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ARITHMETIC TORIC VARIETIES

E. JAVIER ELIZONDO, PAULO LIMA-FILHO, FRANK SOTTILE, AND ZACH TEITLER

Abstract. We study toric varieties over a field k that split in a Galois extension K/k
using Galois cohomology with coefficients in the toric automorphism group. Part of this
Galois cohomology fits into an exact sequence induced by the presentation of the class
group of the toric variety. This perspective helps to compute the Galois cohomology,
particularly for cyclic Galois groups. We use Galois cohomology to classify k-forms of
projective spaces when K/k is cyclic, and we also study k-forms of surfaces.

1. Introduction

Toric varieties provide a rich class of accessible examples in algebraic geometry. This
stems from their simple classification [11, 15, 17, 23]: To each fan in a lattice, there is
a normal scheme over Z equipped with a faithful action of a diagonalizable (split) torus
which has a dense orbit. Extending scalars to a field k gives the split toric variety over
k associated to the fan. Every normal variety over k equipped with a faithful action of a
split torus which has a dense orbit is a (split) toric variety for some fan.
An arithmetic toric variety is a normal variety Y over a field k that is equipped with a

faithful action of a (not necessarily split) algebraic torus T over k which has a dense orbit in
Y . This dense orbit is a torsor over T, so arithmetic toric varieties are normal equivariant
compactifications of torsors. Extending scalars to a finite Galois extension K/k over which
T splits, YK becomes a split toric variety XΣ for some fan Σ. Thus Y is a k-form of the
toric variety XΣ. There are non-split k-forms of a toric variety only when its fan has some
symmetry, and so this theory is most interesting for highly symmetric toric varieties.
The k-forms of a quasiprojective variety X over K are in bijection with the Galois coho-

mology set H1(K/k,Aut(X)) (see [24, III] or Section 2.5). In general Galois cohomology
classifies what are called twisted forms of X, and a twisted form Y descends to a variety
over k if and only if every Gal(K/k)-orbit in Y is contained in some affine open subset.
(This condition is clearly satisfied when X is quasiprojective.)
The twisted forms of the toric variety XΣ are in bijection with the Galois cohomology set

H1(K/k,AutTΣ), where Aut
T

Σ is the algebraic group of toric automorphisms of XΣ. When
Σ is a quasiprojective fan, this classifies k-forms of XΣ as every twisted form descends to
a variety over k. Similarly, every twisted form of XΣ descends to a variety over k when
K/k is a quadratic extension, by a result of W�lodarczyk [28]. For general fans Σ, we offer
a simple condition which implies that a twisted form descends to a variety over k.
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2 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

A toric automorphism gives an automorphism of the corresponding lattice N preserving
the fan Σ. Writing AutΣ for the group of such automorphisms, we have maps of algebraic
groups AutTΣ → AutΣ ↪→ Aut(N) which in turn induce maps of Galois cohomology sets

(1.1) H1(K/k,AutTΣ)
π
−→ H1(K/k,AutΣ)

j
−→ H1(K/k,Aut(N)) .

The last Galois cohomology set classifies k-tori that split over K, and the fiber of the
map π over a given element c in H1(K/k,AutΣ) classifies the different twisted forms of
the toric variety for the torus ϕT associated to ϕ = j(c). In Theorem 3.4 we identify the
fiber with the quotient of the Galois cohomology set H1(K/k, ϕT) (which classifies torsors
over ϕT) by the action of H0(K/k,AutΣ). This leads to a classification of quasiprojective
embeddings of tori extending the classical theory of torus embeddings.
Arithmetic toric varieties arose as tools to study anisotropic (non-split) tori via smooth

projective compactifications. This began with Brylinski [4] who showed how to construct a
complete projective fan Σ in a lattice N that is invariant under the action of a given group
G on N . See also [5], which completed Brylinski’s construction. Voskresenskĭı [25] (see
also [26]) started with a torus T over a field k. If K is the splitting field of T then TK �
TN and Gal(K/k) acts on N . Using Brylinski’s Gal(K/k)-invariant fan Σ, Voskresenskĭı
showed there is a smooth toric variety Y over k with torus T such that YK is isomorphic
to the toric variety XΣ associated to that fan. (This is Theorem 1.3.4 in [1].) Batyrev and
Tschinkel [1] used this to study rational points of bounded height on compactifications
of anisotropic tori. We do not know of an attempt to classify these structures prior to
Delaunay’s work on real forms of compact toric varieties [8, 9], in which she classifies real
structures of smooth toric surfaces. Her work almost immediately found an application in
geometric modeling when Krasauskas [18, 19] proposed using Delaunay’s real toric surfaces
as patches for geometric modeling.
This work of Voskresenskĭı may be understood in terms of the map π (1.1), which has

a splitting H1(K/k,AutΣ) ↪→ H1(K/k,AutTΣ). When XΣ is smooth and projective and we
have a k-form T of the torus TN associated to a cocycle c ∈ H1(K/k,AutΣ), the image of
c in H1(K/k,AutTΣ) corresponds to Voskresenskĭı’s arithmetic toric varieties.
Huruguen recently studied [16] compactifications of spherical orbits, which is both more

general and more restrictive than our work on arithmetic toric varieties. A spherical
orbit of a connected reductive algebraic group G over k is a pair (X0, x0), where X0 is a
homogeneous space for G on which a Borel subgroup of G has a dense orbit, and x0 ∈ X0(k)
is a k-rational point. Huruguen develops an elegant theory of equivariant embeddings of
spherical orbits that extends the standard theory over algebraically closed fields, in which
embeddings correspond to colored fans [20]. This involves colored fans equipped with an
action of the absolute Galois group and a condition on descent. Huruguen also gives several
examples, including a three-dimensional toric variety, which do not satisfy descent. This
is significantly more general than our work in that it applies to spherical varieties and it
addresses the issue of descent, but it is also more restrictive in that it requires a k-rational
point. This is essentially the same restriction as in the work of Voskresenskĭı and it rules
out many examples such as the Brauer-Severi varieties of Section 3.1.

A toric variety XΣ is a geometric invariant theory quotient of AΣ(1), the vector space
with basis the rays of Σ [6, 10]. After possibly replacing K by a field extension, any

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
Mathematische Nachrichten, published by Wiley-VCH. Copyright restrictions may apply.  doi: 10.1002/mana.201200305



ARITHMETIC TORIC VARIETIES 3

Gal(K/k)-action lifts to a permutation representation on A
Σ(1). The class group of XΣ has

an associated Gal(K/k)-equivariant presentation in which the action on the middle term is
the corresponding permutation action on ZΣ(1). In Section 4, we show how this yields a long
exact sequence facilitating the computation of the Galois cohomology set H1(K/k,AutTΣ).
We illustrate this when Gal(K/k) is a cyclic group, and use that to classify K/k-forms
of projective space for a cyclic extension K of k. In Section 5 we consider the Galois
cohomology sets for fans in Z2, which classify arithmetic toric surfaces.
In forthcoming work [13], we use this classification when k = R to compute the T �

Gal(C/R)-equivariant cohomology of real toric varieties and plan to use it to investigate
more refined equivariant invariants such as Bredon cohomology [3]. Similar ideas should
enable the computation of T � Gal(K/k)-equivariant cohomology of toric varieties that
split over the field extension K/k. We expect this perspective to be useful for arithmetic
spherical varieties, extending the work of Huruguen [16].

Acknowledgments. Elizondo would like to thank the hospitality and support given by
the department of mathematics at Texas A&M University during his sabbatical year.

2. Toric varieties, Galois cohomology, and k-tori

We recall the classification and construction of toric varieties using fans and the dual
quotient construction, and then review Serre’s treatment [24] of the classification of k-
forms of a variety and of k-forms of tori. Our intention is to make this accessible to those
who do not already know both the theory of toric varieties and Galois cohomology.
Given an affine scheme X = SpecR for a Noetherian ring R and an ideal I of R, we

write V(I) for the subscheme of X cut out by I. For a scheme X over Z and a field K,
or for X over a field k and a field extension K, write XK = X × Spec(K) for the scheme
obtained from X by extending scalars to K, and X(K) for the K-rational points of X.

2.1. Split toric varieties. Demazure [11] first constructed toric varieties as schemes over
SpecZ from the data of a unimodular fan. Subsequent treatments in algebraic geome-
try [15, 17] begin with arbitrary fans, but construct varieties over (typically algebraically
closed) fields. These latter constructions in fact give schemes over SpecZ as follows.
Let N be a finitely generated free abelian group of rank n with dual M = Hom(N,Z).

The polar σ∨ of a finitely generated subsemigroup σ of N is

σ∨ := {u ∈ M | u(v) ≥ 0 for all v ∈ σ} ,

a finitely generated subsemigroup of M . A cone is a finitely generated subsemigroup σ
that is saturated, (σ∨)∨ = σ. A face τ of a cone σ is a subsemigroup of the form

τ = {v ∈ σ | u(v) = 0}

for some u ∈ σ∨. The cone σ is pointed if 0 is a face, in which case σ∨ generates M .
To a pointed cone σ in N , we associate the affine scheme Vσ := SpecZ[σ∨] of the

semigroup ring generated by σ∨. When τ is a face of σ, we have σ∨ ⊂ τ∨ and the induced
map Vτ → Vσ is an open inclusion, as Z[τ∨] is a subring of the quotient field of Z[σ∨].
A fan Σ in N is a finite collection of pointed cones in N such that

(1) Any face of a cone in Σ is a cone in Σ.
(2) The intersection of any two cones of Σ is a common face of each.
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4 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

Given a fan Σ in N we construct the scheme XΣ by gluing the affine schemes Vσ for σ
a cone of Σ along their common subschemes corresponding to smaller cones in Σ. Since
every pointed cone σ contains 0 as a face, V0 is contained in Vσ for every cone σ ∈ Σ.
Write T = TN for the algebraic group SpecZ[M ] and let T(K) = Hom(M,K×) be the

set of K-valued points of T. Then T = V0 and is isomorphic to G
rank(N)
m . The inclusion

Z[σ∨] ↪→ Z[M ] of the semigroup ring into the group ring induces a faithful action of TN

on Vσ. That is, there is a map

TN ×SpecZ Vσ −→ Vσ

given by the map of algebras Z[σ∨] → Z[M ]⊗Z[σ∨] sending u �→ u⊗u. These actions are
compatible with the inclusions Vτ ⊂ Vσ induced by the inclusion of a face τ of σ. Thus TN

acts on XΣ. For any field K, TN(K) acts faithfully on XΣ(K) with a dense orbit V0(K).
Any base extension of the scheme XΣ is the split toric variety associated to the fan Σ over
the given base.
Each affine scheme Vσ for σ ∈ Σ contains a distinguished point xσ corresponding to the

prime ideal of Z[σ∨] which is the kernel of the map Z[σ∨] → Z defined by

(2.1) σ∨ 	 u �−→

{
1 u ∈ σ⊥

0 otherwise
,

where σ⊥ is the set of annihilators of σ in M . Note that xσ becomes a closed point in
Vσ,K after extending scalars to any field K and (over K) the orbit Oσ of xσ is a dense
TN(K)-orbit in Vσ(K).
Conversely, given a pair (X,T) such that X is a normal variety on which the split torus

T acts faithfully with an open dense orbit, there is a lattice N and a fan Σ ⊂ N with
(X,T) ∼= (XΣ,TN). It may be recovered as described in, for example, [15, §2.3].
When the cones of the fan Σ span a sublattice of N that does not have full rank, the

toric variety XΣ is the product of a torus and a smaller-dimensional toric variety as follows.
Let N ′ ⊂ N be the saturation in N of the span of Σ and write Σ′ ⊂ N ′ for the fan Σ
considered as a fan in N ′. We have the split exact sequence

(2.2) 0 −→ N ′ −→ N −→ N/N ′ −→ 0 ,

so that N � N ′ ×N/N ′ and the toric variety XΣ likewise decomposes

XΣ � XΣ′ × TN/N ′ .

