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Abstract

Jozef Przytycki introduced skein modules of 3-manifolds and skein deforma-
tion initiating algebraic topology based on knots. We discuss the generalized
skein modules of Walker, defined by fields and local relations. Some results by
Przytycki are proven in a more general setting of fields defined by decorated
cell-complexes in manifolds. A construction of skein theory from embedded
TQFT-functors is given, and the corresponding background is developed. The
possible coloring of fields by elements of TQFT-modules is discussed for those
generalized skein modules. Also an approach of defining skein modules from
studying compressions of fields is described.

Keywords: generalized skein module, topological quantum field theory

Mathsubject Class.: 57M25, 57M35, 57R42

1 Motivation and questions.

J. Przytycki defined skein modules of 3-manifolds as a kind of universal target of
knot invariants satisfying skein relations [P1], [P2]. The skein modules define func-
tors from categories of 3-manifolds and diffeomorphisms (actually codimension-0
embeddings) into module categories. The skein module of a 3-manifold is defined by
taking the quotient of a free module with basis the set of isotopy classes of links in
the 3-manifold by a submodule generated by local relations. The skein modules with
the actions by diffeomorphisms thus almost define modular functors in the sense of
Turaev [T] (usually missing is the finite type projectivity of skein modules). We
define a skein theory to be the collection of skein modules with the diffeomorphism
actions and gluing structures.
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Interesting skein modules are always based on skein relations that interact in a
non-trivial way with the action of diffeomorphisms on embeddings. Besides classical
skein relations like the Kauffman bracket or Homflypt relations, Przytycki consid-
ered skein relations he called deformations of homotopy and homology via the action
of diffeomorphisms on the set of framed links in 3-manifolds. The theory of skein
modules and the field of algebraic topology based on knots have since then devel-
oped into an independent field of study related to important questions in quantum
topology like the volume conjecture [L].

Recently K. Walker [W] defined generalizations of skein modules for n-manifolds
based on a subtle categorical axiomatics of fields in dimensions ≤ n, local relations
in dimension n and a sophisticated system of gluing axioms. His generalized skein
modules are quotients of vector spaces of fields by subspaces generated by local rela-
tions. Walkers motivation is to give a geometric construction of (extended) topologi-
cal quantum field theory (TQFT). He proves that under the assumptions that (i) the
definition of fields can be consistently extended to (n+1)-manifolds, (ii) there exist
natural positive definite pairings on skein modules of the n-ball defined by gluing,
and (iii) the skein modules of all n-manifolds are finite dimensional, then skein the-
ory defines an (n+1)-dimensional TQFT. Walker explains how (n+1)-dimensional
TQFT theory naturally induces skein modules of n-manifolds using supposed prop-
erties of a Feynman path integral structure on fields. But (n+1)-dimensional TQFT
also is related with skein relations for (n+1)-fields. This consequence of finite dimen-
sionality of TQFT modules has probably first been observed by Witten for n = 2.

It is the goal of this paper to review relations between skein modules and TQFT-
structures by discussing two general constructions of generalized skein theories. Our
hope is that this initiates a study of interesting generalized skein modules on a more
conceptual basis. The question of finite dimensionality of the TQFT modules, which
is essential for TQFT theory, is not of our concern here, see [AU] for related discus-
sions. Most of the classical skein theories a priori do not define finite dimensional
skein modules for 3-manifolds. According to Walker, 2 + 1-dimensional TQFT the-
ory is naturally defined from skein modules of 1-complexes on surfaces, with the
skein relations projected from skein relations of links embedded in the cylinder over
the surface. The power of these natural skein relations is that there are correspond-
ing polynomial invariants of links in S3. On the other hand skein modules of links
in 3-manifolds are naturally associated with 3 + 1-dimensional TQFT via Walker’s
approach. It seems that at this point connections between 3- and 4-dimensional
topology are not understood in full detail. It is well-known that this problem is at
the heart of Khovanov theory. For a discussion of the categorification of the Jones or
Kauffman bracket polynomial see [P3], for a discussion of a categorification of skein
modules of I-bundles over surfaces see [APS]. Note that recently, Gaiotto and Wit-
ten [GW] have been studying Jones and Khovanov theory for links in 3-manifolds
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M through differential equations for fields on M × [0,∞) with boundary conditions
on M × {0} defined by links in M . The compression functors in the last section of
this paper could possibly be related in some way with this study of physical fields
on cylinders over 3-manifolds.

The calculation of skein modules is difficult in general. The questions below
indicate some directions in which to study the generalized skein theories of Walker.
Recall that for each skein theory in dimension n one can naturally study the skein
modules of cylinders over (n − 1)-manifolds with fixed boundary fields on top and
bottom. In this way skein modules appear as morphism sets of certain categories
generalizing the Jones algebroid of Jones skein theory, see [Wa]. Motivated by the
examples in classical skein theory, see [P1], we suggest the following definitions. We
will assume throughout that the set of fields is an R-module, for R a commutative
unital ring, with basis a collection of base fields.

1.1 Definitions. (i) A skein theory is consistent if the skein algebra R of the 3-ball
with empty boundary field is naturally isomorphic to a subalgebra of a localization
of R at a multiplicative set determined by the skein relations, and R ⊃ R with R
corresponding to the empty field, see 1.2. Remarks (i) below for an example.

(ii) A skein theory is strongly consistent if all morphism modules of the Jones al-
gebroid as above are finitely generated free modules over the algebra R (see the
Remarks below for an explanation of the R-module structure.)

(iii) A skein theory is finitely skein generated if the skein relations are generated by
a finite set (in the sense of generating a gluing ideal, for details see Definition 2.9
below and [W].)

1.2 Remarks. (i) If R = k a field (so the set of fields is a k-vector space) consistency
reduces to R ∼= k. Consistency requires that the n-ball, which represents trivial n-
dimensional manifold topology, is represented in skein theory in an essentially trivial
way. On the other hand, non-triviality of skein modules of manifolds should detect
non-trivial manifold topology. A typical example of R is for the skein module of
oriented links in 3-manifolds, defined over R = Z[q±1, z, h], by

q−1 ����
− q

����
= w

����

(q−1 − q)∅ = h©

with w = z respectively w = h for a crossing of different components respectively for

a self-crossing. In this case R = Z[q±1, z, h, q
−1−q
h

], see [P1] and [K3]. The extension
R ⊃ R results from relating unlinks to the empty link, which requires to localize
at h. It is a consequence of non-invertibility of ring elements involved in the skein
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relations that the vacuum, i. e. the empty link, does not generate the skein module
of the ball.

(ii) Usually skein modules of n-manifolds are modules over the ring R in a natural
way. This follows if the inclusion of a punctured manifold (by which we mean the
complement of an open ball in the manifold) into the manifold induces an isomor-
phism of skein modules.

