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ABSTRACT 

The purpose of this study was to evaluate the effectiveness of a computer-based 

assessment to reveal mathematical understanding. Relevant literature suggested that 

developments in cognitive science and computer-based assessments could allow the 

outcomes of cognitively guided instruction to be made explicit. An assessment instrument 

designed to make mathematical thinking explicit was developed and administered, 

consisting of 15 animations showing the solutions of one and two digit multiplication 

problems. A consistent set of five questions followed each animation. The assessment 

was administered to four classes of fourth grade students in two elementary schools 

participating in cognitively guided instruction professional development programs.  

Findings showed that students, individually and as a group, preferred a limited 

and consistent set of strategies to solve problems and that some students may have 

developed increased understanding of a problem over the course of the five questions. 

Results also showed that the group was weakest on the concept of place value, but was 

able to apply strategies appropriate to particular problems. Correlations between the data 

from different questions suggest students vary in their understanding of components of 

the proposed construct of multiplication, which might otherwise be viewed as a unitary 

concept. Individual student strengths and weaknesses could not be determined because of 

the data’s low reliability quotients. 
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For open-ended questions, smaller amounts of information in responses seemed to 

equate to lower levels of understanding. The assessment revealed possible instructional 

strategies at the group level, but refinement of the assessment will be necessary before 

individual student abilities can be reliably assessed. 
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CHAPTER ONE: NEED FOR THE STUDY 

This dissertation details the background, creation, and implementation of a tool to 

study computer-based assessment of higher-order thinking in the field of mathematics, 

specifically multiplication for elementary-age students. A review of literature explored 

the intersection and history of three relevant areas: cognition, assessment, and computer-

based assessment. The shaded area in Figure 1 represents the targeted knowledge that 

falls within the overlap of these topics. The dissertation describes the development of a 

new assessment tool and a methodology for evaluating this tool’s efficacy. The study 

outlined here used technology in the form of personal computers in a 1:1 setting with 

students as an assessment tool to make students’ thinking about mathematics explicit, 

which is one of the primary goals of cognitively guided instruction (CGI). The efficiency 

afforded by this tool allows teachers to continue instruction in a manner that best 

addresses student needs, whether at an individual or class level. 

A desire to improve the assessment of higher-order thinking supports the 

increasingly cognitive orientation of instructional theory (Niemi, 1996) and aligns 

particularly well with the aims of cognitively guided instruction (CGI). CGI seeks to use 

students’ own thinking processes to make their mathematical strategies and 

misconceptions known to themselves and their teachers. Once explicit, these processes 

indicate to students and teachers a path for further learning and instruction.  



 

 

2 

 

 

However, assessing those cognitive processes remains an elusive goal (Niemi, 

1996). One premise of CGI is that existing knowledge, misconceptions, and the ability to 

use various problem-solving strategies vary among students, and that those different 

perspectives, when compared and combined, are the fertile grounds from which to better 

grow conceptual understanding. Locating students within the cognitive space of a given 

problem has proven to be time consuming, particularly when accomplished at a level to 

sufficiently reveal and individual student’s needs. However, reducing the time allotted to 

that task may not give teachers enough detailed knowledge to provide individualized, 

student-centered instruction.  

 

  

 

Figure 1. Relationship of knowledge base 

  

 

Performing mathematics at the elementary-school level requires a number of 

cognitive abilities. Young students are expected to automatically recall basic 
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mathematical facts and strategies while also gaining a conceptual understanding that will 

serve as a foundation for further learning. Teaching early mathematics skills from purely 

algorithmic and memorization perspectives will not provide an adequate foundation for 

future learning (Hiebert et al., 1997). CGI research recognizes that children develop both 

general and domain-specific strategies for solving mathematics problems long before 

their formal mathematics education begins. CGI therefore seeks to build on those 

strategies rather than pretending that students’ minds are, mathematically speaking, a 

blank slate (Carpenter, Fennema, Franke, Levi, & Empson, 1999).  

Problem solving, another cognitive ability used in mathematics at this level, poses 

difficulties for assessment because it demands thinking at a higher level than that 

required by rote learning of algorithms. Problem solving is increasingly important as the 

availability of information increases in the information age. CGI uses word problems 

extensively because their translation into mathematical language invokes desired types of 

thought (Carpenter et al., 1999). 

If students are expected to develop and demonstrate mathematical knowledge that 

goes beyond recall of facts and procedures, new types of assessments must be developed, 

assessments that allow and even encourage students to respond in ways that mirror or 

illuminate their cognitive processes. Acknowledging and identifying the highly 

individualistic nature of students’ existing mathematical knowledge presents a challenge 

for assessment, whether administered by a teacher or a computer. Research has identified 

typical strategies used by young mathematics students when solving certain kinds of 
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problems, but cannot be sure to have found all possible strategies, especially those based 

on misconceptions. However, probable student responses for selected response items can 

be predicted from known strategies (Fuson, 2003).  

Lipson, Faletti, and Martinez (1990) envision an assessment system that 

incorporates models and assesses important constructs and structures of mathematics; is 

responsive to individual student needs and knowledge; and paints a detailed picture of the 

state of a student’s mathematical knowledge that is useful for instructor and student. 

Feedback from such an assessment will be more than a simple score. On a larger scale, 

compilation of individual student results would create a more complete picture of 

students’ mathematical thinking, thereby improving the assessment system’s capacity to 

assess individuals accurately. This cyclical feedback loop integrates mathematical 

knowledge and student performance, which stands in stark contrast to traditional 

mathematics assessments that separate the student from substantive knowledge and 

provide little useful feedback for the student (Kulm, 1990; Lipson et al., 1990).  

Despite great promise, technology has thus far fallen short of its potential for 

educational use (Lesh & Kelly, 2000). Roschelle and Jackiw (2000) concur and offer the 

explanation that the application of technology often suffers from a problem similar to 

many other school reforms: the more effective it is in a given locale, the less likely it is to 

generalize to other situations (Glennan, Bodilly, Galegher, & Kerr, 2004). Too often, 

technology use lacks a solid pedagogical or theoretical background. 
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The purpose of this study is to evaluate a type of assessment tool that has been 

designed to use common, non-specialized technology to provide teachers and students 

with information not generally brought out by traditional assessments of mathematical 

performance. This information provides another measure of mathematical understanding 

and assists teachers’ instructional efforts. The new assessment is not intended to replace 

performance-based, results-oriented tests of mathematical achievement but to 

complement them. 

Delimitations of the Study 

The participants in the study were a convenience sample. The students, their 

teachers, and schools are participants in the Developing Mathematical Thinking program 

run by the Initiative for Developing Mathematical Thinking (IDMT) at Boise State 

University, but the length of any individual’s participation could not be determined. 

Previous mathematical training of students and their teachers was a possible factor in 

students’ performance, but was not assessed or controlled in this study. Students not in 

class on testing day were not included in the study. 

The assessment focused exclusively on multiplication of one and two digit 

positive integers. Generalizations beyond the classes tested and the subject matter of the 

assessment cannot be made. One section of the assessment (computer familiarity) relied 

on self-reporting. Relevant sections of the analysis contain additional limitations. 
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Research Questions 

 This study attempted to answer the following questions: 

• What is an assessment instrument able to reveal about students’ understanding 

of mathematic concepts related to multiplication of integers? 

• What relationships are demonstrated between the results of the assessment for 

mathematical understanding and the assessment of demonstrated algorithmic 

proficiency in multiplication? 

• What effect does computer familiarity have on the ability of the assessment to 

reveal mathematical thinking?  
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CHAPTER TWO: REVIEW OF LITERATURE 

Three bodies of knowledge inform a computer-based effort to elicit students’ 

thinking about mathematics: cognition and assessment, computer-based assessment, and 

cognitively guided instruction. The relevance to the current study and importance of each 

of those areas is explored below. 

Cognition and Assessment 

This section focuses on instructional purposes and uses of assessment as they 

relate to the goals of cognitively guided instruction. Although other purposes of 

assessment (accountability, promotion, etc.) are important, the effect of instruction cannot 

be overstated and must be a starting point for successful school improvement (Chappuis 

& Chappuis, 2002).  

The terms cognition (how students think) and assessment (how can we tell what 

they know) were often thought of separately because of the pervasiveness of behaviorism 

in 20
th

 century educational thinking (Driscoll, 2005; Saettler, 1990). Behaviorism, by 

definition, takes into account only stimuli and observable behaviors, omitting any 

explanation of cognitive mediation that connects those two end points. Successful 

learning from a behavioral perspective depends on observable behaviors and not on 

internal states (Driscoll, 2005). Mastery learning and programmed instruction are 

additional models of instruction built on behavioral principles (Joyce, Weil, & Calhoun, 
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2000). Standardized testing perpetuates the divide. Until about 20 to 30 years ago, tests 

were not considered capable of measuring how students actually thought; instead, tests 

settled for capturing the results of observable behaviors and gauging factual knowledge. 

However, recent advances in cognitive science and measurement have made possible the 

assessment of the thought processes that precede the observable results (Giordani & 

Soller, 2004; Mislevy, Steinberg, Breyer, Almond, & Johnson, 2002; Pellegrino, 

Chudowsky, & Glaser, 2001).  

The current climate of accountability in public schools has resulted in greater 

amounts of standardized testing, which does not satisfy the call of some educators for 

more in-depth measurements of student knowledge. Baker and O’Neil (2002) predicted 

this would hasten the convergence of technology, assessment, and instruction. However, 

there is a more fundamental reason for such forms of assessment: the major phases of the 

teaching and learning process (curriculum, instruction, and assessment) function best 

when they are aligned with each other (English, 2000). Nearly 20 years ago, Lesh (1990) 

stated that assessment must be an integral part of the instructional and curricular process. 

Roschelle and Jackiw (2000) found justification for the addition of technology to the 

assessment process in the philosophies of leading 20
th

 century educational thinkers. Links 

among cognition, instruction, and assessment can be found in the work of the most 

prominent educational thinkers of the last one hundred years. Piaget’s theory of cognitive 

development, in which children progress from concrete to abstract thinking (Driscoll, 

2005; Piaget, 1969), supports moving from using real manipulables to virtual ones. The 
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rich environments that technology and its multiple forms of representation provide create 

a rich Vygotskian environment where artifacts become tools that promote learning 

(Vygotsky, 1978). Student-centered environments that value the perspective of each 

student would please Dewey (1960).  

Aligning assessment practices with the philosophies of past educational thinkers 

would be an academic endeavor, but change in such a large facet of contemporary 

education must have some rationale based on the reality today’s students will face. 

Recent emphases on constructivist and social learning theories have created a need for 

assessments to do more than rate observable behaviors. The content and organization 

(schemas) of long-term memory provide clues about how people solve problems, a skill 

seen as increasingly important in today’s knowledge-based society (Pellegrino et al., 

2001). Assessments that make students’ thinking explicit benefit learners and teachers 

and shifts the role of the teacher to that of a facilitator, which is in keeping with today’s 

knowledge-based society (Lesh, Hoover, Hole, Kelly, & Post, 2000).  

The National Research Council (NRC) also recommends that all levels of 

assessments, from informal classroom assessments to state- and nation-wide standardized 

tests, “work together in a system that is comprehensive, coherent, and continuous” 

(Pellegrino et al., 2001, p. 9). Although tests on various levels serve different purposes 

and therefore require different evidence, such a goal perhaps places the greatest burden 

on large-scale assessments if they are to become capable of eliciting knowledge at a 

deeper level than most currently do.  
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The purposes of assessment, stated or not, have become increasingly numerous: 

promotion, graduation, accountability, motivation, planning instruction at all levels 

(individual student, class, school), and making cognitive processes explicit (Airasian, 

2005; Walvoord, 2004). This last purpose emphasizes the shift toward constructivism. 

With the recognition that student representations of knowledge differ comes the 

realization that their thought processes need to be made explicit and taken into account 

for purposes of instruction and assessment. No single testing method serves all of these 

purposes, but an emphasis on accountability has reduced the relative importance of the 

other purposes in schools today (Baker & Mayer, 1999). Increasing assessments’ capacity 

to serve instruction will be difficult, because changing the mindset of the general public 

about what testing should look like and accomplish is a difficult task (Schacter, Herl, 

Chung, Dennis, & O'Neil Jr., 1999).  

Learning About Student Thinking 

A great leap of faith in cognitive science is that assessments actually can do more 

than capture behaviors; they can reveal what and how students think. Lesh and Lehrer 

(2000) believe this to be true, certainly in mathematics, and that this has benefits for both 

teachers and students. Such assessments align well with constructivist and student-

centered learning, including CGI. However, information about thinking processes is 

usually not gathered because it is difficult to accomplish. Simply defining and describing 

these processes is difficult. The fact that knowledge structures vary from student to 

student and that those structures are dynamic, not static (Carpenter et al., 2004), 
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complicates the task. Lesh states that “there is no single right or wrong way to organize a 

system of ideas” (1990, p. 98), and McKnight (1990, p. 172) says that “higher order 

thinking, even in mathematics, is not a unitary phenomenon.” In addition, students do not 

posses component skills in equal proportions. Those good at following rules or applying 

models were not always the same students as those good at creating models (Lesh et al., 

2000).  

A common criticism of traditional assessments, whether paper and pencil or 

standardized multiple choice, is that they do not make explicit the cognitive processes 

behind student answers. Some newer assessments attempt to simply add the cognitive 

component to assessments that bear many similarities to traditional tests (Hoeft et al., 

2003). Hoeft et al. took a different approach by attempting to make explicit the schemas a 

student has for a given topic and omitting the application and “answer” components of a 

traditional test. The tool they used was a concept map, which depicts only concepts and 

relationships.  

Discerning thinking indicative of learning and not of innate ability is difficult. 

Assessments must require more than recall of rote learning, and the cognitive processes 

being assessed must be sensitive to instruction (Baker & Mayer, 1999). Lesh and Kelly 

(2000) state that one way to find out what students know is to teach them. Prior 

knowledge and misconceptions, if not formally assessed before instruction, will become 

apparent during instruction. Such formative assessment is often informal and made 
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through observations of answers to questions, questions asked, attention, and facial 

expressions (Airasian, 2005). 

Models 

Models and modeling are at the heart of mathematical understanding and expert 

application. Roschelle and Jackiw (2000) state that modeling merges the empirical and 

the theoretical: the reasons behind observable mathematical behavior. Determining the 

models used by students is therefore a critical step toward understanding their 

mathematical thinking. In the real world, the ability to develop models is more important 

than just being able to apply them, but most teachers and textbooks do not encourage it 

(Fuson, 2003).  

Models, including those developed by students, should be at the heart of 

knowledge construction and instruction, student thinking, and assessment (Lesh & 

Lamon, 1992). Students create and rely on internal models to process and interpret 

incoming information, whether the models are up to the task or not (Fuson, 2003). This is 

important to recognize because it explains that misconception can reflect incomplete 

rather than incorrect learning. Models distill experience into reusable knowledge, and 

because humans tend to use models, they also tend to create them. Conditions that tend to 

promote model development include (a) situations in which predictions based on patterns 

must be made, (b) explanations or justifications are required, and (c) strategies of others 

must be analyzed. All these conditions are present in cognitively guided instruction. 
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Efforts to make students mathematize problems by converting everyday situations 

into mathematical terms and notation have been called “model eliciting” (Lesh et al., 

2000). Creating model-eliciting assessments is the result of purposeful design, but before 

the test can be created, the content material must be modeled (Lipson et al., 1990; 

Martinez & Bennett, 1992; Mislevy et al., 2002; Pellegrino et al., 2001). For complex 

assessments, the plan for scoring must be determined during the design stage by using an 

evidence-centered approach that models required knowledge and skills, the tasks that 

elicit them, and levels for measuring how well one meets the other. This is similar to 

problem-based learning, where one begins with the end in mind (Boud & Feletti, 1997). 

However, model-eliciting assessments try to make in-depth student knowledge available 

to students and instructors. 

The National Research Council (Pellegrino et al., 2001) underscored another reason 

for eliciting models when they state that CGI and assessments based on its principles can 

differentiate cognitive processes behind similar if not identical uses of algorithms. Two 

mathematical word problems requiring the same algorithm may require different initial 

strategies. Students’ selection of strategies may depend on the semantics of a word 

problem, making selection and execution of the algorithm dependent on cognitive 

processes that occur earlier in the solution process. Determining students’ capabilities 

requires understanding the processes that occur before the algorithm is used.  

