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Order-preserving derivative approximation with periodic
radial basis functions.

Edward Fuselier · Grady B. Wright

Abstract In this exploratory paper we study the convergence rates of an iterated
method for approximating derivatives of periodic functions using radial basis func-
tion (RBF) interpolation. Given a target function sampled on some node set, an
approximation of the mth derivative is obtained by m successive applications of
the operator “interpolate, then differentiate” - this process is known in the spline
community as successive splines or iterated splines. For uniformly spaced nodes on
the circle, we give a sufficient condition on the RBF kernel to guarantee that,
when the error is measured only at the nodes, this iterated method approximates
all derivatives with the same rate of convergence. We show that thin-plate spline,
power function, and Matérn kernels restricted to the circle all satisfy this con-
dition, and numerical evidence is provided to show that this phenomena occurs
for some other popular RBF kernels. Finally, we consider possible extensions to
higher-dimensional periodic domains by numerically studying the convergence of
an iterated method for approximating the surface Laplace (Laplace-Beltrami) op-
erator using RBF interpolation on the unit sphere and a torus.

1 Introduction

A situation that arises in many applications is that of approximating derivatives
of a function given only samples of it at some set of nodes. This problem is, for
example, central to collocation-type approaches for numerically solving differential
equations. In this particular application, the desired derivative is often approxi-
mated by first interpolating the function and then evaluating the derivative of this
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2 Edward Fuselier, Grady B. Wright

interpolant at the nodes. Error estimates for the resulting approximation are com-
monly given over a continuum, but in a collocation method the numerical solutions
are typically only maintained on a discrete set, namely the data sites. This implies
that when studying a derivative approximation scheme, it often makes sense to
ask: what happens at the nodes?

In this paper we investigate this question for derivative approximations ob-
tained from periodic radial basis function (RBF) interpolation. We consider two
techniques for approximating derivatives. The first is the obvious approach of first
interpolating the data and then computing the derivative of the interpolant. We
refer to this as the direct technique. The second technique uses an iterated ap-
proach, which is a term used by some in the spline community to describe the
process of computing the mth derivative by m successive applications of the op-
erator “interpolate, then differentiate.” In the case of one dimension and m = 2,
these two techniques can be described formally as follows: Let X be a finite set
of data points, and let IX be the interpolation operator for some interpolation
scheme. Given a target function f , we approximate the first derivative of f with
DXf := (IXf)′. The direct approach of approximating f ′′ is to simply differenti-
ate the interpolant again, i.e. (IXf)′′. The iterated approach of computing f ′′ is
to interpolate the approximation of first derivative and then differentiate it, i.e.
(IX(IXf)′)′ = D2

Xf . Higher derivatives are obtained by naturally repeating this
process. We refer to the operator Dm

X as an iterated differential operator of order m.
Periodic odd-degree spline interpolation on uniform grids yields iterated deriva-

tives that, curiously, enjoy the same rate of convergence for all derivatives of the
target function at the interpolation nodes (see [19] and the references therein). Fur-
ther, these rates are faster than the direct method of taking higher order derivatives
of the interpolant directly. For example, periodic cubic splines have the property
that both DXf and D2

Xf approximate f ′ and f ′′, respectively, to O(N−4) at the
equally spaced nodes X with #X = N , while f ′′|X − (IXf)′′|X remains only
O(N−2). For lack of a better term, we will refer to these faster than expected
convergence rates as superconvergence. We aim to show that iterated derivatives
coming from some periodic RBF interpolation methods also experience supercon-
vergence on uniformly spaced nodes.

It is well-known that many spline interpolants can be built from shifts of a
single reproducing kernel (with possibly an added element coming from some low-
dimensional space of functions), that is

IXf(x) =
∑

xj∈X

cjφ(x, xj) + pf (x), (1)

where φ is the kernel, and the cj ’s and function pf are chosen by enforcing interpo-
lation on X and possibly some extra side conditions. Golomb, for example, showed
that for equally spaced nodes on [0, 1], periodic spline interpolants of degree 2r−1,
r ∈ N, can be written as [10, Equation (2.10)].

IXf(x) =
∑

xj∈X

cjb2r(x− xj) + d,

where d is a constant and the kernel b2r is the periodic extension of the 2rth

Bernoulli polynomial [1, Ch. 23]. Considering interpolants of the form (1), we will
determine sufficient conditions on the kernel’s Fourier coefficients to guarantee the
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Order-preserving derivative approximation with periodic radial basis functions. 3

preservation of order in iterated derivatives at the nodes. These results hold for the
kernels b2r in particular, and thus generalize the asymptotic preservation of order
in iterated derivatives in the spline case to other kernel interpolation methods.
Additionally, they apply to the restriction of some popular radial basis functions
defined on Rd to the circle— namely the power functions, thin plate splines, and
Matérn kernels.

Iterated derivatives may also be advantageous beyond the univariate setting.
In [8], an iterated approach was presented to approximate the surface Laplacian
(Laplace-Beltrami operator) ΔM using RBFs, and this approximation was then
used to solve nonlinear reaction-diffusion equations on various periodic surfaces
(that is, surfaces with no boundary). In numerical examples from [8], faster than
expected convergence rates at the nodes were observed. Here we consider a more
extensive set of examples to better understand the phenomena of accelerated con-
vergence at the data sites. We also compare the iterated approach to the direct
approach of analytically applying ΔM to an RBF interpolant, which has been ap-
plied in the past to problems on the sphere [9,24]. Various node families are used
in these experiments, and we will see that the iterated approach yields faster con-
vergence rates in several cases. On the sphere, faster convergence is not observed
at all the data sites considered, but accelerated convergence is observed for some
node families at sites away from regions where the nodes are less uniform.

The paper is organized as follows. In section 2, we establish the necessary nota-
tion and definitions for kernel interpolants on the circle, associated function spaces,
and other theoretical machinery. We discuss the approximation of derivatives at
the nodes in section 3 - the main result on iterated derivatives is given in Theorem
3, where we establish that iterated derivatives of any order based on certain ker-
nel interpolants approximate the derivatives of smooth periodic functions to the
same order at the data sites. Examples of kernels for which this result holds are
given in section 4. Section 5 contains numerical experiments on the circle, which
serve to verify our results and to study some kernels not treated in the theory.
In section 6, we discuss an iterated approach to approximating the Laplacian on
two-dimensional surfaces, and numerically compare the convergence of the iterated
method with a direct approach on the unit sphere and a torus.

2 Preliminaries

We denote the circle by T. Here a point on the circle is associated with its an-
gle, i.e. T := R mod 2π. The distance between two points x, y ∈ T is d(x, y) =
arccos(cos(x− y)). Given a function g and a finite subset Y of its domain, we will
use ‖g‖�∞(Y ) to denote maxy∈Y |g(y)|.

For the harmonic analysis required we will follow the notation in [15]. Given
a vector y = (y0, y1, . . . , yN−1), its discrete Fourier transform (DFT) ỹ and its
inverse are related by the equations

ỹk =
∑
j

yje
−2πijk

N , yj =
1

N

∑
k

ỹke
2πikj

N .

Note that these formulas are indexed by N -periodic integer sequences on the in-
terval [0, N − 1], but any interval of length N − 1 can be used. We will work with
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4 Edward Fuselier, Grady B. Wright

the (nearly) symmetric interval centered around 0:

JN :=

{
k ∈ Z : −

⌊
N − 1

2

⌋
≤ k ≤

⌈
N − 1

2

⌉}
.

Note that |k| ≤ N/2 for any index k ∈ JN . Also, for n, k ∈ Z, we will use the
shorthand n ≡ k for n ≡ k mod N .

Throughout most of the paper X will be a set of N equally spaced nodes (an-
gles) on T, specifically X = {2πj/N}N−1

j=0 = {2πj/N}j∈JN
. We denote a function

f : T → R sampled on X by fX , and we define its corresponding DFT as f̃ := f̃X .
We will use the following convention for the Fourier expansion of f ∈ L2(T):

f(x) =
∑
n∈Z

f̂(n)einx, where f̂(n) =

{ 1
π

∫ π
−π

f(x)einx dx n �= 0
1
2π

∫ π
−π

f(x) dx n = 0.