(iii) Strong consistency holds for the usual skein modules of links or surfaces in 3-
manifolds, but for quite different reasons. For skein modules of links it follows from
consistency of a TQFT respectively the existence of link polynomials like the Jones
of Homflypt polynomials in the background of those theories. For skein modules of
surfaces in the sense of [K1] it follows from the complete compressibility of surfaces
embedded in the 3-ball and the consistency of abstract TQFT for surfaces.

The above definitions suggest the following questions.

1.3 Questions. For which skein relations is a skein theory (strongly) consistent?
When is a skein theory finitely skein generated?

It seems interesting to study what general assumptions have the consequence
that consistency implies strong consistency, or when finite generation holds in cases
when the skein module is not already given by the local relation. Interestingly, if
skein modules are directly defined by skein relations, the skein theories are obviously
finitely skein generated but it is often not easy to establish consistency (usually this
follows from the existence of a topological invariant like a quantum link invariant).
On the other hand in section 3 we will define skein theories, which are by construction
consistent, but finite skein generation does not seem easy to establish.

In section 2 we review the definition of generalized skein modules following [W]
with details referred to [W] and [MW]. We will pay attention to orientations, and
reprove some classical observations of Przytycki in a more general setting, empha-
sizing that many techniques in classical skein theory are based on transversality,
which often works for fields defined by decorated embedded complexes in manifolds.
Because we are not primarily interested in TQFT we work over a commutative uni-
tal ring R not necessarily an algebraically closed field or C. In fact, it is known
from classical skein theory that torsion in skein modules often is nicely related with
the topology of the manifolds. In section 3 we define consistent n-dimensional skein
theories from so called base field functors in dimension n and discuss the idea of
extending the functor by colorings. (This is related to Question 1.3 above because it
is difficult for a skein theory defined in this way to actually determine a generating
set of skein relations.) This requires to define a category of base fields on n-cubes
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resembling Turaev’s ribbon tangle category. In section 4 we discuss the definition of
skein modules through compression and co-limits, extending the approach in [K2]
for the case of Bar-Natan modules.

2 Generalized skein modules

We work in the smooth (C∞-) category with corners because our examples are usu-
ally smooth embeddings or immersions. Details about straightening corners are not
discussed here, see [CF]. We assume that manifolds are equipped with straighten-
ing of the corners. Thus for M a smooth manifold, the boundary ∂M is a smooth
manifold. We let int(M) = M \ ∂M be the interior of M . We let Diff(M) re-
spectively Diff(M,∂M) denote the group of all diffeomorphisms of M respectively
diffeomorphisms of M , which restrict to the identity on ∂M .

Generalized skein modules are defined by extending Przytycki’s idea of tangle
replacements [P1], see 2.9 Examples below. For more general objects and possibly
higher dimensions it becomes important to base the skein theory on objects satisfying
strong functoriality and gluing properties.

Following [W] a system of fields for n-manifolds is a sequence of symmetric
monoidal functors

Cj : Mj → S, 0 ≤ j ≤ n,

whereS is a symmetric monoidal category andMj is a symmetric monoidal category
with objects smooth compact j-dimensional manifolds with corners and morphisms
defined by diffeomorphisms. The functor has to satisfy a list of properties with
respect to taking boundary and gluing, see [W] or [MW] for a complete discussion
and below for an incomplete one. (We will usually assume that Mj is the category
of compact oriented manifolds. For an oriented manifold M we let M denote the
manifold with opposite orientation. The orientation of ∂M is given by the outward
normal last convention.)

It turns out that in all of our discussions it will be sufficient to have fields defined
for n− 2 ≤ j ≤ n. But Walker’s assumption is essential because it implies that the
generalized skein modules are computable from the relative skein modules of In, the
gluing properties and locality of fields and skein relations.

In this paper we usually do not work in all the generality of [W]. Throughout
we fix a commutative unital ring R and define C(M) = Cj(M) by assigning the free
R-module with basis a set of base fields F(M) on M , 0 ≤ j ≤ n. We will discuss
the corresponding functors Fj from Mj into the symmetric category of sets.

2.1 Definition A system of base fields for n-manifolds is a sequence of symmetric
monoidal functors Fj : Mj → S for 0 ≤ j ≤ n.
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Note that F(M 	N) = F(M)×F(N) for M,N two j-manifolds and j ≤ n, and
F(∅) = {∅} because the functors are monoidal. We assume that there is a unique
empty field, the vacuum, ∅ ∈ F(M) for each manifold M . Moreover, a system of
base fields has to satisfy the following list of properties.

(i) There is defined a boundary map

∂ : F(M) → F(∂M)

mapping ∅ to ∅.

(ii) We assume F(M) = F(M) in a natural way. Thus for each diffeomorphism
f : M → N (not necessarily orientation preserving) there is defined the induced map
f∗ : F(M) → F(N) such that ∂f∗ = f∗∂, where the second f∗ : F(∂M) → F(∂N)
really is the map induced by the restriction of f to the boundary. If a diffeomorphism
f : M → M is isotopic to the identity diffeomorphism then the field f∗(c) is called
isotopic to c.

(iii) There is defined an involution F(M) � c �→ ĉ ∈ F(M) such that ∂̂c = ∂ĉ and

f∗(ĉ) = f̂∗(c). (This involution can very well be the identity) Moreover ∅̂ = ∅

(iv) Let N ⊂ M be a codimension 0 submanifold. Then for an open dense subset of
f ∈ Diff(M) there is a restriction map

F(M) → F(f(N))

(in particular for almost all diffeomorphisms in a neighborhood of the identity).
Whenever we consider codimension-0 submanifolds we usually require that restric-
tion of fields to the submanifold is defined.

(v) There is defined a cylinder functor assigning to each field on a manifold N of
dimension ≤ n− 1 the field c× I on the manifold N × I. If the field c is closed then
it satisfies ∂(c × I) = ĉ × {0} 	 c × {1}. Note that ∂N × I = N × {0} 	 N × {1}.
Here 	 denotes the disjoint union of fields on a manifold or the disjoint union of
manifolds, see the following Remark. If the field is not closed then the boundary of
c× I is given by gluing the bottom and top field over the cylinder over ∂c.

2.2 Remarks. (a) We will often use the disjoint union of two disjoint fields on a
manifold M : Given c1, c2 on M such that there exist disjoint codimension-0 sub-
manifolds M1,M2 such that the restriction of ci to M \ int(Mi) is the empty field.
Then it follows easily from Walker’s gluing axioms that the field c1 	 c2 is defined
on M .

