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Abstract

In two studies, we examined the effect of professional development to improve 

mathematics instruction on the accuracy of teachers’ monitoring of student learning. Study 1 was 

conducted with 36 teachers participating in three years of professional development. Judgment 

accuracy was influenced by the fidelity with which what was learned in the professional 

development. Study 2 was conducted with 64 teachers from 8 schools, which were randomly 

assigned to receive professional development or serve as a control. Judgment accuracy was 

greater for teachers receiving professional development than for teachers who did not and 

teachers were better to predict students’ computational skills. 

Keywords: teacher judgment; judgment accuracy; mathematics achievement
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1. Introduction

Teachers can engage in many metacognitive and cognitive activities that are relevant to 

guiding students’ learning (for a review, see Duffy, Miller, Parsons, & Meloth, 2009). For 

instance, a teacher may notice a particular student is struggling to finish an in-class activity, and 

the teacher may then attempt to implement strategies to help the student perform better. There is 

no doubt that effective teachers make many decisions each day (some estimates are in the 

thousands, e.g., Doyle, 1977) about how to restructure their pedagogy to meet the needs of 

individual students (Donovan, Bransford, & Pellegrino, 1999). Effectively adapting one’s 

teaching to individual learners necessitates teachers accurately evaluating students’ on-going 

states of mind or performance (Shavelson, 1978). The question here is straightforward: How well 

can a teacher evaluate the degree to which students have learned the target materials? For

instance, can teachers accurately predict how well each student will perform on an upcoming 

exam? Certainly such a prediction would comprise just a small portion of all the activities a 

teacher could engage in to evaluate student learning, but if teachers can make these predictions 

accurately, it would be an invaluable skill to help them better regulate their students’ learning. In 

this era of increased accountability, witnessed in several countries, teachers are expected to make 

more accurate evaluations about their students' understanding, and drawing on their diagnosis, 

better support their students during instruction; thus, finding ways to improve the accuracy of 

teachers’ judgments of learning is particularly important.

In the remainder of this introduction, we will describe how researchers have measured the 

accuracy of teachers’ judgments and discuss some of the pitfalls of interpreting these data. We 

will then provide a theoretical framework for improving the accuracy of teachers’ judgments. 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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Finally, we will describe a professional development program designed to improve teachers’ 

prediction accuracy. 

1.1 Measuring the Accuracy of Teacher Judgments 

Südkamp, Kaiser, and Möller (2012) recently conducted a meta-analysis of research on 

the accuracy of teachers’ judgments of student academic achievement (see also (Hoge & 

Coladarci, 1989), and made a strong case for the importance of investigating teachers’ judgment 

accuracy. They described multiple ways these judgments may affect student achievement. In 

particular, these judgments guide instruction (e.g., Alvidrez & Weinstein, 1999), identify 

struggling students (e.g., Bailey & Drummond, 2006), influence teachers’ expectations about 

students’ ability (e.g., Brophy & Good, 1986), shape feedback to students and parents (e.g., Hoge 

& Coladarci, 1989), and influence students’ academic self-concept (e.g., Möller, Pohlmann, 

Köller, & Marsh, 2009). 

In the literature, accuracy has been operationalized as the correlation between teachers’ 

predictions of students’ performance and students’ actual performance. The literature suggests 

teachers vary widely in judgment accuracy (for reviews see Hoge & Coladarci, 1989; Südkamp 

et al., 2012). For instance, in their meta-analysis of 75 articles on accuracy of teacher judgments,

Südkamp et. al. (2012) reported accuracy as high as .80 (Methe, Hintze, & Floyd, 2008) and as 

low as -.03 (Graney, 2008). Understanding the different levels of accuracy is complicated by the 

fact that researchers have used a variety of approaches to compute the correlation between 

predicted and actual performance. 

The most common approach used to compute the correlation is to have teachers predict 

their students’ achievement on a test, administer the test to students, and then simply stack the 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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data from all the teachers and compute the correlation between predicted and actual student 

performance (e.g., Begeny, Eckert, Montarello, & Storie, 2008; Freeman, 1993). This method

computes the correlation across all the students disregarding the fact that students were nested 

within different teachers’ classrooms. Although this will certainly provide a measure of the 

relation between predicted and actual student achievement, the correlation may be difficult to 

interpret because it could be influenced by group differences in achievement. For instance, if one 

teacher works with 25 high achieving students and another teacher works with 25 low achieving 

students, and the teachers’ predictions reflect the group differences in achievement (i.e., the 

predicted and actual performance for the high achieving students are higher than those for the 

low achieving students), the correlation computed across these 50 students could be quite high—

indicating highly accurate teacher judgments. However, this correlation could be quite high (due 

to group differences in achievement) even if the teachers do not accurately differentiate levels of 

student achievement within their own classes. Put differently, group differences in achievement 

could mask the true relationship between predicted and actual performance—when the teachers’ 

data are combined and analyzed as a whole, ignoring that data came from independent teachers. 

To be fair, group differences may be mitigated when data from several teachers are combined. 

Nonetheless, any group differences that exist could inflate the correlation.

Another approach used to examine the accuracy of teachers’ judgments of student 

achievement is to select one or two students from a classroom and have teachers predict 

performance for only that small subset of students in their classes, and then stack the data for all 

the teachers and compute the correlation across all students (e.g., Feinberg & Shapiro, 2009). 