Model eliciting assessments discussed so far have pre-supposed students actively 

participate in authentic tasks that reveal their thinking. Giordani and Soller (2004), 
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however, found that when working at a computer in groups, elementary age students 

were more likely to express and articulate their ideas about solving the problem at hand 

when another student had control over the mouse. This suggests students may not 

actually have to actively solve a problem to elicit their thinking. 

Of course, not all that is revealed about students’ thinking will prove to be correct. 

Identifying misconceptions and false assumptions should be as much a goal of 

assessments as identifying what is correct (Lesh, 1990). Any instruction that does not 

make explicit, use, and correct misconceptions in existing knowledge is likely to result in 

fractured and incoherent learning combined with continuing misconceptions. When 

eliciting students’ mathematical knowledge, students should be allowed to represent their 

current knowledge accurately and fully, not just the parts of it that align to traditional or 

“correct” mathematical thinking (Lesh et al., 2000; Yeh, 2001).  

Problem Solving 

An assessment whose purpose is making strategies and models explicit must be 

engaging students in problem-solving tasks. Mayer and Wittrock (1996) define problem 

solving as “cognitive processing directed at achieving a goal when no solution method is 

obvious to the problem solver” (p. 47). That is, if the path to a solution is known from the 

start, then students are applying algorithms or recalling factual knowledge. Baker and 

Mayer (1999) state that “problem-solving performance can be a more challenging 

indicator of a student's understanding” (p. 271). They go on to state that problem solving 

and testing for depth of understanding involve creation of mental models, which have 
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been discussed as critical to understanding mathematical thinking. Their criteria for 

computer-based assessment of problem solving include cognitive complexity, meaning 

that items must require students to do more than just recall material. Examining cognitive 

modeling, problem solving, and the type of complexity that computer-based assessments 

can provide demonstrates how closely linked they are.  

Transfer is relevant to the assessment of student thinking because problems that 

might appear quite different on the surface may require the same mathematical principles 

to solve. A child’s ability to solve one problem based on a particular concept but not 

another problem based on the same concept might indicate rote learning of solutions and 

a lack of true understanding. A learner that is not able to apply what was learned from 

one problem to a similar problem might be thought of as developmentally incapable of 

abstract thought (Driscoll, 2005), but also might be thought of as a novice in the relevant 

domain: lacking in the conceptual depth required to determine similarities between the 

two problems (Gagne, Yekovich, & Yekovich, 1993). 

Alignment 

If stated instructional objectives and instruction promote problem solving, 

modeling, and conceptual understanding, then assessments must be capable of 

determining how well students have mastered those objectives (Stroup & Wilensky, 

2000; Yeh, 2001). Teaching higher-order thinking but assessing rote performance yields 

data neither valid nor useful in planning further instruction. To reverse the logic as 

Maslow (1966, p. 15) did when he said “if the only tool you have is a hammer, [it is 
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tempting] to treat everything as if it were a nail,” the nature of the assessment drives the 

instruction, so the assessment needs to test the core of the desired objectives. When the 

standard form of assessment is a multiple choice or short answer type test, that tends to 

dictate a pedagogical approach designed to yield the ability to produce the types of 

answers those tests require. An algorithmic approach to solving problems can, with 

enough repetition, produce the skills necessary to answer those types of questions. A 

standard argument against standardized testing – what gets tested, gets taught – extends 

beyond content into the pedagogy and philosophy of instruction. Limitations in the type 

of assessment come from many factors: the powerful effects of teachers’ own school 

experiences (Richardson & Placier, 2001), teacher training, available time and testing 

technologies, and assessment formats of external, standardized tests. Improved methods 

of assessment must be a component of reform of instruction (Chappuis & Chappuis, 

2002). 

Results of assessment tasks that demand higher-order thinking are not represented 

well by a single score. Stated another way, a rich learning environment creates rich 

assessment data (Lesh & Lamon, 1992; Stroup & Wilensky, 2000). Items are needed to 

produce rich data and constrain student responses as little as possible. 

Authenticity 

Authentic assessment sounds appealing, but researchers disagree on its 

importance and even its definition. Yeh (2001) stated that even multiple choice tests can 

be authentic. However, most multiple choice test questions do not represent authentic 



 

 

17 

 

 

problems or experiences. Short answer mathematics problems bear little relation to 

students and their world; they are about factors external to the student (Lesh et al., 2000). 

Others discount the importance of authenticity by saying that it not the most important 

factor in designing an assessment; that providing the required evidence is more important 

(Mislevy et al., 2002). Lesh and Kelly (2000) argue the limitations of authentic 

assessment by stating that “most students’ relevant knowledge seldom develops beyond 

primitive levels as long as their mathematical experiences are restricted to those that 

occur naturally in everyday settings” (p. 203). Still others feel authentic problem solving, 

especially in a technology-based environment, requires the same set of skills as the 21st 

century workplace (Schacter et al., 1999) and that this higher level of authenticity results 

in better validity (Martinez & Bennett, 1992). 

Lesh and Lamon (1992) described characteristics of authentic assessment items: 

they take at least five minutes to complete, allow demonstration of individual student 

understandings, are more complex than answering a specific question, and allow multiple 

solution paths. However, most so-called authentic problems are not really authentic (Lesh 

et al., 2000). Their givens are very constricting, and they are derived from existing 

models. They are simply application problems. The ability to develop models is more 

important in the real world than just being able to apply models, and most training, 

assessments, and textbooks do not encourage this. There is a correlation between 

problems that are truly real-world and those that elicit model creating. Knowing how to 

apply models does not necessarily transfer to being able to create them. Both are certainly 
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important skills, but it is too easy to confuse them. A final note from Lesh et al. about 

authenticity is that attempting to ground problems in reality should not be an attempt to 

define students’ realities. The worlds of reality and theory are not immutable or 

exclusive. 

Authenticity is pertinent to the topic of this study because the goal is to elicit 

students’ mathematical thinking, thinking derived from their informal mathematical 

experiences and learning in the real world as well as their formal education. Authentic 

problems have larger contexts and depend more on understanding than on rote learning 

and algorithms. 

Summative or Formative? 

The line between formative and summative assessment blurs as tasks become 

more authentic. Identifying existing cognitive processes is formative in that it provides 

guidance for further instruction, but if making students proficient in a particular manner 

of thinking is a goal of the instruction, then it also plays a summative assessment role. 

The ability of any assessment (and CBA in particular) to provide individualized and 

nearly instantaneous feedback and to record student progress blurs the lines not only 

between formative and summative assessment but also between instruction and 

assessment. These capabilities also increase opportunities for reflection, which Lesh and 

Kelly (2000) describe as the usual way to induce thinking about changes in knowledge. 

This is not to imply that technology is the answer for the entire instructional process, but 
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it can play a role in each step of the instructional process. As discussed elsewhere in this 

paper, teachers and technology are more effective when they work together.  

Many summative assessments focus on narrow and comparatively unimportant 

portions of the content: the results from narrow, specific, and artificial problems (Lesh, 

1990). These types of assessments do not measure generalizable procedural or conceptual 

knowledge that benefit students in further study or outside the classroom. The blurring 

between instruction and assessment and between summative and formative is inevitable 

as tasks—taught and measured—become more authentic. Difficulty defining or 

separating the two is more of a problem for researchers than for teachers in classrooms. 

Interpreting Data and Results 

A number of factors come into play when the complex data gathered from 

assessments that elicit models, strategies, and other forms of higher-order thinking must 

be analyzed. The greater depth of information they provide comes at a cost, which is 

breadth of knowledge. Such assessments tend to cover a limited number of concepts and 

also take more time (Lesh et al., 2000). Assessments eliciting these forms of knowledge 

must be able to capture and interpret intermediate steps in the solution process. To do 

this, probable student models of knowledge and solution paths must be pre-constructed. 

Lipson et al. (1990) envision an assessment system that incorporates and assesses 

important models and structures of math; that is responsive to individual student needs 

and knowledge; and that can paint a detailed picture of the state of a student’s 

mathematical knowledge, which is useful for instruction and to the student. Feedback 



 

 

20 

 

 

from such an assessment would be much more than a simple score. On a larger scale, the 

state of each student’s knowledge would inform the assessment system of how students 

tend to think and serve to create a more complete picture of how students think 

mathematically. This cyclical feedback loop integrates mathematical knowledge and 

student performance, which stands in stark contrast to traditional mathematical 

assessments that separate the student from substantive mathematical knowledge and 

provide little useful feedback for the student (Lesh et al., 2000). 

Assessing Understanding 

 Determining whether or not students have arrived at a correct or defensible 

answer for a mathematics problem is a fairly objective judgment at the elementary level 

of mathematics. For example, there is only one reasonable answer that could be expected 

from an elementary school student given the problem 5 x 6 = ? This problem could be 

posed as either a selected- or constructed-type item. As previously noted, the focus of 

mathematical education has shifted from that type of judgment to understanding and 

developing the mathematical thinking of students. A constructed response item that 

requires only a final answer is not necessarily the best means of exposing the thinking 

and selection of strategies that get students from the start to the conclusion of a problem. 

Lesh et al. (2000) state that the type of problem should be dictated by the desired type of 

information. Problems requiring rational, finite answers are unlikely to elicit the freest 

thinking. Giordani and Soller (2004) go a step further by saying that students are most 
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likely to express their thoughts about a problem when they do not have control over the 

solution process.  

As an example, McClain, Cobb, Gravemeijer, and Estes (1999) demonstrated how 

students in a first grade classroom benefited from having to explain their thinking, and 

showed how those types of activities blur the distinction between instruction or 

development and assessment, a distinction that may have a stronger basis in instructional 

design than in cognitive science. Yeh found that forcing students to express and defend 

their thinking improved their critical thinking because “they frequently realized the need 

to modify their claims and reasons, ultimately resulting in stronger arguments and 

improved reasoning” (2001, p. 16).  

 A synthesis of the above ideas indicates a path toward a method of eliciting 

students’ mathematical thinking: remove the mathematical solution as the student output 

for the problem and relocate the process control away from the student. Student responses 

would be purely reactive and conceptually based. In a CBA environment, the computer is 

the logical source of control, and also the means of collecting student responses. 

Computer-Based Assessment 

New definitions of learning have refined purposes and methods of assessment, but 

the late 20
th

 century saw another major innovation in assessment with the proliferation of 

personal computers. They have been used to conduct assessments since early on in their 

existence, but it is worth noting that the 1971 edition of the Educational Measurement 

handbook did not cover the topic of computerized testing (Thorndike, 1971). Although 
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technology is the assessment medium of the current study, the National Research Council 

(NRC) warns “technology will not in and of itself improve educational assessment.” 

However, the NRC does go on to state that technology can “enhance the linkages among 

cognition, observation, and interpretation” (Pellegrino et al., 2001, p. 9). 

Baker and Mayer (1999) believe computer-based assessment (CBA), whose 

origins stem from a desire for efficiency, is the future of assessment; others believe the 

inevitable trends toward lower cost and ease of use might make technology a force for 

true change in education, which has resisted large scale change for so long (Baker & 

O'Neil Jr., 2002). Many researchers agree with this statement for a variety of reasons. 

One is the technological capacity to display information in multiple, more realistic 

representations by using photographs, animation, photographs, interactivity, and 

increased user control (Bransford, Brown, & Cocking, 2000; Lesh, 1990; Lipson et al., 

1990; Pellegrino et al., 2001; Scalise & Gifford, 2006). These all provide better 

representations of the real world and embrace student variability. Beyond the possibilities 

for tests themselves, McKnight (1990) believes this also supports an increasing need for 

graphic literacy in our information-based society. In addition, modeling of the content to 

be tested and of student knowledge aligns with recent work in cognitive psychology. 

When well designed, CBA interfaces can and should be unobtrusive (Chung & Baker, 

2003). This is a critical aspect of any test attempting to illuminate student thinking. 

Johnson and Green (2006) found students resort to mental calculation when doing so is 
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easier than working out the problem on paper. The same will likely hold true in other 

testing media, making ease of use a positive factor for eliciting thinking. 

The most compelling reason for using CBA is its capacity to capture a more in-

depth picture of student knowledge (Lipson et al., 1990; Mislevy, 2004; Pellegrino et al., 

2001). CBA has primarily been used in mathematics and science but also to assess 

writing. It is the natural form of assessment to use with computer-assisted instruction 

(Lipson et al., 1990) and intelligent tutoring systems (Bransford et al., 2000), and can 

detect previously unknown patterns and relationships in student knowledge and 

performance (Bransford et al., 2000). CBA has the potential to perform this analysis 

much faster than can humans (Chung & Baker, 2003). In regard to accuracy of scoring, 

computer scoring of questions on the GRE was found to be highly correlated with human 

scoring, especially in algebra (Martinez & Bennett, 1992). Some newer methods of 

converting evidence from these types of assessments into usable information require 

technical skills in modeling and statistics that most educators do not possess. Technology 

can help bridge this gap. If the instruction is not preparing students for these types of 

tests, however, the tests will lack validity because they will not measure and support 

judgments about what was taught. 

Computer-based assessments or components of them can be reusable (Baker & 

O'Neil Jr., 2002) or even generative. This is critical because such assessments require a 

lot of development time. Twenty years ago, developing a computer-based assessment 

took 200 times as long as the instruction for that assessment. Developing computer-based 
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assessment is still time intensive, though that ratio has since lessened (Anderson, Boyle, 

& Reiser, 1985). As domain specificity of an assessment increased, however, designing 

reusable tests or components becomes more difficult. 

The design of computer-based assessments that are useful outside of their original 

setting encounters problems similar to research designs that must balance validity and 

reliability with generalizaibility. Measuring problem-solving ability in a specific domain 

requires a knowledge base and assessment formats that are difficult to apply in other 

domains or situations (Bransford et al., 2000). Such assessments must rely on analysis, 

identification, and use of non-domain specific knowledge, strategies, and assessment 

structures whenever possible if they are to become practical. Baker and O’Neil (2002) 

argue that only such careful analysis can produce computer-based assessments that are 

both valid and practical. 

Previous Applications of Computer-Based Assessment 

Many technology-based immersive, multimedia, and collaborative simulation and 

learning environments have positive effects on student learning, but most of these 

technologies did not originally incorporate assessment. The need for scaffolding and 

feedback fueled the integration of assessment, as did the need for accountability and 

documentation of effects of such systems. Such authentic and immersive environments 

aligned poorly with most standardized test formats, creating the need for assessments that 

could elicit the cognitive skills such environments endeavor to instill in students. 

Previous assessments using computer-based problem solving include domains as 
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divergent as architecture (Katz, Martinez, Sheehan, & Tatsuoka, 1993), and dental 

hygiene (Mislevy, Steinberg, Breyer, Almond, & Johnson, 1999).  

 One style of CBA relies on recording locations and effect of mouse clicks as 

students solve a problem. This is referred to as a click-through interface. A problem-

solving environment using this type of interface was developed at UCLA in the early 

1990s. The Interactive Multimedia Exercises (IMMEX) tracks what users click on in a 

non-restrictive environment. Each click provides more information, some relevant, some 

not; but also costs the student a bit of the currency provided for each solution attempt for 

that problem. The amount of currency provided is enough to provide students some 

freedom in deriving their solution path, but not enough to arrive at a solution by trial and 

error using every available option. Students must ultimately choose from a long list of 

possible final answers, and guesses also cost the student a bit of currency. The list of 

possible answers is long enough to discourage guessing. The recorded click stream and 

the final answer together provide ample evidence of how a student solved the problem 

("IMMEX," 2007). 

This interface was also used by Chung and Baker (2003) on college freshmen 

solving a design problem. All information and processes were available for students to 

select with a mouse click, and previous analysis of the domain allowed the researchers to 

capture assessment solution paths. This study demonstrated that although the amount of 

interaction was low, the analysis was cost and time efficient.  
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The ability of a click-through interface to capture the steps students take in their 

paths to a solution is not dependent on the level or content of the problems. Two students 

who both selected the correct answer in the end may have had very different solutions 

paths. Researchers have found strong correlations between desired cognitive processes 

and successful problem solutions (Chung, de Vries, Cheak, Stevens, & Bewley, 2002). 