(b) Note that oriented gluing of fields requires care: Suppose there are given fields
on Mi for i = 1, 2. If Ni ⊂ ∂Mi are codimension-0 submanifolds such that the
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given fields on Mi restrict to fields ci on Ni then if for an orientation preserving
diffeomorphism h : N1 → N2 we have h∗(c1) = ĉ2 (where we use F(N2) = F(N2)),
there is defined the field c1∪hc2 on the oriented manifold M1∪hM2. (This is actually
the case of gluing possibly with corners. If ∂Ni = ∅ then we have the usual gluing
without corners.)

(c) Let M be a manifold of dimension ≤ n − 1. Let PDiff(M) denote the path
space of Diff(M) of paths starting at the identity diffeomorphism, where Diff(M) is
equipped with the usual strong C∞-topology. It follows from axioms (ii) and (vi)
that for each α ∈ PDiff(M) and each closed field c on M there is defined a field
α�(c) defined on M × I by applying the trace diffeomorphism M × I → M × I,
(x, t) �→ (αt(x), t) to the field c× I on M × I. Then ∂α�(c) = ĉ× {0} 	 α(1)∗(c).

(d) The condition F(M) = F(M ) will not always hold for the general definition
of fields given by Walker. For example if the set F(M) is the set of tight positive
contact structures then there exist manifolds with F(M) �= ∅ but F(M ) = ∅, see
[LS].

(e) Systems of base fields defined by vector spaces of functions on M often seem
to be related to base fields of complexes in M by using Pontrjagin-Thom type
constructions. It should be interesting to study whether corresponding skein theories
can be related in a natural way.

In the following we usually assume that base fields are properly embedded com-
plexes in M of codimension k, possibly decorated with orientation or coloring of
strata, and satisfying some transversality conditions. Moreover we will also assume
that the complex underlying ĉ is the same as the complex underlying c. Thus the hat
operation is really an operation on decorations. We will not axiomatize the notion
of decoration here. The right viewpoint of course is through a functor on a suitable
cobordism category of complexes, see [We] for an introduction to the axiomatic of
cobordism categories. We will not go into details about this at this point, even
though in particular in relation with mapping space topology this is an important
point. The consideration of embedded complexes as basic examples of fields has
been suggested by Walker. It is justified by important examples like the recent webs
and spiders but also because embedded complexes behave very similar to embedded
submanifolds when it comes to the action of the diffeomorphisms of the manifolds
on the set of embeddings, see [M] and [G]. See also the work by Forman [F] on
Witten-Morse theory for cell complexes.

2.3 Definition Two fields c1, c2 on M are cell isotopic if the underlying cell com-
plexes in M are isotopic relative to the boundary.
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2.4 Examples. Let base fields c on M be codimension-k embedded oriented sub-
manifolds. Then usually ĉ is defined by changing the orientation of c. For n = 3
and k = 2 we have oriented tangles in 3-manifolds bounding oriented points in
the boundary surfaces. In this case ĉ will be the 1-manifold c with all orientations
reversed. Thus an invertible knot is an example of a base field c isotopic to the
field ĉ. If decoration is framing without orientation then we have banded tangles
in 3-manifolds bounding arcs on surfaces. In this case the involution is trivial. In
both cases the corresponding fields on 1-dimensional and 0-dimensional manifolds
are empty because of the codimension. More interesting decorations can be defined
by letting the complexes underlying base fields be defined by images of immersions
in codimension k, and the decoration be given by an actual immersion with image
the complex, possibly up to diffeomorphisms of the domain manifold. The study of
skein theory in 3-manifolds based on PL-maps of circles into the 3-manifold and their
singularties has been initiated by Kalfagianni and Lin, see [K] and [KL]. The choice
of map with a given complex as image here can be understood as the decoration.

For c ∈ F(∂M) let F(M, c) := ∂−1(c) ⊂ F(M). This is the set of base fields
bounding the field c on ∂M . If f : M → N is a diffeomorphism then it follows
from (ii) that f∗ maps F(M, c) into F(N, f∗(c)). Then F(M, ∅) is the set of closed
base fields. The corresponding R-modules of base fields are defined by taking free
R-modules. Elements of those R-modules are called fields in [W].

2.5 Remarks. (a) The gluing properties express the locality of fields: This means
that base fields on n-dimensional manifolds are determined by (i) their restrictions to
the handles of a handle-decomposition of the manifold, and (ii) the homomorphisms
induced from the gluing diffeomorphisms of the handles. We will see that these
properties transfer to skein modules and their calculation.

(b) It is cobordism problem whether boundary operators are onto. Usually there
are fields on ∂M that do not bound a field on M . But the empty field ∅ on ∂M
always bounds the empty field on M .

2.6 Examples. (a) Define base fields on a surface by disjoint embeddings of framed
oriented points in the interior of the surface. The fields in 3-manifolds then are
oriented ribbon tangles, i. e. framed oriented arcs and circles are the basis fields
on a 3-manifold (It is also possible to include coupons.) The ribbon tangles can
be generalized to ribbon graphs and finally the graphs can be colored by elements
of some abstract ribbon category, see [RT] Note there is a unique basis field in
0-dimensional and 1-dimensional manifolds, namely the empty field.

(b) Consider proper oriented codimension-k submanifolds in n-manifolds satisfying
obvious transversality with respect to boundary and corners. For n = 3 and k = 2
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this is the classical setting of Przytycki. If we consider possibly non-orientable
codimension-k submanifolds and consider n = 3 and k = 1 with decorations of the
surfaces given by coloring the components by elements of a Frobenius algebra then
we are in the situation of [K1]. Note that in this case base fields on surfaces are
properly 1-manifolds, and base fields on 1-manifolds are just disjoint collections of
points.

(c) Another example of fields are uni-trivalent graphs embedded in a surface with
trivalent vertices in the interior and univalent vertices in the boundary of the surface
defining the fields in 1-manifolds. Again there is only the empty field on 0-manifolds.

Let R = (R(d))d∈B be sequence of relation subsets R(d) ⊂ C(Bn, d), where d
runs through a set B of representatives of isotopy classes of fields on the boundary
∂Bn of the n-ball Bn. Let B be an n-ball and let h : Bn → B be an (oriented)
diffeomorphism. Then the diffeomorphism induces a homomorphism C(Bn, d) →
C(B,h∗(d)), which maps elements r ∈ C(Bn, d) to skein relations in C(B,h∗(d)).
Next given an n-manifold M and a fixed base field c ∈ C(∂M). Let RM denote the
submodule of C(M, c) which is generated by (i) all elements resulting from gluing
relations in C(B,h∗(d)) to fields on M \ intB with boundary h∗(d̂) as above, for
arbitrary n-balls B ⊂ int(M) and (oriented) diffeomorphisms h : Bn → B, and (ii)
relations b− b′ for b, b′ ∈ F(M, c), which are isotopic relative to the boundary. RM

is called the module of skein relations on M relative to c.