Lastly, the relationship between the f̂ and f̃ can be seen by decomposing f into
frequency bands, given by

∑
n≡k f̂(n) for k ∈ JN . It can be shown that

f̃k = N
∑
n≡k

f̂(n). (2)

2.1 Interpolation with Periodic Basis Functions

We consider interpolation by shifts of a single kernel φ : T×T → R, with possibly
an added requirement that the method reproduces trigonometric polynomials up
to a certain degree, say q− 1. More specifically, given a finite set of distinct points
Y = {yj} ⊂ T and continuous function f : T → R, we seek an interpolant of the
form

IY f(x) =
∑
yk∈Y

ckφ(x, yk) +
∑
|k|<q

αke
ikx, (3)

where the coefficients ck ∈ R, αk ∈ C are chosen by enforcing interpolation on Y ,
IY f |Y = f |Y , with the side conditions:∑

yj∈Y

cje
ikyj = 0 for all k ∈ Z with |k| < q. (4)

Kernels used in such an interpolation procedure go by various names in the lit-
erature: periodic radial basis functions, circular basis functions, and periodic sk-
splines, to name a few [14,12,13].

To guarantee the existence and uniqueness of such an interpolant, we will use
conditionally positive definite kernels (defined below). However, since polynomial
reproduction is being included we need conditions on the interpolation points to
guarantee uniqueness. We say that Y is q-unisolvent if the zero polynomial is the
only trigonometric polynomial of degree at most q − 1 that vanishes on Y . With
that, we define the following:
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Order-preserving derivative approximation with periodic radial basis functions. 5

Definition 1 Given a nonnegative integer q, we say that φ : T×T → R is condition-
ally positive definite (CPD) of order q if given any finite set of distinct q-unisolvent
points Y = {y1, . . . , yN} ⊂ T and any nonzero c ∈ RN satisfying (4) we have

N∑
j,k=1

cjckφ(yj , yk) > 0.

If φ is CPD of order 0 (that is, there are no side conditions (4)), then we say that
φ is positive definite.

Remark 1 Given a CPD φ, one can show that for a real target the coefficients αk

in (3) satisfy αk = α−k, which implies a real-valued interpolant.

The kernel φ is zonal if it only depends on the distance between its arguments,
i.e. φ(x, y) = ψ(d(x, y)) for some univariate function ψ. Since in this case φ(x, y) =
φ(x − y, 0), we will use the shorthand φ(x − y) := φ(x, y). For a zonal real-valued
kernel φ, φ̂(n) is real and φ̂(n) = φ̂(−n) for all n ∈ Z.

A sufficient (but not necessary) condition on a zonal kernel φ to guarantee
positive definiteness is that φ can be written as

φ(x) =
∞∑

n=0

an cos(nx),
∞∑

n=0

an < ∞,

where an > 0 for all n [25]. This is equivalent to φ̂(n) > 0 for all n ∈ Z with∑
n∈Z

φ̂(n) < ∞. It is also true that if a zonal kernel satisfies φ̂(n) > 0 for all

|n| ≥ q and
∑

|n|≥q φ̂(n) < ∞, then φ is CPD of order q.

Definition 2 We will say that a zonal kernel φ is a periodic basis function (PBF)
of order q if the Fourier coefficients {φ̂(n) : |n| ≥ q} are strictly positive and
summable.

When dealing with equally spaced points X ⊂ T, the interpolation coefficients
take a convenient form. Starting with the interpolation conditions, expanding the
kernel in a Fourier series and exchanging sums gives

f(xj) =
1

N

∑
k∈JN
|k|≥q

c̃kφ̃ke
ikxj +

1

N

∑
|k|<q

Nαke
ikxj

Also, note that in this case the side condition (4) is equivalent to c̃k = 0 for
all |k| < q. Thus after comparing to the inverse DFT formula, we see that the
coefficients satisfy the following:

c̃k =

{
0 |k| < q

f̃k/φ̃k |k| ≥ q
, and αk = N−1f̃k, |k| < q.

After expanding f̃ in terms of frequency bands, the interpolant takes the following
form, which we will make use of later:

IXf(x) =
∑

k∈JN
|k|≥q

N

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

φ̂(n)einx +
∑
|k|<q

∑
l≡k

f̂(l)eikx. (5)
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6 Edward Fuselier, Grady B. Wright

2.2 Wiener Spaces

The set of functions on the circle whose associated Fourier sequences are absolutely
summable form the normed linear space of Wiener functions, which we denote by
A. The norm for f ∈ A is given by

‖f‖A :=
∑
n∈Z

|f̂(n)|.

It is well known that A ⊂ C(T), the set of continuous functions on the circle. We
will be interested in smoother spaces, linked to the kernel φ, based on this idea.
Given a PBF φ of order q, we define the semi-norm

|f |Aφ
:=

∑
|n|≥q

∣∣∣f̂(n)∣∣∣
φ̂(n)

,

and denote the collection of all continuous functions for which this semi-norm is
finite by Aφ.

Given a function f ∈ Aφ and uniform nodes X, there is a nice connection

between the DFT f̃ and the Wiener semi-norms of f , namely that∑
k∈JN
|k|≥q

∣∣∣∣ f̃k
φ̃k

∣∣∣∣ ≤ |f |Aφ
. (6)

Indeed, expanding the DFT’s into frequency bands gives

∑
k∈JN
|k|≥q

∣∣∣∣ f̃k
φ̃k

∣∣∣∣ = ∑
k∈JN
|k|≥q

∑
n≡k

∣∣∣f̂(n)∣∣∣∑
l≡k φ̂(l)

≤
∑

k∈JN
|k|≥q

∑
n≡k

∣∣∣f̂(n)∣∣∣
φ̂(n)

=
∑
|n|≥q

∣∣∣f̂(n)∣∣∣
φ̂(n)

= |f |Aφ
.

Also, weighting the discrete Fourier coefficients of a function by powers of their
associated frequencies has the effect of measuring derivatives of that function. For

m ∈ N, note that f̂ (m)(n) = (in)mf̂(n), where f (m) is the mth derivative of f , and
for k ∈ JN , |k| ≤ |n| for all n ≡ k. Using this, one can expand into frequency bands
as above to get ∑

k∈JN
|k|≥q

∣∣∣∣ f̃kkm
φ̃k

∣∣∣∣ ≤ |f (m)|Aφ
. (7)

2.3 Periodic Basis Function Approximation

The interpolation error for PBFs (and many other kernel-based approximation
schemes) is governed by the rate at which the kernel’s Fourier coefficients decay.
It has been shown in [3, Theorem 5], for example, that for positive definite φ and
equally spaced X ⊂ T, if f ∈ Aφ one has

‖IXf − f‖L∞(T) = O
(
φ̂(N/2)

)
. (8)
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Order-preserving derivative approximation with periodic radial basis functions. 7

A similar result also holds when φ is CPD. We will concern ourselves with
kernels providing algebraic convergence rates, thus we assume that for all nonzero
n with |n| ≥ q (and for all n if q = 0) that

c |n|−s ≤ φ̂(n) ≤ C |n|−s, for some s > 2, (9)

where c, C are positive constants.1

For PBFs satisfying (9), interpolation on uniform nodes gives O(N−s) approx-
imation. In general, each derivative taken of the interpolation error multiplies the
error bound by a factor of N . However, this rule of thumb applies when the error
is measured over the whole domain.

3 Differential Approximation at the Nodes

In this section we explore error bounds for derivative approximation using kernel
interpolants on equally spaced nodes. Section 3.1 focuses on the first and second
derivatives at the nodes, and in section 3.2 we establish that for kernels satisfying
a mild assumption (see Assumption 1), iterated derivatives of all orders converge
at the same rate.