Since any toric automorphism of XΣ will respect this decomposition, we will at times
assume that Σ spans a full rank sublattice of N .

2.2. Automorphisms of toric varieties. For this section, let X = XΣ be the split toric
variety associated to a fan Σ ⊂ N with torus T = TN . A toric automorphism of XK is a
pair (α, ϕ), where α is an automorphism of the variety XK and ϕ is a group automorphism
of the torus TK , and these automorphisms intertwine the action of TK on XK ,

TN ×XK

(ϕ,α)
��

�� XK

α

��

TN ×XK
�� XK
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Mathematische Nachrichten, published by Wiley-VCH. Copyright restrictions may apply.  doi: 10.1002/mana.201200305



ARITHMETIC TORIC VARIETIES 5

In particular, if t ∈ T(K) and x ∈ X(K) then α(tx) = ϕtα(x), where ϕt is the image of t
under ϕ. Since N = Hom(Gm,TN), any automorphism of TN is naturally induced by an
automorphism ϕ of N , and we use the same notation for both.
Since the fan Σ may be recovered from the pair (X,T), if (α, ϕ) is a toric automorphism

of XK , then ϕ lies in the group AutΣ of automorphisms of N that preserve the fan Σ,
because it maps torus orbits to torus orbits.
Given a toric automorphism (α, ϕ) of XK , let tα ∈ T(K) be defined by

α(x0) = tαx0 .

There is such a tα as the orbit O0 of x0 is the unique dense orbit of T(K) on XK and T(K)
acts freely on O0(K). If (β, ψ) is another toric automorphism, then

β ◦ α(x0) = β(tαx0) = ψtαtβx0 ,

and so tβ◦α = tβ
ψtα. Thus the map (α, ϕ) �→ (tα, ϕ) is a homomorphism from the group of

toric automorphisms of XK to the semidirect product T(K)� AutΣ. The algebraic group
Aut

T

Σ is T � AutΣ which has K-valued points AutTΣ(K) = T(K)� AutΣ.

2.3. Homogeneous coordinates for toric varieties. A split toric variety XΣ,K may
also be constructed as a quotient of an open subset of affine space by an algebraic torus.
For more details and further references, see [7, §2]. This construction leads to a long exact
sequence that will help us to compute Galois cohomology sets.
Let Σ(1) be the set of 1-dimensional cones of Σ which we assume spans a full rank

sublattice of N . Let {vρ | ρ ∈ Σ(1)} be the standard basis for the free abelian group ZΣ(1)
and {uρ | ρ ∈ Σ(1)} be the dual basis for ZΣ(1), which gives coordinates for the affine space
A

Σ(1) := SpecZ[uρ | ρ ∈ Σ(1)].
Every subset τ of Σ(1) corresponds to the cone τ̃ generated by the basis vectors {vρ |

ρ ∈ τ} indexed by τ . Let Σ̃ be the fan in ZΣ(1) whose cones are τ̃ as τ ranges over subsets
of the rays of cones σ in the fan Σ. Then the split toric variety XΣ̃ is exactly AΣ(1) \Z(Σ),
where Z(Σ) is the union of coordinate subspaces defined by the monomial ideal〈∏

ρ�∈τ

uρ | τ ⊂ σ ∈ Σ
〉

=
〈∏

ρ�∈σ

uρ | σ ∈ Σ
〉
.

To see this, recall that XΣ̃ is the union of affine varieties Vτ̃ . Since each cone τ̃ is
generated by a subset ({vρ | ρ ∈ τ}) of the coordinate vectors, we have

Vτ̃ � A
τ ×G

τc

m = A
Σ(1) \ V

(∏
ρ�∈τ

xρ

)
.

(Here Aτ is the coordinate subspace spanned by coordinate vectors eρ indexed by rays
ρ ∈ τ and τ c = Σ(1) \ τ is the complement of τ). Thus

XΣ̃ = A
Σ(1) \

⋂
τ

V
(∏
ρ�∈τ

uρ

)
= A

Σ(1) \ V
(〈∏

ρ�∈τ

uρ | τ ⊂ σ ∈ Σ
〉)

.

Since Σ spans a full rank sublattice of N , the dual of the map ZΣ(1) → N gives a short
exact sequence of finitely generated abelian groups

0 −→ M −→ Z
Σ(1) −→ C�(Σ) −→ 0 ,
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6 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

where C�(Σ) is the class group of XΣ. See [15, §3.4]. We have the corresponding sequence
of algebraic groups

1 −→ GΣ −→ G
Σ(1)
m −→ TN −→ 1 ,

where GΣ := SpecZ[C�(Σ)]. Thus we may identify TN with G
Σ(1)
m /GΣ.

The homomorphism ZΣ(1) → N induces a map Σ̃ → Σ and a surjection of toric varieties

XΣ̃ → XΣ [15, §1.4]. This map is G
Σ(1)
m -equivariant where the action on XΣ is through the

quotient TN = G
Σ(1)
m /GΣ. In particular, it is GΣ-equivariant, where GΣ acts trivially on

XΣ.

Theorem 2.1 (Theorem 2.1 in [6, 7]). Let XΣ be a toric scheme over SpecZ whose 1-
dimensional cones span a full rank sublattice of N . Then

(1) XΣ is the categorical quotient XΣ̃//GΣ, and
(2) XΣ is the geometric quotient XΣ̃/GΣ if and only if Σ is a simplicial fan.

By a categorical quotient, we mean that the map XΣ̃ → XΣ is universal for GΣ-
equivariant maps XΣ̃ → Y , where GΣ acts trivially on Y . A fan Σ is simplicial if the
rays in each cone of Σ are linearly independent.
When Σ does not span a full rank sublattice of N , we replace XΣ̃ in Theorem 2.1 by

XΣ̃ × TN/N ′ , where N/N ′ comes from the exact sequence (2.2).

2.4. Non-abelian cohomology. Let G be a finite group, and A a group on which it acts.
If we write ga for the image of a ∈ A under g ∈ G, then g(a · b) = ga · gb. Write H0(G,A)
for the invariants, AG. A cocycle c of G in A is a map g �→ cg of G into A such that

(2.3) cgh = cg ·
gch .

This implies that ce = 1, where e ∈ G and 1 ∈ A are the identity elements. Indeed, the
cocycle condition (2.3) implies that ce = ce2 = ce ·

ece = (ce)
2.

Two cocyles c and c′ are cohomologous if there exists b ∈ A such that c′g = b−1 · cg ·
gb

for all g ∈ G. This is an equivalence relation on cocycles and we write H1(G,A) for the set
of equivalence classes. This first cohomology of G with values in A is a pointed set having
distinguished element the class of the unit cocycle 1, where 1g := 1, for all g ∈ G.
When G acts trivially on A, a cocycle is simply a group homomorphism and H1(G,A)

is the set of conjugacy classes of homomorphisms.
These cohomology sets are functorial in both G and A, and they fit into an exact

cohomology sequence as follows. The kernel of a map f : X → Y of pointed sets is f−1(y),
where y is the distinguished element of Y . Suppose G acts on a group B, preserving a
normal subgroup A. Set C = B/A. Then we have the sequence of pointed sets

(2.4) 1 → H0(G,A) → H0(G,B) → H0(G,C)
δ
−→ H1(G,A) → H1(G,B) → H1(G,C)

which is exact in that for each cohomology set, the image of the incoming map is the
kernel of the outgoing map. The connecting homomorphism δ is defined as follows. If
c ∈ H0(G,C) = CG, then we choose b ∈ B with c = bA. Since c ∈ CG, if g ∈ G, then
cg := b−1 · gb ∈ A, and this defines a cocycle of G in A.
When A is abelian, H1(G,A) is the usual group cohomology, and the exact sequence (2.4)

may be continued with a connecting homomorphism δ : H1(G,C) → H2(G,A).
We will freely use the following fundamental result in group cohomology.
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ARITHMETIC TORIC VARIETIES 7

Shapiro’s Lemma ([24, I.2.5]). Let H be a subgroup of G of finite index and A an abelian
group on which H acts. Then, for any i,

H i(G, IndG
H A) = H i(H,A) .

We use the following property of Z/2Z group cohomology. Let A be an abelian group
on which Z/2Z acts. Let ξ ∼= Z be the alternating Z[Z/2Z]-module. Then for any n ≥ 1,

(2.5) Hn(Z/2Z, A) = Hn+1(Z/2Z, ξ ⊗ A) .

Indeed, writing Z/2Z = {e, g}, we have the free resolution [14, § 2.1] of the trivial module,

(2.6) · · ·
e−g
−−→ Z[Z/2Z]

e+g
−−→ Z[Z/2Z]

e−g
−−→ Z[Z/2Z] → Z → 0 ,

and tensoring with ξ interchanges e + g and e − g, shifting this sequence one position.
Applying Hom( , ξ ⊗ A) � Hom( ⊗ ξ, A) to (2.6) gives (2.5).

2.5. Galois cohomology and k-forms of a variety. Let K be a finite Galois extension
of a field k with Galois group G. For a G-group A, write H1(K/k,A) for the cohomology
set H1(G, A), the Galois cohomology set of K/k with coefficients in A.
Suppose that X and X ′ are varieties over k which become isomorphic over K, XK �

X ′
K . We say that X ′ is a k-form of the variety XK . Write E(K/k,X) for the set of

isomorphism classes of k-forms of XK . Under suitable descent assumptions, this is in
natural bijection with the Galois cohomology set H1(K/k,AutK(XK)) with coefficients in
the group AutK(XK) of K-automorphisms of XK .
Indeed, there is a straightforward construction (see [24, III.1]) of a map

(2.7) θ : E(K/k,X) −→ H1(K/k,AutK(XK)) ,

with the following property.

Proposition 2.2. The map θ is injective. It is bijective if XK is quasiprojective.

A proof of this proposition is given in [24, III.§1, Proposition 5]. The quasiprojective
hypothesis is sufficient, but not necessary for surjectivity. We discuss this further.
A twisted action of G on the K-variety XK (or twisted form of XK) is a group homo-

morphism ρ : G → Autk(XK) that covers the action of G on SpecK. That is, for every
g ∈ G, the diagram

XK

��

ρ(g)
�� XK

��

SpecK
g

�� SpecK

commutes (where g : SpecK → SpecK is given by g−1 : K → K). In fact, the construction
of the map θ (2.7) makes sense for twisted forms of XK and gives a bijection between the
Galois cohomology set H1(K/k,AutK(XK)) and the set of isomorphism classes of twisted
forms of XK . To see this, let c be a cocycle of G in AutK(XK). This leads to a twisted
action of G on XK : let g ∈ G act on XK by cg · g. Then

(cg · g) · (ch · h) = cg · g · ch · g
−1 · g · h = cg ·

gch · gh = cgh · gh ,

which shows that this defines a K-linear action of G on XK .
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8 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

When Y is a k-form of XK , the G-action on YK makes it a twisted form of XK . A
twisted form of XK lies in the image of θ (2.7) if and only if it arises from such a k-form
Y , that is if and only if it descends to a variety Y over k. Weil’s notion of Galois descent,
or more generally Grothendieck’s faithfully flat descent explains when this occurs.