2.7 Definition. Let M be an n-manifold and c be a field on ∂M . The skein module

of (M, c), defined by system of base fields F , the ring R, and relations R is

S(F ,R,R)(M, c) := C(M, c)/RM .

In general it is difficult to understand the structure of this module. We often
abbreviate notation if the defining structures are given and write S(M, c) only, also
S(M) = S(M, ∅) is the skein module of M . If c �= ∅ then S(M, c) is often called a
relative skein module. Note that the definition of generalized skein modules is quite
technical. Thus natural constructions of examples are important.

Note that if M is connected then any two oriented embeddings h : Bn → B ⊂ M
are isotopic. In this case it is easy to see that it suffices to use a single ball B ⊂ M
in the definition above.

Let F(M, c) be the set of isotopy classes of base fields in F(M, c), and corre-
spondingly let C(M, c) denote the free R-module generated by isotopy classes of
base fields. Then the skein module S(M, c) is also the quotient of C(M, c) by skein
relations, which are projections of elements of RM into C(M, c). This is the classi-
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cal definition, emphasizing that skein relations are in fact relations between isotopy
classes, even though defined using representatives.

The following is immediate from the definitions and axioms:

2.8 Proposition The skein modules defined above come with actions of the diffeo-

morphisms of the manifolds. Moreover, gluing of fields induces corresponding gluing

homomorphisms of skein modules. Thus R defines a skein theory.

We denote the action of h ∈ Diff(M) also by h∗

Note that the choice of relation sequence R is highly non-unique. In fact we can
always add further relations on balls defined by gluing together relations on balls
(this is what Walker calls generating a gluing ideal).

2.9 Definition A skein theory is finitely skein generated if it possible to choose
the sequence (R(d))d such that (i) R(d) �= ∅ for at most finitely many cell isotopy
classes of fields d, and (ii) for each isotopy class of field d, if the relation elements
are projected to cell-isotopy classes, the resulting sets R̃(d) are finite for all isotopy
classes d.

2.10 Examples. (a) The Kauffman bracket relations define a skein theory over
R = Z[A±1] for framed tangles in 3-manifolds. In a projection onto the equatorial
disk of an oriented 3-ball the relations are (use blackboard framing with respect to
the equatorial disk):

= A + A−1

©D = (−A2 −A−2)D

for D any framed link outside the 3-ball. It is well-known that the skein theory is
strongly consistent. It is finitely skein generated by definition.

(b) The skein relations of oriented links in 3-manifolds defined from 2-tangle se-
quences [P1] and corresponding sequences of elements of R, are basic examples of
classical skein theories. They are finitely skein generated by definition. In this case
the boundary field is usually the empty field ∅ or the field given by two positive and
two negative points (classical 2-tangles). Note that the boundary field has to be
oriented zero-homologous to get a non-empty set of fields. It is usually not easy to
decide consistency.

(c) In particular a skein theory of oriented links in 3-manifolds can be defined by
choosing a set of elements of the group rings RBn of the n-strand braid group Bn.
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For Przytycki’s standard examples these are the powers of the generating braid
σ ∈ B2.

��

�� ��

��

��

��

��

��

��

��

��

��

Other choices of skein relations could be for example to define for a fixed n,

∑
σ∈Σn

(−1)sign(σ)σ̂,

where Σn is the symmetric group of order n and σ̂ is the permutation braid assigned
to σ.

(d) The quantum deformation of homology and homotopy are skein theories defined
from basis fields given by framed oriented links.

(d) The generalized Bar-Natan modules are defined from the Bar-Natan relations
on surfaces in 3-manifolds colored by elements of a Frobenius algebra V over the
ring R. Here is a picture of the so called neck cutting relation for x ∈ V , where
x′ ⊗ x′′ = Δx (in Sweedler’s notation) and Δ is the co-product of the Frobenius
algebra.

x =

x′

x′′

Bar-Natan also defines a purely geometric version. His skein relations are natural
because they involve a kind of symmetric summing over all simple zero-bordisms of
the boundary fields.

Two main principles in the theory of classical skein modules due to J. Przytycki
[P1] generalize to the setting above immediately. One that is important for the idea
of deformation is the universal coefficient theorem, which is proved as in [P1]:

2.11 Proposition. Consider any skein theory over the ring R defined by a set of
base fields and local relations R as above. For a given boundary field c let S(M, c;R)
denote the corresponding skein module. Let ϕ : R → R′ be a homomorphism of
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commutative unital rings. Then R′ is naturally an R-module. The homomorphism
ϕ induces an epimorphism C(M, c;R) ⊗ϕ R′ → C(M, c,R′) and homomorphisms
R → R′ and finally S(M, c;R) → S(M, c;R′). Then

S(M, c;R′) ∼= S(M, c;R) ⊗ϕ R′,

where we have abbreviated S(M, c;R′) := S(F ,R′,R′)(M, c).

The second important principle in the calculation of classical modules is the
handle attachment result from [P1]. The underlying argument depends only on the
codimension of the cell complexes in M defining the fields. Let supp(c) denote the
embedded complex of M defined by the field c (recall that c could denote an immer-
sion or embedding and carry decoration). The following result follows immediately
from transversality for complexes in smooth manifolds.

2.12 Theorem. Consider a skein theory with base fields defined by embedded codi-

mension k cell complexes. Let M be an n-dimensional manifold and c be a field on

M . Let H = Dj × Dn−j be a j-handle attached to ∂M \ supp(c) by an embedding

h : Sj−1 ×Dn−j → ∂M . Let M ′ := M ∪h H. Let

i∗ : S(M, c) → S(M ′, c)

be the homomorphism of skein modules induced by the inclusion M ⊂ M∪hH. Then

i∗ is an isomorphism if k < j − 1 and is onto if k = j. If k = j the the kernel of

i∗ can be described as follows: Let dh denote the handle slide diffeomorphism of M ′

defined by the handle. Then elements of the form d− (hd)∗(d) generate the kernel,

where d denotes the image of d ∈ C(M, c) in S(M, c). �

The statement of the theorem requires some explanation. The handle attachment
(H,h) defines an isotopy of M ′, unique up to isotopy, which isotopes the southern
hemisphereDj−1

− of the core sphere Sj−1×{0}across the core diskDj×{0} and is the
identity outside of a neighborhood of the disk in M ′, and in particularly fixes ∂M ′

point-wise. Note that for (k + 1) + j < n, skein balls and the images of isotopies of
complexes will miss the co-core of the handle by transversality. But the complement
of an open neighborhood of the co-core in M ′ is naturally diffeomorphic to M . In
fact, there is an diffeotopy of this manifold retracting it onto the submanifold M .
If k + j < n then a field on M ′ can be isotoped away from the co-core and defines
a field on M . This isotopy is not natural. But any two choices will differ by an
application of dh.