Although this correlation represents the relation between predicted and actual student 
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achievement across teachers, it does not represent an individual teachers’ ability to differentiate 

student performance within a classroom because the teacher only predicted performance for one 

or two students from his or her class. Given that effective teaching is influenced by a teachers’ 

ability to differentiate instruction across students in a class (e.g., Donovan et al., 1999), measures 

of judgment accuracy should assess a teachers’ ability to differentiate students who understand 

the material from those who do not, which would guide instruction (e.g., Alvidrez & Weinstein, 

1999). Computing the correlation across teachers provides no information about how accurately 

teachers can judge differences in student skill levels, which raises questions about the value of 

this measure of judgment accuracy. 

Ready and Wright (2011) modeled the nested nature of the data by using HLM to 

examine the relation between predicted and actual student achievement. They found a significant 

relation between predicted and actual achievement (r = .60 in the fall, r = .66 in the spring) even 

after accounting for the interdependence of students nested within teachers. They also identified 

student variables that were related to teachers’ predictions (e.g., gender, race, and social class); 

however, none of these were as strongly related to teachers’ predictions as students’ prior test 

performance.

Finally, Helmke and Schrader (1987) examined teachers’ judgment accuracy by 

computing a correlation for each teacher individually. That is, for each teacher, they computed 

an intra-individual correlation between fifth grade students’ predicted and actual performance on 

a test of mathematical skills. They reported the judgment accuracy for all 32 teachers in the 

study, with accuracy ranging from approximately .05 to .90.  

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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There are several advantages to using this intra-individual correlation as a measure of 

judgment accuracy. At a theoretical level, judgment accuracy is important because judgments 

about student learning guide instruction. Thus, accuracy should measure an individual teacher’s 

ability to differentiate levels of learning among the students in his or her classroom, which is 

precisely what the intra-individual correlation provides. 

At a more practical level, an advantage to measuring judgment accuracy at the individual 

teacher level is that it is possible to identify other teacher-level variables that could predict 

judgment accuracy (e.g., years of teaching experience, content knowledge, teaching practices). It 

is also possible to examine the relation between judgment accuracy and student outcomes (e.g., 

achievement). Perhaps most important in the context of the present investigation, in which 

professional development was delivered to improve judgment accuracy, having accuracy at the 

individual teacher level, made it possible to provide valuable feedback to teachers regarding their 

judgment accuracy, and evaluate the effectiveness of different aspects of the professional 

development (Day, 1999; de Vries, Jansen, & van de Grift, 2013). 

1.2 Improving Judgment Accuracy 

Teachers’ judgments of students’ academic performance are hypothesized to be important 

because these judgments guide subsequent instruction, which in turn influences student 

achievement. Thus, it follows that improving the accuracy of judgments should lead to more 

effective teaching, which should improve student achievement. The question is, “How can 

judgment accuracy be improved?” 

To answer this question, we must first understand how teachers judge student learning. 

Brunswik (1956) suggested such judgments are made based on inferences one draws from 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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available cues. For example, a teacher could judge a student has learned the material based on a 

student’s correct response to a question posed to the class. The teacher could also judge that the 

material has been learned because a student did not look confused or ask questions during the 

lesson. According to Brunswik (1956), the accuracy of judgments is determined in part by the 

diagnosticity of the cues used to make the judgment. Judgment accuracy will improve when the 

cues used to make a judgment are more diagnostic of subsequent student performance (for a 

more detailed discussion of how cue used affects judgment accuracy see (Dunlosky & Thiede, 

2013; Koriat, 1997). In the example above, judgment accuracy should be better when the 

judgment is based on a correct response to a question than when the judgment is based on silence 

because the former is more diagnostic of learning than the latter.  

There are a variety of cues available to judge student learning. The diagnosticity of a 

particular cue can change from one situation to the next (Thiede, Griffin, Wiley, & Anderson, 

2010). For instance, a formative assessment aligned to a clearly defined learning objective 

should provide cues that are diagnostic of performance on a summative assessment, provided it 

is aligned to the same learning objective. In contrast, if the formative assessment is not aligned to 

the learning objective, it will not provide diagnostic cues. To improve the accuracy of teachers’ 

judgments of student learning, teachers must (a) structure instruction to provide cues that are 

more diagnostic of the kind of learning that will ultimately be assessed on the summative 

assessment of learning, and then (b) use these more diagnostic cues to judge student learning. 

Effective instruction requires a clearly defined learning objective, assessment of student 

learning during instruction (i.e., formative assessment), and adjustment of instruction to respond 

to students’ level of learning (e.g., Black & Wiliam, 1998; Stiggins & Chappuis, 2006). To 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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effectively adjust instruction to facilitate student learning, teachers must be able to accurately 

judge student learning; however, accurate judgments of student learning may not produce greater 

student learning because accurate judgments do not necessitate the teacher will adjust instruction 

to address individual student’s needs. That said, as accurate judgments are necessary but not 

sufficient, working to improve teachers’ judgment accuracy is an important first component to 

improving instruction. 

Our professional development was designed to help teachers teach mathematics in a 

student-centered way and to incorporate formative assessments into instruction (William, 2011). 

Focusing on cues produced from the student-centered aspect of formative assessments, which 

should be predictive of subsequent tests over the same material, was hypothesized to improve 

teachers’ judgment accuracy.  