Proposition 2.3. A twisted form X of XK descends to a variety Y over k if and only if
every G-orbit in X is contained in an affine open subset of XK.

A proof may be found in [2, §6.2]. Proposition 2.3 gives necessary and sufficient condi-
tions for Galois cohomology to classify k-forms of a given variety XK .

2.6. Norm homomorphisms. For each subfield L ⊂ K, let Br(L|K) be the set of simi-
larity classes of central simple L-algebras that split over K. These partial Brauer groups
assemble into a directed system to define the Brauer group Br(L) = limK⊂LBr(L|K).
When K is a Galois extension of L, Br(L|K) = H2(Gal(K/L), K×) [21, Thm. 6.3.4].
Let G = Gal(K/k). The norm homomorphism NT : T (K) −→ T (k) for an abelian

algebraic k-group T is defined by λ �−→
∏

g∈G

g
λ . Hence, the usual norm homomorphism

NK/k coincides with NGm
. In the case where G is cyclic, a standard computation (for

example, [27, Thm. 6.2.2]) shows that

(2.8) H2(K/k, T (K)) = T (k)/ ImNT .

For C/R the norm becomes z �→ |z|2, so ImNC× = R>0, the positive real numbers. There-
fore

Br(R) = Br(R|C) = R
×/N(C×) = R

×/R>0
∼= {−1, 1}.

Perhaps the most fundamental result in Galois cohomology is due to Hilbert.

Hilbert’s Theorem 90. Let K/k be a finite Galois extension of fields. Then

H1(Gal(K/k), K×) = 1.

When K/k is a finite cyclic extension, this is equivalent to the following statement: if
a ∈ K× has unit norm, NK/k(a) = 1, then there exists b ∈ K× with a = b/ρb, where ρ is
a generator of Gal(K/k). To see the equivalence of the two statements, Let ρ ∈ Gal(K/k)
be a generator of order d and observe that by (2.3) a cocycle c : Gal(K/k) → K× is
determined by its value cρ at ρ. Not every element of K× may be a value cρ, for

1 = cρd = cρ ·
ρcρ · · · ρd−1

cρ = NK/k(cρ) .

Now observe that cρ = b/ρb if and only if b−1 · cρ ·
ρb = 1, so that c is cohomologous to 1.

2.7. Arithmetic tori. Let K be a Galois extension of a field k and N be a finitely
generated free abelian group. A torus over k of rank n is an algebraic group T over k such
that for some (finite) extension K/k and lattice N of rank n, TK

∼= TN,K . That is, T is
a k-form of the split torus TN,K . As TN is affine, the set of such k-forms is in natural
bijection with the Galois cohomology set H1(K/k,Aut(TN)), by Proposition 2.2.
We describe the twisted action of the Galois group G explicitly. For a ∈ Aut(N) we will

also write a for its adjoint in Aut(M). Let ϕ : G → Aut(TN) = Aut(N). Given g ∈ G and
t ∈ TN(K) = Hom(M,K×), define gϕt : M → K× by the composition

(2.9) gϕt : M
ϕg

−−→ M
t

−→ K× g
−−→ K× .
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ARITHMETIC TORIC VARIETIES 9

Since the Galois group G acts trivially on Aut(N), we have the following classification.

Proposition 2.4. The k-forms of the torus TN,K are given by conjugacy classes of homo-
morphisms ϕ : G → Aut(N). The corresponding torus ϕT satisfies ϕT(K) = TN (K), but
the Galois action of g ∈ G sends t : M → K× in TN (K) to gϕt := g ◦ t ◦ ϕg : M → K×.

Equivalently, TN (K) = N ⊗Z K
×, and the twisted G-action is simply the diagonal Z[G]-

action where ϕ gives N the structure of a Z[G]-module.

3. Arithmetic toric varieties

An arithmetic toric variety over a field k is a pair (Y,T), where T is a torus over k and
Y is a normal variety over k equipped with a faithful action of T which has a dense orbit.
Let K be a Galois extension of k over which the torus T splits, so that TK � TN,K , where
N is the lattice of one-parameter subgroups of T. According to Proposition 2.4, there is a
conjugacy class of group homomorphisms

(3.1) ϕ : G := Gal(K/k) −→ Aut(N)

such that T = ϕT. Then YK is a normal variety over K that is equipped with a faithful
action of the split torus TK which has a dense orbit and thus YK is isomorphic to a split
toric variety XΣ,K , for some fan Σ ⊂ N .
Thus we have an isomorphism of pairs

(3.2) ψ : (YK ,TK)
∼

−−→ (XΣ,K ,TN,K) .

We may use this to transfer the G-action from (YK ,TK) to (XΣ,K ,TN,K) to obtain a twisted
form of (XΣ,K ,TN,K). Since G acts on the pair (XΣ,K ,TN,K), it acts on the fan Σ ⊂ N , and
thus the homomorphism ϕ (3.1) for which T = ϕT may be chosen so that ϕ(G) ⊂ AutΣ.
For g ∈ G, define tg ∈ TN (K) by

gx0 = tgx0 ,

where x0 is the distinguished point of XΣ,K corresponding to 0 ∈ Σ.

Lemma 3.1. The map G 	 g �→ (tg, ϕg) ∈ Aut
T

Σ(K) is a cocycle in H1(K/k,AutTΣ), and
the corresponding twisted form of (XΣ,K,TN,K) is induced by the map ψ (3.2).

The same formalism as in Section 2.5 gives the following classification.

Theorem 3.2. Let K be a Galois extension of a field k with Galois group G and Σ a fan
in the lattice N .

(1) The Galois cohomology set H1(K/k,AutTΣ) is in natural bijection with the set of twisted
forms of the split toric variety (XΣ,K ,TN,K), with the distinguished unit cocycle 1

corresponding to (XΣ,K ,TN,K).
(2) This Galois cohomology set is in bijection with the set E(K/k,XΣ) of k-forms of

the split toric variety (XΣ,K,TN,K) if and only if for every homomorphism ϕ : G →
AutΣ (K) and cone τ ∈ Σ, the points {xϕg(τ) | g ∈ G} indexed by cones in the G-orbit
of τ lie in an affine open subset of XΣ,K.

Proof. The first statement follows, mutatis mutandis, from arguments given in Section 2.5,
and a small calculation involving the unit cocycle.
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10 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

The condition in the second statement is necessary. Indeed, in Section 3.2, we show
that a homomorphism ϕ : G → AutΣ gives a cocycle 1ϕ : g �→ (1, ϕg), and thus a twisted
form Xϕ of XΣ,K . Thus the condition that the points {xϕg(τ) | g ∈ G} lie in an affine open
subset coincides with the condition in Proposition 2.3 for Xϕ to have descent, but only for
orbits of the distinguished points xσ for cones σ ∈ Σ.
For sufficiency, suppose that we have a twisted form of XΣ,K given by a cocycle c : g �→

cg = (tg, ϕg) with ϕ : G → AutΣ the corresponding homomorphism, and let x ∈ XΣ,K . We
show there exists an affine open subset V of XΣ,K containing the G-orbit of x.
To that end, write x = txxσ for some cone σ of the fan Σ. Let U ⊂ XΣ,K be an affine

open subset containing the points {xϕg(τ) | g ∈ G} indexed by the G-orbit of the cone σ.
For each g ∈ G, consider the map fg : TN,K → XΣ,K defined by

fg(t) = t.gx ,

where g acts on x via the twisted action of G on XΣ,K . We claim that the image meets
the set U , for every g ∈ G.
If so, then f−1

g (U) is a non-empty open subset Ug of TN,K , and dense as TN is irreducible.
It follows that for a point t in the intersection of the sets Ug, g ∈ G, one has t.gx ∈ U for
all g ∈ G. In other words, the affine open set t−1U contains the orbit Gx.
To prove the claim, we show that for every g ∈ G some point of the form t.gx lies in U .

We have
gx = g(txxσ) = gtx

gxσ = gtxtgxϕg(σ) .

Hence for t = (gtxtg)
−1 ∈ TN (K) we have t.gx = xϕg(σ), which lies in U , by hypothesis.

This completes the proof. �

Corollary 3.3. If K/k is a quadratic extension, the lattice N has rank 2, or the fan Σ is
quasiprojective, then H1(K/k,AutTΣ) classifies k-forms of the split toric variety XΣ,K.

Proof. The result for K/k quadratic follows from Proposition 2.3 and W�lodarczyk’s re-
sult [28] that any pair of points in a toric variety is contained in an affine open subset.
Since any fan in a rank 2 lattice is quasiprojective, the rest of the statement follows by
Proposition 2.3. �

Huruguen [16] gives an example of a three-dimensional toric variety and a degree three
field extension which does not satisfy descent. This shows that this result (Corollary 3.3,
also obtained by Huruguen) is best possible.
While we have considered twisted forms of toric varieties associated to a fan in a given

finite extension of k, the twisted forms from the algebraic closure of k are also given by
the Galois cohomology groups

H1(k ,AutTΣ) := colimK⊂k H1(Gal(K/k),AutTΣ(K)) .

3.1. Real forms of P1. Consider the projective line when k = R. Here, N = Z and
the fan Σ has three cones: the positive integers σ+, the negative integers σ−, and their
intersection {0}. Identify M with Z via the pairing 〈u, v〉 = uv, where u ∈ M and v ∈ N .
Then σ∨

± = σ± and {0}∨ = Z. Writing an element u ∈ M multiplicatively as zu, we have

Z[σ∨
+] = Z[z] , Z[σ∨

−] = Z[z−1] , and Z[{0}∨] = Z[z, z−1] ,
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ARITHMETIC TORIC VARIETIES 11

which gives the usual construction of P1 by gluing two copies of the affine line A1
+ and A

1
−

along the common torus Gm where x ∈ Gm is mapped to x ∈ A1
+ and to x−1 ∈ A1

−.
Over C, this gives the familiar Riemann sphere

∞

0

where Gm(C) = C
× is the complement of the poles {0,∞}, which are the origins of

A1
+(C) and A1

−(C), respectively. A twisted form of P1
C
is given by an anti-holomorphic

involution that normalizes the action of the torus C×. By either Corollary 3.3 (as k = R)
or Theorem 3.2(1) (as P1 is projective), twisted forms of P1 are equivalent to real forms,
and both are in natural bijection with the Galois cohomology set H1(C/R,AutTΣ).
For P1, AutΣ = {±I}, where I is the identity map on Z and −I is multiplication by −1.

The toric automorphism group of P1
C
is AutTΣ(C) := C× � {±I}, where {±I} acts on C×

by −I sending t ∈ C× to t−1. The Galois group G := Gal(C/R) is {e, g}, where e is the
identity and g is complex conjugation.
For any cocycle c, ce = (1, I), so a cocycle c is determined by cg = (λ, ϕ) ∈ C

∗
� {±I}.

Suppose that ϕ = I. By the cocycle condition (2.3),

(1, I) = ce = cg2 = cg ·
gcg = (λ, I) · g(λ, I) = (λλ, I) .

Thus λλ = 1 and so λ ∈ S1. Let b2 = λ. Then the cocycle given by

(b−1, I) · (λ, I) · g(b, I) = (b−1bλ, I) = (b−2λ, I) = (1, I)

is cohomologous to c. Thus the unit cocycle 1 is the unique element in the Galois cohomol-
ogy set H1(C/R,AutTΣ) with ϕg = I. The corresponding twisted form is P1

C
with the usual

complex conjugation, which is reflection in the plane of the Greenwich meridian. The fixed
points of this involution are the real-valued points of P1

R
and they include the two poles.

