A Feasibility Study of Time-Lapse Seismic Monitoring of CO$_2$ Sequestration in a Layered Basalt Reservoir

Murari Khatiwada
University of Oklahoma

Ludmila Adam
Boise State University

Michael Morrison
Boise State University

Kasper van Wijk
Boise State University
A feasibility study of time-lapse seismic monitoring of CO$_2$ sequestration in a layered basalt reservoir

Murari Khatiwada1a, Ludmila Adamb, Michael Morrisonb, Kasper van Wijkb

aConocoPhillips School of Geology and Geophysics, University of Oklahoma
bDepartment of Geosciences, Boise State University

Abstract

We investigate the potential of scattered seismic waves to remotely sense geological sequestration of CO$_2$ in basalt. Numerical studies in horizontally layered models suggest that strong scattering quickly complicates the wave fields, but also provides a sensitive tool to monitor physical changes in and around the reservoir. These results go hand-in-hand with recent laboratory work and rock-physics modeling that has shown significant changes in the seismic properties of a reservoir undergoing CO$_2$ sequestration, due to fluid substitution and mineral precipitation.

Keywords: Basalts, wave scattering, CO$_2$ sequestration, time-lapse monitoring, velocity perturbation

1. Introduction

Storage of carbon dioxide (CO$_2$) in the subsurface may provide a large-scale option to reduce its emission into the atmosphere. The effectiveness of sequestering CO$_2$ into deep reservoirs depends on the reservoir storage capacity, stability and risk of leakage (Holloway, 2001; Davis et al., 2003; Torp and Gale, 2004; Rochelle et al., 2004; Benson and Cole, 2008). In basalt, rock-fluid chemical reactions leading to the precipitation of carbonate minerals would reduce the risk of leakage (McGrail et al., 2006; Rogers et al., 2006; Matter et al., 2007; Oelkers et al., 2008; Gishason et al., 2010; Schaef et al., 2010). When this reaction occurs, changes in the elastic properties of basalt will be the combination of fluid substitution of water with CO$_2$ and carbonate precipitation. Quantifying these elastic changes helps determine the feasibility of remotely monitoring the reservoir with seismic waves.

In addition to the apparently favorable chemical conditions for CO$_2$ sequestration, flood basalts are also widespread around the world and can potentially host large amounts of CO$_2$ (McGrail et al., 2006). Figure 1 shows the extent and volume of the Snake River Plain Basalts (SRPB) and the Columbia River Basalts (CRB).

Seismic methods are widely used to remotely monitor changes in reservoir rock properties, and commonly applied in oil and gas reservoir characterization. However, layered basalts pose a considerable challenge to subsurface imaging, mostly due to strong scattering from the sharp impedance contrasts between basalt flows and sedimentary inter-beds (Kumar et al., 2004; Jarchow et al., 1994; Pujol and Smithson, 1991). In this paper we explore how scattered waves in such a high impedance contrast environment can be used to monitor elastic property changes within layers. We model our seismic data based on...
on the elastic properties of basalt flows with inter-bedded sediments from well logs from CRB at the Hanford site (Washington State, USA; Rohay and Reidel (2005)). The values of velocity and density in each layer are from the blocked sonic and density logs. Figure 2 shows the model with the sonic log overlaid. It is clear that overall the sedimentary interbeds have a significantly lower density and seismic velocities than the basalt flows.

We first explore the anticipated changes in the seismic velocities due to fluid substitution. Second, we present the theory for monitoring velocity perturbations with scattered waves, and finally we model time-lapse seismic on three layered subsurface models, using the predicted velocity changes in the reservoir.

2. Changes in the elastic properties

Changes in the elastic properties of basalts undergoing CO₂ sequestration are a combination of fluid substitution of water with supercritical CO₂, as well as carbonate precipitation. Quantifying these elastic changes remotely with seismic waves will determine the feasibility of effectively monitoring the reservoir. Before we model the wave propagation, we first discuss the anticipated changes in seismic velocities.