That is, solutions paths pre-defined as desirable generally produced correct answers. 

Misconceptions do have to be deduced from the selection of answers; they are 

demonstrated by the students’ selections that have been captured in the mouse-click data. 

 Concept maps are another tool that has been used to capture student 

representations of “a domain’s conceptual structure” (Pellegrino et al., 2001, p. 265). In 

these activities, students do not actually solve problems but create a concept map to 

represent their thinking in a domain. One study using this method created a computer-

scoring system (O'Neil Jr. & Klein, 1997). After an initial training period, the computer-

based method was as effective as a pencil and paper version of the same task and also 

assessed collaborative skills.  

 In some cases of computer-based problem solving and assessment, two nearly 

separate systems handle the problem presentation and the assessment. The Adventures of 

Jasper Woodbury problem-solving series from the Cognition and Technology Group at 

Vanderbilt University (CTGV) is one such case. Assessment data and interpretation was 

handled by a separate, web-based program called Scientific and Mathematical Arenas for 

Refining Thinking (SMART). One feature of the SMART web site showed videos of 
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students explaining solutions that deliberately contained incorrect statements. The 

students watching the videos had to provide “feedback” to the students in the videos. This 

created cognitive dissonance in students who understood the problems correctly while 

also creating opportunities for them to demonstrate that knowledge. 

Scaffolding and Feedback 

Scaffolding is generally thought of as a component of instruction but is also 

present in assessment. Azevedo (2005) found scaffolding necessary for changes in 

thinking to occur. Technology enables scaffolding and feedback at a speed and in 

quantities not possible in teacher-mediated instruction, which increases a student’s zone 

of proximal development (ZPD) (Vygotsky, 1978). Vygotsky’s theory of ZPD describes 

the difference between what a child can do by him or herself and what the child can do 

with the assistance of an adult or more advanced peer. Vygotsky hypothesized that 

measuring just the former did not provide a full picture of the child’s intelligence or 

learning. This relates to the concept of scaffolding because any assistance provided will 

be most effective if it is within the child’s ZPD (Siegler & Alibali, 2005). 

Despite Vygotsky’s theories, most assessments attempt to limit scaffolding. Many 

selected response items provide clues that influence students’ responses. While most 

questions in the assessment instrument developed for this study are selected responses, 

the responses do not contain mathematical content: most are of the yes or no variety. 

Technology can also vary the rate and type of feedback (Baker & Mayer, 1999). 

This is particularly useful in formative assessment. Computers allow better detection of 
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previously unseen patterns and relationships in students’ thinking. The positive effects of 

increased feedback in computer-based learning has been documented in intelligent 

tutoring systems (Pellegrino et al., 2001).  

The NRC details a study comparing the effects of practice and feedback from a 

teacher to that of an intelligent tutor (Kulm, 1990). The teacher’s feedback was more 

accurate than the intelligent tutor because the immediacy and volume of feedback from 

the intelligent tutor made the students’ needs explicit. In this study, the teacher and 

intelligent tutor formed a complementary system able to meet the needs of the student 

better than either one alone. Another benefit of receiving feedback from another, non-

judgmental source, such as a computer, might be to reduce the pressure a student feels to 

perform well (Lesh, 1990). 

The socially constructivist nature of CGI and the scaffolding it offers create 

challenges for aligning assessment with instruction. This is compounded by increased 

opportunities for collaboration provided by technology (Bransford et al., 2000). The 

validity of supposedly authentic tasks is reduced by the absence of the social components 

present in the instruction and by the fact that problem solving in the real world is often a 

collaborative process. 

Effects of Test Mode 

 Numerous researchers have compared computer-based to paper-and-pencil tests. 

A recent meta-analysis (Wang, Jiao, Young, Brooks, & Olson, 2007) of mathematics 

studies reviewed the results of three other previous meta-analysis studies (Bergstrom, 
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1992; Kim, 1999; Mead & Drasgow, 1993) that did not focus on mathematics and were 

largely targeted at adult learners or secondary students. None of these studies found a 

significant effect for test mode. 

The meta-analysis by Wang et al. (2007) set stringent criteria for inclusion of 

studies. The samples had to be English speaking, drawn from K-12 classrooms, and have 

a minimum within-groups sample size of 25. The studies also had to present or have 

gathered the data necessary to calculate effect sizes. Finally, the studies had to directly 

compare results from the two tests modes. These criteria greatly reduced the number of 

studies in the meta-analysis from 312 after the initial literature review to 44. Most of the 

included studies were published in 2004. It may be worth noting the variables Wang et al. 

found did not have an effect when comparing computer-based and paper-and-pencil 

testing. These include study design, grade level, sample size, type of test, computer 

delivery method, and practice. The type of computerized test (linear versus computer-

adaptive) was a significant factor, with linear tests showing greater differences in the 

comparisons to paper-and-pencil tests (PPT). 

The study by Sandene et al. (2005) of the National Association of Educational 

Progress (NAEP) noted test mode effects were larger for constructed response items than 

for multiple choice items. However, Martinez and Bennett (1992) found computer 

scoring of algebra problems matched that of human scorers. This relied on a complete 

pre-evaluation of both correct and incorrect solutions, mirroring the process that goes into 

creating selected response items.  
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Differential Item Functioning 

  Differential item functioning (DIF), which occurs when groups perform 

differently on an item after controlling for ability (Gierl, 2004), was found in CBA by a 

number of studies. Studies by Johnson and Green (2006), and Poggio, Glasnapp, Young, 

and Poggio (2005) did not find a significant effect for test mode, but did note differences 

at the item level that they could not conclusively explain. Both offered question content 

as a possible factor. Gu, Drake, and Wolfe (2006) attempted to identify sources of DIF in 

tests of college students on quantitative items. Over one-third of the items (38%) showed 

DIF. Question content was again cited as a factor, as was the mathematical notation used. 

Page formatting and methods of responding to questions were not found to be factors. 

Items containing DIF-producing content were noted as easier or harder by mode, but no 

researcher attempted to relate the differences to content validity. 

 Pommerich (2004) maintains the purpose of research into test mode effects is to 

ensure that variability in scores is due to differences in content knowledge and not effects 

of testing on a computer. This would seem to assume that paper-and-pencil tests do not 

contain factors that contribute to test mode effects and that any effects found are due to 

deficiencies (or strengths) of CBT. The goals in development of CBT might better be 

defined as high degrees of validity and reliability, not a lack of mode effects when 

compared to another form of testing.  



 

 

31 

 

 

Computer Familiarity 

 Researchers have frequently examined computer familiarity as a possible 

confounding factor in studies dealing with computer-based instruction or assessment, 

hypothesizing that the quantity and quality of students’ previous computer experiences 

can affect their performance. However, the effect of students’ familiarity with computers 

on computer-based assessment is not conclusive. Some studies found no effect (Clariana 

& Wallace, 2002; Hargreaves, Shorrocks-Taylor, Swinnerton, Tait, & Threlfall, 2004; 

Wang et al., 2007), but the NAEP study (Sandene et al., 2005) found familiarity might be 

a factor. This conclusion was bolstered by the fact that students who took the test on 

notebook computers supplied by NAEP facilitators scored significantly lower than those 

who took the tests on their schools’ computers. Despite suggestions that CBA produced 

lower scores (possibly just a matter of calibration) and that a lack of familiarity with 

computers possibly lowered scores (Sandene et al., 2005), the authors concluded that the 

use of CBA could shorten the development cycle. As far as Educational Testing Service 

was concerned, apparently the prospect of greater efficiency outweighed the possible 

downsides of CBA. 

Issues with Technology 

The desire to assess students’ higher-order thinking in mathematics is not new. 

Kulm (1990) reports on efforts by the National Assessment of Educational Progress 

(NAEP) in the 1980s to develop a conceptual framework for tests that would assess 

higher-order thinking in mathematics and science. They encountered difficulties 
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separating mathematical thinking from other skills required to complete the questions and 

identifying age-appropriate benchmarks for mathematical thinking. However, demands 

for accountability and the ever-present financial constraints on public education have 

ensured the status quo on most forms of assessment. Instead of increasing their capacity 

for individualization, these forces have reduced standards to the lowest common 

denominator. Demands for high validity and reliability, while not inherently negative 

forces, have magnified the effects of the previously mentioned factors. Tests produced 

under such conditions cannot be expected to allow for individualized or multiple forms of 

demonstrating knowledge. 

As with any assessment medium, CBA has potential pitfalls. Difficulties with 

language may inhibit valid assessment of the target skills (Baker & O'Neil Jr., 2002), and 

the interface may not be as transparent to the test takers as with a paper test. In a study by 

Chung and Baker (2003), college freshmen using a mouse-based testing interface 

reported having to navigate by clicking was somewhat bothersome. The researchers 

interpreted this to mean items in the test worth clicking were things the students felt were 

truly worth pursuing, but younger students may lack the cognitive development to make 

that assumption valid for their age. 

Summary 

Issues Ketterlin-Geller (2005) encountered when designing a CBA in 

mathematics for third graders who required assistive technologies are instructive when 

designing similar assessments for a general population. She had to accommodate not only 
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cognitively variable solution paths, but also variable abilities of perception and physical 

dexterity. Practice with the computer was also required to ensure adequate familiarity and 

lessen effects of the medium. All the learner characteristics and technological factors 

must be planned from the beginning of the design stage of the assessment. This produces 

far better results than retrofitting the test later. 

Computer-based assessment, although no panacea for the challenges of learning 

or assessment, has already become a fixture in education. Its benefits include efficient 

gathering of comparable data from large populations, automated or even instant grading, 

acceptance of varied response formats, and the ability to produce individualized feedback 

and scaffolding. Computer-based assessments making student thinking explicit can 

shorten the assessment, feedback, and revision portions of the instructional cycle. Ideally, 

enough iterations of a given assessment will yield models of the content that can be fed 

back into the assessment, eventually leading to real-time feedback in an adaptive format 

assessment. Issues with differential item functioning occur at rates similar to those 

encountered with paper-and-pencil tests. These findings are general in that they have not 

focused on any particular content area. The following section examines cognition and 

assessment as they specifically relate to mathematical understanding, especially in young 

students.  

Mathematics, Cognition, and Assessment 

Mathematics has received a great deal of attention with regards to cognition and 

assessment because of its prominent position in school curricula, its importance in 
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economically important fields such as science and engineering, and the relatively 

quantifiable nature of computation. However, to mathematicians, computation represents 

a very limited portion of their discipline. They are more concerned with solving problems 

and understanding patterns. If students are to gain knowledge of and appreciation for 

concepts of mathematics that go beyond computation, they must have a curriculum, 

instruction, and assessment that reflect those broader goals. They also must sense that 

their teacher’s knowledge of and disposition towards mathematics align with that mindset 

(Bransford et al., 2000). 

Meaningful mathematical knowledge relies on models that learners develop, use, 

and refine in an iterative process (Lesh, 1990). However, models are individualistic and 

segmented in young learners. Lesh reminds us of this and also that knowledge is local by 

stating that “knowledge exists in pieces” (p. 84). It is also situated, and simultaneously 

coded in multiple forms, including language (written and spoken), mathematical notation, 

internal models, diagrams, and with manipulatives. Finally, he states that the purpose of 

assessment is “to probe the nature of the interpreting model to determine its degree of 

accuracy, complexity, completeness, flexibility, and stability” (p. 86). 

The importance of manipulatives has carried over from the classroom into 

computer-based mathematics instruction and assessments. Manipulatives have been 

shown to be effective, but they are not all this is needed. Manipulatives do not inherently 

posses mathematical concepts any more than a digit does. They are helpful to the extent 

that a child has constructed a mathematical idea and related that idea to the 
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manipulatives. Once that connection is made, use of manipulatives may allow children to 

construct further mathematical meaning. Without that meaning, manipulatives may be as 

mysterious to children as the numbers or concepts they are supposed to represent, and fail 

to create the desired bridge between the abstract and the real world (Clements & 

McMillen, 1996; Lesh & Lamon, 1992).  

Virtual manipulatives have no more claims to inherent possession of 

mathematical concepts than do physical ones, but they do have other potential 

advantages. To students, they might be just as real and, more importantly, as meaningful. 

They are flexible in a cognitive sense, and can more closely represent mathematical 

processes than can physical objects. For example, “breaking” a virtual 10-rod into 10 unit 

pieces is a more accurate depiction of that process than is trading in a physical 10-rod for 

10 unit pieces (Clements & McMillen, 1996). 

Configurations and processes involving virtual manipulatives can be saved and 

replayed for either individuals or a class, and can provide feedback in ways blocks 

cannot. “Certain computer manipulatives help students view a mathematical object not 

just as one instance but as a representative of an entire class of objects” (Clements & 

McMillen, 1996, p. 274). Virtual manipulatives are yet another way to represent content, 

which may reach students that other methods have not. Their use should precede teaching 

of algorithms and be treated as a means or tool, not as an end in themselves. 

Clements and McMillen (1996) recommend giving students adequate time to 

work with virtual manipulatives and not forcing any particular type, use, or method on 
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students. They need the freedom to allow their own ways of thinking to come through. 

Given that freedom, computer-based mathematics problems can become very real to 

students. 

Lipson et al. (1990) describe numerous criteria and characteristics of computer-

based tests that allow students to demonstrate the higher order thinking and problem-

solving abilities that recent mathematics curricula are demanding. Such tests should elicit 

numerous facets of student knowledge: 

• What prior knowledge does a problem stimulate? 

• How does the student represent the problem? 

• How does context affect student response? 

• What algorithms does the student use? 

• How is the student reasoning? 

• Does the student use an estimate to check the answer? 

• How does the student handle roadblocks? 

• What non-school mathematics skills does the student bring to the problem? 

• What general knowledge does the student bring to the problem? 

Such tests should allow the use of constructed response items, which are easier to 

score in mathematics than in other areas, rather than multiple choice items whenever 

possible. Constructed response items force students to think rather than rely on clues 

from the answers in a multiple choice item. This would encourage all students to behave 

in a manner similar to high-ability students, who more readily bring existing knowledge 
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to bear on a problem and save other clues, such as possible answers, for checking their 

work (Snow, 1987).  

In assessments of mathematical achievement, truly authentic problems are less 

likely to elicit rote, algorithm-based strategies to problem solving. Lipson et al. (1990) 

demonstrate how standard test questions that attempt to make explicit the underlying 

concept of a problem are likely to be cut from traditional tests because such items do not 

effectively discriminate high-achieving students from low when compared to simpler test 

items. Whatever inferences can be made from test items that elicit more than rote level 

thinking must be followed up with additional items. This creates a rich description of a 

student’s capabilities, which can be used for instructional purposes. Computers make this 

level of analysis possible.  

Computer-based assessment in mathematics has great potential for evaluating the 

outcomes of cognitively guided instruction. The next section explores the basic principles 

and processes of CGI. 

Cognitively Guided Instruction 

Cognitively guided instruction (CGI) is an approach to teaching mathematics that 

is transmitted primarily through professional development and predicated on the notion 

that children enter elementary school with considerable yet informal knowledge of 

mathematics. Prior to formal instruction in mathematics, children can solve problems 

involving the basic operations of addition, subtraction, multiplication, and division 

(Carpenter et al., 1999). This existing knowledge should form the basis of development 
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of more formal mathematics and not be disregarded as irrelevant. The basic principles of 

this approach were explored by Carpenter (1986), although others were also exploring the 

relationship between informal and formal mathematical knowledge in children (Hiebert, 

1986). Carpenter did not use the phrase cognitively guided instruction in his 1986 

chapter, but was using it by publication of the first full-scale study based on those ideas 

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). 

CGI falls within a social constructivist perspective of learning in which prior 

knowledge forms the basis for internal development of new knowledge. Students are 

encouraged to use and explain their own methods for solving problems, whether informal 

or formal. Students learn from each other’s ideas, and seeing the work of other students 

can produce cognitive dissonance that helps correct misconceptions. Lesh and Kelly 

support this aspect of CGI by stating that “ways of thinking tend to be externalized in a 

group” (2000, p. 214). However, the primary goal of CGI is to increase mathematical 

understanding in individual students, not of groups. 