2.13 Example. The result above includes the classical results (i) that for links in
a 3-manifold M , the inclusion M \ int(B) ⊂ M with B ⊂ M a 3-ball, induces an
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isomorphism of skein modules, and (ii) the 2-handle attachment result of Przytycki
[P1].

2.14 Remark. If k > j (e. g. for k = 2 and j = 1) then the inclusion M → M ′ will
not induce a surjective homomorphism in general. For n = 3, k = 2 and j = 1 this
includes the case of attaching 1-handles to a 3-ball with result a handle-body, often
having a rich skein module of links. In general M ′ is defined from M 	H by gluing
the submanifold Sj−1×Dn−j ⊂ ∂H to its image in ∂M under h. Each codimension-
k field c on M ′ can be assumed transversal to the co-core Dn−j. The intersection is
a codimension-k field c′ on the interior of Dn−j, such that c is the result of gluing the
iterated cylinder field Ij × c′ along the boundary field ∂(Ij × c′) ⊂ Sj−1 ×Dn−j via
the diffeomorphism h to ∂M . It suffices to sum over representatives of all possible
isotopy classes of fields in the interior of Dn−j to get a surjective homomorphism:

⊕
c′

S(M, c 	 (Ij × c′))⊗ S(Dn−j , c′) → S(M ′, c).

Of course it is usually difficult to determine the kernel of this epimorphism.

3 Skein theories from base field functors

Throughout we assume that n ≥ 3 and a system of base fields F for n-manifolds is
given with n ≥ 3. We will study base fields on In = In−1 × I. Walker [W] points
out that in this case 2-categories are defined but we will not discuss those 2-category
structures here. Instead we are interested in generalizing some of the ideas of ribbon
tangle categories and functors on these, see [RT] and [T].

We want to consider fields on In, which restrict to the empty field on ∂In−1×I ⊂
∂In. The basic idea of Morse theory is to slice the field horizontally into simple
pieces. In terms of complexes we would be interested in elementary changes of
the topology of the complex in each slice. In the case of embedded submanifolds
we could arrange that the projection In → I onto the last coordinate restricts to
a Morse function on the submanifold, and correspondingly cut the interval I into
subintervals containing only one critical point. Then using isotopy of the fields on
the interesting boundaries In−1×{s} of slices we can arrange to consider elementary
fields between a set of representatives in the isotopy classes of fields on In−1. In
principle may restrict to consider single representatives of the isotopy classes of fields
on In−1. But in fact this would obscure some interesting structures that are present.

We begin by constructing the monoidal structure emerging from the product
structure of In−1. Two base fields c1, c2 on In−1, both with empty boundary fields,
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can be glued together to a field on In−2 × [0, 2], which then can be naturally re-
parametrized to In−1. Let c1 ⊗ c2 denote the resulting field. The product of a
field c with the empty field ∅ is defined by the field c itself. Let r : In → In be
defined by the reflection r(x1, . . . , xn) = (x1, . . . , xn−2, 1 − xn−1, xn). This restricts
to reflections, also denoted r, of In−1 × {1} and In−1 × {0} about In−2 × {1

2}.
Note that r∗(c1 ⊗ c2) = r∗(c2) ⊗ r∗(c1). We will also need a reflection r : In → In

defined by reflection about In−1 × {1
2}. This reflection restricts to the exchange

map on In−1 × {0, 1}. Note that if d is a field on In such that ∂d = ĉ0 	 c1 then
∂r∗(d̂) = r∗∂d̂ = r∗(c0 	 ĉ1) = ĉ1 	 c0. (In the following we often omit ×{j} for j = 0
or j = 1 if it is obvious.) We let r ◦ r = t denote the turnover map. It follows that
∂t∗(d̂) = r∗(ĉ1) 	 r∗(c0). Let d! := t∗(d̂). We also let c! = r∗(ĉ) for fields on In−1.
Since r ◦ r = id and c �→ ĉ is an involution, c �→ c! is an involution.

3.1 Definition. A base field on In−1 with empty boundary is called simple if it is
not isotopic to a field obtained by gluing two non-empty fields as above.

Now fix a set of representative base fields c, one for each isotopy class of simple

field on In−1 with empty boundary. This can be done in such a way that we first fix
a set of representative complexes and then add decorations in such way that we get
a list of non-isotopic simple fields. Thus if two fields differ only by decoration they
will be represented in this list by fields only differing by decoration. Next we extend
this list of fields by adding for each field c the companion fields ĉ, r∗(c) and r∗(ĉ).
Some of these fields could be isotopic to c or to each other, then our list of basic
simple fields Fbasic will usually contain isotopic fields. If possible we will choose c
such that r∗(c) = c (equality as fields). Note that the set of basic simple fields is
closed with respect to the hat or !-operation.

Let S0 be the set of representatives of fields on In−1 defined by ⊗ from the set of
basic simple fields. Note that ⊗ as above is not a strict monoidal structure. But it is
easy to introduce natural coherence structures defined by obvious isotopies of In−1.
But it should be mentioned that S0 contains a set of representatives for all isotopy
classes of elements of F(In−1). Also c1 ⊗ c2 is isotopic to c2 ⊗ c1, even though both
are different elements of S0.

As indicated, S0 is the set of objects of a monoidal category S = S(F). For given
c0, c1 ∈ S0 let the morphisms Mor(c0, c1) be defined by isotopy classes, relative to the
boundary, of fields d on In such that ∂d = ĉ0	c1. We write d : c0 → c1. Composition
of morphisms is defined by gluing fields using the Walker’s gluing axioms, see [W]. To
show that the composition is well-defined the diffeomorphisms defining the isotopies
have to be glued. In this way, for each object c the identity morphism idc : c → c
is defined by the cylinder on c. (This all requires also natural identification of
In−1 × [0, 2] ∼= In.)
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3.2 Example. Let n = 4 and closed base fields on I3 be defined by oriented links,
the involution defined by orientation reversal. Then for an invertible link c the link
ĉ is isotopic to c. Base fields on I4 are oriented surfaces properly embedded in I4

with boundary in I3 × {0, 1}. Note that for a base field c on I3 defined in this way
the field c! is the concordance inverse, and (c⊗ c!)×{0} = ∂d, where d is a cylinder
embedded in I4 in the obvious way.