3.1 Derivatives of Interpolants

As (8) suggests, the decay of the kernel’s Fourier coefficients paints a complete
picture of the interpolant’s global approximation power, so one might hope that (9)
combined with the inherent symmetries of the problem (namely uniformly spaced
nodes and a zonal kernel) would be enough to achieve higher approximation rates
in derivatives at the nodes. Unfortunately, this is not the case - a kernel satisfying
(9) that loses an order of N in the first derivative at the nodes is presented in the
following example.

Example 1 Consider two PBFs, ψ1 and ψ2, each of whose Fourier coefficients are
either of the form 1/n4 or 2/n4. The kernel ψ1 is constructed by choosing successive
pairs of its Fourier coefficients from the curves 1/n4 and 2/n4 in the following way
(see Figure 1(a)):

ψ1(x) = 1 +
∞∑

n=1

an cos(nx), an =

{
1/n4 n = 1, 2, 5, 6, 9, 10, . . .
2/n4 n = 3, 4, 7, 8, 11, 12, . . . .

This kernel certainly satisfies (9) with s = 4, so the global interpolation error
saturates at O(N−4). The Fourier coefficients of ψ2 are determined by

ψ2(x) = 1 +
∞∑

n=1

bn cos(nx), bn =

{
1/n4 n odd,
2/n4 n even.

1 The condition s > 2 guarantees that the Fourier coefficients of φ′ are absolutely summable,
thus allowing one to differentiate the Fourier series of any interpolant term-by-term.
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Fig. 1 Relative �∞ interpolation error and relative error in the first derivative of the target
function (10) using kernels ψ1 and ψ2. The interpolation error was computed globally on a
fine mesh, while the error in the first derivative was measured only at the nodes.

The global interpolation error for ψ2 also saturates at O(N−4). To test approx-
imation in the first derivative at the nodes, both of these kernels were used to
interpolate the smooth periodic target function

f(x) = e−4 cos(x) sin(4x) (10)

at N = 200, 225, . . . , 500 uniform nodes on the circle. The relative infinity error was
approximated on a fine mesh, and the relative infinity error in the first derivative
at the nodes was also measured. Figure 1 shows that while both kernels give 4th

order global convergence (as expected), ψ2 also yields fourth order convergence in
the first derivative at the nodes, whereas ψ1 does not.

Thus (9) alone will not predict higher convergence in iterated derivatives at
the data sites. However, kernels satisfying the following extra condition will.

Assumption 1 Let φ be an order q PBF satisfying (9). Suppose that there is a con-

stant C, depending only on φ, such that for all n, k ∈ Z with |k| ≤ |n|/2 we have∣∣∣φ̂(n− k)− φ̂(n+ k)
∣∣∣ ≤ C|k||n|−s−1.

Note that we are assuming that certain symmetric differences of the Fourier coef-
ficients decay slightly faster than the Fourier coefficients themselves. Everything
we need proceeds from this fact, and some well-known kernels that possess this
property are discussed in section 4.

Now we focus on bounding the error in the first derivative of the interpolant
at the nodes. We will frequently use the following lemma.

Lemma 1 Let φ satisfy Assumption 1. Then there is a constant C such that for all

N ∈ N and all k ∈ JN we have∣∣∣∣∣∑
n≡k

(n− k)φ̂(n)

∣∣∣∣∣ ≤ C|k|N−s.
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Order-preserving derivative approximation with periodic radial basis functions. 9

Proof Since k ∈ JN , we have that |k| ≤ N/2, so the only nonzero terms in the
sum

∑
n≡k(n − k)φ̂(n) occur when |n| ≥ �N/2� ≥ N/2. Making the substitution

n = Nj + k or n = −Nj + k for n ≡ k gives us∑
n≡k

(n− k)φ̂(n) =
∑
n≡k

n≥N/2

(n− k)φ̂(n) +
∑
n≡k

n≤−N/2

(n− k)φ̂(n)

=
∞∑
j=1

Nj
(
φ̂(Nj + k)− φ̂(Nj − k)

)
,

where in the last equality we have used the identity φ̂(−n) = φ̂(n). Now we use
Assumption 1 to get∣∣∣∣∣∑

n≡k

(n− k)φ̂(n)

∣∣∣∣∣ ≤
∞∑
j=1

Nj
∣∣∣φ̂(Nj + k)− φ̂(Nj − k)

∣∣∣
≤

∞∑
j=1

Nj
(
C|k|(Nj)−s−1

)
= C|k|N−s

∞∑
j=1

j−s.

Finally, we have s > 2 > 1 since the kernel satisfies (9), so the series above
converges and the result follows.

Before moving on, we will need a few formulas for the interpolant and its
derivative at the nodes. Let xj ∈ X. Using (5) and the fact that einxj = eikxj for
n ≡ k, we get

IXf |xj =
∑

k∈JN
|k|≥q

Neikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

φ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)eikxj . (11)

Also, we may differentiate the Fourier expansion (5) term by term to get

(IXf(x))
′ =

∑
k∈JN
|k|≥q

N

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

in φ̂(n)einx +
∑
|k|<q

∑
l≡k

f̂(l)ik eikx,

which for xj ∈ X implies

DXf |xj =
∑

k∈JN
|k|≥q

iNeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

n φ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)ik eikxj . (12)

Recall that if the global pointwise interpolation error is O(N−s), one should expect
the error in the first derivative to decay like O(N−s+1). Now we are ready to prove
that the approximation rate in the first derivative is actually O(N−s) at the nodes.

Theorem 2 Let φ be an order q PBF satisfying Assumption 1. Then for all f such

that f ′ ∈ Aφ, we have

‖(IXf)′ − f ′‖�∞(X) = ‖DXf − f ′‖�∞(X) ≤ CN−s|f ′|Aφ
,

where C depends only on φ.
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10 Edward Fuselier, Grady B. Wright

Proof Let xj ∈ X, and note that f ′|xj = IXf ′|xj . Thus the result will follow once

we bound (DXf − IXf ′)|xj . Using (11) and the fact that f̂ ′(l) = il f̂(l), we have

IXf ′|xj =
∑

k∈JN
|k|≥q

Nieikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

l φ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)il eikxj .

Subtracting this from (12) gives us

(DXf−IXf ′)|xj =
∑

k∈JN
|k|≥q

Nieikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

(n− l) φ̂(n)

︸ ︷︷ ︸
I

+
∑
|k|<q

∑
l≡k

f̂(l)i(k−l) eikxj .

(13)
Now we add and subtract k ∈ JN from the inner-most sum of I to write the

above expression as A+B, where

A =
∑

k∈JN
|k|≥q

iNeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

(n− k)φ̂(n),

B =
∑

k∈JN
|k|≥q

iNeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

(k − l)φ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)i(k − l) eikxj .

First we bound |A|. Consolidating the sum over l into f̃k/N and applying
Lemma 1, we get

|A| ≤
∑

k∈JN
|k|≥q

∣∣∣∣ f̃k
φ̃k

∣∣∣∣
∣∣∣∣∣∑
n≡k

(n− k)φ̂(n)

∣∣∣∣∣ ≤ CN−s
∑

k∈JN
|k|≥q

∣∣∣∣ f̃k k
φ̃k

∣∣∣∣ ≤ CN−s|f ′|Aφ
,

where in the last step we used (7).
To bound |B|, we collapse the sum over n into φ̃k/N , cancel, and combine the

two sums to get

B =
∑

k∈JN

ieikxj
∑
l≡k

f̂(l)(k − l).

Since k ∈ JN , the inner sum is only nonzero when |l| ≥ N/2, giving us

|B| ≤
∑

k∈JN

∑
l≡k

|l|≥N/2

|f̂(l)(k − l)| ≤ 2
∑

k∈JN

∑
l≡k

|l|≥N/2

|f̂(l) l| = 2
∑

|n|≥N/2

|f̂(n)n|,

where we have used the fact that |k| ≤ N/2 ≤ |l| for all indices l in the inner sum.
Now, since φ̂ decays as in (9), we get that 1 ≤ CN−s/φ̂(n) for all |n| ≥ N/2, which
gives us

|B| ≤ 2
∑

|n|≥N/2

|f̂(n)n| ≤ CN−s
∑

|n|≥N/2

|f̂(n)n|
φ̂(n)

≤ CN−s|f ′|Aφ
.