Through guidance from teachers and observing how other students approach the 

same problems, students’ mathematical skills progress through a number of largely 

predictable stages of increasing formality and abstraction. Although their original, 

informal mathematics skills are used as a starting point, more advanced mathematical 

thinking generally will not develop further without some type of formal instruction 

(Carpenter et al., 1989).  
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The most basic strategy of informal mathematics for children in early elementary 

school is modeling, in which students use their fingers or other manipulatives to 

physically model the action described in the problem. This type of modeling remains at 

the core of mathematical understanding for some time but becomes increasingly complex 

and abstract. From modeling with physical objects, most progress to counting, which is 

an abstraction of modeling, and begin to develop number sense, which is more efficient 

than physical representations. This leads to counting strategies, beginning with counting 

on (beginning with the first quantity stated in the problem) and leading to counting on 

from the larger number, which is more efficient. Once students can use numbers in an 

abstract sense, they begin to acquire number facts such as doubles (e.g. 6+6=12) and 

complementary numbers (pairs of numbers that add up to 10). These number facts can be 

either memorized through repetition or spontaneously derived. Students generally require 

formal instruction to advance to the next stage, which involves place value and the 

meaning of a base-10 system. Finally, working with multi-digit numbers requires place-

value based decomposition of numbers (Carpenter, Fennema, & Franke, 1996; Dehaene, 

1997; Fuson, 2003). 

For teachers to build upon students’ existing knowledge, they need a general 

understanding of these typical stages of early mathematical development and to learn 

how their particular students are thinking. In a CGI classroom, teachers seek any and all 

solution paths by asking students to describe and demonstrate their strategies. In this 

regard, CGI performs the role reversal typical of constructivist environments: instead of 
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trying to get students to understand teachers’ methods and explanations, teachers strive to 

understand their students’ methods. Misconceptions, once uncovered, are not 

opportunities for corrections but serve only to identify the boundaries of existing 

knowledge and a starting point for further progress (Carpenter et al., 1996). 

Misconceptions are explored from a mathematical point of view, not in terms of 

correctness or in a teacher-centered manner (Hiebert et al., 1997), which would be 

inconsistent with a socially constructivist perspective. 

Implementation of CGI is accomplished through the teachers and depends on 

extensive and ongoing professional development. The professional development is time 

intensive and requires multiple sessions with follow ups before teachers are comfortable 

enough to integrate the new instructional methods in their classrooms. Students do not 

receive direct instruction in CGI; the emphasis is on the knowledge, skills, and 

dispositions of the teachers (Carpenter et al., 1999; Carpenter & Franke, 2004; Fennema 

et al., 1996). The aspects of CGI dealing with professional development are not directly 

germane to this study of assessing students’ mathematical thinking and will therefore not 

be addressed further.  

CGI offers teachers a means to bridge content knowledge and general pedagogical 

knowledge, creating math-specific pedagogical content knowledge (PCK) (Carpenter et 

al., 1996; Fennema et al., 1996; Shulman, 1986). It also improves mathematical content 

knowledge, which is a common weak spot for elementary educators. More importantly, it 

“provides teachers a coherent basis for identifying what is difficult and what is easy for 
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students and for dealing with the common errors they make” (Carpenter et al., 1996, p. 

14). These skills are critical for effective implementation of CGI in the classroom. 

Carpenter et al. (1996) were not the first or only researchers focusing on teachers’ 

concepts of mathematics, mathematics instruction, or student knowledge. However, their 

work differs in that the core of CGI is the merging of those three bodies of knowledge 

(Carpenter et al., 1996). Instead of the inevitable struggles resulting from two sides 

(teachers and students) approaching the problem of instruction from their own 

perspective, teachers using CGI learn to understand and work from the students’ 

perspectives. This approach connects students’ formal study of mathematics with their 

previous experiences and does not invalidate the informal mathematical skills they bring 

to the classroom.  

Results from the first complete implementation of CGI (Carpenter et al., 1989) 

showed that CGI teachers taught more problem solving when compared to a control 

group, spent more time eliciting students’ strategies, and expressed positive attitudes 

about CGI. Students who received CGI performed slightly better on achievement 

measures and reported higher confidence in their mathematical abilities. 

Conclusion 

The literature on computer-based assessment provides ample evidence that its 

validity and reliability are equal or nearly equal to that of paper-and-pencil test. It can 

also record and interpret the cognitive processes of test takers. Comparisons of scores 

between CBA and PPT have shown little difference, although the cause for the fact that 
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some items function differently based on delivery mode has not been determined. The 

effectiveness, validity, and reliability of CBA have not been shown to be significantly 

lower than PPT, and the efficiency for capturing cognitive processes may be higher than 

existing methods such as videotaping and think-alouds.  

Despite (or perhaps because of) the current emphasis on standardized testing, 

mathematics educators are moving away from algorithmic and solution-based 

assessments towards development and expression of mathematical thinking. However, 

current methods of this type of assessment are not cost or time efficient. 

Eliciting mathematical thinking (as opposed to concrete solutions) is best 

accomplished with items purposefully created for that goal. Requiring final solutions can 

narrow students’ thinking and hamper chances of eliciting, even provoking, the desired 

type of responses: those that reveal how students are thinking. One method of drawing 

out student responses is to put students in situations in which they are not in control of 

the solution process. CBA that meet these criteria and elicit the desired information about 

students’ mathematical thinking are possible to create, although they may simply shift the 

inefficiencies of administration (think-alouds, videotaping, clinical interviews) and 

interpretation to the development phase.  

Assessment should produce some instructional benefit, and items that elicit 

student thinking do so in two ways: they provide teachers with a roadmap of what 

students do and do not understand, and the students’ act of recording their thinking in 

some fashion encourages refinement of that thinking.  
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Evaluation of the results of such assessments requires some sort of standard 

against which responses can be compared. One such standard could be results of 

performance-based assessments. This might produce some conclusions about transfer or 

application, but would not serve as a direct evaluation of cognitive processes. Another 

means of comparison could be with videotapes, think-alouds, and clinical interviews. 

This comparison might initially be used to validate such assessments, but beyond that 

would defeat the benefits of efficiency CBA can provide. Ultimately, the point of 

comparison for anything not directly observable is a construct or model. As previously 

described, the construct or model must be developed in the initial stages of instructional 

planning so instruction and assessment can align with the stated goals (Ketterlin-Geller, 

2005). This is similar to an objective test, except that instructional objectives are typically 

described using an observable behavior (Dick, Carey, & Carey, 2005), which is not the 

case in assessments of cognitive processes. 

Developing a construct—even for a well-researched area such as children’s 

mathematics education—is no easy task. No model is likely to satisfy all researchers or 

schools of thought. However, if assumptions and components of a construct are 

transparent, assessments relying on them can used defensibly by practitioners and 

researchers alike. 

Directions for Study 

 Previous studies and existing literature do not fully answer the question of 

whether computer-based tests could effectively assess the mathematical skills cognitively 
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guided instruction seeks to develop in elementary school students. Therefore, the next 

chapter proposes a study whose participants are within that age range and are receiving 

CGI instruction in mathematics. 

Although some concerns over differential item functioning and computer 

familiarity remain, computer-based assessment has a sufficient record of research and 

implementation to warrant its use. It is efficient and has been shown to be capable of 

eliciting cognitive processes and is therefore appropriate for a study using web-based 

animations of solutions to a well-defined set of problems targeted to a specific age group. 

These animated items, which modeled multiple examples of both successful and incorrect 

strategies, attempted to elicit students’ mathematical thinking and understanding of 

predefined mathematical concepts. Lack of direct control over the strategies and process 

focused the student on expression of agreement or disagreement with the process they 

were viewing. Although the main purpose of the activities was assessment, it also 

incorporated elements of instruction due to its recursive nature. Outcomes evaluated 

included the effectiveness of the tool to elicit students’ mathematical thinking and the 

relationship between those results and objective measures of students’ mathematical 

problem-solving skills. 
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CHAPTER THREE: METHODOLOGY 

The study described in this section was planned to explore a gap in existing literature: 

to determine if a computer-based assessment can reveal mathematical thinking in primary 

school students in ways useful for teaching and learning. The assessment focused on a 

narrow area of mathematical skills (multiplication of integers) and students in a single 

grade (fourth). Specifically, this study attempted to answer the following questions: 

• What is an assessment instrument able to reveal about students’ understanding 

of mathematic concepts related to multiplication of integers? 

• What relationships are demonstrated between the results of the assessment for 

mathematical understanding and the assessment of demonstrated algorithmic 

proficiency in multiplication? 

• What effect does computer familiarity have on the ability of the assessment to 

reveal mathematical thinking?  

Participants 

Participants were drawn from fourth grade classrooms in Lincoln and Van Buren 

Elementary Schools, two of six elementary schools in the Caldwell, Idaho school district. 

Both schools are Title 1 eligible. Caldwell is located is southwestern Idaho, about 20 

miles west of the capital city Boise. Caldwell’s population in 2008 was 42,331, which 

represents a 63% increase over 2000. Rapid growth has produced a relatively young 
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population: the median age is 4.5 years younger than the median for the state of Idaho. 

Median and per capita incomes are also substantially lower than the remainder of the 

state. The area’s only substantial minority population is Hispanic ("Caldwell, Idaho," 

2009b).  

The schools met all No Child Left Behind (NCLB) mathematics goals for the 

2008-2009 school year. However, despite geographic proximity and many similarities, 

the two schools display some differences. Table 1 contains demographic information for 

the schools (Brendefur, Strother, & Bunning, 2009); Table 2 displays results from the 

spring 2009 Idaho Standards Achievement Tests in mathematics, whose scores are used 

to determine adequate yearly progress (APY) for NCLB. Noteworthy differences include 

the fact that these two schools outperformed the other four elementary schools in the 

district in mathematics and that the disparity in performance between white and Hispanic 

students, significant in Lincoln Elementary, the district, and the state; was very small at 

Van Buren Elementary ("Caldwell, Idaho," 2009a; "Statistics," 2009). 
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Table 1 

Demographics of Treatment Schools 

  

Caldwell School District (2008-2009) 

Characteristic Lincoln Van Buren 

Enrollment 531 536 

Faculty 25 21 

Math Endorsement 0 0 

Racial/Ethnic 

 

White: 54% 

Latino: 45% 

White: 33% 

Latino: 65% 

E.L.L. 25% 37% 

Migrant 3% 3% 

Languages English, Spanish English, Spanish 

Low-income 94% 82% 

Free/reduced lunch 76% 88% 

Title 1 Yes Yes 
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Table 2  

NCLB 2008-2009 Report Cards for Treatment Schools in Mathematics        

 Lincoln Van Buren District State 

School, (%)  

Proficient/Advanced,  

 

81.91 82.71 69.27 81.57 

4
th

 Grade, (%) 

Proficient/Advanced 

76.92 90.66   

White 94.29 90.90 77.95 84.60 

Hispanic 51.85 89.79 62.42 66.56 

  

Treatment 

Lincoln and Van Buren Elementary Schools have been treatment schools in the 

Initiative for Developing Mathematical Thinking (IDMT) project for 5 and 2 years, 

respectively. As treatment schools, all teachers responsible for teaching math have 

received training in cognitively guided instruction during intensive week-long training 

sessions each summer. Training sessions are run by personnel from the IDMT, including 

its director, Dr. Jonathan Brendefur. IDMT personnel also visit project schools to observe 

mathematics instruction, conduct follow-up workshops, and advise teachers during the 

school year. Because of turnover in teacher and student populations, there is no way to 

control or guarantee how many years a given teacher has participated in the program or 

how long a given student has received cognitively guided instruction in mathematics. 
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Measures 

The assessment instrument was a web-based survey consisting of two sections, 

which gathered data regarding mathematical understanding and proficiency in 

multiplication. Data for both sections of the assessment was gathered using Qualtrics 

survey software, which is commercial survey software available to faculty and students 

of Boise State University through a university-wide licensing agreement. The assessment 

was available only to those provided the URL by the researcher. Data was and remains 

accessible only to the researcher through a secure (HTTPS) login. 

The first section consisted of 15 animated solutions to multiplication problems. 

Animations allowed the students to follow the solution process step by step. The 

problems contained pairs of one and two-digit numbers presented with and without 

context. Each problem solution was followed by three or four multiple choice questions 

and one constructed response item that asked for students’ reactions to the strategies and 

errors (if any) in the solutions. The fourth multiple choice question was displayed only 

when the students indicated the presence of a mistake in the third question. The animated 

solutions demonstrated constructs and ideas critical to a mathematical understanding of 

multiplication. Approximately one-half of the problems (7 of 15) contained errors. See 

Appendix A for a complete description of the assessment items: a list of the problems and 

their determining characteristics, a chart detailing the strategies used to solve each 

problem and the mathematical concepts demonstrated, and a list of the numbers used in 

the problems.  



 

 

50 

 

 

 The need for each concept to be assessed multiple times dictated the number of 

items contained in the assessment. A single item does not yield reliable data about a 

student’s true ability on the assessed concept. Three to five items per concept or topic are 

therefore required to produce a reliable measure (Airasian, 2005; Oosterhof, Conrad, & 

Ely, 2008).  

 Problems in the first section were divided approximately equally between those 

presented with and without context: some problems were embedded in word problems 

while others were already represented in equation or number sentence format. Niemi, 

Vallone, and Vendlinski (2006) found context was an important factor not just in solving 

problems but in assessing problem solving in sixth graders. Ginsburg, Klein, and Starkey 

state “the likelihood that children will solve a word problem is influenced by the degree 

of interest they find in the content” (1998, p. 422), which dictates that the context of 

problems be made as relevant and contemporary as possible. Similarly, Siegler and 

Alibali (2005) found that “unfamiliar contexts often lead children not to apply procedures 

that they use successfully in other contexts” (p. 393) and that children in the United 

States use more sophisticated mathematical strategies in a school setting than, for 

example, when playing a game requiring simple mathematical computations. This speaks 

to the aforementioned disconnect between “school math” and everyday mathematical 

situations.  

Problems involving higher single digit numbers take longer for both adults and 

children than problems containing lower single digit numbers. This may be due to 
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inherently greater complexity or because such problems are drilled less frequently 

(Dehaene, 1997). Accordingly, numbers used in the problems were selected based on the 

following criteria: 

• Diversity of numbers: numbers repeat as little as possible (within the confines 

of subsequent criteria) so that previous problems provide as few clues as 

possible about later problems. 

• Maximum three-digit products: Products of two-digit by two-digit numbers 

are less than 1000. This kept the difficulty appropriate for the age group. 

• Reliance on known number facts: problems do not require single-digit number 

facts in which both digits are above five. This should reduce the time spent 

performing and analyzing the lower cognitive levels (number facts) of the 

problems. 

The second section assessed proficiency in multiplication. It contained five items 

requiring students to solve multiplication problems with characteristics similar to those of 

the problems presented in the first section. Students were not required to demonstrate 

solution paths or strategies; they were only required to provide an answer. 

Mathematical Construct of Multiplication 

A construct of understanding, especially one that is to be assessed in a large-scale 

standardized method, must be predefined (Mislevy, Steinberg, Almond, Haertel, & 

Penuel, 2003; Niemi et al., 2006). This study attempted to elicit mathematical 

understanding of multiplication as described below and summarized in Table 3.  
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Concepts 

Place value is an important concept in any mathematical procedure involving 

multi-digit numbers. It means the value of a digit depends on its location relative to the 

decimal point in a number, even if the decimal point is only implied. For the purposes of 

the current study, the work of Fosnot and Dolk (2001) and Carpenter et al. (1999) define 

the role of place value in multiplication for elementary school students. 

Many different levels and branches of mathematics use the distributive property, 

but its primary use by elementary school students is combined with decomposing 

numbers – even single digit numbers – to break a problem into a group of partial 

products. When decomposing multi-digit numbers, place value is once again an important 

concept. Caliandro (2000) and Fuson (2003) defined and described uses of the 

distributive property, decomposition, and place value by elementary students. 