Recall that fields are represented by decorated complexes in codimension k. The
morphisms form c to c for which the complex underlying the field d is a product can
in fact all be realized by isotopies of In−1, at least up to decoration. This follows
from a result of Mazur [M]. Moreover, if k ≥ n

2 + 1 any two such isotopies are
isotopic to each other, and thus the morphisms are just the identity.

In general, the situation is of course much more involved. Let Diff(n− 1) denote
the space of all diffeomorphisms of In−1, which are the identity morphism restricted
to ∂In−1. Then for each � ∈ π1(Diff(n− 1), id) and all basic simple fields c there is
defined a morphism �� : c → c, by using Remarks (iii). It is called a twist morphism,
more precisely the twist morphism of c corresponding to �. The homotopy class of
the trivial loop is represented by by the the identity morphism c → c. Note that this
construction is compatible with other diffeomorphisms of In−1 in the sense that for
f ∈ Diff(n), ��(f∗(c)) = (f × id)∗(��(c). The construction above does also apply to
fields, which are not simple but we will not call those morphisms twist morphisms.
Note that there there are defined braid morphisms defined by exchanging two fields
β(c1 ⊗ c2) = c2⊗ c1. These can be defined using In−1 ∼= Bn−1 and suitable isotopies
of Bn−1. But in higher dimensions these braiding morphisms will have order 2,
which essentially follows from π1SO(n − 1) ∼= Z2 for n ≥ 4. The braid morphisms
are compatible with twist morphisms in the usual way:

β(c1 ⊗ c2) ◦ (idc1 ⊗ ��(c2)) = (��(c2)⊗ idc1) ◦ β(c1 ⊗ c2)

For the definition of duality in monoidal categories, see for example [T], 1.3.

3.3. Theorem. The category S has duality compatible with twists of its objects.

Proof. We define the dual object for each basic field c to be the field c!. There
are obvious isotopies of In (not restricting to the identity on the boundary), which
isotope the cylinder field for a simple field c to morphisms b : c!⊗ c → ∅ respectively
∅ → c⊗ c!. �

Let MR be the category of free finitely generated R-modules, equipped with
duality.
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3.4 Definition. An n-dimensional base field functor is a monoidal duality preserv-
ing functor from the category S into the category MR for R a commutative unital
ring.

A choice of diffeomorphisms In ∼= Bn defines a surjective map S0 → B, which
maps d′ to d, where B is a set of representatives of isotopy classes of fields on ∂Bn,
compare 2.7 Definition. For each d pick some element d′ in S0.

3.5 Proposition. Each n-dimensional base field functor extends to a linear functor

from the linearized category RS, which has the set of objects S0but with the morphism

sets replaced by the free R-modules with bases the morphism sets of S. Let d′ ∈ S0

be the element chosen for d ∈ B above. Then a generating set of the kernel of the

linear morphism defined by the field functor on Mor(d′, ∅) defines a relation subset

R(d′). The resulting sequence R(d′) ⊂ C(Bn, d′) defines a skein theory over R. �

3.6 Definition. The quotient category of the category RS with morphism sets
defined by the kernels of the field functor F is called the Jones algebroid of the
functor F . It is determined by the category S and the skein theory induced from
the functor.

Proof of 3.5: There are natural bijections (and induced isomorphisms of the lin-
earized category) Mor(c 	 d!, ∅) ∼= Mor(c, d) and the corresponding isomorphisms
Hom(V ⊗W ∗, R) = (V ⊗W ∗)∗ ∼= V ∗ ⊗W ∼= Hom(V,W ). Thus the skein modules
determine the corresponding morphism sets. Also note that isotopies between fields
induce isomorphisms of the corresponding skein modules. Thus the skein modules
of the skein theory determine the morphism sets of the quotient category. �

3.7 Theorem. The skein theory induced by a base field functor is strongly consis-

tent.

Proof. This is immediate from the definitions. The skein modules are isomorphic
to submodules of free R-modules and thus are free R-modules. The monoidality of
the functor implies that the empty field morphism between empty fields maps to
the identity of Hom(R,R) ∼= R and thus the corresponding skein module for empty
boundary fields is isomorphic to R. �.

3.8 Examples. (a) In [K1] the author discussed the above construction for the
case of codimension 1 embedded manifolds and n = 3. The base field functor
in this case has been defined by forgetting the embeddings and application of an
abstract (1 + 1)-dimensional TQFT. It is shown in [K1] that the base field functor
extends to a category with the components of the surfaces, which are the morphisms,
colored by elements of the Frobenius algebra defining the TQFT. These elements are
interpreted as R-homomorphisms of the Frobenius algebra defined by multiplication.
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This extension is possible because all TQFT-morphisms not changing connectedness
commute with the multiplication morphisms.

(b) The colored ribbon tangle category of Turaev has morphisms defined by oriented
framed 1-manifolds embedded in the 3-ball I2×I with boundaries properly embedded
in I2×{0, 1}. The 1-manifolds are colored by elements of an abstract ribbon category
V with duality and compatible twist and braiding. Objects are standardly framed
arcs in I2 colored by elements of V. Moreover the objects also can contain embedded
coupons colored by homomorphisms of V with input and output arcs. The functor of
Reshetikhin and Turaev into V is an example of a base field functor if the abstract
ribbon category V is a category of finite dimensional R-modules. But the more
interesting procedure here might be to extend the objects by colorings. In Turaev’s
case this is based on forming parallels of the 1-manifolds using the framings. In
general, if base fields are defined by embedded framed submanifolds such extensions
should be possible.

We briefly discuss some idea how to extend (a) above to the more general case
of base field functors. The idea is to replace homomorphisms F (d) for topologically
complicated fields d by more simple fields using colorings by homomorphisms. In
this way extensions could be helpful in simplifying the skein relations induced by
the base field functor. This could open the way to construct finitely skein generated
theories like in the Bar-Natan case [K1].

3.9 Definition. (a) A bulb in the field c on M is an oriented ball B ⊂ int(M) with
a base point ∗ ∈ ∂B and a choice of element x ∈ Hom(F (d)), where d is the field
defined by restricting c to ∂B. We assume that d coincides with the empty field on
a compact (n − 1)-ball containing ∗, and d is simple. The element x is called the
bulb color.

(b) An F -colored field is a field with a finite number of disjoint bulbs. Isotopy of
F -colored fields is defined in the obvious way by applying the isotopies to the bulbs.