1.3 Developing Mathematical Thinking 

Developing Mathematical Thinking (DMT) is an instructional model that hinges on five 

key dimensions of classroom practice: focusing on students’ initial ideas through problem 

solving, encouraging multiple solution strategies and models, pressing students conceptually, 

maintaining a focus on the structure of the mathematics, and addressing misconceptions 

(Brendefur, 2008; Brendefur, Thiede, Strother, Bunning, & Peck, 2013). DMT was chosen for 

this study because this multidimensional framework for teaching encourages teachers to monitor 

their students’ mathematical ideas and to then modify their instruction based on what they 

observed from several perspectives. Here, we briefly describe the relevant research that frames 

this instructional process.  

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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DMT is an instructional model built on the Dutch notions of “progressive formalization” 

and “mathematizing” (Freudenthal, 1973, 1991; Treffers, 1987) and on a socio-cognitive 

framework similar to Carpenter and Lehrer’s (1999) elements of effective instruction. As 

Gravemeijer and van Galen (2003) describe, progressive formalization is a process of first 

allowing students to utilize informal strategies for solving contextual problems and ways to 

model these approaches, and then, by critically examining these informal strategies and models

(monitoring students’ learning), teachers press students to develop more sophisticated, formal, 

and abstract strategies and mathematical models. By examining the relationship among enactive, 

iconic and symbolic models (Bruner, 1964), teachers’ modify instruction for students to learn 

which manipulations make sense for a given context and how to develop more generalizable 

procedures.  

The DMT process starts with carefully chosen tasks – typically contextualized 

(Brendefur, Carney, Hughes, & Strother, In Press; Doerr, 2006; Larsen & Bartlo, 2009; Rosales, 

Vicente, Chamoso, Muñez, & Orrantia, 2012; Simon & Tzur, 2004). To solve these problems, 

students must model the situation to some degree. Rather than beginning with the standard 

algorithms and attempts to concretize them, teaching begins with students’ commonsense 

solutions to contextual problems that are real for them. By reflecting on the solution procedures 

they have used, students develop and are introduced to more sophisticated models and 

procedures that they can also use in other situations (Gravemeijer & van Galen, 2003, p. 114). 

Teachers, then, press students to make connections between existing knowledge 

(informal ideas) and new knowledge (more formal mathematical ideas) required by Hiebert and 

Carpenter’s (1992) concept of conceptual understanding through solving novel problems. By 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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critically examining their own and others’ strategies and models, students build a functional 

understanding, which exemplifies the importance of social interactions in classrooms. “By 

thinking and talking about similarities and differences between arithmetic procedures, students 

can construct relationships between them. … the instructional goal is not necessarily to inform 

one procedure by the other, but rather, to help students build a coherent mental network in which 

all pieces are joined to others with multiple links” (Hiebert & Carpenter, 1992, p. 68). This is an 

important aspect in teaching. Typically, teachers and students see mathematics as a series of 

procedures and definitions that build in complexity throughout the K-12 curriculum. But certain 

fundamental ideas or “structural components” appear continually throughout mathematics, 

whether at the primary grade level or later in high school courses. When instruction does not 

focus on the structure of mathematics, students often rely on memorized tricks or formulas and 

have difficulty solving complex problems or applying mathematics to new situations. The DMT 

framework embeds the language of the structural components within instruction and feedback to 

students on how to articulate and critique their own and others’ mathematical models. Through 

these interlinked processes of modeling situations mathematically and analyzing different 

methods, teachers must know how each student is thinking about a problem and what 

pedagogical step to take next in order to press students to progressively formalize their ideas. 

This process of asking students to connect methods and generalize their thinking with questions 

or problem variations is an important part of a teacher’s monitoring or formative assessment.

1.4 DMT Professional Development 

In general, the DMT professional development takes place over one to three years and 

includes explicit and embedded professional development. The explicit professional 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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development includes a 45 hour course focusing on building participants’ knowledge of students’ 

thinking around mathematics (Ball, Hill, & Bass, 2005; Depaepe, Verschaffel, & Kelchtermans, 

2013; Prescott, Bausch, & Bruder, 2013; Shulman, 1986), which includes knowledge of the 

strategies and/or models that students typically generate for given topics and how to press them

to use particular models based on their thinking, knowledge of the multiple strategies and 

representations (i.e., enactive, iconic, and symbolic) possible for a given topic and the numerous 

connections that exist among them, and knowledge of how to utilize and/or sequence models 

(and tasks) to progressively formalize participants’ thinking. 

In addition to explicit professional development, there is embedded professional 

development through 6-10 in school meetings conducted throughout the year. This focus is on 

building the above aspects of knowledge both prior to and following a particular unit of 

instruction. Finally, 4-8 in class visits are conducted for the purpose of modeling instruction, co-

teaching, monitoring fidelity of implementation and/or observing elements of the DMT 

framework in teachers’ instruction.

The DMT professional development paralleled what we wanted to observe occurring in 

the classroom: provide a task or situation, allow for students to solve the task using any strategy 

of their choice, focus on modeling the situation, and then provide feedback through structure and 

misconceptions on how to improve their thinking and modeling techniques. Although the 

professional development covers many mathematical topics, we provide a typical example.