 

  

Table 3  

Concepts for Multiplication 

Concept Definition 
Method of eliciting 

understanding 

Place value The value represented by a 

digit depends on its location 

Recognition of errors 

in place value 

Distributive property A x (B + C) = AB + AC Decomposition using  

“friendly” numbers 

  

table continues 
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Table 3 (continued) 

  

Concept Definition 
Method of eliciting 

understanding 

Communicative property A x B = B x A Accepting solutions 

with the order of terms 

reverse from 

expected/typical 

Flexibility Knowing there are multiple 

solution paths that will 

produce correct results 

Testing acceptance of 

multiple and 

sometimes 

unconventional 

solution paths 

What is multiplication/ 

Use of multiplication 

Recognizing situations in 

which multiplication is 

appropriate, and that 

multiplication is a  

summative process 

Identifying problems 

for which 

multiplication is an 

appropriate function 

 

The commutative property, which states that the order of two terms in 

multiplication does not change the product, cannot be violated by commission. This 

property simplifies procedures, such as putting the larger number on the top in the 

standard multiplication algorithm regardless of which number appears first in the 

problem or what the numbers represent. An example in which the larger number was 

placed on the bottom in the algorithmic solution could differentiate between those who 

recognized the solution’s inefficiency from those who believed the solution incorrect. 
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Cognitive flexibility serves as an instructional method and a goal in CGI 

(Carpenter et al., 1999). As a goal, it is indicative of a high level of conceptual 

understanding and abstract thought. Such abilities allow students to grasp the 

mathematical similarities among seemingly different problems and to select solution 

strategies appropriate for a given problem (Caliandro, 2000; Wilhelmi, Godino, & 

Lacasta, 2007). Acceptance of a variety of solution strategies would therefore be one 

indicator of understanding of the mathematical concepts related to multiplication. 

However, such acceptance could also indicate merely familiarity with the presented 

strategies.  

The concept of multiplication is both so commonplace and abstract that not a 

single resource consulted for this study actually defined it. While the previously 

mentioned characteristics define aspects of multiplication, the best way to show an 

understanding of it as a whole may be to recognize situations for which multiplication is 

the appropriate process. To be sure problems include the student’s decision of whether to 

us multiplication or some other process, items must be presented in pre-mathematized as 

word problems, diagrams, or other non-mathematical format.  

Strategies 

Elementary school students use a variety of strategies to solve problems. These 

strategies may be acquired through modeling, formal instruction, or from other sources. 

The ability to use varying strategies appropriate for the problem is one indication of 

understanding beyond the procedural level. Recognizing alternate strategies either for 
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their own sake or for checking an answer is another indication that students have a good 

grasp of the mathematical aspects of a problem. The instrument designed for this study 

used these strategies, with and without errors, to elicit students’ thinking. Compiled from 

a number of the resources cited in this study, Table 4 contains a list and explanation of 

strategies commonly used by elementary school students. See Appendix B for a list of the 

resources consulted to compile this list. No listed strategy is exclusive to any single 

source.  

Counting, which is a common early strategy used by students learning 

multiplication (Dehaene, 1997; Fosnot & Dolk, 2001; Ginsburg et al., 1998), was not 

included because fourth graders (the target population of this study) typically have moved 

on to more abstract concepts and methods, and because most of the problems used in this 

assessment use numbers too large to make counting a practical strategy. Single-digit 

multiplication is used almost exclusively in the context of the presented solutions because 

it represents the simplest level of number facts. The solutions do not contain erroneous 

number facts with the exception of the problem containing two single digit numbers, so 

responses to number fact concepts are not solicited. 
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Table 4 

Strategies for Multiplication 

Strategy Description 

Repeated addition Adding the value of multiplicand to itself the number of 

times represented by the multiplier 

FOIL The process of adding the four partial sums (first, outside, 

inside, last) generated by placing two 2-part terms next to 

each other. May be done in an algebraic sense or as a result 

of decomposing numbers 

Multiplying by 10 

(Zero trick) 

A shortcut for multiplying by 10 by adding a zero to the 

right end of a whole number or shifting the decimal point 

one digit to the right. 

Friendly numbers Using known number facts of nearby numbers and then 

compensating for the difference(s) between the actual and 

friendly numbers 

Halving and 

Doubling 

An extension of the distributive property in which factors of 

two are moved from one number to another in a 

multiplication problem 

Algorithm A step-by-step procedure for solving a type of problem 

Area/Arrays Representing the product of two numbers in rows and 

columns whose length is each one of the numbers 

Decomposition Breaking down a factor in a multiplication problem as the 

sum of two or more numbers. May be done by place value 

or by using friendly numbers. 
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Sample 

 This study used a convenience sampling: students were selected from two 

participating treatment schools in the Developing Mathematical Thinking project in 

Idaho. The goal for sample size was a total of 80-100 students from two classes from 

each school. The actual sample size was 86 participants. Boise State University IRB 

approval for the Developing Mathematical Thinking project covers data collection in the 

schools noted above. To control for possible interaction effects between the conceptual 

and procedural portions of the assessment, half the students took the conceptual 

assessment first and the other half began with the procedural assessment. All other 

aspects of the survey (content, instructions, and interface) were identical for all 

participants.  

Data Collection 

The assessment was administered by a research assistant in the IDMT project at 

Boise State University. Four classes (n=86) took the assessment in their respective 

schools, one class per day, within the span of one week in December 2009. To make sure 

the technology worked and to be able to answer questions from students, the research 

assistant took the assessment prior to administration. His was the first data record, which 

was deleted. The research assistant reported computer problems for a number of students 

in one session, but students were able to complete the assessment and save their data in 

all but two cases. Without personally identifiable information, students who completed 

the assessment but experienced technical difficulties could not be identified from the 
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data. Therefore, any possible effect of the technical difficulties on their performance 

could not be determined. The average duration was 68 minutes per student. 

To control for the effects of one section of the assessment on the other section, the 

order of the two sections (understanding and performance) was reversed after two 

sessions, resulting in a roughly equal division into two groups by order of the sections. 

Assignment to the two groups was not truly random, so that process did not fully control 

for existing differences that may exist between the classes.  
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CHAPTER FOUR: RESULTS 

Data gathered from administration of the constructed assessment instrument 

required a extensive treatment before they could be used to answer the research 

questions:  (a) What was the assessment instrument able to reveal about students’ 

understanding of mathematic concepts related to multiplication of integers?, (b) What 

relationships were demonstrated between the results of the assessment for mathematical 

understanding and the assessment of demonstrated algorithmic proficiency in 

multiplication?, and (c) What effect did computer familiarity have on the ability of the 

assessment to reveal mathematical thinking?  

This chapter discusses the process of converting qualitative data into usable 

formats, coding qualitative data, and the analysis of the data as it pertains to the research 

questions. Quantitative data from the multiple choice questions in the animation section 

of the assessment were analyzed first, followed by qualitative data from the constructed 

response questions. Finally, data from those two sections were examined as a whole and 

then compared with data from the performance and familiarity sections. An outline of the 

analyses described in this chapter is presented in Table 5. 
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Table 5 

Outline of Procedures and Outcomes in Data Analysis 

Procedure Outcome 

Quantitative data preparation Correct /incorrect coding of all responses 

to multiple choice questions 

Compiled data from familiarity questions Combined computer familiarity score 

Unanswered question frequencies Participants whose responses were 

excluded from certain analyses 

Coding of qualitative data Frequencies of nine identified response 

characteristics 

Counts and averages of correct answers Performance by question and by problem 

Reliability quotients calculated Reliability of data evaluated 

Correct answers totaled by strategy and 

concept calculated 

Performance strengths of identified 

strategies and concepts  

Response patterns determined Progression of understanding  

Patterns of error identification determined Relationship between error identification 

and other skills revealed 

Suggested strategies analyzed Students’ preferred strategies 

Compared length of response with 

understanding 

Importance of length of response  

Understanding compared with proficiency Moderate positive correlation established 

Familiarity scale compared with other 

sections 

Computer familiarity determined not to 

be a factor 

Influence of understanding and proficiency 

sections on each other compared 

Effect of order of sections inconclusive 

due to non-random assignment 
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Data Preparation 

The data were downloaded in comma separated values format (.csv) and prepared 

in Microsoft Excel for analysis. Each participant was coded for section order and answers 

to the first four questions for each solved problem in the animation section and for the 

five performance questions were coded dichotomously: correct or incorrect. In the 

animation (understanding) section, the same given response might be correct for a 

question pertaining to a problem containing an error in the solution but incorrect for a 

problem without errors. In other words, a response of “yes” could be correct for a 

problem containing an error but incorrect for a problem that did not. The coding process 

took this into account. 

The questions pertaining to familiarity with computers and computer testing were 

coded so that greater familiarity (as defined by greater and more recent use for testing use 

or having a computer in the home) resulted in a higher familiarity score as detailed in 

Table 6. Participants received a composite familiarity score ranging from 0 to 7.  The 

mean composite score was 4.6, with a standard deviation of 1.2. In rural areas and in 

schools with socioeconomic profiles similar to these schools, significant numbers of 

families do not have computers in the home, and schools do not have sufficient resources 

to make up this “digital divide” (Thorsen, 2009).  
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Table 6 

Computer Familiarity Questions 

  

Question 1: How many tests have you taken on a computer? 

Response         Points  No. of Responses 

None   0    0 

1 or 2   1  15 

3 to 5   2  22 

> 5   3  50 

Question 2: When was the last test you took on a computer? 

Response        Points  No. of Responses 

> 2 year ago  0  11 

> 1 month ago  1  40 

< 1 month ago  2  21 

< 1 week ago  3  14 

Question 3: Is there a computer you can use at your home?  

Response        Points  No. of Responses 

No   0  21 

Yes   1  65 

  

 

Unanswered Questions (UAQ) 

A number of responses were missing throughout the assessment. Overall, 550 of 

4472 (12.3%) of questions in the animation section that should have been answered were 

not answered. However, this includes 264 questions not answered because students 
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answered a previous question incorrectly and therefore were not presented with the 

follow-up question. Subtracting those questions from the unanswered category brings the 

percentage of unanswered questions down to 6.4%. Of the multiple choice questions 

related to the animations, none were unanswered more than 7% of the time. 

There are several possible reasons for questions not being answered. The 

assessment did not require students to answer any question before moving on the next 

question, and students may have been reluctant to answer a question on which they were 

unsure of the answer. Time was definitely a factor: the response rate for first problem’s 

questions was 97.7%; this decreased over the course of the assessment, dropping to 

84.6% by the last problem. Possible causes include time pressures or decreasing 

motivation. On the constructed response questions, students who agreed with the solution 

strategy or did not see any errors and students who felt they lacked an appropriate 

response may not have felt compelled to respond. 

To check whether one type of question (of the first three for each problem) went 

unanswered at a different rate, a Chi-square test was run on the frequency answered. The 

first three questions for each problem were not answered at statistically significantly 

different rates, χ
2 

(2, N = 86) = .34, p > .05. 

Response rates for some participants in some sections were low enough to cause 

concern. When a response rate for a student dropped below the thresholds described 

below, that participant’s data for that section were not used for comparisons across 

sections and broader statistical analyses. All data were retained, however, and used in 
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qualitative analyses and in tests where SPSS could maximize the amount of data used by 

applying pair-wise comparisons rather than list-wise deletions.  

The rationales for cut-off points for unanswered questions are described below by 

section. 

1. Familiarity: All but two participants answered all three questions; two left one 

question unanswered. It was not necessary to omit any participants from 

analysis based on UAQ in this section. 

2. Performance: 80 of 86 participants answered all five performance questions; 

two left one UAQ; four left four or five UAQ. These last four participants 

were omitted from analysis as described above. 

3. Animation section (multiple choice questions): The distribution of 

unanswered questions provided a cut off for the maximum number of UAQ 

allowed in this section. There is a gap between six and nine UAQ. (No 

participants had seven or eight UAQ.) Because a UAQ occurred on a random 

basis (other than varying positively with elapsed time), data from participants 

with up to six UAQ were retained and data from participants with nine or 

more UAQ in this section were dropped from certain analyses as described 

above. 

4. Constructed Response: The 15 solved problems were divided between seven 

containing a deliberate mistake in the solution process and eight without such 

mistakes. These responses were the most time consuming for participants to 
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complete, and the response rate also dropped as the test progressed. The 

amount of useful data contained in given responses varied greatly. When data 

from this section were analyzed in relation to data from other sections of the 

test, participants must have responded to at least 10 of the 15 problems. While 

this is only two-thirds, some blank responses could be interpreted not as the 

question having been unanswered but as the student having nothing to say. 

Qualitatively, any response that yields information about the understanding of 

the problem was included. 

In problems not containing a mistake, some participants indicated that there was 

one and were then presented with the fourth question asking them to identify the step 

containing the mistake. Responses to such instances of the fourth question were not 

coded for quantitative analysis because it is not possible to quantify the response to a 

question for which there is no correct answer.  

Coding of Constructed Response Questions 

All the responses to two constructed response questions were mined for codes 

(Glesne, 1999). A preliminary set of 11 possible codes was compiled from a review of 

approximately 120 responses, and were divided into five groups. Responses within a 

group (each comprising 1 to 3 codes) were generally mutually exclusive, but a code could 

be used from as many groups as applicable. The same responses and preliminary codes 

were sent to a second coder (a graduate student), and the results compared to the 

researcher’s. Inter-rater reliability was moderately consistent (65%), but two codes 
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regarding understanding (codes 1 and 2 in the original set of codes) were found to be 

difficult to interpret and apply consistently. Consider two responses to the second 

problem (which did not contain a mistake): (a) “I would fix it by doing another 

stradagie,” and (b) “You could make it more simple in less steps.” Determining whether 

the students did or did not understood the method used in the animated solution or if they 

just would have preferred another method does not seem possible. As a result, the two 

problematic codes were eliminated and the remaining codes were rearranged to better 

align with the wording of the question by moving the codes regarding mistakes from 

between the other two groups. Interpretation guidelines were also clarified. See Appendix 

D for the full set of codes, their evolution, and instructions for their application used by 

both coders. The researcher and second coder each coded a second group of responses, 

some each from questions containing and not containing a mistake. The second round of 

coding produced agreement on 114 of 128 responses, or 89.1%. The researcher and 

second coder then each coded half of the remaining responses, using the revised code list 

and revised set of guidelines. The second coder expressed uncertainty about 19 specific 

responses in the second round of coding, but only two responses required recoding by the 

researcher. 

Subsequent analysis and discussion refers to and differentiates between the five 

questions asked after each problem was presented. To simplify, each question in its 

entirety (15 presentations each) is referred to by uppercase letters A through E as noted in 
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Table 7. Graphics of the 15 problems with the presented solutions are contained in 

Appendix D. 

 

  

Table 7 

Question Types 

Question type Question text 

A Did my solution work? 

B Is my answer correct? 

C Did I make any mistakes? 

D Can you tell me which step I made a mistake in? 

E Please tell me how you would have solved this problem or how I could 

fix any mistakes I made. 

 

Analysis of Data from Multiple Choice Questions 

Students received the first three questions for each problem 15 times (once per 

problem). The mean scores and standard deviations for the first three question types are 

shown in Table 8. The numbers of correct responses to the first three questions for all 

animated problem are shown in Table 9. The differences among the totals by question is 

significant as confirmed by a Chi-square test, χ
2
 (28, N = 80) = 554.915, p < .05. The 

third (C) question was answered correctly more than either of the first two, and the 

second (B) question was answered correctly more often than the first question for 

problems with mistakes. Because these three questions were always presented in the 
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same order, it is not possible to determine whether these and progressions noted are due 

to inherent differences in the questions or to students becoming more familiar with each 

problem as the over the course of three questions. 

 

  

Table 8 

Mean Scores by Question Type 

Question type Question text M SD 

A Did my solution work? 7.77 3.01 

B Is my answer correct? 8.11 3.05 

C Did I make any mistakes? 9.36 2.28 

  

 

  

Table 9 

Correct Responses Counts by Question Type 

  

Problem A B C Total 

1 30 35 46 111 

2 50 53 51 154 

3 69 72 72 213 

4 49 59 58 166 

5 34 44 43 121 

  

table continues 
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Table 9 (continued) 

  

Problem A B C Total 

6 29 34 40 103 

7 54 49 60 163 

8 16 21 22 59 

9 47 39 53 139 

10 42 39 56 137 

11 27 32 36 95 

12 43 39 50 132 

13 54 53 60 167 

14 26 32 30 88 

15 42 38 58 138 

Problems w/o 

mistake 401 382 460 1243 

Problems with 

mistake 211 257 275 743 

All problems 612 639 735 1986 

  

Reliability 

Internal reliability, a necessary condition for validity (Airasian, 2005; Gay & 

Airasian, 2003), was tested at multiple levels using SPSS to calculate Cronbach’s Alpha. 