We define a category SF with the same objects as S but with the morphism sets
defined by R-linear combinations of isotopy classes of F -colored fields on In. We will
introduce the following skein equivalence between F -colored fields: Suppose that for
two bulbsB1, B2 there exists an oriented embedded connecting handle H = Bn−1×I,
where Bn−1 is the (n− 1)-ball intersecting the first bulb in Bn−1 × {1} ⊂ ∂B1 and
the second bulb in Bn−1 × {0} ⊂ ∂B2. Let c0, c1, c2 be the restrictions of c to H,
B1, B2. Let F (∂c0) = V . We assume that the fields ∂ci on ∂Bi are empty outside
of their intersections with H for i = 1, 2, the field c restricts to the empty field on
∂H \ (B1 ∪B2), and the field c0 is a cylinder field under the natural diffeomorphism
H ∼= In−1 × I. In particular d2 = d̂1 for the fields in ∂Bi. In this case we replace
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the F -colored field by an F -colored field with two fewer bulbs by setting the field
c′ to be the empty field on the ball B = B1 ∪ H ∪ B2, and equal to c outside of
int(B). We multiply c′ by the element of R, which is the image of the unit under
the homomorphism

R → V ⊗ V ∗ x1⊗x2−−−−→ V ⊗ V ∗ F (c1)⊗F (c2)
−−−−−−−−→ R⊗R ∼= R,

where xi are the bulb colors of the two bulbs, the first homomorphism is given by
applying the functor F to the duality of S given by d1⊗d!1 → ∅. Also, bulbs colored
by the identity can just be omitted.

3.10 Example. The above deletion of pairs of bulbs in particular applies when
the field c restricts to the empty field on ∂B. In this case the bulb color is a
homomorphism from R to R. But RMor(∅, ∅) → R is onto anyway since the empty
field ∅ → ∅ maps to the identity homomorphism R → R. The interesting cases are
when c does not restrict to the empty field.

3.11 Theorem. The functor F extends to a monoidal duality preserving functor

on the category SF .

Proof. We can isotope the bulb balls Bi such that the outer normals to ∂Bi at ∗i are
parallel to {0} × I. Then we apply the functor F to the field on In but replace for
each bulb the corresponding morphism F (ci) : F (di) → R, where di the restriction
of c to ∂Bi and ci is the restriction of c to Bi, by F (ci) ◦ xi where xi is the color of
the i-th bulb. �

4 Skein theories from compression functors

We assume now that there is given a system of base field for (n + 1)-manifolds,
i. e. sets Fj(N) for N smooth manifolds of dimension j ≤ n + 1, as in section 2.
Throughout this section we say just field for a base field. Moreover for each base
field c on the n-manifold M consider the set Fc(M) of fields which restrict to ĉ on
M×{0} and to the cylinder field ∂c×I on M×I. Then the set of compression fields

for c, Fcomp(M, c) ⊂ Fc(M), is a subset satisfying certain conditions with respect
to gluing, which are described below following 4.1. We assume that cylinder fields
c× I on M × I and more general traces of isotopies of fields c are compression fields.

The group Diff(M,∂M) acts on the set Fc(M). We define the group of compres-

sion diffeomorphisms of c, denoted Diffcomp(M, c), to be set-wise stabilizer subgroup
of Fcomp(M, c), i. e. the group of those diffeomorphisms mapping compression fields
to compression fields. We say that two fields d0 and d1 in Fcomp(M, c) are compres-

sion isotopic if there is a path ft in Diffcomp(M, c) with f0 = id such that f1◦d0 = d1.
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Note that ft ◦ d0 is a path in Fcomp(M, c) with respect to any reasonable topology
on the spaces of fields. Note that compression isotopy keeps ∂(M × I) point-wise
fixed.

Next, for each field α on ∂M a category C(M,α) is defined as follows: The objects
of the category C(M,α) are representatives of isotopy classes of elements of ∂c = α.
The morphisms c0 → c1 are compression isotopy classes of fields in Fcomp(M, c0),
which restrict to c1 on M × {1}.

Note that we can form disjoint unions (M,α) 	 (N,β) = (M 	 N,α 	 β). But
we can also glue fields on manifolds using diffeomorphisms h of submanifolds of the
boundaries, see [W] for details. We will assume that the locality of compression
fields includes that there are defined functors:

C(M,α) × C(N,β) → C(M ∪h N, γ),

where γ is the result of gluing the fields α and β using h.

Next assume that for each isotopy class of fields α ⊂ F and F a diffeomorphism
class of (n−2)-manifolds, there is given a category of R-modulesRα⊂F . If N = Sn−2

we only write Rα.

4.1 Definition. A compression functor G is a collection of functors, parametrized
by isotopy classes of fields α on Sn−2 = ∂Bn−1,

GBn−1,α : C(Bn−1, α) → Rα,

extending to functors
GM,β : C(M,β) → Rβ⊂∂M ,

compatible with gluing.

We need to explain what it means to extend compatible with gluing. First we
require the existence of an algebraic gluing functor for the categories of modules
such that there are commutative diagrams of functors:

C(M,α) × C(N,β) −−−−→ C(M ∪h N, γ)

GM,α×GN,β

⏐⏐� GM∪hN,γ

⏐⏐�
Rα⊂∂M ×Rβ⊂∂N −−−−→ Rγ⊂∂(M∪hN)

It follows from field axioms [W] that a field d on M × I is isotopic relative
to the boundary to a product of fields dn ◦ dn−1 ◦ . . . ◦ d2 ◦ d1, with each field
cylindrical except on some ball Bj ⊂ M for j = 1, . . . , n. Here the composition is
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the categorical composition in a category of morphism of all fields on M × I being
cylindrical over ∂M × I. We require that, by the very definition of compression
fields, such a composition by gluing is defined, and the value of the functor GM,α on
a field d on M × I is determined by the values of GBn−1,β on the fields on Bn−1 × I
for suitable β.

4.2 Example. In [K2] fields are defined by embedded surfaces in 3-manifolds and
the compressions take place in cylinders over the 3-manifolds. The compression
condition is defined by requiring that the 3-manifolds embedded in M×I are defined
from the surfaces by attaching handles of only index 2 and 3. The categories C(M, c)
are called Bar-Natan categories in this case. The compression functors are called
Bar-Natan functors. The Bar-Natan functor assigns roughly to a surface F a tensor
product V |F |, where |F | is the number of components of F , equipped with a certain
module structure over V |∂F |. The functor is defined on isotopy classes of compression
fields as follows: It is defined by the coproduct morphism V → V ⊗V respectively the
handle-operator V → V for 2-handle attachments, which are separating respectively
non-separating. To a 3-handle attachment the functor assigns the counit V → R.

4.3 Remark. The above collection of compression functors G could be described
by a 2-functor on a 2-category. But we wanted to avoid the technical language of
higher category theory in this paper.