Suppose now that ϕ = −I. By the cocycle condition (2.3),

(1, I) = cg ·
gcg = (λ,−I) · g(λ,−I) = (λλ

−1
, I) ,

as −Iλ = λ−1. We conclude that 1 = λλ
−1

and so λ ∈ R× is real. Let us investigate
cohomologous cycles. For b ∈ C

×,

(b,±I)−1 · (λ,−I) · g(b,±I) = (((bb)−1λ)±1,−I) .

Since these are all the cohomologous cycles and bb is a positive real number, we see that
there are exactly two elements of H1(C/R,AutTΣ) with ϕ = −I, namely

c+ : cg = (1,−I) and c− : cg = (−1,−I) .

Both give the same twisted form of C× in which gt = t
−1

for t ∈ C×. This is the real
non-split form of C× whose fixed points are S1.
We consider the corresponding twisted forms of P1

C
. For the cocycle c+, the anti-

holomorphic involution sends t �→ t
−1

for t ∈ C× and it interchanges the poles. This
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12 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

is reflection in the equator and has fixed point set S1. For the twisted form given by the

cocycle c−, the anti-holomorphic involution sends C× 	 t �→ −t
−1

and it interchanges the
poles. This is the antipodal map and it has no fixed points.
Figure 1 shows these three real forms of the toric variety P1

C
. The third real form is the

∞

0
t �→ t

Reflection in

Meridian (1)

∞

0
t �→ t

−1

Reflection in

Equator (c+)

∞

0
t �→ −t

−1

Antipodal map

(c−)

Figure 1. Real forms of P 1
C
.

Brauer-Severi variety. It is one of two real forms of the projective line, the other being the
usual real projective line, RP1. We have P1

c+
� P1

1
= RP1, but not as toric varieties. For

example, the real points of P1
c+

do not include the torus fixed points {0,∞}, while these
are real points of RP1.

3.2. A partition of Galois cohomology. Let Σ be a fan in a lattice N and K/k a
Galois extension with Galois group G. Then we have a short exact sequence of groups

1 → TN (K)
ι

−→ Aut
T

Σ(K)
π

−−→ AutΣ → 1

which induces an exact sequence of Galois cohomology sets (2.4)

(3.3) H1(K/k,TN)
ι

−→ H1(K/k,AutTΣ)
π

−−→ H1(K/k,AutΣ)
δ

−→ H2(K/k,TN) .

This begins with H1(K/k,TN), which is trivial by Hilbert’s Theorem 90.
Since G acts trivially on AutΣ, the cohomology set H1(K/k,AutΣ) consists of conjugacy

classes of homomorphisms ϕ : G → AutΣ to which one associates twisted forms ϕT of TN ,
as in Proposition 2.4.
Given a twisted form YK of the split toric variety XΣ,K , the image ϕ of its cocycle c

under the composition Aut
T

Σ → AutΣ → Aut(N) determines the twisted torus ϕT acting on
YK . The fiber π−1(ϕ) above ϕ consists of cocycles corresponding to the twisted forms Y ′

K

of XΣ,K with twisted torus ϕT. The following result identifies these fibers.

Theorem 3.4. The map π : H1(K/k,AutTΣ) → H1(K/k,AutΣ) is surjective with the fiber
over the conjugacy class of a homomorphism ϕ : G → AutΣ equal to the quotient of the
Galois cohomology set H1(K/k, ϕT) by H0(K/k,AutΣ) = (AutΣ)

G = CAutΣ
(ϕ(G)), the

centralizer of the image ϕ(G) ⊆ AutΣ. That is, the Galois cohomology set H1(K/k,AutTΣ)
can be partitioned into a disjoint union

H1(K/k,AutTΣ) =
∐
ϕ

H1(K/k, ϕT)/H
0(K/k,AutΣ),
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where ϕ varies over representatives of conjugacy classes of homomorphisms ϕ : G → AutΣ.
In particular, the association of ϕ to the cocycle 1ϕ := (1, ϕ), where 1 ∈ H1(K/k, ϕT) is
the unit cocycle, is a section of the map π.

Proof. Let ϕ : G → AutΣ be a homomorphism. Setting cg := (1, ϕg), where 1 ∈ TN is the

unit, gives a function c : G → Aut
T

Σ(K). This is a cocycle because for g, h ∈ G, we have

cgh = (1, ϕgh) = (1, ϕg)(1, ϕh) = cg ·
gch ,

as ϕg is a group automorphism of TN (K) so that ϕg1 = 1.
Write 1ϕ for this cocycle. If ϕ and ψ are conjugate homomorphisms (cohomologous

cocycles in H1(K/k,AutΣ)), then 1ϕ and 1ψ are cohomologous and represent the same

element in H1(K/k,AutTΣ). In this way, we see that the association ϕ �→ 1ϕ gives a map

H1(K/k,AutΣ) −→ H1(K/k,AutTΣ)

which is a section of the map π. Thus π is surjective.
The identification of the fiber π−1([ϕ]) ∼= H1(K/k, ϕT)/H

0(K/k,AutΣ) follows from [24,
Cor. I.§5.5.2]. �

Remark 3.5. The Galois cohomology sets computed in Section 3.1 illustrate Theorem 3.4.
For P1, AutΣ = {±I}, and there are two homomorphisms Gal(C/R) → AutΣ. We found
a unique cocycle associated to the trivial homomorphism. This is a general fact, as
H1(K/k,TN) = 1, by Hilbert’s Theorem 90. On the other hand, there were two cocycles as-
sociated to the non-trivial homomorphism ϕ which gives the real non-split form of C×, with
real points ϕT(R) = S1. In fact, we computed H1(C/R, ϕT) = H1(C/R, S1) = R×/R>0,
while H0(C/R,AutΣ) = {±I} acts trivially on R

×/R>0 (this is just the statement that
t > 0 if and only if t−1 > 0). �

Remark 3.6. The section H1(K/k,AutΣ) → H1(K/k,AutTΣ) of the map π (3.3) is reflected
in work of Voskresenskĭı, who constructed toric varieties corresponding to the cocycles
1ϕ = (1, ϕ), for smooth projective ϕ(G)-invariant fans Σ. �

We recall the following statement (see also [24, I.§2.6]).

Proposition 3.7. Let ϕ : G = Gal(K/k) → AutΣ be a homomorphism, let Lϕ denote the
intermediate Galois extension k ⊂ Lϕ ⊂ K where Lϕ = Kkerϕ, and let ϕ : Gal(Lϕ/k) =
Gal(K/k)/ kerϕ → AutΣ be the map induced by ϕ. Then H1(K/k, ϕT) ∼= H1(Lϕ/k, ϕT).

Note that Lϕ, ϕT, and ϕT depend only on the conjugacy class of ϕ.

Proof. Given a closed normal subgroup H of a profinite group G and a G-module A, there
is an exact sequence

(3.4) 1 → H1(G/H,AH)
inf
−−→ H1(G,A)

res
−−→ H1(H,A)G/H tg

−→ H2(G/H,AH) ,

where the indicated maps are the inflation, restriction and transgression maps associated
to the normal subgroup H ; see [21, Prop. 1.6.6].
Consider the exact sequence (3.4) where G = Gal(K/k), H = kerϕ and A = ϕT(K).

Since H = ker{ϕ : G → AutΣ} and H acts trivially on the lattice N , we have ϕT(K) �
TN(K) as an H-module. With this it follows from Hilbert’s Theorem 90 that

(3.5) H1(H,A)G/H ⊆ H1(H,A) = H1(Gal(K/Lϕ),TN (K)) = H1(K/Lϕ,G
n
m) = 1 .
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14 ELIZONDO, LIMA-FILHO, SOTTILE, AND TEITLER

Furthermore,

(3.6) AH = ϕT(K)Gal(K/Lϕ) = ϕT(Lϕ)

as a G/H = Gal(Lϕ/k)-module. Then (3.4), (3.5), and (3.6) give an isomorphism

H1(K/k, ϕT) = H1(G,A) ∼= H1(G/H,AH)

= H1(Gal(Lϕ/k), ϕT(Lϕ)) = H1(Lϕ/k, ϕT) . �

Remark 3.8. In [8, 9] the subgroup AutΣ ⊂ Aut
T

Σ is called the group of multiplicative
automorphisms of (XΣ,TN) and the subgroup TN ⊂ Aut

T

Σ is called the group of elemen-
tary toric automorphisms. Accordingly, a real structure c ∈ H1(C/R,AutTΣ) is called a
multiplicative real structure if c ∈ H1(C/R,AutΣ) ⊂ H1(C/R,AutTΣ). Theorem 4.1.1 of [9]
states that any toric real structure on a complex toric variety X in which the set of real
points of X is nonempty is, up to conjugation, a multiplicative real structure.
For more general field extensions, if c ∈ H1(K/k,AutTΣ) is such that the corresponding

twisted form of (XΣ,K ,TN,K) descends to a k-variety, then the open dense orbit O0 ⊂ XΣ,K

contains a k-rational point if and only if c ∈ H1(K/k,AutΣ). If c ∈ H1(K/k,AutΣ) then
x0 ∈ O0, the distinguished point in the dense orbit, is fixed by G. Conversely, if a k-
rational point y = tx0 ∈ O0 is fixed by G then, writing cg = (tg, ϕg) for each g ∈ G,
tx0 = y = gϕy = tg

gtx0, meaning t−1tg
gt = 1; conjugating by t takes c to a cocycle with

each tg = 1.
More generally, if y is any k-rational point of XΣ,K then for each g ∈ G, ϕg fixes the

cone τ such that y ∈ Oτ . Writing y = txτ , the same computation shows conjugating by t
takes c to a cocyle with each tg in the stabilizer of xτ . �

3.3. Compactifications of torsors. Suppose that Σ = {0}. Then XΣ = X{0} is simply
TN . Since Σ is preserved by every homomorphism ϕ : G = Gal(K/k) → Aut(N), for every
k-form ϕT of the torus TN,K , there are k-forms of X{0}, and these are in bijection with
H1(K/k, ϕT)/H

0(K/k,Aut(N)). These are pairs (Y, ϕT) of k-varieties with Y � ϕT, but
where the Galois action on YK � TN,K is not necessarily that on the group Tϕ,K � TN,K .
Such k-forms of X{0} with torus ϕT are torsors over ϕT.
We restate Theorem 3.4 giving an arithmetic version of the fundamental theorem of toric

varieties—that normal varieties over an algebraically closed field equipped with the action
of a dense split torus are classified by fans.

Theorem 3.9. Suppose either that Σ is a quasiprojective fan or that K/k is a quadratic
Galois extension. Then every torsor (Y, ϕT) over a torus ϕT given by a homomorphism
ϕ : G → AutΣ has an equivariant compactification that is a k-form of the toric variety XΣ.

This completes the classification of quasiprojective compactifications of torsors, as every
arithmetic toric variety (Y,T) gives a ϕ-invariant fan Σ and (Y,T) is the closure of the
torsor (Y0,T) where Y0 is the dense orbit.