Coefficients for question types by mistake/no mistake and across all questions by type are 

presented in Table 10. 
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Table 10 

Reliability Coefficients Across all Problems and by Mistake 

  

Question 

type Alpha 

All questions by type A 0.71 

B 0.71 

C 0.27 

Problems with  A 0.73 

mistakes B 0.74 

C 0.72 

Problems without A 0.69 

mistakes B 0.68 

C 0.46 

  

 

Reliability was similar for question types A and B in all three cases, but differed 

drastically for C type questions. Reliability for C type questions was very different for 

problems with and without mistakes and lowest of all when combined. This would imply 

that knowing a problem does not contain a mistake is different than being able to say a 

problem does contain a mistake. Students received the C type question (Did I make any 

mistakes?) once for each problem, for a total of 567 times. They answered it correctly 

280 times, or 49.3%. This means they only had 280 possible times to answer the fourth 

(D) question (Can you tell me which step I made a mistake in?). Of those 280 times, they 
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correctly identified the step containing the mistake 195 times, or 69.6%. This could 

support the idea that the question measures two different tasks or abilities. However, 

students could simply be better at finding a mistake when they know or believe one exists 

than determining whether there is a mistake. 

Performance 

Percentages of correct answers for the sample across all multiple choice questions 

by concept and by strategy are shown in Table 11. Percentages are more helpful than 

counts in this case because the number of problems a strategy or concept pertained to 

varied from two to ten.  

 

  

Table 11 

Percentages of Correct Answers by Strategy and Concept  

  

Strategies Concepts 

Repeated addition 63.4% Place value 49.5 % 

FOIL 33.7 Distributive property 52.8 

Zero trick (x10) 44.8 Communicative 

property 

58.6 

 

Friendly numbers 56.7 Flexibility 60.5 

Halving & doubling 62.1 Concept of 

multiplication 

59.0 

  

table continues 
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Table 11 (continued) 

  

Strategies Concepts 

Algorithm 59.9   

Area/grid 60.9   

Decomposition 49.3   

  

 

Performance at the group level by concept and strategy reveals strengths and 

weaknesses. The group was weak on the concept of place value, which is of particular 

importance when multiplying two digit integers, and fared relatively poorly on problems 

that used decomposition as a strategy. The two problems that used the FOIL method both 

contained an error, but one was procedural (not multiplying the inner and outer pairs), 

while the other error pertained to place value.  

Strategies on which students performed well included repeated addition and area 

or grid. This relates to a strong showing on the concept of multiplication, because those 

two strategies embody the concept of multiplication. A strong score on flexibility shows 

that the students were generally not confused by the unusual applications of some 

strategies, such as making the larger number the multiplier when use the traditional 

algorithm. 

Response Patterns  

The pattern of responses for each group of A, B, and C questions by problem is 

shown in Table 12. The ones and zeros in the 3-digit response pattern represent correct 
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(1) or incorrect (0) response to the first three questions (A, B, and C, respectively). For 

example, “111” indicates correct responses on all three questions; “010” indicates 

incorrect responses on the A and C questions and a correct answer on the B question. 

 

  

Table 12 

Response Pattern by Problem 

  

Response Pattern 

Problem 000 001 010 100 011 101  110   111 

1 26 10 2 1 8 3 0 24 

2 15 3 3 4 5 1 2 42 

3 1 2 1 0 4 1 3 64 

4 13 2 1 0 8 1 1 46 

5 23 2 0 2 9 1 1 28 

6 29 7 1 2 6 0 1 24 

7 10 5 1 1 2 6 1 44 

8 47 6 1 1 4 0 2 12 

9 17 6 0 2 3 8 1 34 

10 14 10 1 1 4 9 1 28 

11 28 5 1 0 7 3 1 21 

12 16 8 3 2 1 4 1 31 

13 6 8 1 2 2 4 2 45 

14 33 4 3 0 6 3 5 17 

15 9 17 1 2 1 7 3 27 

table continues 
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Table 12 (continued) 

  

Problem 000 001 010 100 011 101  110   111 

Mistake 199 36 9 6 48 11 11 172 

No 

mistake 88 59 11 14 22 40 14 315 

Total 287 95 20 20 70 51 25 487 

  

 

Students responded either all correctly or all incorrectly on 73% of the problems. 

This consistency is further strengthened by correlations among correct responses to the 

first three questions: r=.79 (A to C), .71 (B to C), and .71 (A to C). However, which end 

of the spectrum the majority ended up on depended on whether the problem contained a 

mistake or not. For problems without a mistake, students overwhelmingly answered them 

all correctly: they thought the solution worked, the answer was correct, and there were no 

mistakes. For problems with a mistake, the most common response pattern by a smaller 

margin was to answer all three questions incorrectly, which means they thought the 

solution worked, the answer was correct, and there were no mistakes. Across all 

problems, they thought everything was fine 65% of the time. Student response patterns 

showed increasing understanding over the course of the problem (patterns 001 and 011) 

16% of the time, but decreasing (100 or 110) or inconclusive patterns (101 or 010) 4% 

and 7% of the time, respectively.  

Across all students, the average number of correct answers increased from the 

first to the second question in each group, and from the second to the third. It is difficult 
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to determine if this was due to the nature of the three questions or to students 

understanding each problem better as they thought about it more. 

Error Identification 

Table 13 shows performance patterns on the first, second, and fourth questions for 

students who correctly answered the third question (Did I make any mistakes?) for 

problems that contained a mistake. For problems that contained an error, students 

answered the third question correctly 257 of 584 times (44%). Table 13 breaks down the 

257 correct responses on the third question. Among students who knew a mistake had 

been made, most (66%) had answered the first two questions correctly: they indicated the 

solution did not work and the answer was not correct. Within that group, a large majority 

(81%) were able to identify the step in the solution that contained the mistake. However, 

13% of students who indicated the solution contained a mistake had previously indicated 

the solution worked and the answer was correct. Students who answered one of the first 

two questions correctly were able to select the step with the mistake correctly less often 

than not only the students who answered both of the first two questions correctly but also 

less often than students who answered both of the first two questions incorrectly. 

Overall, students who said there was a mistake were able to identify the step 

containing the error on 73.5% of the time. Although students who answered the two 

previous questions correctly performed better than others, all groups were able to identify 

the step with the mistake at least 50% of the time. Of note is the fact that students who 
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missed both the first two questions were more likely to identify the step containing the 

mistake than students who missed one of the first two questions.  

 

  

Table 13 

Performance Patterns on the First, Second, and Fourth Question for Students who  

Correctly Answered the Third Question 

 

Results on 

questions A and B 

 

No. of students 

(%)  

Picked step 

containing 

mistake? 

No. of students 

(percent of 

pattern) 

 

Percent 

of total  

Both correct 169 (66%) Picked 137 (81%) 53 

  Missed 32 (19%) 12 

Only A correct 10 (4%) Picked 5 (50%) 2 

  Missed 5 (50%) 2 

Only B correct 45 (18%) Picked 26 (58%) 10 

  Missed 19 (42%) 7 

Neither correct 33 (13%) Picked 21 (64%) 8 

  Missed 12 (36%) 5 

Note. Percentages do not add up to 100 because of rounding. 

 

Students’ Constructed Responses 

For questions that did not contain mistakes, the relevant part of the fifth question 

for each problem was “Please tell me how you would have solved this problem.” Some 

students reported and even showed how to correct mistakes that did not exist, mostly 

relating to some unconventional ways in which some solutions represented place values. 



 

For example, problem 12 (see Figure 

ones column in the fourth row left blank instead of containing the implied zero. Several 

students suggested moving the 16 to the right, despite having seen a problem three 

problems previously that showed the implied zero in a similar situation. No studen

suggested writing in the implied zero.

 

 

Figure 2. Problem 12 featuring missing implied zero after “16”

 

 

The most common response to this question was some form of agreement with the 

solution shown, despite the unconventional strategies used. After

common pattern of responses was repeatedly suggested the same one or two strategies, 

with arrays, repeated addition, and decomposition being the most common. There were 

several suggestions for using the “regular

(interpreted as meaning the standard algorithm) for solving problems that were not solved 

 

For example, problem 12 (see Figure 2) used a mostly conventional algorithm, with th

ones column in the fourth row left blank instead of containing the implied zero. Several 

students suggested moving the 16 to the right, despite having seen a problem three 

problems previously that showed the implied zero in a similar situation. No studen

suggested writing in the implied zero. 

 

Problem 12 featuring missing implied zero after “16” 

The most common response to this question was some form of agreement with the 

solution shown, despite the unconventional strategies used. After agreement, the most 

common pattern of responses was repeatedly suggested the same one or two strategies, 

with arrays, repeated addition, and decomposition being the most common. There were 

several suggestions for using the “regular,” “traditional,” or “original” method 

(interpreted as meaning the standard algorithm) for solving problems that were not solved 
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ones column in the fourth row left blank instead of containing the implied zero. Several 

students suggested moving the 16 to the right, despite having seen a problem three 

problems previously that showed the implied zero in a similar situation. No students 

 

 

The most common response to this question was some form of agreement with the 

agreement, the most 

common pattern of responses was repeatedly suggested the same one or two strategies, 

with arrays, repeated addition, and decomposition being the most common. There were 

iginal” method 

(interpreted as meaning the standard algorithm) for solving problems that were not solved 
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with some form of the standard algorithm. Only two students suggested more than two 

different methods or strategies. 

Note that when responding to that same question for problems that did contain 

mistakes, students had already noted (or missed) the mistake. The most common response 

to a mistake was to show a different method to solve the problem or to re-do the problem 

using the given method but correcting the mistake. Students gave direct explanations of 

what they corrected much less frequently. Whether using corrected solutions or 

suggesting a different strategy, most students tended to rely on one or two strategies, 

mostly decomposition and number facts, often in combination.  

Strategies 

Students’ reactions to and selection of strategies are important components of 

understanding. Table 14 shows the total number of times each code was applied to 

problems with and without mistakes. The number of codes adds up to greater than the 

total number of questions because multiple codes applied to some responses. 
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Table 14 

Code Counts by Problem Type 

  

Without With 

Code mistakes % mistakes % 

Agreed with strategy used 140 28% 89 19% 

Disagreed with strategy used 73 14% 79 17% 

Suggested different general strategy 103 20% 72 16% 

Suggested different, correct specific strategy  59 12% 59 13% 

Suggested different, incorrect specific strategy 18 4% 27 6% 

Noted error correctly, but no explanation or 

correction 0 0% 11 2% 

Error noted and correctly explained 0 0% 45 10% 

Error noted by incorrectly explained 0 0% 7 2% 

Incomplete/undecipherable/meaningless 

response 112 22% 72 16% 

Totals 505 461 

 

In problems without mistakes, students noted agreement with the strategy twice as 

often as they expressed disagreement, while in problems with mistakes, expressions of 

agreement and disagreement were almost even. That the students agreed more with 

successful strategies than unsuccessful ones indicates some level of understanding. The 

number of times students suggested different strategies, whether correct or incorrect, 

whether general or specific, were roughly even between problems with and without 

mistakes. This must be viewed in two ways. First, they suggested different strategies just 
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as often when nothing needed fixing. Second, they did not suggest different strategies any 

more often when something did need fixing. Students’ desire to solve the problems using 

their choice of strategy was not affected by the presence or absence of a mistake. Many, 

but not all (as we will see later), had clear ideas about how to solve the problems. 

In problems with mistakes, students suggested new strategies more than twice as 

often as they explained what was wrong with the given strategy. The question asked for 

either and few did both. The disparity could be because the part of the question that asked 

them how they would have solved the problem was first, so more students answered that 

part. Another explanation could be that even though they knew something was wrong, 

they could not explain why. To discount the first explanation would require either 

splitting the question into two questions or random assignments of the original question 

with the order of the two parts reversed. 

Patterns of responses across the four multiple-choice questions in the animation 

section were able to reveal subtle (but not significant) differences in the abilities those 

questions measured, and varying levels of those abilities in students. Those abilities are 

useful to students when they perform multiplication or other mathematical operations, but 

of course are also portions of the construct of understanding multiplication. To make this 

information usable for instruction and feedback, reliability of the items will have to be 

improved and the construct of multiplication used will have to be operationalized in more 

definitively assessable ways. 
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Students were familiar with the problems by the time they saw each final 

question. They had watched an animation of a solution (perhaps multiple times) and had 

answered three or four questions that asked them to think about the problem in different 

ways, and each question was accompanied by a graphic showing all steps of the solution. 

Familiarity should have given them the freedom to say what they wanted. As noted 

earlier, some did not respond to the final question of a problem, and this increased as the 

assessment progressed. However, many responded without having anything to add (at 

least mathematically). For example, two responses were “I don’t know” and “I have 

nothing to say.” Since not responding was an option, it is difficult to blame meaningless 

responses on laziness or feeling rushed. The conclusion that they did not know how to fix 

the problem or how they would have solved it themselves is difficult to escape. 

Participants showed definite preferences for certain strategies. Table 15 shows the 

counts of suggested strategies by question and divided by whether questions contained a 

mistake. 
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Table 15 

Suggested Strategies by Question 

  

                        Problems Without Mistakes 

Strategy 

Suggested 5 x 28 3 x 4 12 x 14 18 x 25 16 x 12 8 x 23 4 x 17 15 x 29 

Repeat add 5 12 1 1 2 4 1 

Decomposition 20 7 10 6 6 6 2 5 

Add zeros 1 

Array/area/grid 3 4 8 5 8 6 7 8 

Arrow 1 

Traditional 

algorithm 1 1 

Counting 9 

Tree 1 1 1 1 2 1 

Ratio table 1 1 

FOIL 1 

Problems With Mistakes 

 

23 x 7 6 x 7 12 x 27 25 x 23 13 x 16 20 x 30 19 x 4 

Repeat add 2 4 1 1 1 1 5 

Decomposition 15 13 8 3 5 5 5 

Add zeros 1 

Array/area/grid 5 6 3 6 8 5 7 

Arrow 1 

Traditional 

algorithm 2 1 1 

table continues 
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Table 15 (continued) 

  

Problems With Mistakes 

23 x 7 6 x 7 12 x 27 25 x 23 13 x 16 20 x 30 19 x 4 

Counting 5 1 

Tree 1 1 

Ratio table 1 1 1 

FOIL 3 

Number facts 3 

  

 

At individual and group levels, students relied heavily on two strategies: 

decomposition and array/area/grid. Note that the numbers in Table 15 combine the 

response of students that described the strategy with those who simply stated the strategy 

they would use. Students often referred to decomposition, for example, by stating “I 

would break the numbers up,” but some would detail the process: 

“10x18=180+10x18=180+5x18=90” (actual response for the problem 18 x 25). The 

graphic nature of the second most commonly suggested strategy (array/area/grid) made it 

impossible to suggest by anything more than name because the computer would only 

accept text. Despite this limitation, the frequency with which some students suggested 

using arrays called into question their true understanding of them or their ability to use 

them.  

Looking at which strategies students applied to which problems is informative. 

Repeated addition was suggested most often where one or both of the factors were a 

single digit. This indicates an understanding of the essence of multiplication and is a 
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more appropriate strategy for these problems than for when both numbers are larger or 

double digits. Students suggested counting as a strategy only on the two problems that 

contained both single digit factors. These are the best instances to use that particular 

strategy, although it is earlier on the developmental timeline of mathematical 

understanding because of its low level of abstraction. 