Given G as above define for each (M,α) a collection of fields FG(M,α) by the
collection of pairs (c, v) where c is a field on M with ∂c = α and v ∈ G(M, c), where
G(M, c) is an object of the category Rα⊂∂M . The element v should be considered
an additional decoration. Now consider or each compression field d ∈ Fcomp(M, c0)
the associated homomorphism G(d) : G(Bn−1, c0) → G(Bn−1, c1). Note that G(d)
induces homomorphisms G(d̃) : G(M, c̃0) → G(M, c̃1) by the above gluing diagram,
where the ci are fields on M that differ only inside a ball Bn−1 by changing c0 to c1.
Now define a skein module S(M,α) as follows: Take the free R-module generated
by the isotopy classes of the elements in FG(M,α) and take the quotient by the
submodule generated by the following two types of elements:

• (i) (c, r1v1 + r2v2)− r1(c, v1)− r2(c, v2) for all r1, r2 ∈ R and v1, v2 ∈ GM,α(c).

• (ii) (c̃0, v) − (c̃1, G(d̃)v) for all v ∈ G(c̃0, v).

This is a generalized skein module SG(M,α) as defined in section 2.

Recall that the colimit of a functor F from a category C with set of objects
C0 and set of morphisms C1 into a category of R-modules is defined by taking the
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quotient of ⊕
x∈C0

F (x)

by the submodule generated by all relations v − F (u)v for all (u : x → y) ∈ C1 and
v ∈ F (x).

4.4 Theorem. The colimit of the functor GM,α is isomorphic to SG(M,α).

Proof. Let S(M,α) = SG(M,α) and let S̃(M,α) denote the colimit module of the
functor GM,α. Thus S̃(M,α) is a quotient of W = ⊕cGM,α(c), where c runs through
the set of objects of the category Fcomp(M,α), i. e. representatives of the isotopy
classes of fields c on M with ∂c = α. There is defined a homomorphism

η : W → S̃(M,α)

by assigning to v ∈ GM,α(c) ⊂ W the skein equivalence class [c, v] of the element
(c, v). By definition of the R-module structure on W and the definition of η we
have that η(r1v1 + r2v2) = [c, r1v1 + r2v2] = r1[c, v1] + r2[c, v2] = r1η(v1) + r2(v2)
for v1, v2 ∈ GM,α(c). If vi ∈ GM,α(ci) for i = 1, 2 and c1 �= c2 then η(v1 ⊕ v2) =
η(v1)+η(v2) = [c1, v1]+[c2, v2] by definition. Moreover, it follows from the definitions
above that all elements v − GM,α(u)v for u : c1 → c2 a morphism in Fcomp(M,α)
and v ∈ GM,α(c1) will map to linear combinations of relations (ii) abve. Thus η
descends to a homomorphism

S̃(M,α) → S(M,α).

Conversely it is not hard to see that assigning to [c, v] ∈ S(M,α) the image of the
vector v ∈ GM,α(c) ⊂ W in the colimit module defines a homomorphism ρ, and ρ is
an inverse homomorphism for η. �

Let Diff(M, c) denote the group of diffeomorphisms of M × I fixing (M ×{0})∪
(∂(M × I)) point-wise, and let Diff′

comp(M, c) ⊃ Diffcomp(M, c) denote the set-wise
stabilizer subgroup of Fcomp(M, c). Then by construction Diff′

comp(M, c) acts on
Fcomp(M, c).

4.5 Definition. A field c on M is called incompressible if the set Fcomp(M, c) is
the Diff′

comp(M, c)-orbit of c× I.

Thus a field c is incompressible if the only fields that can be compressed from
c can be compressed by the action of compression diffeomorphisms on the cylinder
field c× I on M × I.
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4.6 Example Consider the case described in [K2]: the fields on M are surfaces
c ⊂ M and compression fields are defined by attaching embedded 2-handles or 3-
handles to c× [0, ε] ⊂ M × I. In the case that M is aspherical the incompressibility
of the field defined in 4.5 coincides with the usual notion of incompressible in 3-
manifold topology. If M is not aspherical an incompressible surface in the sense of
3-manifold topology might not be incompressible in the sense of 4.5 because we can
possibly attach a 2-handle along a trivial curve on c0 to define a surface c1 containing
a non-trivial 2-sphere component. Note that the incompressible surfaces, which are
not connected sums with homotopically non-trivial 2-spheres are incompressible in
the sense of 4.5. Of course those surfaces, colored with elements of a Frobenius
algebra, generate the corresponding Bar-Natan skein module.

We briefly discuss a possible generalization of [K2] along the notions of this sec-
tion. Let fields be defined by j-dimensional submanifolds in n-manifolds. Define
compression fields of a field c by j + 1-dimensional properly embedded cobordisms
d ⊂ M × I of c, which are defined from c by attaching only embedded handles of
index k ≥ j0 for some fixed number j0 ≥ j+1

2 . In order to define a compression
functor we have to assign R-modules to j-manifolds, and morphisms between corre-
sponding R-modules for each compression c0 → c1. Suppose that both the modules
and homomorphisms determined by G only depend on (i) the indices, and possibly
additionally (ii) a finite list of homology or homotopy data of the attachments (i.
e. in particular do not depend on embeddings in M respectively M × I). We call
such a compression functor free. In the case of Bar-Natan theory for a commu-
tative Frobenius algebra V over R in [K2], we assign V |c| to a surface c with |c|
components. Then to a separating 2-handle attachment we associate the co-product
Δ, and to a non-separating attachment we assign the handle-operator, i. e. mul-
tiplication by μΔ(1), where μ is multiplication of the Frobenius algebra. Finally
to a 3-handle attachment we associate the co-unit ε : V → R, see [K2] for further
details, in particular with respect to ordering of the tensor product factors. In gen-
eral we want to find compression functors G to associate morphisms to k-handle
attachments d : c0 → c1 compatible with compression diffeomorphisms. It is this
last requirement which requires the Frobenius algebra structure, i. e. properties of
product and co-product, in the Bar-Natan case. It seems an interesting direction of
study to detect the algebra necessary for this. At this point we may just note that
Bar-Natan theory can be generalized to j-manifolds in n-manifolds with j0 := j.
This is not surprising because of the Frobenius structure present in any TQFT, see
[TT]. Of course compressions in this case are very restricted and there does not seem
to be any interesting resulting theory. But the case j0 < j seems to be interesting
and could be studied for j = 4. At this point we just note the following consequence
of the definition of a free compression functor.
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4.6 Proposition The skein theory induced from a free compression functor is finitely

skein generated.

In general it seems difficult to construct consistent skein theories using compres-
sion functors. In the Bar-Natan skein theory consistency follows from the fact that
embedded orientable surfaces are fully compressible in the 3-ball. It seems to be
an interesting problem to study the construction of free compression functors and
understand its relation to TQFT. It is the main result of [K2] that each commutative
Frobenius algebra defines a free compression functor for n = 2 and codimension-1
embedded submanifolds.
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