4. Galois cohomology and the class group

We use the presentation of the class group appearing in the quotient construction
of Section 2.3 and the fibration of Theorem 3.4 to compute the Galois cohomology set
H1(K/k,AutTΣ), and then classify projective spaces with cyclic Galois groups.
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4.1. Galois cohomology and the class group. Let Σ(1) be the set of rays in the fan
Σ, and let SΣ(1) be the group of permutations of Σ(1). Then AutΣ is naturally a subgroup
of SΣ(1). As in Section 2.3, we assume that the cones of Σ span a full rank sublattice of
N . We obtain a short exact sequence

(4.1) 0 −→ M −→ Z
Σ(1) −→ C�(Σ) −→ 0 .

The torsion subgroup C�(Σ)tor of C�(Σ) is isomorphic to Z/a1Z × · · · × Z/arZ, for some
integers a1 ≥ · · · ≥ ar ≥ 2. We will assume that the field K satisfies

(4.2) Ext1
Z
(C�(Σ), K×) = 0 .

That is, the equations zai − λ = 0 have solutions in K× for all i = 1, . . . , r and λ ∈ K×.
This assumption (4.2) holds when C�(Σ) is free or when K is an algebraic closure of k. In
practice, we may assume that K satisfies (4.2) whenever keeping track of the splitting field
of the toric variety is not relevant, since (4.2) holds for sufficiently large extensions K/k.
Under this assumption, (4.1) induces the exact sequence

(4.3) 1 −→ Hom(C�(Σ), K×) −→ Hom(ZΣ(1), K×) −→ Hom(M,K×) −→ 1 .

Let G
Σ(1)
m be the torus Spec(Z[ZΣ(1)]) and GΣ be the abelian group scheme Spec(Z[C�(Σ)]).

Then we may rewrite (4.3) as

(4.4) 1 −→ GΣ(K)
ıK−−→ G

Σ(1)
m (K)

φK−−−→ TN (K) −→ 1 .

Since AutΣ ⊂ SΣ(1), AutΣ acts on G
Σ(1)
m and (4.4) is AutΣ-equivariant. We may use any

homomorphism ϕ : G = Gal(K/k) → AutΣ to compatibly twist the G-action on (4.4),
obtaining a short exact sequence of twisted group schemes,

(4.5) 1 −→ GΣ,ϕ(K)
ıK−−→ G

Σ(1)
m,ϕ(K)

φK
−−−→ ϕT(K) −→ 1 .

By Theorem 3.4, the quotient H1(K/k, ϕT)/H
0(K/k,AutΣ) is the fiber above the ho-

momorphism ϕ ∈ H1(K/k,AutΣ) under the projection from H1(K/k,AutTΣ). We will use
the sequence (4.5) to describe H1(K/k, ϕT) when the extension K/k is cyclic.
We begin by establishing some notation. The orbit decomposition Σ(1) = O1� · · ·�Os

of Σ(1) under the action of G via ϕ : G → AutΣ ⊂ SΣ(1) gives a decomposition

Z
Σ(1) = Z

O1 ⊕ · · · ⊕ Z
Os .

For each i = 1, . . . , s, choose a representative vi ∈ Oi and let Gi ⊂ G be its stabilizer, so

that Oi = G/Gi. This gives a decomposition of G
Σ(1)
m,ϕ(K) as a Z[G]-module,

(4.6) G
Σ(1)
m,ϕ(K) ∼=

(
Z[G/G1]⊗K×

)
× · · · ×

(
Z[G/Gs]⊗K×

)
.

Let {gi,j | j = 1, . . . , mi} be a set of representatives for G/Gi and write an element α in
Z[G/Gi]⊗K× as α =

∑mi

j=1 [gi,j]⊗ λj, where [gi,j] is the coset of gi,j. Consider the map

K× −→ Z[G/Gi]⊗K× , where λ �−→

mi∑
j=1

[gi,j]⊗
gi,j
λ .

We leave the reader to check that if λ ∈ (KGi)
×
then

∑
[gi,j]⊗

gi,j
λ is G-fixed. Write Δi for

the restriction (KGi)
×
→ {Z[G/Gi] ⊗ K×}G. One may check that Δi is an isomorphism,

and does not depend on the choices of the representatives gi,j.
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We state the main results of this section.

Theorem 4.1. Let C�(Σ) be as defined in (4.3) and suppose that K/k is a finite cyclic
extension with Ext1

Z
(C�(Σ), K×) = 0. Then for any homomorphism ϕ : G → AutΣ,

H1(K/k,Tϕ) ∼=
GΣ,ϕ(k) ∩ ImN

G
Σ(1)
m,ϕ

ImNGΣ,ϕ

.

Here, N
G

Σ(1)
m,ϕ

and NGΣ,ϕ
are the norm homomorphisms of Section 2.6. We determine

ImN
G

Σ(1)
m,ϕ

.

Theorem 4.2. Let C�(Σ) and Δi,Gi for i = 1, . . . , s be as above with K/k a finite Galois
extension (not necessarily cyclic) with Ext1

Z
(C�(Σ), K×) = 0. Then for ϕ : G → AutΣ,

ImN
G

Σ(1)
m,ϕ

=
s∏

i=1

Δi(ImNK/KGi ) .

Before proving these results, we compute the cohomology of the middle term in (4.5).

Lemma 4.3. Let ϕ : G → AutΣ ⊂ SΣ(1) and Gi, i = 1, . . . , s be as above. Then

(4.7) Hr(K/k,GΣ(1)
m,ϕ(K)) ∼=

s∏
i=1

Hr(Gi, K
×) ,

for all r ≥ 0. In particular,

H0(K/k,GΣ(1)
m,ϕ(K)) ∼=

s∏
i=1

(KGi)
×
,

H1(K/k,GΣ(1)
m,ϕ(K)) = 1 , and(4.8)

H2(K/k,GΣ(1)
m,ϕ(K)) ∼=

s∏
i=1

Br(KGi |K) .

Proof. It follows from Shapiro’s lemma that Hr(K/k,Z[G/Gi]⊗K×) ∼= Hr(Gi, K
×), for

all r ≥ 0 and i = 1, . . . , s, since Z[G/Gi]⊗K× ∼= IndG
Gi

(
ResGGi

(K×)
)
. Applying this to each

factor in (4.6) proves (4.7).

We have H0(Gi, K
×) = (K×)Gi = (KGi)

×
by the definition of H0. The vanishing of

H1 follows from Hilbert’s Theorem 90. Lastly, the identification of H2 follows from the
canonical isomorphism H2(Gi, K

×) � Br(KGi|K), as explained in Section 2.6. �

Proof of Theorem 4.1. The long exact sequence of cohomology coming from (4.5) includes

H1(K/k,GΣ(1)
m,ϕ (K)) → H1(K/k, ϕT(K)) → H2(K/k,GΣ,ϕ(K))

ı2−→ H2(K/k,GΣ(1)
m,ϕ (K)) .

By (4.8) we have H1(K/k,G
Σ(1)
m,ϕ (K)) = 1 and so,

H1(K/k, ϕT) = H1(K/k, ϕT(K)) � ker ı2 .

Since G is cyclic, by (2.8) we have,

H2(K/k,GΣ,ϕ(K)) =
GΣ,ϕ(k)

ImNGΣ,ϕ

and H2(K/k,GΣ(1)
m,ϕ (K)) =

G
Σ(1)
m,ϕ (k)

ImN
G

Σ(1)
m,ϕ

.
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The result follows immediately. �

Proof of Theorem 4.2. For i = 1, . . . , s, define θi : Z[G/Gi]⊗K× → K× by

θi

( mi∑
j=1

[gi,j]⊗ λj

)
=

mi∏
j=1

g−1
i,jλj .

We claim that if αi ∈ Z[G/Gi]⊗K×(⊂ G
Σ(1)
m,ϕ ), then

N
G

Σ(1)
m,ϕ

(αi) = Δi(NK/KGi(θi(αi))) ∈ Δi(ImNK/KGi ) .

Indeed, this follows directly (albeit tediously) from the definitions of N and θi, using the
expansion of αi,

αi =

mi∑
j=1

[gi,j]⊗ λj .

Hence for an arbitrary element α = (α1, . . . , αs) ∈ G
Σ(1)
m,ϕ (with αi ∈ Z[G/Gi]⊗K×),

N
G

Σ(1)
m,ϕ

(α) =
s∏

i=1

N
G

Σ(1)
m,ϕ

(αi) ∈
s∏

i=1

Δi(ImNK/KGi ) .

Conversely, suppose λi ∈ ImNK/KGi for i = 1, . . . , s. Let κi ∈ K such that NK/KGi (κi) =
λi. For each i = 1, . . . , s, let αi = [gi1]⊗

gi1κi. Then

N
G

Σ(1)
m,ϕ

(αi) = Δi(NK/KGiθi(αi)) = Δi(NK/KGi (κi)) = Δi(λi) .

Hence
∏

Δi(λi) = N
G

Σ(1)
m,ϕ

(α) for α = (α1, . . . , αs). �

4.2. Arithmetic projective spaces. We apply the results of Subsection 4.1 to classify
the arithmetic forms of projective space considered as the toric variety (Pn,Gn+1

m /Gm).
For brevity we simply write P

n.
Write [n+1] for {0, 1, . . . , n}. Let N ∼= Zn be the lattice Z[n+1]/Z(1, . . . , 1) and Σ be

the fan in N whose cones are generated by proper subsets of the set of images of standard
basis elements in Z[n+1]. The symmetric group S[n+1] acts by permuting the coordinates
and is the group of automorphisms AutΣ.
Given n and d, let P(n+1, d) be the set of partitionsm = (d ≥ m1 ≥ m2 ≥ · · · ≥ ms ≥ 1)

of n+1 such that each part mi divides d. Write |m| for the length s of a partition. The set
P(n+1, d) is in one-to-one correspondence with the conjugacy classes of elements σ ∈ S[n+1]

satisfying σd = 1. Write P1(n+1, d) ⊂ P(n+1, d) for those partitions with ms = 1 and
P∗(n+1, d) = P(n+1, d) \ P1(n+1, d).

Theorem 4.4. Let K/k be a cyclic extension of degree d with Galois group G = 〈ξ〉. The
set E(K/k,Pn) of k-forms of Pn that split over K is in one-to-one correspondence with

P1(n+1, d)�
∐

m∈P∗(n+1,d)

k× ∩
⋂|m|

i=1 ImNK/Kξmi

ImNK/k

.
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Proof. We have E(K/k,Pn) = H1(K/k,AutTΣ). We first describe H1(K/k,AutΣ), then the

fibers of the projection map π : H1(K/k,AutTΣ) → H1(K/k,AutΣ).
As before, H1(K/k,AutΣ) is the set of conjugacy classes [ϕ] of homomorphisms ϕ : G ∼=

Z/dZ → AutΣ
∼= S[n+1]. The conjugacy class [ϕ] is determined by the cycle type of ϕ(ξ),

which is a permutation whose order divides d. Hence H1(K/k,AutΣ) = P(n+1, d).

The dual sequence (4.1) becomes

0 → M → Z
[n+1] → Z(1, . . . , 1)∨ → 0,

where M = {f ∈ Z[n+1] |
∑n

i=0 f(i) = 0}. In particular, C�(Σ) = Z(1, . . . , 1)∨ is free, so
the assumption (4.2) is satisfied.
Let ϕ be a homomorphism G → AutΣ = S[n+1] with cycle type m = (m1, . . . , ms). By

Theorem 4.1,

H1(K/k, ϕT) =
GΣ,ϕ(k) ∩ ImN

G
Σ(1)
m,ϕ

ImNGΣ,ϕ

.