Only three students reported using number facts, and all on the same problem (6 x 

7). That problem was directly preceded by the “3 x 4” problem, but no student stated “I 

just know that 3 x 4 = 12,” even though it is probably fair to say that more 4
th

 grade 

students know “3 x 4 = 12” as a number fact than know “6 x 7 = 42.” This discrepancy 

may be because the “3 x 4” problem was solved correctly, but 6 x 7 was not. With the 

correct answer to “3 x 4” displayed, students may not have realized they would have 

known it anyway without using the surprising number of different strategies (five) they 

suggested. 

Understanding as a Function of Length of Constructed Response 

For a problem containing a mistake, did giving only the correct answer mean the 

student corrected the error in the given strategy or did it mean she used a different 

strategy? Combining the constructed responses with students’ answers to the multiple-

choice questions provided suggestive but not conclusive answers. For example, Table 16 

shows all the responses by students who explicitly stated that 600 was the correct answer 

for problem 11. Others answered the multiple-choice questions correctly or explained the 

mistake, but did not state the correct answer. 
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Table 16 

Differences in Understanding Reflected in Longer and Shorter Answers 

  

  

 

Did my 

solution 

work? 

 

 

Is my 

answer 

correct? 

 

 

Did I 

make any 

mistakes? 

Can you tell 

me which 

step I made a 

mistake in? 

(step 3) 

Please tell me how you 

would have solved this 

problem or how I could 

fix any mistakes I 

made. 

Student 1 No No Yes Step 3 i whould brak it  up 20 

10 10 10 20 x 10 200 

20 x 10 200 10 x 10 

100 10 x 10 100 = 600 

Student 2 Yes Yes No --
 a
 20x30=600 

Student 3 Yes Yes No --
 a
 20x30=600 

+20x30=600 

Student 4 Yes Yes No --
 a
 20 times 30 eaquals 

600 

Student 5 No No Yes Step 3 i put 20x30 it was 600 

and then i did oxo it 

was o  and my answer 

was 600. 

Student 6 No No Yes Step 2 it =600 

Student 7 No No Yes Step 3 2x3=6 add two zeros 

anser 600 

a
 Student did not see this question because of response of “no” to previous question. 
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The question for each problem that asked whether the computer made a mistake is 

subject to Type I and Type II error on the student’s part. These possibilities are important 

not from a statistical point of view but because they reveal different characteristics about 

the responder. The former may indicate a lack of flexibility with varied solution methods 

or a reliance on known procedures. The latter, which in this case would be not identifying 

an existing error, could mean a lack of understanding of the underlying relevant concept. 

Students who stated the correct answer showed one of two distinct patterns on the 

previous three or four questions for this problem. They were, with one exception, 

consistent: they answered all the multiple-choice questions correctly or missed them all. 

This particular subset of responses shows none of the inconsistencies that a quarter of 

overall responses. Four of the students apparently understood what was wrong with the 

problem the entire time; the other three did not see any problem until they had to offer an 

explanation, when they solved it themselves. It cannot be determined whether the latter 

three would have revised their earlier answers after calculating the correct answer.  

The determination to be made here is whether these two groups of students (four 

and three) have different levels of understanding of the concepts and strategies involved 

in this particular problem. The constructed responses of three of the four students who 

answered the MCQs correctly are more detailed. The fourth student, whose constructed 

response was not detailed, also incorrectly identified the step containing the error 

(question four).  Looking at the constructed responses alone, it would be overreaching to 

say that students who did not provide an explanation of their correct answer to the 
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problem lacked understanding. However, when combined with the multiple-choice 

questions, it appears that providing only the correct answer to the problem demonstrates a 

lack of understanding, not just an omission. This inconsistency between the responses on 

the MCQs and the construction responses could indicate an inability to bridge the gap 

between what they know is correct (from solving the problems correctly themselves) and 

what looks acceptable but cannot be correct. Taking this one step further, if the multiple-

choice questions are the determining factor in deciding whether a student understands 

what is going on in a problem, those questions could be said to demonstrate 

understanding on their own. 

Relationship Between Understanding and Proficiency 

The correlation between scores on the two sections (understanding and 

performance) was r(75) = .46, demonstrating that there is considerable but far from total 

overlap between these abilities. This is also evident anecdotally by looking at the 

performance scores of students who earned a high total score in the understanding section 

(see Figure 3). While some performed well in the performance section, several scored 2 

or 3 (of 5) on the performance section, and some demonstrated limited familiarity with a 

variety of strategies. In general, however, students with high performance scores were 

slightly more likely to score well on the understanding section and students who 

answered one or none of the performance questions correctly were more likely to have 

lower scores in the understanding section. The assessment instrument was able to 
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differentiate between conceptual understanding and the ability to multiply two integers 

accurately. 

 

  

 

Figure 3. Scatter plot comparing students’ total scores on understanding and performance  

sections 

  

 

Relationship Between Computer Familiarity, Understanding, and Proficiency 

Scores on the familiarity scale did not correlate strongly to scores on either 

performance or understanding, r(75) = .03 and r(75) = .11, respectively. Although a few 

students did indicate having little experience taking tests on computers or not having a 

computer at home, their computer skills are demonstrably adequate to complete this 
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assessment without familiarity becoming a factor. Some of the spelling and grammar 

issues previously noted may be the result of low keyboarding skills, which become as 

much an impediment to interpretation as it is to students.  

Effect of Order 

As previously mentioned, two of the four groups received the animation section 

questions before the performance question, while the section order was reversed for the 

other two groups. Since this was administered at the class level, assignment to those two 

groups (by order) is not truly random. As can be seen in Table 17, the groups performed 

differently on the two sections.  

 

  

Table 17 

Mean Scores by Section and Section Order 

  

 Mean animation score  

(SD) 

Mean performance 

score (SD) 

Animation first 27.38 (9.12) 2.00 (1.81) 

Performance first 28.31 (8.32) 2.83 (1.24) 

  

 

The group that received the performance questions first performed better on both 

sections, but a one-way ANOVA indicated the difference on the animation section was 

not significant, F(1, 77) = 0.30, p > .05. The difference in the performance scores was 
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significant, F(1, 79) = 5.04, p < .05. Without truly random assignment, it is not possible 

to say the difference was a result of reversing the order of the two sections.  

Comparison across Test Sections 

For the purpose of comparisons across test sections, a total score was calculated 

for each student for each section. For the performance section, the score was a count of 

the correct answers on the five multiplication questions, yielding a score from 0 to 5. The 

score for the understanding section was a total of the correct responses to the first three 

questions for each problem, which produced scores up to 45 (15 problems x 3 questions 

per problem). The fourth problem for each question was not included because it was not 

presented if the student did not report a mistake in question three. The score for the 

section on computer familiarity has already been described. Correlations were calculated 

among all three sections. The understanding and performance sections correlated at r = 

.46. The computer familiarity section correlated with the animation section at r = .11, and 

with the performance section at r = .03. 

Summary 

Analysis of the data showed that the assessment was able to reveal student 

thinking in a variety of ways. Students’ responses were noticeably different on questions 

with and without mistakes on both multiple-choice and constructed-response questions. 

Although they generally relied on a small number of strategies, they did suggest 

strategies appropriate to specific problems in some cases. The amount of detail or 
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information they gave in their constructed response was indicative of their level of 

understanding. They showed individual preferences for strategies, but generally accepted 

the presented strategy.  

The relationship between scores on the understanding and performance sections 

indicated that these two characteristics correlate moderately but far from totally. The 

relationship between computer familiarity and both other sections were weak enough to 

discount familiarity as a significant factor in students’ performance on the test. 

Having shown what the assessment revealed and some of its limitations, the next 

chapter concludes the dissertation by discussing implications for teaching mathematics 

and how the assessment could be improved and applied in a true educational setting.  

  



 

 

92 

 

 

 

CHAPTER FIVE: DISCUSSION 

This study has been a narrowly focused attempt to assess understanding of 

mathematics (specifically multiplication) rather than performance. This final chapter 

restates the need for the study and key points of relevant literature, summarizes its 

methodology and results, and discusses the implications of its results. 

Summary of Purpose and Literature 

Assessment of understanding is important for two reasons: first, true 

understanding is what will help students master successive levels of mathematics they 

will soon encounter; and second, this type of knowledge is one of the goals of cognitively 

guided instruction with which assessment should align. The research questions were (a) 

what was the assessment instrument able to reveal about students’ understanding of 

mathematic concepts related to multiplication of integers? (b) what relationships were 

demonstrated between the results of the assessment for mathematical understanding and 

the assessment of demonstrated algorithmic proficiency in multiplication? and (c) What 

effect did computer familiarity have on the ability of the assessment to reveal 

mathematical thinking? 

The literature of cognition and assessment is rich with descriptions of knowledge 

structures and modeling, authenticity, and uses of formative assessment. However, 

existing methods of revealing how students think are time consuming to administer and 
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evaluate. Computer-based assessment (CBA) can be used to overcome some of those 

difficulties. CBA has its own set of issues when compared with other forms of testing, 

but also has a long and established history and practices to mitigate its limitations. Many 

standardized tests are computer-based, so students are used to taking tests on computers. 

Ideally, computers could provide real-time feedback useful for learning and instruction. 

Cognitively guided instruction is not a specific method for instruction but a 

general approach based on increased mathematical knowledge in teachers that recognizes 

and uses students’ informal mathematical knowledge in a socially constructivist setting. 

Although CGI is transmitted to teachers by professional development, its ultimate goal is 

to improve mathematical understanding in students, thus forming a conceptual and 

physical setting for this study.  

The general concept of the assessment (non-performance based) created for this 

study came from the idea that the demands of performance inhibit students’ opportunity 

and ability to express their thoughts on the topic (Giordani & Soller, 2004; Lesh & 

Lehrer, 2000; McClain et al., 1999; Yeh, 2001). The assessment therefore solved 

problems for the students and captured their thoughts and reactions. 

Summary of Methodology 

Participants in the study were fourth grade students in four classes from two 

elementary schools participating in a larger CGI program run by the Initiative for 

Developing Mathematical Thinking (IDMT) at Boise State University. Although the 

transmission of CGI is primarily through teachers, the ultimate beneficiaries are of course 
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students. However, the purpose this study was to evaluate the assessment instrument, not 

the efficacy of CGI or the professional development.  

The teachers at the elementary schools have participated in the IDMT 

professional development program between two and five years. Both schools have 

significant Latino populations, Title 1 status, and have experienced rapid growth in recent 

years. Despite those challenges, both schools met all No Child Left Behind (NCLB) 

mathematics goals for the 2008-2009 school year. 

The assessment consisted of three sections. The largest section focused on 

understanding, and presented 15 multiplication problems solved by the computer. Each 

solution was contained in an animation lasting between 11 and 28 seconds, which played 

on each student’s computer. Students could control the playback, which stopped after 

completion of each major step in the solution, and could watch the entire animation as 

many times as they wanted. Then they answered three or four multiple choice and one 

constructed response questions for each problem. The questions in the understanding 

section focused a construct multiplication consisting of eight strategies and five concepts 

(see Appendix A). Several strategies and concepts applied to each problem in order to 

assess them multiple times (see Figure A.1). 

The other two sections of the test consisted of five performance questions in 

which the students had to supply only the answer and three questions about their 

experiences taking tests on computers. The understanding section preceded the 

performance section for half the students; the order was reversed for the other half. All 
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participants took the assessment within a one-week span, shortly after they had 

completed a unit on multiplication. 

Data were gathered using Qualtrics survey software, a commercial product with 

secure data storage and access methods. Responses were anonymous: the researcher was 

not present during data collection and no identifiable information was collected. Data 

were prepared for analysis in Microsoft Excel by coding responses dichotomously 

(correct/incorrect) for the multiple-choice and performance questions. Qualitative data 

codes were developed and applied to the constructed responses.  

Summary of Results 

Analysis of the responses gathered during the four days of administration of the 

assessment instrument revealed a considerable amount about how students think about 

and understand the mathematical concepts related to the multiplication of one and two 

digit positive integers. Patterns become discernable, while inconsistencies revealed other 

dimensions of students’ thinking. The data were viewed from the perspectives of 

consistency, group-wise patterns, reactions to mistakes and varied strategies, and their 

strategy suggestions. 

In broad terms, it showed different levels among students of recognition or 

acceptance of various strategies and concepts. The students as a whole demonstrated they 

were better at determining whether an answer was correct than at determining the 

appropriateness of a particular strategy. The instrument also showed that of the five 

concepts rated, place value, arguably the most important, was the weakest. The group 
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scored highest on the concept of flexibility, operationalized in this study by the use of 

many different methods and unusual variations in standard methods.  

Analysis began with extensive conversion and coding of data. The quantitative 

data showed the assessment instrument had poor reliability at the levels of individual 

students’ understanding of specific concepts and strategies. When viewed as a group, the 

data demonstrated better reliability. While still below the levels expected of a 

standardized achievement test (Gay & Airasian, 2003), reliability coefficients for the 

group are at levels that make plausible the examination of the validity and results of this 

new assessment. 

At the group level, the assessment was able to reveal strengths and weaknesses in 

various strategies and concepts. Students performed best on problems that used repeated 

addition and halving and doubling to solve the problems, while their lowest performance 

was on problems that used the FOIL method and the shortcut for multiplying by 10 by 

adding a zero to the right-hand side of a number. The most notable finding regarding 

concepts was weakness in problems for which place value was an issue. 

Students tended to respond consistently across the questions for a given problem, 

but when they did not, they tended to get more questions right as they went through the 

five questions for the problem. Again, it is difficult to know whether this is a result of 

students’ increasing understanding of the problem as they progress through the five 

questions for each problem or differences in the questions and the skills and knowledge 

upon which they draw. 
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Students’ reactions to the problems in their constructed responses showed a great 

deal about how they think and how they understand multiplication. Students generally 

accepted the demonstrated solution, although less frequently for problems that contained 

a mistake. However, whether the solution contained a mistake or not, they often 

suggested another way to solve the problem. While only three strategies dominated 

suggestions at the group level and most individual students relied on only one or two 

strategies, a number of suggestions demonstrated understanding by being appropriate for 

the problem.  

The constructed responses also demonstrated limits to students’ understanding or 

possibly limits of the assessment to reveal their thinking. In problems that contained a 

mistake, few students directly fixed or explained the error. Most commonly, they would 

simply offer another solution or strategy. Students suggested general strategies more 

often that specific ones.  

Overall, constructed responses could be judged to a degree not just by what they 

said but by what they did not say. Students who suggested and worked out a specific 

strategy demonstrated more understanding than those who give a general strategy or 

simply gave the answer, a result corroborated by responses on the first four questions for 

that problem. Students who took the time to write a response that contained less or no 

mathematical content probably had lower levels of understanding. While more 

information in a response obviously demonstrated greater understanding, analysis also 
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suggested less information was not just an omission but demonstrative of lower levels of 

understanding. 

Comparing the scores between the animation/understanding and the performance 

sections revealed a moderate positive correlation. Understanding multiplication and 

performing multiplication are related but distinct capabilities. Comparisons of the scores 

from the computer familiarity scale with the other two sections revealed very weak 

positive correlations, demonstrating that students’ experience or, in a few cases, lack of 

experience with computers did not noticeably affect their performance on the assessment. 

Discussion of the Results 

Understanding mathematical concepts and why strategies work or do not work are 

some of the goals of cognitively guided instruction (CGI). The purpose of the instrument 

designed for this study was to provide teachers and students with a tool to reveal and 

assess that understanding and use it for formative assessment. Before answering the 

research questions directly, the results are viewed through the two lenses of 

understanding and use of strategies. 

Interpretation of Responses 

Determining the meaning and intent of responses to the final question in each 

group was challenging. Merely figuring out whether they agreed or disagreed with the 

given strategy involved shades of meaning that were difficult to categorize. “I would use 

a different strategy” could represent disagreement, whereas “I would use different 
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strategy to check my answer” could mean the student agreed with the strategy used but 

wanted to double check her answer, which is something students are taught to do 

(Carpenter et al., 1999).  

In some cases, constructed responses had to be interpreted by reading previous 

responses by the same student, even though earlier responses would have been related to 

different problems and possibly different mistakes. For example, “couleter” is not 

understandable without comparison to “couckulater,” the same student’s response to a 

previous question. This type of interpretation would be difficult if not impossible when 

attempting to use a computer to categorize responses, and it tests even the limits of 

human memory and associative skills.  