First, we purposely select a task that has multiple entry points for the participants and can 

be solved using a range of informal and formal models. One such task was Race Day: 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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Let’s say that a race is taking place and you have just run 2 ½ miles and you are 

1/3 of the way. How much farther do you have to run? Be prepared to explain 

your approach/strategy, how and why you modeled it the way you did, and 

whether your model is generalizable to other tasks. Then, explain what the 

problem type is, other ways students might solve the problem, and next possible 

instructional moves. 

Professional development participants begin working individually, but often quickly 

begin discussing approaches to solving the task in their small groups. In the meantime the 

facilitator walks around the room examining representations, facilitating small group discussions, 

and assisting individuals in creating their representations as needed. In particular, the facilitator 

identifies a range of participant-generated models for an upcoming class discussion. For this 

particular problem, the instructor looks for (1) informal iconic drawings, (2) ‘educated’ guess-

and-check strategies, (3) tables, and (4) informal equations. The facilitator looks for a model that 

highlights an important idea and asks the participant or group members to recreate the model on 

poster paper for the whole-class discussion. These models are then posted around the room. 

When the facilitator does not see a particular model while monitoring participants’ work, the 

facilitator looks to find a participant whose work and thinking connects to the ‘missing’ model 

and then presses the participant via questioning to generate the model based on his or her 

existing work.  

The facilitator then encourages the participants to formalize their thinking by using a bar 

model or number line and equations to model their approach. Participants then practice 

explaining their approach to partners, while a few are asked to present their approach and how 
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one model afforded an efficient way of solving the problem or a way of deeply understanding the 

situation. Next, participants are given new situations that progress in difficulty and are asked to 

solve these problems using the more formal iconic and symbolic models. Finally, participants are 

asked to explain when the model they used should be used and when they should not be used. 

This discussion then incorporates pedagogical decisions regarding what they would do next in 

their classroom.

During this process the facilitator identifies a range of models across the enactive - iconic 

– symbolic trajectory (Bruner, 1964) in order to highlight the use of this framework as an

instructional tool during the class discussion. The discussion typically begins with a focus on 

either an enactive or an informal iconic model of the task. Participants are asked to articulate 

their understanding of each model and are pressed to make conceptual connections that can be 

established between the models, with the goal of demonstrating how to use multiple participant-

generated models to progressively formalize understanding. 

By building these different aspects of teachers’ knowledge we create shifts in their 

knowledge and practice. For example, at the beginning of the professional development, many 

participants while examining student thinking often focus on the correctness of a students’ 

answer: “I’m surprised this student missed this problem.” Later in the year, during the embedded 

professional development, teachers begin to shift their focus regarding student thinking and 

begin to use students’ ideas to modify instruction: “This student decomposed the number 

incorrectly. Should I have them model it on a number line?” By increasing teachers’ pedagogical 

knowledge, we shift what teachers focus on while teaching, which eventually shifts their 

instructional practices.

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
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In sum, the DMT professional development is designed to promote student-based 

instruction of mathematics, which includes using formative assessment to estimate each student’s 

learning trajectory. We hypothesize that this professional development will increase teachers’ 

knowledge of individual students’ thinking, which are cues that should be predictive of students’ 

subsequent test performance. Thus, we predict that judgment accuracy will be greater for 

teachers who have been through DMT professional development than for those who have not. 

Furthermore, as judgment accuracy is hypothesized to inform instruction, which influences 

student learning, we also predict that student achievement will be greater for teachers who have 

been through the DMT professional development (and implement it with high fidelity) than for 

those who have not.  

1.5 Overview of Studies

This investigation consisted of two studies. We wanted to examine the effect of DMT 

professional development on teachers’ judgment accuracy. As described above, we hypothesized 

that DMT would increase judgment accuracy; however, the degree to which DMT was 

implemented was expected to influence accuracy. In particular, we expected judgment accuracy 

to be greater for teachers who implemented DMT with high fidelity than for those who 

implemented DMT with low fidelity.  

In Study 1, participants were teachers in Grade 3 – 5, who had participated in three years 

of DMT professional development. Based on classroom observations and interviews, teachers 

were classified as either high- or low-fidelity implementers (see below for more details). High-

fidelity implementers were those who (a) pressed students to explore the benefits and limitations 

of strategies and models used to solve problems, (b) focused on developing students 
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understanding of various approaches to solving problems, (c) used mistakes and misconceptions 

as valuable tools to build mathematical understanding, (d) used tasks and activities that 

encouraged analysis and discussion of fundamental mathematical components related to the topic 

being studied, and (e) valued and built upon students’ solutions to problems and provided 

opportunities for students to share their approach with others. Those who were low-fidelity 

implementers were those who (a) focused on the transmission of knowledge to students, often 

included rote repeated practice, rather than the construction of knowledge by students, (b) 

focused on providing one correct procedure or method for students to learn, (c) addressed

mistakes and misconceptions by a thorough explanation of the correct process or procedure for 

solving a problem, (d) emphasized superficial elements of the mathematics, and (e) had students 

working individually, with the textbook or other resource materials directing the daily 

instructional topic and practice problems. As implementation of DMT provides teachers with 

more diagnostic cues for judging student learning, we hypothesized monitoring accuracy would 

be greater for the high-fidelity implementers than for the low-fidelity implementers. We sought 

to answer the question, is judgment accuracy affected by the fidelity of implementation of DMT?