2.1. Mineralization

Mineralization of CO₂ into carbonate minerals occurs from the combination of water-carbon dioxide mixtures and divalent metal cations (Ca²⁺, Mg²⁺, Fe²⁺). These cations can be present in low concentrations in formation waters. However, host rocks rich in such metals with high dissolution rates are the target for long-term sequestration and mineralization. Basalt rocks are rich in Ca, Mg and Fe cations and poor in silica, which translates into high dissolution rates of these metals compared to high-silica rocks. The first step for this rock-fluid interaction is that carbonic acid (H₄CO₃) dissociates into bicarbonate (HCO₃⁻) and H⁺ ions, lowering the pH of the water:

\[
\begin{align*}
\text{CO}_2 + \text{H}_2\text{O} & \rightleftharpoons \text{H}_2\text{CO}_3 \\
\text{H}_2\text{CO}_3 & \rightleftharpoons \text{HCO}_3^- + \text{H}^+
\end{align*}
\] (1)

Divalent metal cations in the water precipitate as carbonates:

\[
(Ca,Mg,Fe)^{2+} + H_2CO_3 \rightleftharpoons (Ca,Mg,Fe)CO_3 + 2H^+
\] (2)

The reaction in equation 2 only occurs if the hydrogen ions are consumed by a different reaction.

The following equations define two of several reactive basalt minerals consuming the free hydrogen and releasing new divalent metal cations into the water (Gislason and Hans, 1987; Matter et al., 2007). These free cations react with the CO₂-water mixture (equation 2) to precipitate as carbonates:

\[
\begin{align*}
Mg_2SiO_3 + 4H^+ \rightarrow 2Mg^{2+} + H_2O + SiO_2(aq) \\
CaAl_2Si_2O_8 + 8H^+ \rightarrow Ca^{2+} + 2Al^{3+} + 4H_2O + 2SiO_2(aq)
\end{align*}
\] (3)

McGraul et al. (2006) and Schaefer et al. (2010) report significant carbonate mineralization on crushed samples from the CRB and other basalts around the world. Super-critical CO₂ was mixed with water at 100°C and 10.3 MPa pressure. Carbonate precipitation was observed in as little as 87 days. The rate of mineralization in full rock is unknown, but depends on the available divalent metal cations – which is proportional to the dissolution rate of the minerals – fluid temperature and pressure, solution composition, CO₂ concentration and rock pore surface area. Otheim et al. (2011) show preliminary laboratory velocity measurements on whole basalt cores that have been exposed to a CO₂-water mixture for 15 weeks. They observe an increase in P- and S-wave velocity due to mineral precipitation between 2 and 12%, as well as physical changes on the basalt samples.

2.2. Fluid substitution

When the original fluid in the pore space is replaced or mixed with a different fluid, we call this fluid substitution. For this study, we assume that CO₂ displaces all the formation water in the reservoir. This is likely accurate near the injection hole, but away from the borehole saturation may be patchy. In either case, fluid substitution is the initial effect on the reservoir when CO₂ is injected in a
layered basalt reservoir saturated with formation waters, whereas mineralization would occur later in time. Here we study changes in seismic velocity, when CO$_2$ fully replaces the formation water in the pore space.

Fluid substitution effects in reservoirs is commonly modeled by Gassmann’s equation (Gassmann, 1951):

$$K_{\text{sat}} = K_{\text{dry}} + \frac{(1 - \phi K_{\text{sat}}/K_{\text{min}})^2}{K_{\text{fl}} + \frac{1 - \phi}{K_{\text{min}}} + \frac{K_{\text{dry}}}{K_{\text{min}}}}$$

which helps us predict the changes in the seismic properties of the saturated rock when one fluid is replaced by a different fluid. In the subsurface, these basalts are saturated with formation water. From velocity and density log data we estimate that the brine-saturated rock has a bulk modulus $K_{\text{sat}} = 28.3$ GPa. Assuming a brine with 200,000 ppm of NaCl and at a pressure of 7.6 MPa yields a fluid bulk modulus $K_{\text{fl}} = 3.4$ GPa (Batzle and Wang, 1992). The porosity ϕ is estimated at 19% from the density log and the mineral composition of the CRB. The mineral bulk modulus is an average of the bulk modulus of minerals based on XRD information of a CRB sample from Schaefer et al. (2010). This particular sample composition has 45.3% olivine, 35.3% plagioclase, 18.3% pyroxene (augite) and 1.0% magnetite. The effective $K_{\text{min}} = 91.1$ GPa is obtained from the Voigt-Reuss-Hill bulk modulus average of the forming minerals. With these estimates, equation 4 results in a dry rock bulk modulus $K_{\text{dry}} = 17.66$ GPa.