In the sequence (4.5), GΣ,ϕ(K) ∼= K× maps into (K×)n+1 as the diagonal ΔK×. For each
i = 1, . . . , s, the subgroup Gi is 〈ξ

mi〉. Therefore by Theorem 4.2,

GΣ,ϕ(k) ∩ ImN
G

Σ(1)
m,ϕ

∼=
{
x ∈ k× | x ∈

s⋂
i=1

ImNK/Kξmi

}
and ImNGΣ,ϕ

∼= ImNK/k ⊂ k×.

Finally, H0(K/k,AutΣ) acts by permuting the entries of G
Σ(1)
m,ϕ , so it acts trivially on the

diagonal GΣ,ϕ. Hence it acts trivially on H2(K/k,GΣ,ϕ) and on the kernel ker ı2, which

is H1(K/k, ϕT). Therefore the fibers of π : H1(K/k,AutTΣ) → H1(K/k,AutΣ) are the
cohomology groups H1(K/k, ϕT) (rather than the quotients of these by H0(K/k,AutΣ)).
This shows that

H1(K/k,AutTΣ) =
∐

m∈P(n+1,d)

k× ∩
⋂|m|

i=1 ImNK/Kξmi

ImNK/k

.

If Σ(1) has a fixed point v = Oi0 under the action of G, then Gi0 = G, hence ImN
K/K

Gi0
=

ImNK/k, and henceH1(K/k, ϕT) = 1ϕ. The maps ϕ for which there is a fixed point are pre-

cisely those whose conjugacy class lies in P1(n+1, d). This shows that π : H1(K/k,AutTΣ) →
H1(K/k,AutΣ) = P(n+1, d) is one-to-one over P1(n+1, d) ⊂ P(n+1, d). �

Corollary 4.5. Let K/k be a cyclic extension of prime degree d. Then

E(K/k,Pn) =

{
P1(n+1, d)� Br(k|K), if d | n+1

P(n+1, d), otherwise.

Proof. Every element of P(n+1, d) has the form (d, . . . , d, 1, . . . , 1). If d does not divide
n+1 then P(n+1, d) = P1(n+1, d) and the result follows. Otherwise P∗(n+1, d) contains
the single element m∗ := (d, d, . . . , d). For [ϕ] = m∗ we have Gi = {1} for i = 1, . . . , s.
Hence KGi = K and ImNK/KGi = K×, for i = 1, . . . , s. It follows that

(4.9) H1(K/k, ϕT) =
k×

ImNK/k

∼= Br(k|K),
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which completes the proof. �

For example, E(C/R,P1) = P1(2, 2)� Br(R|C) = {(1, 1)} � (R×/R>0), giving the three
real forms of P1 computed in Section 3.1.

5. Arithmetic Toric Surfaces

All toric surfaces are quasiprojective, and so by Corollary 3.3 arithmetic toric sur-
faces are classified by Galois cohomology. By Theorem 3.4 the computation of Galois
cohomology is reduced to computing H1(K/k, ϕT)/H

0(K/k,AutΣ) for all homomorphisms
ϕ : Gal(K/k) → AutΣ ⊂ Aut(N), which we may assume are injective, by Proposition 3.7.
We may herefore replace Gal(K/k) with the conjugacy class in AutΣ of its image Γ under
ϕ.
Identifying N with Z2 identifies Aut(N) with GL(2,Z). We will show that every finite

subgroup of GL(2,Z) occurs as the automorphism group of a fan Σ of a smooth complete
toric surface. Then we will compute H1(K/k, ϕT) for all conjugacy classes of homorphisms
ϕ : G = Gal(K/k) → AutΣ and lastly describe the fiber H1(K/k, ϕT)/H

0(K/k,AutΣ).

Remark 5.1. With these identifications, the subgroup Γ ⊂ AutΣ induces a Z[G]-module
structure on Z2. The corresponding G-module structure on ϕT(K) = Z2⊗K× = K××K×

is the simultaneous action of Γ on N = Z2 and its action on K× as the Galois group
Gal(K/k). Note the the action on Z2 is simply the restriction of the action of GL(2,Z).
More precisely, if g ∈ G with ϕ(g) = ( a b

c d ), and (x, y) ∈ K× ×K×, then

(x, y) �−→ g(x, y) =
(
g(x)ag(y)b, g(x)cg(y)d

)
.

Similarly, any map Gal(K/k) → GL(n,Z) induces a corresponding action on (K×)n. �

5.1. Finite subgroups of GL(2,Z). Write D2m for the dihedral group of order 2m,

D2m := 〈ρ, r | rρ = ρ−1r and ρm = r2 = e〉 ,

and write Cm for the cyclic group of order m. A maximal finite subgroup of GL(2,Z) is
isomorphic to either D8 or D12. Table 1 contains a complete set of representatives for the
conjugacy classes of subgroups of GL(2,Z) as well as their generators. (See [22, §IX.14].)

Table 1. Finite subgroups of GL(2,Z) and their generators

Cyclic Dihedral

C6 = 〈A〉 D12 = 〈A, J〉
C4 = 〈B〉 D8 = 〈B, J〉
C3 = 〈A2〉 D6 = 〈A2, JA〉
C2 = 〈A3〉 = 〈B2〉 = 〈−I〉 D′

6 = 〈A2, J〉
D2 = 〈C〉 D4 = 〈−I, C〉
D′

2 = 〈J〉 D′
4 = 〈−I, J〉

C1 = 〈I〉

A =

(
0 −1
1 1

)
B =

(
0 −1
1 0

)
C =

(
1 0
0 −1

)
J =

(
0 1
1 0

)
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5.2. Smooth complete toric surfaces. The toric surface XΣ corresponding to a fan Σ
in Z2 is complete if and only if Z2 is the union of the cones in Σ. The surface is smooth if
and only if every two-dimensional cone σ of Σ is generated by the primitive vectors lying
in its rays. That is, if the cone is isomorphic to the positive quadrant in Z2.

Proposition 5.2. For each conjugacy class of finite subgroups of GL(2,Z) there is a
smooth complete toric surface whose fan has automorphism group in that class.

Proof. For each group in Table 1 we display a smooth fan with that automorphism group.
Figure 2 shows the primitive generators of the one-dimensional cones in complete fans with

D12 D6 D′
6 C6 C3

Figure 2. Fans with an automorphism of order three.

an automorphism of order three, where the lattice is drawn with D12-symmetry. Figure 3
shows those whose automorphism group is a subgroup of D8. For these, we have drawn

D8 D4 D′
4

C4 C2 D2 D′
2

Figure 3. Fans whose automorphism group is a subgroup of D8

the lattice with D8-symmetry.
Each of these fans visibly exhibit the claimed symmetry groups. To see that they have

no more automorphisms, first note that for every primitive vector v in these fans there is
an integer av such that

avv = u+ w ,
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where u, v, w are consecutive primitive vectors in the fan. See [15, §2.5]. Arranging these
integers in cyclic order according to the order of their primitive vectors around the origin
gives a cyclic sequence. For example, the fan for C3 yields the cyclic integer sequence

(1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4) .

We leave it an exercise that the symmetry group of the cyclic sequence of a fan Σ equals
the automorphism group of Σ, and that the sequences for the fans in Figures 2 and 3 have
the claimed symmetry groups. �

Dolgachev and Iskovskikh used arithmetic toric surfaces with the fans shown for D12

and D8 to study the plane Cremona group [12].

5.3. Calculation of Galois cohomology groups. We compute the Galois cohomology
groups H1(K/k, ϕT). First we consider the case that G = Gal(K/k) ⊂ GL(2,Z) contains
an element of order three. Then we consider the remaining Galois groups, all of which are
subgroups of D8.

5.3.1. Galois groups with an element of order three. Start with the dihedral group D12 =
〈ρ, r | rρ = ρ−1r and ρ6 = r2 = e〉 , and consider the following subgroups

(5.1) N0 = 〈ρ2, r〉 � D12 and H0 = 〈ρ3, r〉 < D12.

The composition

D12 −→ D12/N0 = {1̄, ρ̄} ∼= Z/2Z
ξ

−−−→ Aut(Z) = Z
×,

where ξ is the alternating representation, gives Z the structure of a D12-module that we
denote by A. Since [D12 : H0] = 3, the induced module

(5.2) C := IndD12
H0

(ResD12
H0

A) = Z[D12]⊗Z[H0] Res
D12
H0

(A)

is a lattice of rank 3 generated by e1 = 1 ⊗ 1, e2 = ρ ⊗ 1, and e3 = ρ2 ⊗ 1, and its
Z[D12]-module structure is determined by

(5.3)
ρ · e1 = e2 , ρ · e2 = e3 , ρ · e3 = −e1 ,
r · e1 = e1 , r · e2 = −e3 , r · e3 = −e2 .

The module C comes with a natural Z[D12]-module epimorphism π : C → A defined by

(5.4) π(me1 + ne2 + pe3) = 1 ·m+ ρ · n+ ρ2 · p = m− n + p.

It follows that B := ker (π) is the sublattice B = Z{v1, v2} ⊂ C generated by v1 := e1− e3
and v2 := e1 + e2. Using (5.3), we see that the actions of ρ and r on B with respect to the
basis {v1, v2} are represented by the matrices A and J of Table 1, respectively. We conclude
that the Z[D12]-module structure on Z2 given by the monomorphism ϕ : D12 → GL(2,Z)
that sends ρ �→ A, r �→ J isB and that it fits into a short exact sequence of Z[D12]-modules

(5.5) 0 −→ B
j

−−−→ C
π

−−−→ A −→ 0 .

Let K/k be a Galois extension whose Galois group G = Gal(K/K) has an element of
order three and comes with an embedding ϕ : G −→ AutΣ ⊂ GL(2,Z), where Σ is the
fan of a smooth complete toric surface. Up to conjugacy, ϕ identifies G with one of the
following subgroups of D12 : D12, D6, C6, D

′
6 or C3.
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In this context, we obtain subextensions of K/k

(5.6) E := KG∩H0 , F := KG∩N0 and L := KG∩H0∩N0

that fit into a diagram

(5.7)

K

L

��
��
��
��

��
��

��
��

E

��
��

��
��

F

��
��
��
��

k

Consider the homomorphism

(5.8) γ : Br(k|E) −→ Br(F |L) ,

obtained by base extension from k to F , and consider the homomorphism

(5.9) η : Br(E|L) −→ Br(k|F ) ,

induced by the norm map NE/k : E
× → k×. Denote the kernel of η by Brη(E/k |L/F ).

Theorem 5.3. Let G = Gal(K/k) have an element of order three and ϕ : G → AutΣ ⊂
GL(2,Z) be as above. Then there is a canonical isomorphism

H1(G, ϕT(K)) ∼= coker (π0)⊕ ker (π1),

where coker (π0) and ker (π1) are as described below.

G coker (π0) ker (π1)

D12 = 〈A, J〉
Br(F |L)

γ(Br(k|E))
Brη(E/k |L/F )

D6 = 〈A2, JA〉
Br(F |K)

γ(Br(k|E))
1

C6 = 〈A〉
Br(F |L)

γ(Br(k|E))
Brη(E/k |L/F )

D′
6 = 〈A2, J〉 Br(k|E) 1

C3 = 〈A2〉 Br(k|K) 1

Remark 5.4. Whenever no confusion is likely to arise, we suppress the notation ResGH(M)
and writeM to denote the restricted module as well. Also, to stress the distinction between
the Galois group G and its image under ϕ, we often use ρ and r instead of A and J . �

Proof. Step 1: General strategy. Suppose that G ⊆ D12 is one of the subgroups in
Table 2. Then

Tϕ(K) = ResD12
G (B)⊗K×
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as a Z[G]-module. From the long exact sequence in Galois cohomology of (5.5),

(5.10) H0(G,C⊗K×)
π0

−−→ H0(G,A⊗K×) −→ H1(G,B⊗K×)
j1

−→

H1(G,C⊗K×)
π1

−−→ H1(G,A⊗K×) −→ · · ·

we extract a short exact sequence

(5.11) 1 → coker (π0) −→ H1(G,B⊗K×)
j1

−−−→ ker (π1) → 1.