Operationalized Construct of Mathematical Understanding 

In the context of the construct of understanding multiplication presented in this 

study, the responses that indicate understanding must be described. Students with a high 

level of understanding would have correctly identified the presence and location of 

mistakes in problems, explained the mistakes, suggested a variety of strategies 

appropriate for the nature of individual problems, and seen that unusual strategies obeyed 

basic concepts and were therefore acceptable. They would have had an idea of whether 

an answer was correct (before they solve the problem themselves) by following the 

strategies and steps in the presented solution. Students would understand why a strategy 

did or did not work. At the other end of the scale, students with a poor understanding 

would not have spotted mistakes at all, would suggest the same strategies regardless of 
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the nature of the problem, and be uncomfortable with strategies that were unusual despite 

their adherence to mathematical principles. They would accept flawed strategies that 

contain familiar elements but did not respect mathematical principles. They would rely 

heavily on processes, such as the standard algorithm. 

Interpretation of Results 

Students demonstrated all the above characteristics of understanding and lack of 

understanding at various points and at varying levels in the assessment. This is not 

surprising and is indicative of variation in mathematical abilities and of concepts and 

procedures not yet fully internalized (Anderson, 1983). At the group level, the results 

might suggest some broad instructional strategies. Students need work in recognizing 

mistakes, and might be encouraged to follow through on suggested strategies by solving 

the problem, as described in Carpenter et al. (1999). Teachers should not be content with 

explanations of just a few words. The response patterns indicate that students should be 

given ample time to think about problems requiring knowledge that has not been fully 

mastered.  

Students’ poor understanding of place value is particularly worrisome because it 

is an important concept in many areas of mathematics they will be learning for years to 

come (Carpenter, Franke, & Levi, 2003). It is possible that its low ranking among 

concepts used in this assessment is indicative of the relatively large number of solutions 

and errors in which it was a factor, but poor understanding of place value is still a 

concern. The traditional algorithm simultaneously disregards and compensates for place 
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value, but other methods and strategies require more attention be paid to the true value a 

digit represents. Teachers might be well advised to pay close attention to their students’ 

understanding of this concept. 

Decomposition fared relatively poorly as a strategy, contrasting with the high 

frequency with which students suggested it in their constructed responses. The difference 

may be due to the fact that the provided animated solutions primarily broke numbers 

down by place value, whereas students’ responses usually broke numbers into several 

small, friendly numbers. For example, several students broke the number 25 into two 10s 

and a 5, and broke 7 into three 2s and a 1. This difference highlights the difficulty in 

defining the construct of multiplication. 

As a group, it seems obvious that these students are being taught multiplication in 

ways that downplay the standard algorithmic process; ways that attempt to involve more 

mathematical thinking. Out of 292 total suggestions for how to solve the 15 problems, 

students suggested using the traditional algorithm only six times. If the same students 

were given the same problems to solve without further instructions, it is easy to imagine 

that more might use the traditional algorithm. However, that imagined discrepancy 

should not be viewed as contradictory or a failure of teaching for understanding. When 

simply given a problem to solve, it is reasonable to expect students to solve it in the most 

expedient way, which for many might be the mathematical shorthand of the traditional 

algorithm.  
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At the individual level, such an assessment would ideally pinpoint specific areas 

of high and low understanding. The reliability of items at this level is not sufficient to 

make such judgments. Even if such judgments were possible at the individual level, they 

would only be of use if teachers could individualize instruction to meet the revealed 

needs. This also could be completed with small groups for instruction, and computers 

could, once again, individualized practice. 

Hints of understanding surface in unusual statements, such as “if it is 12 x 27 it 

cant [sic] be 27!” How much more this student understood is not known, but she at least 

understood that multiplying 27 by a number other than one could not result in 27. 

Another student wrote “stop making a 10 a 1!” after seeing several deliberate place value 

errors. Finally, one student could not understand how the solution could have gone wrong 

after starting correctly: “youn [sic] can fix it by you need to add 4 more lines of seven 

and when you put the numbres [sic] down on your strategi [sic] you earased [sic] it why.” 

Although these three responses were strong indicators of understanding, they, too, would 

be difficult for a computer to interpret.  

The finding that shorter constructed responses were indicative of lower levels of 

understanding could have implications in other assessments, whether formal or informal; 

formative or summative. Students encounter open-ended questions in many classroom 

situations: being called upon in class, descriptive writing, and even in purposeful 

drawing. The amount of information in any of these responses could be a significant 

indicator of knowledge and understanding. Students may be encouraged to include any 
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information in open-ended questions that might be relevant in any way. Although this 

may seem to give students the best opportunity to demonstrate what they know, this 

finding shows there is a potential downside to the “everything but the kitchen sink” 

answer strategy. 

Of course, the test can only reveal understanding to the extent that students 

possess it. They all completed a unit on multiplication about a month previous to 

administration of the test, but their understanding of multiplication is neither fully mature 

nor complete. Multiplication might be viewed as a unitary concept for many purposes, 

but of all the possible ways to solve multiplication problems, only the traditional 

algorithm treats it that way. 

Although a majority of students answered all questions for a problem either all 

correctly or all incorrectly, some seemed to experience an “ah ha!” or “Eureka!” moment 

when they went from not understanding the solution or the problem to understanding. 

This was evidenced by response patterns that changed from zeros (incorrect answers) to 

ones (correct answers) and by the fact that students who missed both of the first two 

questions were more likely to identify the mistake than students who answered one of the 

first questions correctly. The former group might be those who experienced that moment 

of realization; the latter was unsure and remained so. This pattern could also be because 

assessing the appropriateness of strategies, knowing whether an answer was correct, and 

identifying procedural errors are related but not fully overlapping abilities. However, the 
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numbers are not large and the percentages not that different, so this anomaly could be due 

to chance. 

The fact students got to spend time on and answer multiple questions about a 

single problem seems to have given some of them a chance to increase their 

understanding over the course of the problem. If true, the assessment would help define 

students’ zone of proximal development (Vygotsky, 1978). Young learners whose 

mastery of the material, multiplication in this case, is still forming benefit from having 

time to spend on a problem, even on a test. Benefit in this case is defined as students 

having the fullest opportunity to demonstrate their knowledge. This is surely desirable in 

formative assessment, but formative might describe any assessment of learners who 

cannot be expected to have fully mastered the material. This could extend the description 

of formative to a great many tests of students this age. 

The moderate positive correlation between performance and understanding may 

be viewed as surprising low or surprising in its strength. It would be easy to imagine a 

student who had been taught nothing of multiplication but algorithms and procedures 

being unaware of its underlying concepts. Conversely, a student who only answered 

multiple-choice, non-performance based questions about multiplication might have a 

difficult time performing multiplication. Ideally, as students’ mastery of multiplication 

improves, the strength of the correlation between performance and understanding would 

increase. However, if understanding is neglected or unused, students may be left with 
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only procedures. It is easy to imagine adults who can perform multiplication but have 

forgotten why their procedures work. 

Recommendations for Educators 

CGI recognizes and builds upon informal mathematics knowledge students have 

before their formal training in mathematics begins, but most students in this study 

preferred a limited number of strategies. Young students, like most everyone else, have a 

comfort zone. Expanding that zone will require ongoing attention of teachers. 

This assessment, like any other, would suffer greatly from “teaching to the test.” 

While mathematics teachers may hope their students are familiar with and use a variety 

of appropriate problem-solving strategies, teaching them in ways that cause them to 

repeat names of various strategies because they think that is what the teacher or, in this 

case, the researcher wants to hear would skew the results. 

As noted above, students at this exact age but also throughout elementary school 

are constantly increasing their knowledge in all the basic skill areas. Even if a test is the 

last time a teacher will assess a given skill set, it would be helpful for students to treat the 

assessment as formative. This would mean allowing students ample time to work on the 

test and giving feedback beyond a simple grade. 

Suggestions for Additional Research 

Motivation may be been a factor in performance because students received no 

grade or credit of any sort for taking this test. The test generally took longer than 
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expected, causing increasing numbers of unanswered questions as the test progressed. In 

future iterations, incorporating even experimental administrations into an assignment or 

assigning a grade even for completion might motivate students to do their best. 

When asking students to render their thoughts on a computer, language skills can 

also become a factor. If students are to give some responses in written prose, their ability 

in that medium must be controlled or known to separate it from their mathematical 

ability. The level of grammar and spelling skills in the participants made interpretation of 

the constructed responses challenging. The ability for some students to express concepts 

clearly may not be sufficiently developed to make constructed responses reliable and 

valid. Poor language skills may reduce the validity of the assessment if they prevent 

students from expressing themselves clearly. English may not be the primary or home 

language of some of the Hispanic students, which could hamper their ability to fully 

express their knowledge. 

Some of the process descriptions were difficult to categorize by strategy – the 

constructed response questions gave students the opportunity to display their individual 

natures and constructions of knowledge. While educators recognize and often celebrate 

individual characteristics of students, those same qualities make interpretation of 

responses such as those gathered in this study difficult.  

Strategies chosen for the animated problems may have influenced students. 

Besides the influence noted above of what was presented with number facts, what was 

seen may have also played a role in other responses. For example, the given solutions for 



 

 

107 

 

 

two problems used halving and doubling. Neither of these contained a mistake. Although 

no student suggested using halving and doubling to solve any of the other problems, the 

number who agreed and disagreed with the strategy was similar and in a similar ratio 

compared with problems using the strategies most often suggested by students 

(decomposition and arrays). With a correct answer displayed and no mistakes on which to 

focus, separating students who truly understand the strategy and might ever use it from 

those who, lacking an obvious reason to object, simply went along with it. The use of 

multiple strategies, a component of CGI, is supposed to develop understanding of 

mathematical thinking by allowing students to see how mathematical principles apply 

across various strategies. However, if not taught well, multiple strategies could lose their 

effect as a conceptual scaffold and become the new procedural algorithm (Hannafin, 

Hannafin, & Gabbitas, 2009; Oliver & Hannafin, 2001), ultimately failing to impart 

improved understanding. 

To increase the validity of future versions of this assessment, individual items 

may need to have fewer factors loading on them. A typical problem in the current version 

related to several strategies and concepts, strategy selection, and possibly error 

recognition. The number of items was not sufficient to determine the effects of so many 

factors, especially concepts and strategies at the individual level. Tests might need to 

focus on a smaller number of factors to have acceptable reliability and be of a reasonable 

length. This might prevent a single such test from being comprehensive. 
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Constructed responses are always subject to interpretation. If this type of 

assessment is to produce consistently useful data with efficiency, responses might need to 

be scripted into a selected response format. With fewer factors to measure, such questions 

could still capture more information than standard multiple choice questions. Given the 

high Hispanic populations of the schools from which the sample was drawn, offering 

students additional response methods for the open-ended questions might increase the 

validity of the test by removing the language factor. 

Capturing and assessing students’ mathematical thinking remains a necessary goal 

if the stated purpose of instruction is to improve their mathematical thinking and 

understanding. In higher levels of mathematics, understanding is more important than 

proficiency in arithmetic. Narrowing the focus of such assessments may provide the 

reliability and specificity teachers need to effect change in their instruction. 
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APPENDIX A 

Assessment for Understanding: Problem Matrix 

  



 

 

124 

 

 

  

Table A.1 

Description of Problems 

  

Item Problem Context Error Reason / Justification 

1 23 x 7 N Place value Simple decomposition, only 1 two digit 

number to keep simple 

2 
5 x 28 N -  Numbers that could be halved and 

doubled easily, with one of them 

producing friendly number 

3 3 x 4 N -  Small numbers that would produce easy 

numbers for repeated multiplication 

4 5 x 6 N Concept of area 

model  

Numbers large enough that students 

may not know as number fact, small 

enough to easily count, possible 

confusion w/ 6x2, 6+6, or 6+7 

5 12 x 27 Y Place value Area model not as digit dependent, but 

wanted some partial sums to be 2 digit, 

and easy partial products. Also, these 

numbers unique in problem set 

6 25 x 23 Y Place value Easy partial products, with possibility of 

confusion about how zeros to add for 

zero trick 

7 12 x 14 N -  Numbers than would produce an 

unusual look when partial products were 

reversed. 

  

table continues 
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Table A1 (continued) 

  

Item Problem Context Error Reason / Justification 

8 13 x 16 N Place value Easy computation of partial products, and 

easy addition of same 

9 18 x 25 Y -  One small enough that most would put on 

bottom in algorithm, both partial products end 

in zero to create confusion. 

10 16 x 12 N -  Numbers that would be easy to halve and double, 

even numbers easier 

11 20 x 30 N Place value Multiplication of significant digit would be easily 

known number fact, both multiples of 10 to create 

confusion 

12 8 x 23 N -  One single-digit number to make algorithm look 

unusual, avoid other obvious methods with odd & 

prime 23 

13 35 x 9 Y -  Access to friendly number, correctional also 

contains friendly numbers. 

14 19 x 4 N Concept of 

multiplication 

Access to friendly number, decomposition gives 

easy, known number facts 

15 15 x 29 Y -  Access to friendly number, decomposition easy, but 

requires 3rd technique 
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Strategies Concepts
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1 23 x 7 X X* X

2 5 x 28 X X X X X X

3 3 x 4 X X X

4 5 x 6 X X*

5 24 x 27 X X X X* X X

6 25 x 23 X X* X

7 12 x 14 X X X X

8 13 x 16 X X X X X*

9 18 x 25 X X X

10 16 x 12 X X X

11 20 x 30 X X X* X X

12 8 x 23 X X X X

13 35 x 9 X X X X

14 19 x 4 X X X X X X*

15 15 x 29 X X X X X

totals 2 2 6 6 2 4 2 6 10 5 3 10 3  
* indicates source of the error in problems with an error 

Figure A.1 Matrix of strategies and concepts 
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Table A.2 

Numbers Used in Problems 

Group Used as digits Used as numbers 

1-9 
All 3, 4, 5, 6, 7, 8, 9 

10-19  12, 13, 14, 15, 16, 18 

20-29  20, 23, 24, 25, 27, 29 

30-39  30, 35 
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APPENDIX C 

Graphics of Animated Problem Solutions 
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Problem 2 
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Problem 3 

 
 

Problem 4 
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Problem 5 

 
Problem 6 

 

 
 



 

 

135 

 

 

Problem 7 

 
Problem 8 
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Problem 9 

 

 
Problem 10 
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Problem 11 

 

 
 

Problem 12 
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139 

 

 

Problem 15 
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APPENDIX D 

Qualitative Data Codes 
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Codes for qualitative data from constructed response questions 

 

Original version 

 

1. Demonstrated understanding 

2. Did not demonstrate understanding 

 

3. Agreed with strategy used 

4. Disagreed with strategy used 

 

5. Noted error correctly, but no explanation/correction 

6. Error noted and correctly explained  

7. Error noted by incorrectly explained  

 

8. Suggested different general strategy (e.g. use 2 strategies to check answer, etc.) 

9. Suggested different, correct specific strategy  

10. Suggested different, incorrect specific strategy 

 

11. Expressed undefined uncertainty 

 

Final version 

 

1. Agreed with strategy used 

2. Disagreed with strategy used 

 

3. Suggested different general strategy (e.g. use 2 strategies to check answer, etc.) 

4. Suggested different, correct specific strategy  

5. Suggested different, incorrect specific strategy 

 

6. Noted error correctly, but no explanation/correction 

7. Error noted and correctly explained  

8. Error noted by incorrectly explained  

 

9. Incomplete/undecipherable/meaningless response 

 

Instructions for coding: 

For each constructed response, write the number of each statement that applies. Some 

responses may have multiple statements apply, but others may only merit one. I anticipate that 

each response would use one statement from each group (3 or 4 or 5), but if you feel more than 

one statement from a group applies, then put both down.  
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Rules for coding specific types of responses: 

1. The difference between a specific vs. general strategy is that a general strategy does not 

mention specific numbers, while a specific does. 

2. If the response says there was no mistake, take that as an agreed with strategy (1) 

3. If a response states there was a mistake, that’s a disagreed with strategy(2) 

4. Give responses consisting entirely of “yes” or “no” a code of 9. 

5. Give responses consisting entirely or mostly of “different” a 2. 

6. Give responses that merely restate the equation from the problem a 9. 

 

 