In Study 1, all participating teachers had received DMT professional development; 

therefore, this study did not provide a comparison of teachers who received DMT professional 

development and those who did not. In Study 2, we sought to answer the question, is judgment 

accuracy affected by DMT professional development?

In Study 2, participants were teachers in Grades 2 – 5, from eight schools. Four schools 

were randomly assigned to participate in the DMT professional development, and the other four 

were a control group. Again, as implementation of DMT provides teachers with more diagnostic 
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cues for judging student learning, we hypothesized monitoring accuracy would be greater for the 

DMT teachers than for the non-DMT teachers.  

2. Study 1

2.1 Method 

2.1.1 Participants and design 

In this study, participants were 36 Grade 3 – 5 teachers who had been in the DMT 

professional development for three years. As part of the professional development, teachers’

mathematics instruction was observed between 3 and 5 times each year. Four researchers (two 

which are authors) used the DMT observation instrument to rate teachers on the five dimensions 

of effective teaching (Brendefur, 2008; Carney, Brendefur, Thiede, & Hughes, 2014; Hiebert et 

al., 1997): (a) taking students' ideas seriously, (b) pressing students conceptually, (c) 

encouraging multiple representations/models, (d) addressing misconceptions, and (e) focusing on 

the structure of mathematics. The five dimensions have been shown to be reliable, with 

Cronbach’s alphas between .83 and .94. Observation scores on the five dimensions and 

interviews with teachers about mathematics instruction and student learning were used to classify 

teachers as high-fidelity implementers of DMT or low-fidelity implementers of DMT. Teachers 

who were consistently high on all five dimensions were classified as high-fidelity implementers; 

whereas, teachers who were consistently low on all five dimensions were classified as low-

fidelity implementers. The inter-rater reliability of the classifications was quite high (Kappa = 

.94). Fifteen teachers (evenly distributed across grades) were classified as high-fidelity 

implementers and 21 (evenly distributed across grades) were classified as low-fidelity 
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implementers. Thus, group (high-fidelity implementers versus low-fidelity implementers) was a 

between-subjects variable.

2.1.2 Measures

The key outcome variable for this investigation was accuracy of teachers’ prediction of 

student learning, which we measured as in Helmke and Schrader (1987). That is, prediction 

accuracy was operationalized as the intra-individual correlation between a teacher’s predictions 

of student performance and the students’ actual performance—computed across the students 

within a class. We used a non-parametric, Goodman-Kruskal gamma correlationi because Nelson 

(1984) recommended using this measure of association for these kinds of data.  

As noted in the introduction, prediction accuracy is hypothesized to be important because 

it informs decisions related to instruction, which in turn influences student achievement. Thus, 

more accurate monitoring should lead to better differentiation of instruction, which should 

produce greater gains in student learning. 

2.1.3 Procedure 

In the spring, teachers previewed a ten-item mathematics test designed to assess students’ 

knowledge of number sense (e.g., operations, patterning and sequencing, reasoning about 

quantity). After previewing the test, a teacher predicted the performance of each student in his or 

her class on the test. The teacher then administered the test, which was later scored by the 

researchers. 

2.2 Results

Predicted and Actual Test Performance. Prediction accuracy was operationalized as the 

intra-individual correlation between predicted and actual performance. To be complete, we first 
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report descriptive statistics on predicted and actual performance. For each teacher, we computed 

the mean predicted and actual performance across the students. We then computed the mean 

predicted and actual performance across the teachers in each group. As seen in Table 1, predicted 

performance was greater for high-fidelity implementers than for low-fidelity implementers, t(34) 

= 2.38, p = .02. Actual performance was also greater for high-fidelity implementers than for low-

fidelity implementers, t(34) = 5.05, p < .01, Cohen’s d = 1.73.  

Insert Table 1 here

Prediction Accuracy. For each participating teacher, we computed a gamma correlation 

between a teacher’s predictions of student performance and the student’s actual performance. 

The mean of the intra-individual correlations was then computed across teachers within each 

group. Mean prediction accuracy was significantly greater for high-fidelity implementers than 

for low-fidelity implementers, t(34) = 4.35, p < .001, see Figure 1.  

Insert Figure 1 here 

Prediction Accuracy and Student Achievement. Given that prediction accuracy should 

inform instruction, and in turn student learning, we expected to observe a positive correlation 

between prediction accuracy and student achievement. Indeed, we found a moderate positive 

correlation between these variables (r(36) = .56, p < .05). Although the significant correlation 

does not imply causation, it is consistent with the notion that accurate teacher judgments can 
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provide better information for differentiating instruction, which then produces better student 

achievement. 

2.3 Discussion

Judgment accuracy is influenced by the cues used to make judgments (Brunswik, 1956;

Koriat, 1997). Accuracy will improve when cues used to make judgments are more diagnostic of 

subsequent performance. Based on classroom observations, teachers who implement DMT with 

high fidelity use more diagnostic cues focused on students’ thinking and mathematical 

understanding than teachers who do not; thus, we hypothesized that accuracy would be greater 

for high-fidelity implementers than for low-fidelity implementers. Findings from Study 1 are 

consistent with our hypothesis.  