This finishes the proof.
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Order-preserving derivative approximation with periodic radial basis functions. 11

Given that the first derivative is approximated better on the nodes than over
all of T, it is reasonable then to expect improvements at the nodes for second order
derivatives too. However, this is not the case: the second derivative converges in
general like O(N−s+2) globally, and below we show that there is no improvement
in this rate at the nodes.

Proposition 1 Let φ be an order q PBF satisfying (9) with s > 3. Consider the target

function f = eimx, where m ∈ Z satisfies q < |m| ≤ N/4 and N ∈ N is large enough

so that such an m exists.2 Then we have

‖(IXf)′′ − f ′′‖�∞(X) ≥ CN−s+2,

where C depends only on φ.

Proof Let xj ∈ X and note that f ′′(xj) = IXf ′′(xj). Also, note that since f = eimx

with m ∈ JN , we have f̃ ′′k = −k2f̃k and f̃k = Nδk,m (this implies in particular
that the polynomial terms in the interpolants of f and f ′′ are zero). This gives us

(IXf)′′|xj = −
∑

k∈JN
|k|≥q

f̃k

φ̃k

eikxj
∑
n≡k

n2 φ̂(n) = −Neimxj

φ̃m

∑
n≡m

n2 φ̂(n)

and

(IXf ′′)|xj =
∑

k∈JN
|k|≥q

f̃ ′′k
φ̃k

eikxj
∑
n≡k

φ̂(n) = −Neimxj

φ̃m

∑
n≡m

m2 φ̂(n).

Thus the error at a node xj is bounded from below by

∣∣((IXf)′′ − IXf ′′)|xj

∣∣ = ∣∣∣∣∣ Nφ̃m

∑
n≡m

(n2 −m2)φ̂(n)

∣∣∣∣∣ = N

φ̃m

∑
n≡m

|n|≥N/2

(n2 −m2)φ̂(n)

≥ 1

‖φ‖A
∑
n≡m

|n|≥N/2

(n2 −m2)φ̂(n),

where we have used the fact that φ̃m = N
∑

n≡m φ̂(n) ≤ N‖φ‖A. Since |m| ≤ N/4
and φ satisfies (9), we get

∣∣((IXf)′′ − f ′′)|xj

∣∣ ≥ 1

‖φ‖A ((N +m)2 −m2)φ̂(N +m) =
1

‖φ‖A (N2 + 2Nm)φ̂(N +m)

≥ N2

2‖φ‖A φ̂(N +m) ≥ cN2

2‖φ‖A |N +m|−s ≥ c(4/5)s

2‖φ‖A N−s+2,

where c is the constant from (9). This finishes the proof.

2 This paper focuses on real interpolation, but PBFs can certainly handle complex-valued
targets. Here the target being a complex exponential greatly simplifies the calculations in the
proof.
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12 Edward Fuselier, Grady B. Wright

3.2 Iterated Differential Approximation

In this section we investigate how well the iterated differential operator Dm
Xf ap-

proximates f (m) at the nodes, where m ≥ 2. If φ satisfies Assumption 1, we will
show that one gets the same rate of convergence in every iterated derivative (even
if φ(m) does not exist!). First we derive a Fourier expansion of Dm

Xf .

Lemma 2 Let φ be an order q PBF and let m ∈ N. Then we have

Dm
Xf(x) =

∑
k∈JN
|k|≥q

f̃k

φ̃k

(iCk)
m−1

∑
n≡k

in φ̂(n)einx +
∑
|k|<q

∑
l≡k

f̂(l)(ik)m eikx,

where the constants Ck are given by Ck :=

(∑
n≡k

nφ̂(n)

)(∑
n≡k

φ̂(n)

)−1

.

Proof Starting with (12), collect terms into f̃k and expand φ̃ in terms of φ̂ to get

DXf |xj = N−1
∑

k∈JN
|k|≥q

(
f̃ki

∑
n≡k n φ̂(n)∑
n≡k φ̂(n)

)
eikxj +N−1

∑
|k|<q

f̃k(ik) e
ikxj

= N−1
∑

k∈JN
|k|≥q

f̃k(iCk)e
ikxj +N−1

∑
|k|<q

f̃k(ik) e
ikxj .

This shows that for k ∈ JN one has

D̃Xfk =

{
f̃kiCk |k| ≥ q,

f̃kik |k| < q.

Thus for D2
Xf = DX(DXf) we get

D2
Xf(x) =

∑
k∈JN
|k|≥q

D̃Xfk

φ̃k

∑
n≡k

in φ̂(n)einx +N−1
∑
|k|<q

D̃Xfk(ik) e
ikx

=
∑

k∈JN
|k|≥q

f̃k

φ̃k

(iCk)
∑
n≡k

in φ̂(n)einx +N−1
∑
|k|<q

f̃k(ik)
2 eikx

This process can be repeated and the result follows by a simple induction argu-
ment.

In the analysis that follows we will need to bound the constants Ck.

Lemma 3 Let φ satisfy Assumption 1 and let k ∈ JN with |k| ≥ q. Then |Ck| ≤ C|k|,
where C depends only on φ.
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Order-preserving derivative approximation with periodic radial basis functions. 13

Proof We can express Ck as

Ck = k +
1∑

n≡k φ̂(n)

∑
n≡k

(n− k) φ̂(n).

Lemma 1 and (9) gives

|Ck| ≤ |k|+ C|k|N−s∑
n≡k φ̂(n)

< |k|+ C|k|N−s

φ̂(k)
≤ |k|+ C|k|N−sks.

Since k ∈ JN , we have |k| ≤ N/2, so N−sks is bounded. The result follows.

We also require a generalization of Lemma 1.

Lemma 4 Let φ satisfy Assumption 1. Let k ∈ JN with |k| ≥ q, and let m ∈ N. Then

we have ∑
n≡k

(nCm−1
k − km)φ̂(n) ≤ C|k|mN−s,

where C is independent of k and N .

Proof We will proceed by induction on m. The base case holds because of Lemma
1. Now assume that the result holds for the mth case and consider∑
n≡k

(nCm
k − km+1)φ̂(n) =

∑
n≡k

(nCm
k − nkCm−1

k )φ̂(n) +
∑
n≡k

(nkCm−1
k − km+1)φ̂(n).

The desired bound of the right-most term follows by induction. For the left, we
use the definition of Ck and apply Lemma 1 to get∣∣∣∣∣∑

n≡k

(nCm
k − nkCm−1

k )φ̂(n)

∣∣∣∣∣ = |Cm−1
k | |Ck − k|

∣∣∣∣∣∑
n≡k

n φ̂(n)

∣∣∣∣∣
=

|Cm−1
k |∑

l≡k

φ̂(l)

∣∣∣∣∣∑
l≡k

lφ̂(l)− k
∑
l≡k

φ̂(l)

∣∣∣∣∣
∣∣∣∣∣∑
n≡k

nφ̂(n)

∣∣∣∣∣
= |Ck|m

∣∣∣∣∣∑
l≡k

(l − k)φ̂(l)

∣∣∣∣∣ ≤ C|k|N−s|Ck|m.

Now apply Lemma 3 to finish the proof.

Now we are ready to prove the following.

Theorem 3 Let φ be a PBF satisfying Assumption 1 and let m ∈ N. Then for all f

such that f (m) ∈ Aφ we have

‖Dm
Xf − f (m)‖�∞(X) ≤ CN−s|f (m)|Aφ

,

where C depends only on φ and m.
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14 Edward Fuselier, Grady B. Wright

Proof We proceed as in the proof of Theorem 2. Let xj ∈ X, and note that the re-

sult will follow by bounding (Dm
Xf−IXf (m))|xj . Using (11) and f̂ (m)(l) = (il)mf̂(l),

we have

IXf (m)|xj =
∑

k∈JN
|k|≥q

Nimeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

lmφ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)(il)meikxj .