The potential CO$_2$ reservoir is at 1 km in depth, where the CO$_2$ is in supercritical (sc) condition: it compresses as a gas, but has the density of a liquid. Sc-CO$_2$ at 60°C and a pressure of 7.6 MPa has a density of 170 Kg/m3 and a bulk modulus of 0.01 GPa. The only parameter in equation 4 that changes from a water to CO$_2$ saturated rock is K_{fl}. From this equation and the properties of sc-CO$_2$ the estimate for the bulk modulus of the rock fully-saturated with CO$_2$ is 17.70 GPa. The change from dry to CO$_2$ saturated rock is small because of the high compressibility of the CO$_2$. However, in the subsurface we are replacing water by CO$_2$, so that the bulk modulus of the rock would change from 28.3 GPa to 17.7 GPa, a decrease of 37%. The rock bulk density would also decrease as CO$_2$ substitutes water. The shear modulus of the saturated rock is expected to remain constant, because fluids have a shear modulus of zero.

The result of this modeling implies that the P- and S-wave velocities change from 4260 m/s to 3886 m/s and 2400 m/s to 2472 m/s, respectively. This means that the P-wave velocity decreases 10% and that the shear velocity increases 3% as CO$_2$ replaces water. The fluid effect on the shear wave velocity only responds to a density effect. In CRB however, the water salinity at 1 km depth can be as low as 10,000 ppm of NaCl (McGrail et al., 2010). For this brine, the fluid bulk modulus is 2.4 GPa at 7.6 MPa and 60°C. A lower fluid compressibility because of lower salinity increases the estimated dry bulk modulus of the rock. After estimating K_{sat} by Gassmann’s relation the predicted CO$_2$-saturated basalt P-wave velocity is 4062 m/s. This velocity represents a 5% decrease in the P-wave velocity from water to CO$_2$ saturation. The S-wave velocity would increase by 3%. Two different brines were modeled with Gassmann’s equation because continental basalts would probably be saturated with lower salinity brine than basalts erupted in the sea. The modulus calculations for these brines were performed assuming the formation water will be completely substituted by CO$_2$ and that Gassmann’s equation is the theory describing the changes in compressibility of these basalts.

In the field, however, complete brine displacement by CO$_2$ is probably not widespread. The effect of fluid saturation on velocity from a uniform water-CO$_2$ mixture is shown in Figure 3. To estimate these velocities for saturated basalts, the fluid-mixture bulk modulus was averaged using the Reuss average, and the fluid density was averaged using an arithmetic mean. Figure 3 shows that if the fluids are uniformly distributed, CO$_2$ has the largest effect on the P-wave velocity when it represents 6% or less of the total mixture, dropping the velocity from 4260 m/s to 3800 m/s. This type of fluid mixture modeling is applicable for patchy saturation where a patch-size is smaller than a specific length at which wave-induced pore pressures have enough time to equilibrate (Mavko and Mukerji, 1998). However, saturation due to large patches can be modeled in detail with field specific parameters (Kazemeini et al., 2010). For these models, patchy saturation effects on velocity are significantly more sensitive to the water-CO$_2$ mixture than for a uniform distribution. The purpose of this paper is not to model the effect of partial saturation on seismic velocity, but to show the potential of monitoring changes in velocities by studying the coda waves of seismic signal. To understand the fluid saturation and distribution effect on seismic signatures, future laboratory core measurements and field modeling need to be integrated with the method presented here.

Finally, laboratory experiments by Otheim et al. (2011) conducted on basalt samples from SRPB show that the P-wave velocity decreases between 5 and 10% when CO$_2$ fully replaces distilled water. Although Gassmann modeling and laboratory measurements on these basalts show a decrease in the P-wave velocity of up to 10%, a more conservative P-wave velocity change of 5% is modeled in this study. If coda wave interferometry turns out to be able to detect a 5% decrease in velocity, this technique would also be applicable to a velocity change of greater value.