One could make a case that this study simply showed that effective teachers of 

mathematics more accurately monitor their students’ learning—because teachers were in groups 

based on observations of their instructional practice. To speak to the causal role judgment 

accuracy plays in student learning, it would have been more compelling to have selected teachers 

based on judgment accuracy and looked for difference in instructional practice and student 

learning. [Thiede (1999), showed the importance of attending to the causal relation in drawing 

conclusions about the importance of monitoring accuracy in learning]. However, the results of 

this study suggest judgment accuracy could be an important variable to investigate further. 

In Study 2, we compared monitoring accuracy of teachers who participated in the DMT 

professional development to those who did not. Moreover, schools were matched on previous 

mathematics performance, and teachers were randomly selected to participate in the professional 

development; therefore, teacher effectiveness should not have differed dramatically across the 
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DMT group and the control group. The participating district for this study (which was different 

than the district in Study 1) was actively preparing for the transition to assessments, which are 

more aligned to international tests like TIMSS and PISA; therefore, we examined the accuracy of 

teachers’ predictions of student performance on a computational test and a conceptual test (as 

had been conducted in Helmke & Schrader, 1987). As DMT professional development was 

thought to focus teachers on more diagnostic cues related to student learning of mathematics, we 

hypothesized that prediction accuracy would be greater for the DMT group than the control 

group.  

3. Study 2

Study 2 was conducted as part of large federally funded project to examine a professional 

development program designed to improve the accuracy of teachers’ judgments of student 

achievement by improving their use of formative assessments as a means to monitory learning.

3.1 Method 

3.1.1 Setting, Design, and Participants 

This study was set in large school district in Southeastern Idaho. Prior to recruiting 

schools to participate in the study, the study was described to all the elementary school principals 

in the district, and interested principals (N = 24) volunteered to participate in the study. The 

district selected eight schools to participate in the study and created two matched sets of schools 

based on prior student achievement, SES, and racial composition. Prior to assigning the schools 

to a condition, the principals were asked to select two teachers from each grade to participate in 

the DMT professional development. We randomly selected schools to receive the professional 
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development or serve as part of a control group. Control schools were assigned to the 

professional development group the following year.  

As in Study 1, the key dependent variable was the accuracy of teacher predictions (the 

intra-individual correlation between teachers’ predictions of student mathematics performance 

and actual student performance). We computed two intra-individual correlations for each 

teacher: one for a test of computational skill and another for a test of conceptual knowledge. 

Thus, Test (Computational versus Conceptual) was an independent variable in the study. Group 

(DMT versus No-DMT) was the other independent variable in this study.  

We again conducted an exploratory analysis to evaluate the hypothesized relation 

between prediction accuracy and student achievement. In this study, student achievement was 

assessed with the mathematics section of the Measures of Academic Progress (MAP). The MAP 

test was administered to students starting at Grade 1; thus, we had change scores available for 

students in grades 2 through 5. 

Participants were 64 Grade 2 through 5 teachers: 32 in the DMT group and 32 in the non-

DMT group. As seen in Table 2, the groups did not differ in years of teaching experience, pretest 

knowledge of mathematics pedagogy and content (measured with the Elementary School 

Number Concepts and Operations 2001, (Learning Mathematics For Teaching, 2005), or pretest 

knowledge of classroom assessment (measured with the Classroom Assessment Literacy 

Inventory, (Impara, 1993), all ts < 1. The groups were also equal in education level—both had 11 

teachers with a master’s degree and 21 with a bachelor’s degree, 2(1) = 0. Thus, the groups 

were equivalent on key variables prior to the professional development. 
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Insert Table 2 here

3.1.2 Procedure 

Early in the school year, teachers completed all pretest measures, which included a 

survey of demographics, the measure of knowledge of mathematics pedagogy and content, and 

the measure of assessment knowledge. Teachers in both groups received 15 hours of professional 

development focused on student-centered instruction, knowledge for teaching, assessing 

knowledge consistent with levels of reasoning, and using formative assessments to track 

students’ learning. The DMT professional development included regular visits to teachers’ 

classrooms for observation, coaching, and co-teaching of lessons and included 6-8 planning 

sessions prior to and following a mathematics unit. In the pre unit-planning sessions, grade-level 

teachers met to analyze summative assessments for the unit, select or develop formative 

assessment items to assess progress in the unit, and specific strategies for providing student-

centered instruction of the mathematical concepts (for more details, see Brendefur et al., 2015).

The post unit-planning sessions involved examining the results of the formative and summative 

assessments. Here, teachers examined their student thinking and created next steps for 

instruction.  

In April, teachers completed the prediction task. They previewed the tests of 

computational skill and conceptual knowledge of number sense (e.g., operations, patterning and 

sequencing, reasoning about quantity)—the tests had good internal consistency (Cronbach’s 

alpha = .88 and .84, respectively). They then predicted how many items out of five each student 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
and Teacher Education, published by Elsevier.  Copyright restrictions may apply.  doi:  10.1016/j.tate.2015.01.012



24

would correctly answer on each test. The teachers then administered the tests and returned them 

to the researchers for scoring. 