Also, Lemma 2 gives

Dm
Xf |xj =

∑
k∈JN
|k|≥q

f̃k

φ̃k

(iCk)
m−1

∑
n≡k

in φ̂(n)einxj +
∑
|k|<q

∑
l≡k

f̂(l)(ik)m eikxj

=
∑

k∈JN
|k|≥q

Nimeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

nCm−1
k φ̂(n) +

∑
|k|<q

∑
l≡k

f̂(l)(ik)m eikxj .

Thus we can write the difference (Dm
φ f − IXf (m))|xj = A+B, with

A =
∑

k∈JN
|k|≥q

Nimeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

(
nCm−1

k − km
)
φ̂(n),

B =
∑

k∈JN
|k|≥q

Nimeikxj

φ̃k

∑
l≡k

f̂(l)
∑
n≡k

(km − lm) φ̂(n) +
∑
|k|<q

∑
l≡k

f̂(l)im eikxj (km − lm).

First we bound |A|. Consolidating the sum over l back into f̃k and applying
Lemma 4, we get

|A| ≤
∑

k∈JN
|k|≥q

∣∣∣∣ f̃k
φ̃k

∣∣∣∣
∣∣∣∣∣∑
n≡k

(nCm−1 − km)φ̂(n)

∣∣∣∣∣ ≤ CN−s
∑

k∈JN
|k|≥q

∣∣∣∣ f̃k km
φ̃k

∣∣∣∣ ≤ CN−s|f (m)|Aφ
,

where in the last step we used (7).
To bound |B|, we collapse the sum over n into φ̃k, cancel, then combine the

terms to get

B = imeikxj
∑

k∈JN

∑
l≡k

f̂(l)(km − lm).

Since k ∈ JN , the inner sum is only nonzero when |l| ≥ N/2, giving us

|B| ≤
∑

k∈JN

∑
l≡k

|l|≥N/2

|f̂(l)(km − lm)| ≤ 2m
∑

k∈JN

∑
l≡k

|l|≥N/2

|f̂(l) lm| = 2m
∑

|n|≥N/2

|f̂(n)nm|,

where we have used the fact that |k| ≤ N/2 ≤ |l| for all indices l in the inner sum.
Now, since φ̂ decays as in (9), we get that 1 ≤ CN−s/φ̂(n) for all |n| ≥ N/2, which
gives us

|B| ≤ 2m
∑

|n|≥N/2

|f̂(n)nm| ≤ CN−s
∑

|n|≥N/2

|f̂(n)nm|
φ̂(n)

≤ CN−s|f (m)|Aφ
.

This finishes the proof.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this
document can be found online at Advances in Computational Mathematics, published by Springer.
Copyright restrictions may apply. doi: 10.1007/s10444-014-9348-1



Order-preserving derivative approximation with periodic radial basis functions. 15

4 Examples of Superconvergent Kernels

We now discuss classes of kernels satisfying Assumption 1, thus guaranteeing super-
convergence in iterated derivatives. To motivate what comes next, recall example
1, where the kernel ψ1 did not experience superconvergence in the first derivative,
while ψ2 did. Going back to Assumption 1, note that the terms in the symmetric
differences of ψ̂2 always lie on the same curve: either 1/n4 or 2/n4. However, the
terms in the same symmetric differences of ψ̂1 always come from different curves:
one term will lie on 1/n4 and the other on 2/n4. The resulting “gaps” turn out to
be too big to give any added convergence. If however the coefficients do not have
such freedom for increasing n, the PBF will get added convergence in its iterated
derivatives. We make this precise in the proposition below.

Proposition 2 Let φ be a PBF and suppose that there is a positive constant C such

that

φ̂(n) = C|n|−s +O(|n|−s−1). (14)

Then φ satisfies (9) and Assumption 1, and hence experiences superconvergence on

uniform node sets in its iterated derivatives.

Proof Such a kernel obviously satisfies (9). Let n ∈ Z and let k be such that
|k| ≤ |n|/2. The estimate in Assumption 1 holds when k = 0, so we assume that
|k| ≥ 1. Also, note that n− k and n+ k share the same sign, so we assume without
loss of generality that n − k and n + k are both nonnegative. The mean value
theorem gives us

|f(x)− f(y)| ≤ ‖f ′‖L∞([x,y])|x− y|,
which we will apply to the function f(x) = x−s on the interval with endpoints
n− k and n+ k. Note that since f ′(x) = −s/x−s−1 is monotone, it will achieve its
maximum at one of the endpoints. Therefore we get

|(n− k)−s − (n+ k)−s| ≤ s
∣∣∣n
2

∣∣∣−s−1

2|k| = s2s+1|n|−s−1|k|, (15)

where we have used the fact that max{|n − k|, |n + k|} ≥ |n|/2. Using (14) in
conjunction with (15) and the fact that 1 ≤ |k| gives us∣∣∣φ̂(n− k)− φ̂(n+ k)

∣∣∣ ≤ C
∣∣∣(n− k)−s − (n+ k)−s

∣∣∣+O(|n/2|−s−1)

≤ s2s+1|n|−s−1|k|+ C|k|n−s−1 = C|k||n|−s−1.

Thus φ satisfies Assumption 1.

Next are some examples of kernels satisfying (14).

4.1 Bernoulli Splines

The univariate Bernoulli splines serve as kernels for periodic spline interpolation
operators and can be defined on [0, 2π] by the Fourier series:

Bs(x) =
∑
|n|>0

1

(in)s
einx, (16)
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16 Edward Fuselier, Grady B. Wright

where s ∈ N [20]. For even s we have

Bs(x) =
∑
|n|>0

1

(in)s
einx =

2

is

∞∑
n=1

1

ns
cos(nx), (17)

and thus up to a constant factor, Bs is CPD of order 1 and clearly satisfies (14), so
Theorem 3 applies. Superconvergence in iterated derivatives for odd-degree splines
is well-known and has been shown using different methods (see, for example [19]).
Theorem 3 gives an alternate proof.

4.2 Radial Basis Functions

We now consider classes of PBFs obtained by restricting Euclidean radial basis
functions (RBFs) to the circle (for the reader unfamiliar with RBFs, we recommend
the books [4] or [22]). Let Φ : Rd × Rd → R be an RBF defined on Rd, d ≥ 2.
These functions are conditionally positive definite (with an amended subspace
of multivariate polynomials, say of order q), radial, and univariate in the sense
that Φ(x,y) = ϕ(‖x − y‖) for some univariate ϕ. Thus we will frequently express
RBFs as Φ(x,y) = Φ(r), where r = ‖x − y‖. It is well known that if an RBF is
conditionally positive definite on Rd of order q, then its restriction to the sphere
Sd−1 gives a CPD zonal kernel, also of order q [2]. In particular, the restriction of
any RBF Φ to the circle is a zonal PBF: if x,y ∈ R2 are both length 1, then

Φ(‖x− y‖) = Φ
(√

2(1− cos(θ))
)
=: φ(θ)

where θ is the angle between x and y.3 Below we consider classes of these functions,
and show that the associated zonal PBFs satisfy (14). Important to us will be
the interplay between the Fourier transform of the kernel Φ in Rd and Fourier
coefficients of the associated PBF φ on the circle (see [17,26]).

4.2.1 Thin Plate Splines and Power Kernels

Consider the family of radial kernels on Rd given by

Φβ(r) = Cβ

{
rβ β > 0, β /∈ 2N,

rβ log(r) β ∈ 2N,

where Cβ a constant. When β /∈ 2N, the power kernel Φβ = Cβr
β is conditionally

positive definite of order q = �β2 � on Rd, and in the other case we get the thin plate

spline Φβ(r) = Cβr
β log(r), which is CPD of order q = β/2+1 [22, Corollary 8.18].

Asymptotic formulas for the spherical Fourier coefficients of these kernels were
worked out in [17]. In particular, when one of these RBFs is restricted from R2 to
the circle, using [17, Equation (4.12)] (with the substitutions n = 2, 2s − 2 = β)
we immediately get

φ̂β(n) =
Γ (β + 1)

2β+2π2Γ 2
(
β
2 + 1

)n−β−1
(
1 +O(n−1)

)
,

so Proposition 2 applies.