Next we identify coker (π0) and ker (π1) and show that the sequence splits.
First, observe that ResD12

G (A) is given by the composition

G −→ G/G ∩N0 ↪→ D12/N0
ξ

−−−→ Z
×.

Denote by Â the composition G/G∩N0 −→ Z×. Since G∩N0 acts trivially on ResGG∩N0
(A),

we have

H1(G ∩N0,A⊗K×) = H1(G ∩N0, K
×) = 1,

by Hilbert’s Theorem 90. As a consequence, the inflation map in the exact sequence (3.4)
for the normal subgroup G ∩N0 � G gives the isomorphisms

(5.12) H i
(
G/G ∩N0, Â⊗ F×

)
= H i

(
G/G ∩N0, (Â⊗K×)N0

)
∼

−−→ H i(G,ResD12
G (A)⊗K×) ,

for all i.
Now, observe that G\D12/H0 = {I} holds for any G appearing in the theorem, and

hence the double-coset formula (see, for example, [14, Thm. 4.2.6]) gives

ResD12
G (C) = ResD12

G

(
IndD12

H0
(ResD12

H0
A)

)
= IndG

G∩H0

(
ResH0

G∩H0
(ResD12

H0
A)

)
(5.13)

= IndG
G∩H0

(
ResD12

G∩H0
A
)
.

Therefore,

H∗(G,ResD12
G (C)⊗K×) = H∗(G, IndG

G∩H0
(ResD12

G∩H0
(A))⊗K×)(5.14)

= H∗(G ∩H0,Res
D12
G∩H0

(A)⊗K×),

for all ∗, by Shapiro’s Lemma. Next, we use (5.12) and (5.14) to obtain the cohomology
groups displayed in Table 2.
For all G in the table, except for G = D12, the calculations follow directly from (5.12),

(5.14) and (2.5), together with Section 2.6. In all cases, the arguments follow essentially
the steps below.

Step 2: The case G = D12. In this case, the Z[D12/N0]-module Â is isomorphic to the
alternating representation ξ of D12/N0

∼= Z/2 and since D12/N0 = Gal(F/k) we obtain

(5.15) H1(D12,A⊗K×) ∼= H1(Gal(F/k), ξ ⊗ F×) ∼= H2(Gal(F/k), F×) = Br(k|F ).

The isomorphisms come from (5.12) and (2.5), respectively, and the last equality is from
Section 2.6.
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Table 2. Auxiliary data.

G D12 D6 D′
6 C6 C3

G ∩H0 H0 〈JA3〉 〈J〉 〈A3〉 〈I〉
ResD12

G∩H0
A ResD12

H0
A ξ Z ξ Z

H0(G,C⊗K×) ker(NL/E) ker(NK/E) E× ker(NK/E) K×

H1(G,C⊗K×) Br(E|L) Br(E|K) 0 Br(E|K) 0

G/G ∩N0 D12/N0 {I, JA} {I} {I, A} C3

Â ξ ξ Z ξ Z

H0(G,A⊗K×) ker(NF/k) ker(NF/k) k× ker(NF/k) k×

H1(G,A⊗K×) Br(k|F ) Br(k|F ) 0 Br(k|F ) 0

Similarly, it follows from (5.14) that H1(D12,C ⊗ K×) ∼= H1(H0,Res
D12
H0

(A) ⊗ K×).
To compute this last group, we use the same arguments as for (5.15), but for the normal
subgroup N0 ∩H0 �H0 whose quotient is isomorphic to Z/2Z. This gives

(5.16) H1(D12,C⊗K×) ∼= H1
(
H0,A⊗K×

)
∼= H1

(
H0/H0 ∩N0, Â⊗ L×

)
∼= Br(E|L) .

A direct calculation now shows that the homomorphism

π1 : Br(E|L) = H1(D12,C⊗K×) −→ H1(D12,A⊗K×) = Br(k|F )

from (5.10) is the homomorphism η (5.9) given by the norm map. Therefore, in the case
G = D12 one finds that ker π1 = Brη(E/k |L/F ) = ker η.
Now we identify coker(π0). As in (5.15), we obtain

H0(D12,A⊗K×) ∼= H0(Gal(F/k), ξ ⊗ F×) ∼= (ξ ⊗ F×)Gal(F/k).

The latter is identified with those a ∈ F× such that a =
1

ρ(a)
, i.e. NF/k(a) = aρ(a) = 1.

Therefore, H0(D12,A⊗K×) = ker (NF/k).
Similarly, as in (5.16) we obtain

H0(D12,C⊗K×) ∼= H0(H0,A⊗K×) = (A⊗K×)H0 .

An element z ∈ A ⊗ K× ≡ K× is fixed by H0 if and only if z = r(z) and z = 1
ρ3(z)

. In

other words, z lies in L× and NL/E(z) = zρ3(z) = 1. Thus we have the identification
H0(D12,C⊗K×) ∼= ker (NL/E).

By (5.4), the map π0 : (C⊗K×)D12 → (A⊗K×)D12 sends x to π0(x) = xρ2(x)
ρ(x)

and, since

the identity xρ3(x) = 1 implies 1
ρ(x)

= ρ4(x), we have π0(x) = xρ2(x)ρ4(x) = NL/F (x).

By Hilbert’s Theorem 90, the map a �→ a
ρ(a)

from F× to ker(NF/k) = (A ⊗ K×)D12 is

surjective. This induces a surjection q : F× → coker(π). We examine the kernel of this
map.
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First, if a ∈ k× ⊂ F× then ρ(a) = a so a
ρ(a)

= 1, hence k× ⊂ ker q. Second, we claim

NL/F (L
×) ⊂ ker q. If b ∈ L× and a = NL/F (b) = bρ2(b)ρ4(b) then

a

ρ(a)
=

bρ2(b)ρ4(b)

ρ(b)ρ3(b)ρ5(b)
=

b

ρ3(b)
ρ2

(
b

ρ3(b)

)
ρ4

(
b

ρ3(b)

)
= NL/F

(
b

ρ3(b)

)
.

Now b
ρ3(b)

∈ kerNL/E , so
a

ρ(a)
∈ NL/F (kerNL/E) = Im(π0) and a ∈ ker q as claimed. In

particular, q factors through F×/NL/F (L
×) = Br(F |L) and indeed through the quotient

of this by the subgroup Im(γ), where γ : Br(k|E) → Br(F |L) is induced by the inclusion
k× ↪→ F×.
Conversely, suppose a ∈ F× has q(a) = 0, so a

ρ(a)
∈ Im(π0) = NL/F (kerNL/E). Let

a
ρ(a)

= NL/F (b), b ∈ kerNL/E . By Hilbert’s Theorem 90 there is an element c ∈ L× such

that b = c
ρ3(c)

. Then

a

ρ(a)
= NL/F

(
c

ρ3(c)

)
=

c

ρ3(c)
ρ2

(
c

ρ3(c)

)
ρ4

(
c

ρ3(c)

)
=

cρ2(c)ρ4(c)

ρ(c)ρ3(c)ρ5(c)
=

NL/F (c)

ρNL/F (c)
.

But then
aNL/F (c

−1) = ρ
(
aNL/F (c

−1)
)
,

so that aNL/F (c
−1) ∈ F 〈ρ〉 = k. Hence [a] = [aNL/F (c

−1)] ∈ Im(γ), where γ : Br(k|E) →
Br(F |L) is induced by the inclusion k× ↪→ F×. Thus we have shown that

(5.17) coker(π0) ∼=
Br(F |L)

γ(Br(k|E))
.

To complete the proof we need to exhibit a map

s : ker (η) = ker (π1) −→ H1(D12,B⊗K×)

splitting the short exact sequence (5.11). Denote by [α]E|L ∈ Br(E|L) the class of an
element α ∈ E× and observe that [α]E|L is in the kernel of η if and only if

(5.18) αρ(α)ρ2(α) = NE/k(α) = NF/k(b) = bρ(b)

for some b ∈ F×. Hence, ρ2(b) = r(b) = b and the following relations hold:

(5.19) α =
b

ρ(α)
ρ

(
b

ρ(α)

)
and r

(
ρ(b)

α

)
=

ρ(b)

α
.

Now, define

(5.20) Cρ(α) =

(
ρ(α)

b
, 1

)
and Cr(α) =

(
ρ(b)

α
,

α

ρ(b)

)
.

It follows directly from the relations (5.19) that Cρ(α) and Cr(α) define a cocycle C(α)
for a cohomology class [C(α)] in H1(D12,B ⊗ K×). Moreover, a calculation shows that
the cohomology class of the cocycle C(α) does not depend on the choice of b ∈ F× satis-
fying (5.18).
Suppose that [α]E|L = [1]E|L, in other words, α = NL/E(w) = wρ3(w) for some w ∈ L×.

Here we can choose b = wρ2(w) to satisfy (5.18). Defining t =
(
1, ρ(w)ρ5(w)

w

)
we see that

Cρ(α) = t−1ρt and Cr(α) = t−1rt .
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That is, if α gives the trivial element in Br(E|L) then the cocycle C(α) represents the
trivial class in cohomology. Hence the map

s : [α]E|L ∈ ker(η) �−→ [C(α)] ∈ H1(D12,B⊗K×)

is a well-defined homomorphism.
By definition, the homorphism j1 : H1(D12,B⊗K×) → H1(D12,C⊗K×) sends [C(α)]

to [jC(α)], where jC(α) is the cocycle determined by

jCρ(α) =

(
ρ(α)

b
, 1,

b

ρ(α)

)
and jCr(α) =

(
1,

α

ρ(b)
,

α

ρ(b)

)
.

A calculation shows that this cocyle is equivalent to the cocycle Ĉ determined by

Ĉρ = (α, 1, 1)) and Ĉr = (1, ρ(α), ρ2(α)).

Under the identification H1(D12,C ⊗ L×) ≡ Br(E|L) the cocyle [Ĉ] is sent to [α]E|L. In
other words j1 ◦ s : ker (η) → ker (η) is the identity, which shows that s splits the short
exact sequence (5.11).

Step 3: The remaining cases.

When G = C6, the proof proceeds exactly as when G = D12, since in both cases all norm
maps involved can be written using only elements in C6. The only difference here is that
L = K.

When G = D′
6 or G = C3 one has H

1(G,C⊗K×) = 1 and hence ker (π1) = 1. See Table
2. On the other hand, the map π0 coincides with NE/k : E

× → k× in both cases, once one
observes that E = K when G = C3. It follows from (2.8) that coker(π0) coincides with
Br(k|E).

When G = D6 we have, as above, that π1 coincides with η : Br(E|K) → Br(k|F ). We
claim that η is injective. Indeed, suppose α ∈ E× satisfies η([α]E|K]) = [1]k|F , in other
words αρ2(α)ρ4(α) = bρr(b), with α = rρ3(α) and b = ρ2(b). Therefore,

α =
b

ρ2(α)

ρr(b)

ρ4(α)
=

b

ρ2(α)

rρ5(b)

ρ4(rρ3(α))
=

b

ρ2(α)
rρ3

(
b

ρ2(α)

)
= NK/E

(
b

ρ2(α)

)
.