3.2 Results

Predicted and Actual Test Performance. As prediction accuracy is the relation between 

teachers’ predictions of student performance and students’ actual performance on the 

mathematics tests, we report these variables first. We conducted a 2 (Group: DMT versus No-

DMT) x 2 (Test: Computational versus Conceptual) mixed effects analysis of variance 

(ANOVA) to compare both predicted and actual performance. As seen in Table 3, predicted 

performance did not differ across groups, F(1, 62) = .03, MSe = .69, p = .87. Predicted 

performance was greater for the test of computational skill than for the test of conceptual 

knowledge, F(1, 62) = 100.97, MSe = .37, p < .001, partial eta squared = .62. The interaction 

was not significant, F(1, 62) = .42, MSe = .37, p = .52. The pattern of results was the same for 

students’ actual performance. We had missing data for three teachers (two in the DMT group and 

one in the No-DMT group). As seen in Table 3, actual performance did not differ across groups, 

F(1, 59) = 1.88, MSe = .61, p = .18. Actual performance was greater for the test of computational 

skill than for the test of conceptual knowledge, F(1, 59) = 135.83, MSe = .41, p < .001, partial 

eta squared = .70. The interaction was not significant, F(1, 59) = .13, MSe = .41, p = .72.  

Insert Table 3 here

Prediction Accuracy. As in Study 1, prediction accuracy was operationalized as the intra-

individual correlation between predicted and actual performance. Each teacher had two measures 
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of prediction accuracy: one for the test of computational skill and one for the test of conceptual 

knowledge. The three teachers with missing student performance had indeterminate correlations. 

As seen in Table 4, prediction accuracy was greater for the DMT group than for the No-DMT 

group, F(1, 59) = 7.58, MSe = .10, p = .008, partial eta squared = .11. Prediction accuracy was 

greater for the computational test than for the conceptual test, F(1, 59) = 73.01, MSe = .11, p <

.001, partial eta squared = .55. The interaction was not significant, F(1, 59) = 1.17, MSe = .11, p

= .28. These findings are consistent with our prediction that judgment accuracy would be greater 

for teachers who participate in the DMT professional development than for those who do not.  

Prediction Accuracy and Student Achievement. As in Study 1, we conducted an 

exploratory analysis to examine the relation between prediction accuracy and change in student 

achievement (as measured by the mathematics section of the MAP). We found accuracy for 

predicting computational performance was significantly correlated with change in achievement 

(r(64) = .32, p < .05); whereas, accuracy for predicting conceptual performance was not 

correlated with change (r(64) = .16, p > .05). Thus, accuracy of predictions of computational 

performance is significantly correlated to student performance on a standardized test that is 

largely computational. 

3.3 Discussion

A key finding from this study was that prediction accuracy was greater for teachers who 

participated in the DMT professional development than for teachers who did not. The superior 

accuracy held across tests of computational skill and conceptual knowledge. Helmke and 

Schrader (1987) also attempted to assess the accuracy of teachers’ predictions across 

computational and conceptual tests; however, their test of conceptual knowledge was not 
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reliable; therefore, they reported only accuracy of predictions for a computational test. In this 

study, we had a reliable test of conceptual knowledge, and although accuracy was greater for the 

DMT teachers than for the no-DMT teachers, both groups struggled to accurately predict 

performance on a test of conceptual knowledge. In light of the increased focus on conceptual 

understanding and application of mathematics internationally, this may be problematic. The low 

levels of prediction accuracy suggest that teachers may not be able to accurately identify students 

in need of additional instruction, which could have a detrimental effect on student learning. 

4. General Discussion

Effective instruction requires accurate monitoring of student learning. This information is 

crucial to making informed decisions about whether educational objectives have been reached by 

all students, and if not, which students need additional help to reach the objectives (Donovan et 

al., 1999; Glaser, Chudowsky, & Pellegrino, 2001). Thus, it is important to understand ways to 

assess the accuracy of teachers’ monitoring of student learning, and to improve the accuracy of 

teachers’ monitoring.  

In the present research, we operationalized judgment accuracy as an intra-individual 

correlation between predicted and actual performance (an approach widely used in metacognitive 

research, Dunlosky & Thiede, 2013). An advantage to this approach is it provides a measure of 

accuracy for each teacher, which makes it possible to compare accuracy across individuals or 

groups of teachers. Thus, researchers can gain insights into what factors might affect prediction 

accuracy by simply examining the relation between variables and prediction accuracy. For 

instance, we can examine what instructional practices lead to better prediction accuracy (as in 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
and Teacher Education, published by Elsevier.  Copyright restrictions may apply.  doi:  10.1016/j.tate.2015.01.012



27

Study 1), which can help us develop new testable hypotheses about what factors might influence 

accuracy, or help us develop new interventions to improve accuracy (as in Study 2). 

Brunswik (1956) developed a promising theoretical framework to help understand factors 

that affect monitoring. This theory states that monitoring involves making inferences about 

reality and accuracy is driven be the cues used to make a judgment. This theory suggests 

accuracy will improve as cues used to make judgments become more diagnostic of the reality or, 

in our case, more focused on students’ actual understanding than on the content taught. Koriat 

(1997) developed the cue-utilization framework of monitoring, which also suggests monitoring 

accuracy is influenced by the cues used to make judgments. The cue-utilization framework, 

which has been cited more than 300 times, revolutionized the way researchers have approached 

metacognitive monitoring. Moreover, focusing on the cues used to make judgments has led to 

help identifying more diagnostic cues for making metacognitive judgments (e.g., Thiede et al., 

2010) and the development of new interventions to improve monitoring accuracy (e.g., Redford, 

Thiede, Wiley, & Griffin, 2012). 