2.3. Combined fluid substitution and mineralization effects on elastic properties

Using the basic concepts of physics of materials (Gassmann’s theory and rock stiffening after mineralization), we qualitatively predict changes in P- and S-wave velocities. Figure 4 illustrates the P- and S-wave velocity changes as a function of time. In the fluid substitution phase, the P-wave velocity significantly decreases as predicted by Gas-
mann’s relation but as soon as mineralization occurs, it is possible that the P-wave velocity will increase. For S-waves, the velocity increase during the fluid substitution phase is negligible. For the mineralization phase, however, the S-wave velocity may increase significantly. It is clear from Figure 4 that there is a specific time where fluid substitution and mineralization effects on the P-wave velocity offset each other, and time-lapse data may not show changes in the reservoir in that time window. Laboratory work is in progress to help clarify the trade-off effect on velocity between fluids and mineralization.

3. Coda wave interferometry

Later times in the seismogram (the seismic coda) represent the scattering of seismic waves. These waves often sample the medium well and are thus sensitive to small velocity perturbations. The active doublet method (Poupinet et al., 1984; Roberts et al., 1992) and coda wave interferometry (CWI) (Snieder, 2006) seek to find the relation between travel time perturbation and velocity changes in the medium.

The travel time for a wave in a medium with velocity v is

$$ t = \int_P \frac{1}{v} ds, \tag{5} $$

along the path P. The perturbed travel time due to a small velocity perturbation Δv is

$$ t + \Delta t = \int_P \frac{1}{v + \Delta v} ds \approx \int_P \left(\frac{1}{v} - \frac{\Delta v}{v^2} \right) ds, \tag{6} $$

based on a first order Taylor expansion. Solving equations 5 and 6, we find that

$$ \int_P \frac{1}{v} ds + \Delta t = \int_P \frac{1}{v} ds - \int_P \left(\frac{\Delta v}{v^2} \right) ds, \tag{7} $$

assuming the velocity perturbation is constant in space. This result can be rewritten as

$$ \frac{\Delta t}{t} = -\frac{\Delta v}{v}. \tag{9} $$

This means that for a given velocity change in the entire medium, the change in travel time is equal but of opposite sign.

4. Numerical modeling of seismic wave propagation

Based on the previous calculations, we apply coda wave interferometry to models with a conservative estimate of the decrease in the P-wave speed of 5% in a reservoir after CO$_2$ sequestration. We perform wave propagation simulations with the Spectral Element Method (SEM, Komatitsch et al., 2002) in layered media. While the source is a point source spreading in two dimensions, we only consider receivers on the (vertical) line perpendicular to the horizontal layering. The sides of the model in this example are sufficiently far away so that no side-reflected energy re-enters the recordings in the borehole. Top and bottom of the model, however, are reflecting boundaries. The central frequency of the source is 60 Hz and we generally use 40 receivers 20 m apart in the borehole.

Layered basalt is well known for its strong multiple scattering attenuation, but intrinsic attenuation can also...
attenuate seismic waves in basalt. Pujol and Smithson (1991) studied the seismic wave attenuation properties of the CRB and based on their findings, we adopt a global value for the intrinsic attenuation of P-waves equal to $Q_p = 40$.

4.1. A homogeneous model

In a homogeneous acoustic model with dimension of $x = 9000$ m by $z = 1000$ m and velocity $v = 5250$ m/s, we simulate wave propagation from a point source at 400 m depth from the surface. We simulate 2D wave propagation before and after a global change in the velocity of $\Delta v = -5\%$, where the signals recorded are the direct arrival and the reflections from top and bottom of the model. The waveforms for the receiver at 270-m depth are shown in Figure 5. From the difference between the pre- and post-perturbation waveforms and equation 9, we find that $\Delta t = 4.98 \pm 0.04\%$ (Figure 6). This value corresponds to the actual change in velocity $\frac{\Delta v}{v} = -5\%$.