It follows that [α]E|K = [1]E|K, and hence H1(D6,B⊗K×) = Br(F |K)
γ(Br(k|E))

. �

5.3.2. Subgroups of D8. The remaining Galois groups are subgroups ofD8, which is realized
as a subgroup of GL(2,Z) via the map ϕ : (ρ, r) �→ (B, J). Let D4 ⊂ D8 be the normal
subgroup of D8 generated by rρ and ρ2. Let A be Z equipped with a Z[D4] action where
rρ acts trivially and ρ2 acts by −1. Define

(5.21) C := IndD8
D4
(A) = Z[D8]⊗Z[D4] A .

With respect to the basis e1 := 1⊗1 and e2 := ρ⊗1, the matrices representing ρ and r are
B and J , respectively, and hence C is the Z[D8]-module structure on Z2. For a subgroup
G of D8, let ϕ be the restriction to G of the map ϕ : D8 → GL(2,Z).
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Theorem 5.5. The remaining Galois cohomology groups are given below.

G H1(G,Tϕ(K))

D8 = 〈B, J〉 Br(KD4|KD2)

D4 = 〈−I, Crρ〉 Br(k|KD2)⊕ Br(k|KD2)

D′
4 = 〈−I, J〉 Br(KC2 |K)

C4 = 〈B〉 Br(KC2 |K)

G H1(G,Tϕ(K))

D2 = 〈C〉 Br(k|K)
D′

2 = 〈J〉 1
C2 = 〈−I〉 Br(k|K)⊕ Br(k|K)
C1 = 〈I〉 1

Proof. We freely use (2.5).
When G = D8, note that H

1(D8,Tϕ(K)) = H1(D8, Ind
D8
D4
(A)⊗K×) = H1(D4,A⊗K×),

by Shapiro’s Lemma. The restriction of A to D2 = 〈rρ〉 �D4 is the trivial Z[D2]-module
Z. Similar arguments as in the proof of Theorem 5.3 imply that

H1(D4,A⊗K×) ∼= H1(D4/D2, (A⊗K×)D2)

= H1(Gal(KD2/KD4), ξ ⊗ (KD2)
×
) = Br(KD4 |KD2)

where ξ is the alternating Z[Z/2]-module. The last equality is by (2.5) and the identification
of second cohomology with the Brauer group.
When G = D4 = 〈ρ2, rρ〉, note that ResD8

D4
(C) = ResD8

D4
(IndD8

D4
(A)) = A ⊕ A. Thus we

need only compute H1(D4,A⊗K×), which is Br(KD4 |KD2) = Br(k|KD2).

When G = D′
4, we have D8 = D′

4 ·D4, and D′
4 ∩D4 = C2, so the double coset formula

implies that ResD8

D′
4
(C) = ResD8

D′
4

(
IndD8

D4
(A)

)
= Ind

D′
4

C2

(
ResD4

C2
(A)

)
. Therefore,

H1(D′
4, ϕT(K)) = H1(D′

4, Ind
D′

4
C2

(
ResD4

C2
(A)

)
⊗K×) ∼= H1(C2,Res

D4
C2
(A⊗K×)) .

However, ResD4
C2
(A) = ξ, and so

H1(C2,Res
D4
C2
(A⊗K×)) = H1(C2, ξ ⊗K×) ∼= H2(C2, K

×) = Br(KC2 |K) .

When G = C4 = 〈ρ〉, we observe that D8 = C4 ·D4 and C4 ∩D4 = C2. Then the same
arguments show that H1(C4, ϕT(K)) = Br(KC2 |K).

When G = D2 = 〈rρ〉, we have ϕT(K) = K× ⊕ ξ ⊗ K×. Hence Hilbert’s Theorem 90
gives H1(D2, ϕT(K)) = Br(k|K).

When G = D′
2 = 〈r〉, we have ϕT(K) ∼= K× ⊗ Z[D′

2] as a D′
2-module. Therefore,

H1(D′
2, ϕT(K)) ∼= H1(D′

2, K
× ⊗ Z[D′

2])
∼= H1({I}, K×) = 1 ,

where the second isomorphism follows from Shapiro’s lemma.

When G = C2 = 〈ρ2〉, we have ϕT(K) ∼= T(K) ⊗ ξ = (K× ⊕ K×) ⊗ ξ. Then (2.5)
and the identification of second cohomology with Brauer groups gives H1(G, ϕT(K)) ∼=
Br(k|K) ⊕ Br(k|K).

When G is the trivial group, H1(G; ϕT(K)) = 1. �
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5.4. Twisted forms with a given torus. Given ϕ : G → AutΣ ⊂ GL(2,Z), our calcula-
tions show that the cohomology group H1(G, ϕT(K)) depends only on the conjugacy class
in GL(2,Z) of the subgroup ϕ(G). It is the quotient set

(5.22)
H1(G, ϕT(K))

H0(G, ϕ AutΣ)

that exhibits a dependency on the fan Σ, as described in Theorem 3.4.
The group H0(G, ϕ AutΣ) is the centralizer of the image ϕ(G) in AutΣ, denoted here by

CΣ(G), once we identify G and AutΣ with one of the groups in Table 1. For simplicity, let
C(G) denote the centralizer of ϕ(G) in GL(2,Z).
Although we will not write a complete list with the quotient (5.22) displayed for all

possible pairs G ⊂ AutΣ ⊂ GL(2,Z), we will discuss the case when G has order 2 and leave
to the reader the task of calculating the remaining cases.
Suppose that G = Gal(K/k) has order 2. A conjugacy class of homomorphisms ϕ : G →

AutΣ is determined by a conjugacy class in AutΣ of (possibly trivial) involutions σ ∈ AutΣ .
Writing AutΣ(2) for the set of conjugacy classes of involutions in AutΣ, we have

H1(K/k,AutTΣ) =
∐

σ∈AutΣ(2)

H1(G, σT(K))/CΣ(σ) .

Up to conjugacy in GL(2,Z), there are four involutions, namely I, J , C, and −I,
corresponding to the subgroups C1, D′

2, D2, and C2 of GL(2,Z) (see Table 1). Then
Theorem 5.5 gives

H1(G, σT(K)) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if σ ∼ I,

1 if σ ∼ J,

Br(k|K) if σ ∼ C,

Br(k|K)⊕ Br(k|K) if σ ∼ −I,

where ∼ denotes conjugacy.
The action of CΣ(σ) is obviously trivial in the first two cases, and we claim that the

action in the third case is trivial, as well. In fact all of C(σ) acts trivially on H1(G, σT(K))
when σ ∼ C.
To see this, denote a cocyle c representing [c] ∈ H1(G, σT(K)) by its value cg = (a, b) ∈

K× × K× on the non-identity element g ∈ G. The cocycle condition for cg = (a, b) is

(1, 1) = (a, b)g(a, b) = (a, b)
(
g(a), 1

g(b)

)
, i.e., a g(a) = 1 and b = g(b). It follows from

Hilbert’s Theorem 90 that a = u
g(u)

for some u ∈ K× and one can write any cocyle in the

form cg =
(

u
g(u)

, b
)
, with u ∈ K× and b ∈ k×. The cocycle cg is equivalent to

t−1cg
gt =

(
1

x
,
1

y

)(
u

g(u)
, b

)(
g(x),

1

g(y)

)
=

(
g(x)

x

u

g(u)
,

b

y g(y)

)
for any t = (x, y) ∈ K× ×K×. It follows that, by choosing x = u one can always find an
equivalent cocycle of the form (1, α), with α ∈ k×. In particular, the explicit isomorphism
H1(G, σT(C)) ∼= Br(k|K) is given by sending an element [α]k|K to the class of the cocyle
cg = (1, α). Observe that C(C) = {±I,±C}. The element −I sends cg = (1, α) to
−Icg =

(
1, 1

α

)
, and taking t = (1, 1

α
) one sees that −Icg = t−1cg

gt. Therefore, −I acts
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trivially on cohomology. Similarly, Ccg = (1, 1
α
) and the previous argument applies, thus

showing that C(C) acts trivially on H1(G, σT(K)).
In the fourth case, with σ = −I, Theorem 5.5 gives H1(G, σT(K)) = Br(k|K)⊕Br(k|K).

Explicitly, it is easy to see that the cocycle condition for cg = (a, b) is precisely (a, b) ∈
(k×, k×), whereas two cocycles (a, b) and (a′, b′) are equivalent if and only if a′ = a xg(x) =
aNK/k(x) and b′ = b yg(y) = bNK/k(y), for some x, y ∈ K×.
It follows that GL(2,Z) acts on Br(k|K)⊕Br(k|K) via its usual action on k×× k× and,

since Br(k|K) is a Z/2Z vector space, one concludes that this action descends to an action
of GL(2,Z/2Z). Therefore −I = A3 = B2 and C act trivially, and the actions of J and B

coincide: J [a, b] = B[a, b] = [b, a]. Furthermore, A[a, b] = [b, ab] and A2
[a, b] = [ab, a].

Remark 5.6. We identify two basic actions on Br(k|K)⊕ Br(k|K): a Z/2Z-action inter-
changing coordinates, [a, b] �→ [b, a], and a Z/3Z-action with orbits of the form

(5.23) [a, b] �→ [b, ab] �→ [ab, a] �→ [a, a2b] ≡ [a, b].

The calculations above show that the action of a group in Table 1 that contains −I
on H1(G, ϕT(K)) is either trivial or descends to the actions of Z/2Z or Z/3Z described
above. Note that the quotient set (Br(k|K)⊕ Br(k|K)) / (Z/2Z) is the set-theoretic 2-fold
symmetric product SP2(Br(k|K)) of Br(k|K). �

Example 5.7. The case of real toric surfaces follows immediately from the discussion
above. In this case Br(R) = Br(R|C) = {[1], [−1]}. One sees from (5.23) that for AutΣ =
D12, D6 there are two orbits {[1, 1]} and {[1,−1], [−1, 1], [−1,−1]}. Similarly, for Autσ =
D8, D

′
4, C4 there are three orbits {[1, 1]}, {[1,−1], [−1, 1]} and {[−1,−1]}.

This should be compared to Theorem 5.3.1 of Delaunay’s Thesis [9]. Note that Delau-
nay’s types I, IV correspond to our σ = I,−I, while her types II, III correspond to σ a
reflection, C or J ; the distinction between her types II and III is not between C and J ,
rather whether the reflection σ fixes a two-dimensional cone of Σ. �

We conclude by summarizing the case of Galois groups of order 2 in Table 3, whose last
column contains the sizes of H1(G, σT(K))/H0(G,AutΣ) for K/k = C/R.

Table 3. Classification of arithmetic toric surfaces over a quadratic field extension.

σ AutΣ H1(G, σT(K))/H0(G,AutΣ) |H1(C/R, σT)/CΣ(σ)|

I any 1 1
J D12, D8, D

′
6, D

′
4, D

′
2 1 1

C D8, D4, D2 Br(k|K) 2
−I D12, D6 (Br(k|K)⊕ Br(k|K)) /(Z/3Z) 2
−I D8, D

′
4, C4 SP2(Br(k|K)) 3

−I D4, D2 Br(k|K)⊕ Br(k|K) 4
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