The cue-utilization framework guided the present research. We hypothesized that 

formative assessment practices, such as analysis of student thinking through the use of exit 

tickets, provide teachers with diagnostic cues for predicting students’ performance on an 

upcoming test; therefore, we expected prediction accuracy would be great for teachers who use 

more formative assessment practices than for teachers who use less. The results from Studies 1 

and 2 were consistent with this hypothesis. In Study 2, judgment accuracy was greater for 

teachers who participated in professional development that promoted use of formative 

assessments in mathematics instruction than for teachers who did not. In Study 1, judgment 
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accuracy was greater for teachers who implemented the professional development with high 

fidelity than for teachers who implemented it with low fidelity. 

With the increased emphasis on accountability in various countries, teachers are expected 

to accurately evaluate their students’ understanding. Many schools, including those where this 

research was conducted, have participated in professional development to improve instructional 

practice around use of formative assessments (e.g., Chappuis, Chappuis, & Stiggins, 2009). This

professional development presumably improves instructional practice; however, it is unclear 

whether it improves judgment accuracy—especially within a particular domain. In contrast to 

this professional development that targets use of formative assessment more generally, DMT 

professional development is focused on improving mathematics instruction and monitoring to 

students’ learning of mathematics. Thus, DMT focuses teachers on cues specific to monitoring 

students’ learning of mathematics. 

This is the first study to compare the accuracy of teachers’ predictions of student 

performance of computational skill and conceptual knowledge. Results from Study 2 showed 

teachers (in both the DMT and no-DMT group) more accurately predicted computational skill 

than conceptual knowledge. Moreover, accuracy levels were quite low for predicting conceptual 

knowledge. Poor monitoring accuracy occurs because people use cues that are not diagnostic of 

subsequent test performance (Benjamin, Bjork, & Schwartz, 1998; Hertzog, Dunlosky, 

Robinson, & Kidder, 2003; Thiede et al., 2010) or they ignore cues that are diagnostic of test 

performance (Koriat & Bjork, 2005). In the context of the present investigation, teachers either 

did not have access to diagnostics cues while predicting conceptual knowledge or if they had 

access, they did not utilize those cues. With the increased focus internationally on conceptual 
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knowledge imbedded within learning standards, it will be important to conduct additional 

research to better understand why teachers may struggle to predict conceptual knowledge. 

The present research suggests that DMT professional development improves judgment 

accuracy by focusing teachers on appropriate cues for judging student learning. More work is 

needed to identify cues that are predictive of conceptual understanding. Once these cues are 

identified, we can work to help teacher use these cues for judging their students’ conceptual 

understanding—and adjusting their instruction to improve student learning.  

i Nelson (1984) recommended using a Goodman-Kruskal gamma correlation (Goodman & Kruskal, 1954) 
for these kinds of data. Gamma is computed by examining the direction of one variable relative to another. If one 
variable (e.g., metacomprehension judgment) is increasing from one text to another and the other variable (e.g., test 
performance) is also increasing across this same pair of texts, this is considered a concordance (C). By contrast, if 
one variable is increasing from one text to another and the other variable is decreasing across this same pair of texts, 
this is considered a discordance (D). Concordance and discordance is computed across all pairs of items. The total 
number of each is used to compute the correlation coefficient, Gamma = (C – D)/(C + D). Once computed, the 
Gamma coefficients then represent a continuous and normally distributed measure of judgment-performance 
correspondence suitable for analysis with most GLM approaches. 
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Figure Captions 

Figure 1. Mean prediction accuracy for Study 1. Error bars are the standard error of the mean. 

Table 1. Predicted and Actual Test Performance by Group

______________

Group 
Predicted 
Performance

Actual
Performance
______________

5.68 (.35) High-fidelity implementers (N = 15) 

Low-fidelity implementers (N = 21) 4.20 (.51)

4.92 (.39) 

2.53 (.29) 

_____________

Note. The numbers in parentheses are the standard error of the mean. 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Teaching
and Teacher Education, published by Elsevier.  Copyright restrictions may apply.  doi:  10.1016/j.tate.2015.01.012



39

Table 2. Mean Years of Experience and Pretest Knowledge Scores

Years of
Group Experience

Math Pedagogical Assessment
Knowledge Knowledge

14.52 (1.55) 2.81 (.14) .34 (.14) DMT (N = 32)

No-DMT (N = 32) 13.14 (1.40) 3.01 (.08) .43 (.15) 

Note. The numbers in parentheses are the standard error of the mean. 

Table 3. Predicted and Actual Test Performance by Group

Computational Conceptual 
Group Skill Knowledge

Predicted Performance

3.46 (.14) 2.31 (.16) DMT

No-DMT 3.36 (.10) 2.35 (.12) 

Actual Performance

3.13 (.10) 1.74 (.17) DMT

No-DMT 2.89 (.11) 1.59 (.13) 

Note. Numbers in parentheses are the standard error of the mean. 
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Table 4. Prediction Accuracy by Group

Computational Conceptual 
Group Skill Knowledge

DMT .66 (.02)  .20 (.07) 
No-DMT .56 (.04) -.02 (.08) 

Note. Numbers in parentheses are the standard error of the mean. 
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Figure 1.
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