4.2. A three-layer model

Next we consider a three-layer model, where the parameters are listed in Table 1. Similarly, we reduce the velocity in the reservoir layer by 5%, and compare the pre- and post-injection seismic data for a source in the reservoir and a receiver 10 m above it (Figure 7). As is evident from the complexity of the waveforms, even with only three layers, there are many possible travel paths from source to receiver.

Figure 8 shows the slope of the best-fitting line through the travel-time change as a function of time, for each receiver with the source in the reservoir. Receivers closer to the reservoir are more sensitive to the reservoir change than receivers farther away, but all receivers underestimate the velocity change in the reservoir according to equation 9. The same observations were made for VSP measurements in Zhou et al. (2010). The reason for the underestimation is that each travel path from source to receiver has spent only a fraction of its travel time in the perturbed reservoir. Zhou et al. (2010) used detailed knowledge of the subsurface velocities to model the expected coda-wave changes. Next, we analytically solve the changes for a three-layered model, for the situation with the highest sensitivity: with source and receiver in the injection layer. However, sensitivity may be high enough in reality that monitoring can be done down-hole near the reservoir, instead of inside. Figure 8 shows a sensitivity that is largest inside the reservoir, decaying away from the reservoir. The ability to use receivers away from the reservoir will depend on the signal to noise ratio of the data. For a detailed investigation of different data acquisition

<table>
<thead>
<tr>
<th>Layer (m)</th>
<th>Velocity (m/s)</th>
<th>Density (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1000</td>
<td>5800</td>
<td>2700</td>
</tr>
<tr>
<td>1000-1041</td>
<td>4260</td>
<td>2300</td>
</tr>
<tr>
<td>1041-1060</td>
<td>5540</td>
<td>2700</td>
</tr>
</tbody>
</table>
Figure 8: The velocity of a thin reservoir is perturbed by 5%. The travel time difference Δt between corresponding events are estimated for each receiver, as a function of time t. The black symbols represent the best fitting slope of Δt for each receiver.

geometries for monitoring purposes, we refer the reader to Khatiwada (2009).

In this three-layer model with a localized velocity perturbation, the recorded signal spends a significant time traveling through unperturbed material, and equation 9 must be adjusted to account for this. For random media, Pacheco and Snieder (2006) and Pacheco and Snieder (2005) consider probabilities of time lags due to localized changes for singly and multiply scattered waves. Here, we aim for a deterministic solution:

$$\frac{\Delta v}{v} = C \frac{\Delta t}{t},$$

where C is a multiplier determined from the relative residence time t_{res} within the perturbed reservoir material:

$$C = \frac{t}{t_{res}}.$$

This multiplier is a function of the medium properties, as well as the location of source and receiver.

Figure 7 shows four separate wave groups, corresponding to the number of times the signal traversed the top layer. Within each wave group are four distinct wave packets, each corresponding to a different number of bounces in the reservoir and/or the four different source/receiver types depicted in Figure 9. Hence, the resident time and thus the value of C varies with time.

All paths in Figure 10 depart the source in the same direction (upward) and arrive at the receiver in the same direction (downward). In addition, the number of multiples in each layer is the same. Even though each path traverses the medium in a different order, their travel time and residence times are the same. We call these paths part of the same cohort. This means their C is constant.

Figure 9: A ray can depart the source up or down and arrive at a receiver from above or below. Source and receiver are in the vertical plane, but are drawn with a horizontal offset to illustrate the ray paths.

Figure 10: Three different paths with the same total travel time and residence time in the middle layer. Source and receiver are in the vertical plane, but are drawn with a horizontal offset to illustrate the ray paths.
The travel time for a cohort can be computed as follows:

\[t = t_{\text{type}} + 2 \sum_{i=1}^{l} n_i \frac{h_i}{v_i}, \]

where \(t_{\text{type}} \) is the travel time associated with a particular Source/Receiver path, and \(h_i \) and \(v_i \) are the thickness and velocity of layer \(i \), respectively. The number of multiple pathways in layer \(i \) is \(n_i \). The residence time in the reservoir (layer 2 in this case) is

\[t_{\text{res}} = \frac{2n_2 h_2}{v_2} + t_d, \]

where \(t_d \) is the reservoir residence time associated with Source type. Substituting the results of Equations 12 and 13 into Equation 11, results in the \(C \) values of Table 2. The average estimate of the velocity perturbation is -4.73%.

