [23], 

betweenness is often slightly more effective at low network error (at the expense of substantially greater 

computational cost), but the two tend to perform more equally at moderate network error or a relatively small 

number of attacked nodes. 

 

(v) As shown in the Appendix, results (i)-(iv) demonstrated in this paper for undirected networks also apply to 

directed networks.  

 

We next describe the numerical experiments that yield results (i)-(iv). 

II. Model 

For our “true” networks, we consider two types of random networks: Erdös-Rényi, in which the degree 

(number of links to a node) has a binomial distribution, and scale-free [24], in which the degree distribution obeys a 

power law: 

 

𝑃𝑘 =
𝑘−𝛾

∑ 𝑘𝑖
−𝛾𝑘max 

𝑖=1

 

 

where Pk is the probability that a randomly chosen node has degree k. The three node centrality measures upon 

which we base attack strategies are as follows: 

 

(i) The degree centrality, which is simply the degree of a node. 

 

(ii) The betweenness centrality of a node is the fraction of shortest paths between all node pairs that pass through 

that particular node. Let σ(s,t) be the number of shortest paths between nodes s and t, and σi(s,t) to be the number of 

shortest paths between s and t that pass through node i. The betweenness of node i is 

 

𝑏𝑖 =  ∑
𝜎𝑖(𝑠, 𝑡)

𝜎(𝑠, 𝑡)
𝑠,𝑡,𝑠≠𝑡≠𝑖

 

 

(iii) The dynamical importance of a node is a measure of the change in the largest eigenvalue of the adjacency 

matrix (which is typically real and positive) upon removal of that node. For an undirected network, elements of the 

adjacency matrix A are Aij = Aij = 1 if there is a link between nodes j and i, and Aij = Aji = 0 otherwise. Let λ denote 

the largest eigenvalue of A, so that Av = λv for the corresponding eigenvector v. Upon removing a node s from the 

network, and consequently deleting all links attached to it, the matrix A is changed by setting all the matrix elements 

in row s and column s to zero (Ast = Ats = 0 for all t). We use Δλs to denote the resultant change in λ. The dynamical 

importance of the node s is defined as 

 

𝑑𝑠 =  −
Δ𝜆𝑠

𝜆
 

 

with λ being the eigenvalue of the matrix before removal of node s. 

We generate “noisy” networks from the true networks by adding false links to the system and removing 

true links. (We refer to true links which have been removed as “missing” links.) Our method for generating noisy 
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networks is as follows [20]: mtδ links are omitted randomly, where mt is the number of links in the true network and 

0 ≤ δ ≤  1. Links are only eligible for omission if they are part of the true network; false links added in the adding 

process will not be omitted. While each link has an equal probability of being deleted, higher-degree nodes have a 

higher probability of losing a link, as they have more links. In addition, mtα false links are added to the network. 

False links are placed between random pairs of nodes, provided that a link does not already exist between them in 

the true network. Overall our false network model is characterized by the two parameters δ and α, respectively 

representing the error levels associated with missing and false links. 

III. Results 

The networks are of size N = 2500, with the maximum possible degree of a node set at kmax = N/2 = 1250. 

The Erdös-Rényi networks have an average degree zer = 4, and the scale-free-degree networks have γ  ≈  2.06 and 

average degree zsf = 4. In the scale-free networks, we require that the degree of each node is at least 1. The networks 

are constructed according to the configuration model [25]. Next, a noisy network is constructed based on the 

parameters α and δ. The centrality measure is calculated from the existing noisy network, and the highest-centrality 

node is removed from both the true and noisy networks. If there is more than one node having the same highest 

value centrality measure, one of those is chosen randomly for removal. Then, we calculate the size of the Giant 

Component (GC) in the true network (The GC is the largest collection of nodes such that any pair of nodes in the 

GC is connected by a path along links.). To reiterate, the idea here is that network attacks are based on the 

information in the noisy network, but the effects of these attacks are actually felt on the true network. After each 

removal, we recalculate the centrality measure based on the new noisy network (with the previously attacked node 

deleted), and remove the highest centrality node from both networks again, and recalculate the GCC size. This 

process is continued until all nodes are deleted. 

Here, we present the results of numerical simulations exploring the effects of network information errors on 

attack. Results are averaged over 50 different network realizations. Figure 1 presents the size of the giant connected 

component of undirected true networks plotted against the number of nodes removed in attack (both normalized by 

N) for Erdös-Rényi and scale-free networks, both for attacks with perfect information (Figs. 1(a) and 1(c)) and for 

attacks with imperfect information (α  = δ = 0.25) (Figs. 1(b) and 1(d)). We plot results for attacks based on our 

three centrality measures (betweenness, dynamical importance, and degree) and, as a baseline, also include results 

for the case where nodes are successively removed at random. We see that in the case of the Erdös-Rényi networks 

(Figs. 1(a) and 1(b)), the betweenness and dynamical importance strategies are significantly better than the degree 

and random strategies, even with an additional 25% false links added, and 25% of true links deleted. 

Furthermore, we see that the betweenness strategy is slightly more efficient than the dynamical importance 

strategy in the case of no error, and they become approximately equal when error is present. In the case of the 

undirected scale-free networks (Figs. 1(c) and 1(d)), we find that the degree attack is relatively insensitive to this 

moderate amount of error. Restricting attention to reductions of the GC to as low as 10% of its original size, in 

contrast with the Erdös-Rényi case, we see that for the scale-free case there is relatively little difference between the 

different strategies and relatively a much less dramatic effect of moderate network error. 