3 A capital letter will be used to denote an RBF, with the corresponding PBF denoted by
the same letter in lower case.
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Order-preserving derivative approximation with periodic radial basis functions. 17

4.2.2 Matérn Kernels

Next we consider the Matérn kernels, also known as Sobolev splines. The Matérn
kernel of order β > d/2 on Rd, which we denote by Kβ , satisfies

Kβ(ξ) =
1

(1 + |ξ|2)β ,

where here Kβ is the the Euclidean Fourier transform of Kβ over Rd [4, Section

4.4]. We will denote the restriction of Kβ to T by kβ . The following relates k̂β with
Kβ (with d = 2):

k̂β(n) =

∫ ∞

0

tKβ(t)J
2
n(t)dt =

∫ ∞

0

t

(1 + t2)β
J2
n(t)dt, (18)

where Jn is the order n Bessel function of the first kind [17, Proposition 3.1].

Estimates on k̂β(n) were carried out in [17] to show that k̂β(n) ∼ n−2β+1 for
large n. We repeat some of those arguments here to show that this kernel satisfies
Proposition 2 with s = −2β + 1.

First, for t > 1 the following expansion is valid:

t

(1 + t2)β
=

1

t2β−1
− β

t2β+1
+O(t−2β−3).

Thus we may rewrite the integral in (18) as

k̂β(n) =

∫ ∞

0

t

(1 + t2)β
J2
n(t)dt = A+B + C,

where

A =

∫ ∞

0

t−2β+1J2
n(t)dt, B =

∫ 1

0

(
t

(1 + t2)β
− 1

t2β−1

)
J2
n(t)dt,

C =

∫ ∞

1

O(t−2β−1)J2
n(t)dt.

The term A was computed in [17, Equation (4.10)]. The result is:

A =
Γ (2β − 1)

22β−3Γ 2(β)
n−2β+1(1 +O(n−1)),

for n sufficiently large. The term B can be handled with the bound |Jn(t)| ≤
2−n|t|ne|Im(t)|

Γ (n+1) [21, Page 49, Equation (1)]—since Im(t) = 0 this implies that B

decays faster than any power of n−1. The term C can be bounded by an integral
similar to A:

|C| =
∫ ∞

1

O(t−2β−1)J2
n(t) ≤ c

∫ ∞

0

t−2β−1J2
n(t)dt = O(n−2β−1).

It follows that

k̂β(n) =
Γ (2β − 1)

22β−3Γ 2(β)
n−2β+1(1 +O(n−1)),

Thus kβ also satisfies Proposition 2 with s = −2β + 1.
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18 Edward Fuselier, Grady B. Wright

5 Numerical Experiments on the Circle

In this section we present several numerical experiments. The first verifies Theo-
rem 3 and Proposition 1 for a thin plate spline, while the next two give evidence
of superconvergence for the restriction of a Wendland kernel and the inverse mul-
tiquadric (IMQ) kernel to the circle. Note that the theory of section 4 does not
cover the latter two kernels.

In all the experiments that follow, we use the same smooth target function

g(x) = e−4 cos(x) sin(4(x− 1)), (19)

and for each kernel we calculate the relative pointwise error at the interpolation
nodes in the first, second and sixth iterated derivatives, as well as the relative error
in using (IXg)′′ to approximate g′′. For the first two kernels, we present results for
both nonuniform node sets and uniform node sets of increasing size. The former
node sets are used to illustrate the differences in convergence rates when the nodes
are not uniform. These nonuniform node sets are generated so that roughly a third
of the nodes are equally spaced on the upper half of the circle, and the rest are
equally spaced on the lower half.4 This results in a “mesh ratio” ρ = h/q ∼ 2,
where h is half of the largest gap between two successive nodes and q is half of the
shortest gap between successive nodes.

5.1 A Thin Plate Spline

The main purpose of this experiment is to verify the results of Theorem 3. We use
the thin plate spline

Φ4(r) = r4 log(r),

which is C3 and conditionally positive definite of order 3. The discussion in section
4.2.1 shows that the restriction of this kernel to the circle has Fourier coefficients
satisfying (9) with s = 5. Therefore if this kernel experiences superconvergence in
its iterated derivatives the errors should all converge as O(N−5) on uniform nodes.

Figures 2(a) and 2(b) show the convergence results for non-uniform and uni-
form nodes, respectively. In the non-uniform case (Figure 2(a)), we see that the
convergence rate is not preserved for the iterated derivatives with the error in the
first derivative converging like O(N−4), the second like O(N−3), and the sixth not
converging at all. We also see that D2

Xg and (IXg)′′ approximate g′′ at the same
rate, however the errors are smaller for the iterated derivatives.

The results for the uniform nodes (Figure 2(b)) exactly match the theory with
all iterated derivatives providing O(N−5) approximations. We also see that (IXg)′′

only provides a O(N−3) approximation of g′′, as suggested by Proposition 1. It is
interesting to note that, despite the fact that the kernel is only C3, the sixth iter-
ated derivative still approximates g(6) like O(N−5). However, for the largest node
sets the sixth iterated derivative approximation begins to degrade. This should
perhaps be expected since the construction of D6

Xg involves six applications of the
kernel interpolation operator, which is not perfectly conditioned. This prompted

4 More precisely, given N , we first choose n1 = �N/3� equally spaced points on the interval
[0, π − π/n1]. Next choose n2 = N − n1 = �2N/3� equally spaced points on [π, 2π − π/n2].
This gives node sets of size N with ρ ∼ 2 (and ρ = 2 when N is divisible by 3).
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(a) Convergence on the circle with ρ ∼ 2.
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(b) Convergence on the circle with uniform
nodes.

Fig. 2 Relative �∞ error (measured at the nodes) for derivative approximations of (19) using
the restriction of the thin plate spline Φ4 to the circle. The plot on the left shows the results
using node sets with ρ ∼ 2, and on the right the same experiments are repeated on uniform
nodes. The unfilled triangles in 2(b) represent the results using quad-precision.

a repeat of the experiment using quad-precision (32-digits) instead of double-
precision, and in this case the error continues to decrease like O(N−5).

5.2 A Wendland kernel

Here we consider the restriction of the following Wendland kernel to the circle:

Φ3,2(r) := (1− r)6+(35r
2 + 18r + 1),

where (x)+ = x if x ≥ 0 and is zero otherwise. This kernel is C4 and positive
definite on Rd for d ≤ 3. Additionally, it can be shown that Φ3,2 restricted to the
circle has Fourier coefficients satisfying (9) with s = 6.

The results for the non-uniform and uniform nodes are presented in Figures
3(a) and 3(b), respectively. We see trends similar to those in the previous ex-
ample. The rate of approximation for the iterated derivatives is not preserved
in the nonuniform case, and D2

Xg and (IXg)′′ approximate g′′ at the same rate.
In the uniform node case, Figure 3(b) indicates that the iterated derivatives are
experiencing superconvergence with the first, second and sixth iterated deriva-
tives providing O(N−6) approximations. This exactly matches the decay rate of
the Fourier coefficients of Φ3,2. Finally, we see (IXg)′′ is still only providing an
O(N−4) approximation of g′′, as in the non-uniform node case.

5.3 Inverse Multiquadric

We now consider the inverse multiquadric (IMQ) kernel, given by:

Φ(r) =
1√

1 + (ε r)2
,
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(a) Convergence on the circle with ρ ∼ 2.
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(b) Convergence on the circle with uniform
nodes.