4.2.1. Arrivals with different residence times

Equation 11 suffices when travel times and residence times of the individual ray paths can be identified. If rays with differing residence time in the reservoir arrive at a receiver at the same time, we propose:

\[\Delta v = C' \Delta t, \]

where

\[C' = \frac{\sum_i |A_i| C_i}{\sum_i |A_i|}. \]

\(A_i \) is the amplitude of the \(i \)-th ray with the same arrival time \(t \), where the amplitude of the ray is:

\[A_i = L_p D_j (R_{12} R_{23})^{n_j} \left[\frac{T_{23} T_{12} R_{10}}{R_{21}} \right]^{s_1} \times \left[\frac{T_{23} T_{32} R_{30}}{R_{23}} \right]^{s_3} (R_{30} R_{32})^{n_3-s_3}. \]

Exponents \(n_j \) and \(s_j \) are, respectively, the number of layer \(j \) multiples and crossings. Apart from those crossings associated with Source/Receiver type (Figure 9), crossings occur in pairs (one coming in, one going out).

Attenuation coefficients \((D_j) \) associated with each Source Receiver Type are defined in Table 3, where \(T_{ij} \) and \(R_{ij} \) are, respectively, transmission and reflection coefficients associated with a signal moving from layer \(i \) into layer \(j \). \(L_p \) is a path length factor.

Table 2: Results obtained for a three-layer model, with \(C \) determined from equation 11.

<table>
<thead>
<tr>
<th>Pre (s)</th>
<th>Post (s)</th>
<th>∆t/t (%)</th>
<th>C</th>
<th>∆v/v(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9445</td>
<td>0.9475</td>
<td>0.317</td>
<td>15.27</td>
<td>-4.84</td>
</tr>
<tr>
<td>0.2890</td>
<td>0.2919</td>
<td>1.003</td>
<td>4.83</td>
<td>-4.85</td>
</tr>
<tr>
<td>0.6809</td>
<td>0.6845</td>
<td>0.529</td>
<td>8.40</td>
<td>-4.45</td>
</tr>
<tr>
<td>1.4221</td>
<td>1.4274</td>
<td>0.373</td>
<td>12.84</td>
<td>-4.79</td>
</tr>
</tbody>
</table>

Table 3: Source/receiver attenuation coefficients for wave types 1-4.

<table>
<thead>
<tr>
<th>Start (s)</th>
<th>∆t/t (%)</th>
<th>C</th>
<th>∆v/v (%)</th>
<th>σ_Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.130</td>
<td>0.231</td>
<td>17.44</td>
<td>-4.02</td>
<td>0.15</td>
</tr>
<tr>
<td>0.150</td>
<td>0.533</td>
<td>5.20</td>
<td>-2.77</td>
<td>0.41</td>
</tr>
<tr>
<td>0.240</td>
<td>0.167</td>
<td>10.29</td>
<td>-1.72</td>
<td>0.50</td>
</tr>
<tr>
<td>0.480</td>
<td>0.125</td>
<td>22.01</td>
<td>-2.75</td>
<td>0.19</td>
</tr>
<tr>
<td>0.500</td>
<td>0.240</td>
<td>18.72</td>
<td>-4.49</td>
<td>0.10</td>
</tr>
<tr>
<td>0.640</td>
<td>0.438</td>
<td>19.90</td>
<td>-4.77</td>
<td>0.01</td>
</tr>
<tr>
<td>0.840</td>
<td>0.143</td>
<td>25.29</td>
<td>-3.62</td>
<td>0.30</td>
</tr>
<tr>
<td>0.880</td>
<td>0.341</td>
<td>17.78</td>
<td>-6.06</td>
<td>0.09</td>
</tr>
<tr>
<td>1.320</td>
<td>0.311</td>
<td>22.12</td>
<td>-6.87</td>
<td>0.23</td>
</tr>
<tr>
<td>1.350</td>
<td>0.281</td>
<td>18.15</td>
<td>-5.10</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4: Estimates of the velocity change in the reservoir of a three-layer model, using Equation 14. Lag times \(\Delta t \) were obtained from crosscorrelating a time window of 40 ms.

\[L_p = \frac{1}{(h_d + 2 \sum h_i n_i)^m}, \]

where \(h_d \) is the path length associated with Source/Receiver type \(d \) defined in Table 3, and the exponent \(m \) depends on model geometry. For a two-dimensional model, \(m = \frac{1}{2} \).