 



4 

 

 
Figure 1. The size of the GC normalized by the number of nodes N versus the normalized number of nodes removed 

Nr/N, for betweenness, dynamical importance, degree, and random strategies for undirected Erdös-Rényi and scale-

free networks, both shown with no error, and with α = δ = 0.25. 

 

Figure 2 shows GC attack curves for undirected networks subjected to betweenness and dynamical 

importance attacks, with different types of error. Figure 2(a) for Erdös-Rényi networks shows that at moderate levels 

of error, (α, δ) = (0.25,0), (0,0.25) and (0.25,0.25), attacks are more robust to the addition of false links as compared 

with the omission of the same number of true links. Again, while for (α, δ) = (0,0) betweenness based attack is 

somewhat more effective than dynamical importance based attack, this difference essentially disappears when either 

of the moderate error types shown are present. 

 

 
Figure 2. The normalized GC size versus the normalized number of removed nodes for betweenness and dynamical 

importance strategies for undirected (a) Erdös-Rényi and (b) Scale-free networks. 

 

Since Figs. 1(c,d) showed quite weak effects of moderate network error (α, δ) = (0.25,0.25) for scale-free 

networks, we are lead to consider substantially higher levels of network error for the scale-free case. Consequently, 

in Fig. 2(b) we show results for scale-free networks with (α, δ) = (0,0),(0,0.75),(1,0),(1,0.75) (note that α = 1 means 
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that the number of added false links is the same as the number of true links). Even at these high network error 

values, we find little effect of network error for reductions of the GC size by up to 0.5. For greater reductions of the 

GC size network error becomes significant, but very great GC reductions are still achieved at relatively small Nr/N. 

(compared with the Erdös-Rényi case). The effective absence of network error impact for scale-free networks and 

|GC|/N  0.5 can be understood on the basis that reductions of GC size in this range are achieved by removal of a 

relatively small number of nodes that have extraordinarily high betweenness and importance centrality measures. 

Random addition of false links, even if it doubles the number of perceived links is unlikely to produce any nodes 

with centrality measures as high as the true hubs, which will hence still be highly ranked for attack. On the other 

hand, random deletions with δ  = 0.75, on average reduces the degrees of all nodes, roughly proportionally, and 

assuming connectivity is still maintained between the true hubs, they will still by highly ranked for removal. 

IV. Discussion 

We have investigated the impact of imperfect network information on the effectiveness of nodal attack 

based on different centrality measures (degree, betweenness, and importance). Our results indicate strong 

dependence on the network degree distribution and on whether the network error is through false links or through 

missing true links. One implication of the latter finding is that, in the absence of hubs, network inference from noisy 

data (as in the cancer gene therapy application referred to at the beginning of the paper) should employ a somewhat 

weaker threshold for link inference (in order to favor inclusion of true links at the possible expense of the addition of 

false links in the inferred network). There are many possible future extensions of this general line of study, such as 

investigation of link attacks, the impacts of other network topological characteristics beyond degree distribution 

(e.g., assortativity by degree [26], community structure [27] , small worldness [28], motifs [29], network 

hierarchical topology [30], and multilayer structure [31]), considerations of network error in formulating attacks 

tailored to disruption of specific dynamical processes (e.g., epidemic spread), etc.  
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Appendix A: Directed Networks 

The results and discussion in the main text are restricted to the case of undirected networks. Here in Figs. 

A1 and A2 we give results for directed networks analogous to Figs. 1 and 2. To accommodate directedness, Figs. A1 

and A2 have two new aspects not present in Figs. 1 and 2: (i) the curves for attack based on degree centrality in Figs. 

1 and 2 are now each replaced by two curves, one for in-degree-based attack, and one for out-degree-based attack; 

and (ii) the vertical axes in Figs. A1 and A2 are the normalized size of the Giant Strongly Connected Component 

(GSCC) rather than the GC of Figs. 1 and 2 (the GSCC is the largest collection of nodes such that for each pair (i, j) 

of nodes in the GSCC there is a directed path along links both from i to j and from j to i). The parameters and degree 

distributions used for Figs. A1 and A2 are similar to those for Figs. 1 and 2: N = 2500, k
in

max = k
out

max = N/2 = 1250 

(where k
in

max and k
out

max denote in-degree and out-degree), the average in-degree and out-degrees for all networks are 

4, and, for scale-free networks the in-degree and out-degree distributions are the same with power-law exponent γ ≈ 

2 for both. 

 
Figure A1. The size of the GSCC normalized by the number of nodes N versus the normalized number of nodes 

removed Nr/N, for betweenness, dynamical importance, degree, and random strategies for directed Erdös-Rényi and 

scale-free networks, both shown with no error, and with α = δ = 0.25. A general source on this topic is the journal, 

Cancer Gene Therapy. 
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Figure A2. The normalized GSCC size versus the normalized number of removed nodes for betweenness (solid red 

line) and dynamical importance (black dashed line) strategies for directed (a) Erdös-Rényi and (b) scale-free 

networks. 

 

Examination of Figs. A1 and A2 shows that the in-degree and out-degree strategies yield similar results. 

Furthermore, and most importantly, all of our main general results for undirected networks (points (i)-(iv) at the end 

of Sec. I) are seen to apply to directed networks. 
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