Fig. 3 Relative �∞ error (measured at the nodes) for derivative approximations of (19) using
the restriction of Φ3,2 to the circle. The plot on the left shows the results using node sets with
ρ ∼ 2, and on the right the same experiments are repeated on uniform nodes. The unfilled
triangles in 3(b) represent the results using quad precision (32 digit accuracy).

where ε is the shape parameter. This positive definite, C∞ kernel is known to
enjoy convergence rates higher than any polynomial order for smooth target func-
tions [22, Section 11.4]. It has generally been reported in the literature that there
is typically an optimal value of ε that produces the best accuracy in the IMQ in-
terpolants and that this value tends to decrease with increasing smoothness of the
target function [4]. Furthermore, in the limit of ε → 0, it can be shown using the
arguments from [5] that the IMQ interpolant (and many other smooth RBF inter-
polants) restricted to the circle converges to a trigonometric interpolant. However,
for small values of ε, one must use a “stable algorithm” to compute the interpolant
such as the RBF-QR procedure of Fornberg and Piret [5].

Figures 4(a) and 4(b) show the convergence results for the IMQ kernel on uni-
form nodes for ε = 0.9 and ε = 3.6, respectively, which are considered relatively
small and relatively large values for the shape parameter. Unlike the previous re-
sults, these are plotted on a semilog scale to highlight the exponential convergence
rates. Also, since the IMQ kernel is C∞, we have included results for (IXg)(6) to
compare to D6

Xg.

For the ε = 0.9 case in Figure 4(a), which were obtained using the RBF-QR
algorithm, we see that both the iterated and direct derivatives converge rapidly
for all orders. While the error in the iterated derivatives is slightly larger than
the direct derivatives (for most values of N), the convergence is just slightly faster
and seems to match the convergence of the first derivative. The similarity in the
results for the iterated and direct derivatives for this relatively small value of ε

is most likely related to the IMQ interpolant being very close to a trigonometric
interpolant. In the latter case, the iterated and direct derivatives give the same
result when N is odd (as is the case here).

The results in Figure 4(b) for ε = 3.6 show a much more pronounced difference
in the convergence rates for the iterated and direct derivatives. All iterated deriva-
tives appear to be experiencing superconvergence, while convergence of the direct
derivatives slows with increasing order of the derivative. Although not presented,
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(a) Convergence on the circle with uniform
nodes, ε = 0.9
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Fig. 4 Semilog plot of relative �∞ error (measured at the nodes) for iterated and direct
derivative approximations of (19) using the restricted IMQ kernel with (a) ε = 0.9 and (b)
ε = 3.6. All results are for uniform nodes on the circle.

we did several more experiments that indicated this superconvergence behavior
for the iterated derivatives with the IMQ kernel at other values of ε.

We note, as commented above, that we should expect that the results for
ε = 0.9 to be better than ε = 3.6 for this example, since the target function is very
smooth. This may not always be the case in practice, and these results indicate
that when using the IMQ kernel iterated derivatives may provide much better
approximations to higher order derivatives than the direct approach.

6 Iterated Derivatives on Periodic Surfaces

In this section we consider an iterated approximation of the surface Laplacian
(Laplace-Beltrami operator) ΔM, where M ⊂ R3 denotes the surface in ques-
tion. This is the prominent differential operator in time-dependent diffusion and
reaction-diffusion equations on surfaces, which have a number of applications.
Working out the surface Laplacian analytically can be a cumbersome task for
a general surface. Below, we describe the iterated approach taken in [8] to ap-
proximate this operator, which only requires having nodes on the surface, the
corresponding (numerical) normal vectors to the surface at the nodes, and the Eu-
clidean first order derivatives of the kernel— this significantly simplifies the task
of approximating ΔM. Next we consider numerical examples on a torus and a unit
sphere, where we study the convergence rates of the iterated and a direct approach
to approximating ΔM.

6.1 Iterated Surface Laplacian

We let ∇M and ∇M· denote the surface gradient and surface divergence, respect-
fully. These operators can be expressed entirely in Cartesian coordinates as follows.
Let x = (x, y, z) be a point on M and n = (nx, ny, nz) the normal vector to M at
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x. The surface gradient at x is then given as

∇M := P∇ =
(
I− nnT

)
∇, (20)

where P is a 3-by-3 matrix that projects any vector in R3 at x to a vector tangent
to M at x. Letting ex, ey, ez, be the standard unit vectors in x, y, and z directions
in R3, we can re-write (20) in component form as

∇M :=

⎡⎣(ex ·P)∇
(ey ·P)∇
(ez ·P)∇

⎤⎦ =

⎡⎣(ex − nxn) · ∇
(ey − nyn) · ∇
(ez − nzn) · ∇

⎤⎦ =

⎡⎣px · ∇
py · ∇
pz · ∇

⎤⎦ =

⎡⎣Gx

Gy

Gz

⎤⎦ , (21)

where px denotes the first row of P, etc. The surface divergence of a smooth vector
field f = (fx, fy, fz) : M → R3 at a point x ∈ M can then be expressed as

∇M · f := (P∇) · f = Gxfx + Gyfy + Gzfz . (22)

Let X = {xj}Nj=1 ⊂ M and Φ : R3 × R3 → R be an RBF on R3. A function f

can be interpolated at X using

IXf =
∑

xj∈X

cjΦ(‖x− xj‖). (23)

The approximation properties of these types of interpolants on surfaces M ⊂ Rd

has previously been studied in [7]. One approach to compute an approximation to
ΔMf is by analytically applying it to the interpolant (23), i.e.

ΔMIXf ∼ ΔMf. (24)

An alternative is the following iterated approach. Motivated by the fact that
ΔM = ∇M · ∇M, we replace the first order differentials with the process “inter-
polate, then differentiate.” That is, first f is interpolated using (23), and then the
Cartesian components of the surface gradient (21) are computed of IXf . Next, each
component of the resulting vector field is interpolated using (23), and the surface
divergence (22) is then applied to these interpolants. This “iterated Laplacian” of
f can be expressed as

LXf := ∇M · IX (∇MIXf) ∼ ΔMf, (25)

where IXg is obtained by applying IX to each component of a 3-dimensional vector
field g. For general surfaces, this iterated approach is simpler to construct than
the direct approach (24) in that it does not require computing derivatives of the
normal vectors and higher order derivatives of the radial kernel φ. More details on
constructing LX , including MATLAB code, can be found in [8].
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6.2 Setup for the Numerical Experiments

In all experiments that follow, we use the C4 Matérn radial kernel

Φ(r) = e−εr
(
(εr)2 + 3(εr) + 3

)
. (26)

Although not presented, similar results were observed for other kernels of finite
smoothness. For most experiments, we set the shape parameter to ε = 5. Given
a surface M, node set X, and target function f , the relative errors for the direct
Laplacian (24) and iterated Laplacian (25) will be calculated as follows:

‖ΔMf −ΔMIXf‖�∞(X)

‖ΔMf‖�∞(X)
and

‖ΔMf − LXf‖�∞(X)

‖ΔMf‖�∞(X)
.

For kernels of finite smoothness, like (26), typically the error decays algebraically
with the largest “gap” in the node set X, which is given by the mesh norm:
h := supx∈M

dist(x,X). Note that the surfaces considered are two-dimensional,
so that if the node sets are quasi-uniform then 1/h ∼ √

N , where N is the total
number of nodes.

6.3 Experiments on a Torus

The torus we consider is given by the implicit equation:

M =

{
x = (x, y, z) ∈ R

3

∣∣∣∣(1−
√

x2 + y2
)2

+ z2 − 1

9
= 0

}
, (27)

which leads to the following natural parameterization:

x =

(
1 +

1

3
cos(p)

)
cos(t), y =

(
1 +

1

3
cos(p)

)
sin(t), z =

1

3
sin(p), 0 ≤ p, t ≤ 2π.

The surface Laplacian in this intrinsic coordinate system is

ΔMf(p, t) =
1(

1 + 1
3 cos(p)

)2 ∂2f

∂t2
+

9(
1 + 1

3 cos(p)
) ∂

∂p

((
1 +

1

3
cos(p)

)
∂f

∂p

)
.

The target function we use in the experiments is given, in Cartesian coordi-
nates, as

f(x, y, z) = cos(10z + 3)e−x2 − sin(4x+ 5y).

This function was chosen because of it smoothness and the fact that it does not
have any obvious symmetries on M. We omit the analytical surface Laplacian of f
for brevity, but note that a MATLAB m-file representing ΔMf can be downloaded
from [6].