Even though we managed to track individual rays in the three-layered model, we next extract average values for \(\Delta t \) over time windows of 0.04 s from the lag time of the maximum correlation coefficient. For more complicated models, this more automatic way is likely the method of choice. Per time window, more than one cohort contributes to \(\Delta t \). \(C' \) is determined using Equation 15, and the resulting reservoir changes summarized in Table 4 show that estimates of the reservoir velocity changes are particularly close to the true value when the variance in \(C' \) is small.

4.3. A 17-layer model

Finally, we consider a 17-layer model that more accurately represents the geology of a possible CO\(_2\) injection site in the Columbia River Valley, Washington, with thick layers of flood basalt and inter-layered sediments (Figure 11). We numerically compute waveforms from a point source at the injection depth of 1010 m from the surface, before and after a 5% decrease in P-wave velocity in the reservoir.

Based on the observed maximum sensitivity near the reservoir in the three-layered model, we analyze the case where both source and receiver are inside the reservoir. Averaged over \(t = 1.5 \) s, \(\Delta t/t = -\Delta v/v = 0.50 \pm 0.40\% \) (Figure 11). This is not in agreement with the velocity...
Figure 11: Travel time change analysis due to 5% decrease in velocity for source and receiver both in the reservoir; the black line shows the travel time change for the entire record. The red line indicates the travel time change for early times only.

decrease in the reservoir of 5%. Instead of the rather involved process of determining the residence time versus the total travel time of individual ray paths, we take a more practical view: waves excited in the reservoir are at first mostly trapped because of the relatively high impedance contrast with the massive basalt flows on top and bottom.

We find that in the first $t = 0.25$ s after the source is set off, waves traverse the reservoir up to 12 times. In that time, $\Delta t/t = \Delta v/v = 4.42 \pm 0.25$, based on the regression denoted by the red line in Figure 11. The improvement of the estimate of the velocity perturbation is illustrated in Figure 12, where for early times waves are mostly trapped in the reservoir (event A). At later times, waves that leak out the reservoir can re-enter. Such events see only a small portion of the changes imposed by travel in the reservoir. Thus at later times the recorded signal is dominated by events such as event B and C. Knowledge of the reservoir thickness and medium velocity can aid in estimating the best time window for analyzing velocity changes with coda wave interferometry.

5. Conclusions

Predicting changes in the P- and S-wave velocity for a CO$_2$ sequestration scenario in basalt rocks is studied with a simple rock physics model. The P-wave velocity decreases up to 10% from fully-water to fully-CO$_2$ saturated basalts, as estimated from modeling and laboratory data. A conservative estimate of the reservoir velocity change of 5% went into a monitoring study based on coda wave interferometry. Remotely monitoring such small changes in thin reservoirs deep in the earth continues to be a challenge for geophysicists. We present a numerical study of a monitoring technique based on down-hole seismic profiling. We show that coda waves in layered earth models are sensitive to small velocity perturbations, and recovering those changes can be achieved by understanding the propagation of scattered waves within layers. Future work will focus on more realistic earth models and the reality of noisy data.

6. Acknowledgments

We thank the Department of Energy, the Big Sky Carbon Sequestration Partnership, the Center for Advanced Energy Studies and Schlumberger for providing financial support for this research. Also, we thank Dimitri Komatitsch for providing us with the spectral element code and suggestions regarding its use, and Roel Snieder for his many constructive suggestions. We would like to thank Christopher Juhlin, Charlotte Sullivan, and Klaus Holliger for their revisions and recommendations on improving this manuscript.
References