We use two families of nodes in the experiments. The first is gridded in the
parameter space (see Figure 5(a)), and determined as follows. Given m, choose m

equally spaced angles on [0, 2π) (in t) and 3m equally spaced angles on [0, 2π) (in
p) - then take a direct product to obtain N = 3m2 points. The experiments were
carried out with N = 300, 1200, . . . , 19200 gridded nodes (i.e. m = 10, 20, ..., 80).
These points remain more or less uniformly spaced on the torus as N grows. The
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(a) Gridded Nodes (b) Phyllotaxis Nodes

Fig. 5 Node sets on the torus.
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(b) Phyllotaxis Nodes

Fig. 6 Relative error at the nodes between ΔMf and the approximations (24) and (25) using
the C4 Matérn kernel on the torus.

second family of nodes considered are phyllotaxis spiral nodes, which are sometimes
used to mimic certain botanical features on surfaces. These can be generated
on any surface of revolution based on the ideas in [18]. When N is a Fibonacci
number these nodes happen to be highly uniform, so we used phyllotaxis nodes
with cardinallity 610, 987, . . . , 17711. These nodes are also available to download
from [6].

Figures 6(a) and 6(b) display the convergence rates for the iterated and direct
surface Laplacian of the RBF interpolant for the gridded and phyllotaxis node
families, respectively. We see that for both families of nodes, the direct surface
Laplacian of the interpolant is converging like O(h5), while the iterated Laplacian
is converging a full two-orders faster, i.e. like O(h7). The observed convergence rate
at the nodes for the iterated version is the same as the expected global convergence
rate of the RBF interpolant of this target function [7], indicating the iterated
version is experiencing superconvergence.

6.4 Experiments on the Unit Sphere

We next compare the iterated and direct Laplacian on the unit sphere, S2. As
target functions we use the spherical harmonics (see [16]) Y6,0 and Y6,4, which are
plotted in Figure 7.

We use three families of nodes in the experiments. The first family is the
minimum energy (ME) nodes of Womersley and Sloan [23]. These form highly
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(a) f = Y6,4 (b) f = Y6,0

Fig. 7 Spherical harmonic target functions for the sphere.

(a) Minimum Energy (b) Gridded (c) Fibonacci

Fig. 8 Node sets on the sphere used in the numerical experiments.

uniform node sets, and do not lie on a regular grid; see Figure 8(a) for a plot of these
nodes for N = 2500. For the experiments with these node sets, we cardinalities
of N = 49, 100, 225, 400, 625, 1024, 2500, 3600, 5776, 7225, 10000, 16384. The
second family is the gridded nodes obtained from a direct product of m equally
spaced nodes in latitude and and m equally spaced nodes in longitude. We use m =
10, 20, . . . , 130, which results in node sets of size N = 74, 344, 814, . . . , 14044, 16514,
once duplicates on the prime meridian and poles are removed. The N = 1484 set
of these nodes is displayed in Figure 8(b), and we clearly see that these are not
quasi-uniform due to the clustering near the poles. Lastly, we use the so called
Fibonacci family of nodes [11], which are based on the idea of phyllotaxis spiral
nodes. As in the torus case, the node sets used correspond to Fibonacci numbers:
N = 377, 610, . . . , 17711. These node sets and MATLAB code to generate them, are
available at [6].

We first focus on the results for the ME nodes. Figures 9(a) and 9(b) show
the convergence rates for the Y6,4 and Y6,0 target functions, respectively, using
the iterated and direct surface Laplacian. We see that for the smaller node sets
it appears that the iterated surface Laplacian for both targets is converging like
O(h7), while the direct Laplacian is converging like O(h5). However, as the node
sets grow we see that both the iterated and direct Laplacians clearly converge like
O(h5) for both targets. Although, the errors in the iterated method are still much
smaller.

A different trend is observed for the other two node families; namely, that
convergence in the iterated Laplacian LXf was considerably faster for one of the
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(a) f = Y6,4
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(b) f = Y6,0

Fig. 9 Relative error at the ME nodes between ΔMf and the direct and iterated approxima-
tions, (24) and (25), respectively, using the C4 Matérn kernel on the sphere with ε = 5. While
the iterated Laplacian appears to be converging faster for smaller node sets, eventually the
convergence rates of the two methods are comparable.

targets, but not the other. Figures 11(a) and 12(a) display the convergence rates
for the Y6,4 target function using the gridded and Fibonacci nodes, respectively. We
can clearly see that while the direct Laplacian is converging like O(h5), the iterated
Laplacian is converging like O(h7). However, for the Y6,0 target, Figures 11(b) and
12(b) clearly show both the direct and iterated approximations converging at the
same slower rate of O(h5).

It’s worth noting two things regarding these results: (1) the gridded and Fi-
bonacci node sets are less uniform at the poles, and (2) from Figure 7 it is clear
that the support of Y6,4 is away from the poles, while the support of Y6,0 is not.
It is reasonable to then consider measuring the error away from the poles, where
the nodes are more uniform. As a follow up experiment, we repeat the previous
tests on the Y6,0 target, but instead of measuring the relative error over the entire
node set X, we only measure it over the sites X ′ ⊂ X consisting of nodes that lie
outside the polar caps of radius θ = π/16 (see Figure 10). The outlined squares in
Figures 11(b) and 12(b) display the resulting convergence rates. Interestingly, we
see that on X ′ the iterated Laplacian LXf enjoys the faster convergence rate of
O(h7).

7 Concluding Remarks

This is the first study to compare the direct and iterated methods for approximat-
ing derivatives of periodic functions using radial basis functions. It is also the first
study to investigate convergence rates that can expected with this method when
errors are only measured at the data sites. In the univariate case and with uniform
nodes, we have given a sufficient condition on the RBF kernel’s Fourier coefficients
to guarantee that every iterated derivative approximates the corresponding deriva-
tive of smooth periodic functions to the same high order at uniform data sites.
We have established that thin plate splines, power functions, and Matérn kernels
restricted to the circle all yield superconvergent approximation of derivatives at
uniformly spaced data sites. Our numerical experiments suggest that the same is
true for Wendland kernels, and the IMQ example in section 5.3 shows the iterated
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(a) Gridded Nodes (b) Fibonacci Nodes

Fig. 10 View from the north pole of the node sets X and X′ used in the experiments involving
the gridded and Fibonacci nodes on the sphere. Here X′, depicted in the figure by the darker
spots, denotes all nodes from X outside the northern and southern polar caps of radius θ =
π/16.
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Fig. 11 Relative error at the gridded nodes between ΔMf and the direct and iterated approx-
imations, (24) and (25), respectively, using the C4 Matérn kernel. Here the shape parameter
ε is fixed at ε = 10 to keep the conditioning of the interpolation matrices under control. The
nonuniformity of the nodes necessitated a calculation of the mesh norm h, which we estimated
by using the largest distance between neighboring nodes on the equator. Note that while su-
perconvergence is not observed for the target Y6,0 over the entire sphere, there is accelerated
convergence away from the polar caps as indicated by the outlined square markers in part (b).

approach may be beneficial for some infinitely smooth kernels too — at least for
larger values of the shape parameter.

The numerical experiments presented in section 6 show that superconvergence
seems to extend to iterated derivatives on higher dimensional periodic domains,
although the generality is not so obvious. While this behavior was clearly observed
in the torus experiments, faster convergence on the sphere was not observed at
the data sites in all the examples. However, accelerated convergence was observed
for the gridded and Fibonacci families where the nodes were uniform, i.e. away
from the poles. This leads one to wonder how “local” this phenomenon is: if the
nodes are arranged in a way amenable to superconvergence in a subregion of the
domain, at which locations (if any) will faster convergence rates occur within that
region? Addressing this issue will be pursued in future work.
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Fig. 12 Relative error at the Fibonacci nodes between ΔMf and the direct and iterated
approximations, (24) and (25), respectively, using the C4 Matérn kernel with ε = 5. Again
there is accelerated convergence away from the polar caps as indicated by the outlined square
markers in part (b).
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