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Abstract 
 

How  nestling birds respond to stressful situations may constitute an important survival 
component that has lasting developmental effects on the hypothalamic pituitary adrenal 
(HPA) axis.  As birds are exposed to increasing amounts of potential anthropogenic stressors 
through land use change, understanding how these factors contribute to HPA development is 
important.  We examined whether conditions experienced during the nestling stage affected 
free-living American Kestrel (Falco sparverius) HPA activity prior to fledging.  Kestrels 
experienced varying levels of human disturbance around their nest and we classified this 
environmental exposure as high or low environmental human disturbance based on traffic 
patterns and land use.  We then exposed some broods from high and low disturbance areas to 
a standardized disturbance protocol.  Prior to fledging we collected blood samples from 25-
day-old nestlings immediately after capture and 15 min post-capture. Corticosterone (CORT) 
did not vary with environmental human disturbance levels, disturbance protocol treatment, or 
with an interaction between environmental human disturbance and disturbance protocol 
treatment suggesting that nestling kestrels may not perceive external conditions related to 
human disturbance as stressful or kestrels may acclimate to disturbance.  We also compared 
the relative effects of environmental human disturbance outside the nest cavity, conditions 
within the nest cavity (brood size), and individual condition (nestling fat scores) on baseline 
and stress-induced CORT.  Baseline CORT did not vary with human disturbance level, brood 
size or fat score.  F at scores best explained stress-induced CORT with nestlings in better 
condition displaying elevated CORT.  These results suggest that individual variation is more 
likely to explain HPA development compared to nest conditions or the external environment.  
This study demonstrates the importance of considering the effects of developmental 
conditions on the stress response at several scales. 
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1. Introduction 
 

Developmental conditions can have significant effects on adult morphology, behavior, and physiology [26, 4, 28, 
10].  U ltimately, conditions experienced during development may impact growth, recruitment, reproduction, or 
survival that may in turn affect individual fitness and, perhaps, result in population changes [40, 8, 27, 4, 22].  The 
hypothalamic-pituitary-adrenal (HPA) axis releases glucocorticoids, particularly corticosterone (CORT), in response 
to unfavorable or challenging conditions and the HPA may be a system that is sensitive to developmental conditions 
[43].  An organism’s ability to respond to stressful events through secretion of CORT may be both beneficial and 
costly. Elevated CORT allows individuals to cope with short term or acute challenges by suppressing non-essential 
behaviors and physiological activities while promoting those required for immediate survival [reviewed in 53, 39].  
In nestling birds, elevated CORT may enhance survival by stimulating begging behavior [23], food intake [5, 21] 
and increased locomotion [12].  
 
Although beneficial during periods of acute stress, chronically elevated CORT (chronic stress) can be detrimental to 
behavioral and physiological systems [41].  I n developing animals chronic stress can have adverse effects that 
persist through life stages.  For example, elevated nestling CORT has been linked to compromised cognitive abilities 
[21], neophobia [43], changes in baseline CORT or HPA reactivity [34, 13, 22], and reduced survival [4].  At the 
individual level, nestling condition may be responsible for variation in CORT patterns. CORT plays a role in 
mobilizing energy during stress through increases in gluconeogenesis, liponeogenesis, and protein catabolism, 
crucial if food is limited or during energetically expensive periods [39].  Thus the amount of reserves a nestling has 
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available can influence the stress response [19].  Nestling HPA activity may also be affected by conditions within 
the nest such as variation in brood size.  As brood size increases, nestlings face competition for food, age or size 
hierarchies, as well as increased risks of parasite infestation, all of which can influence nestling CORT [37, 38, 24, 
22].   Little is known about how larger-scale developmental conditions, and in particular, exposure to the growing 
levels of human disturbance via land use change and urbanization, affect HPA-axis activity in wild nestling birds.  
 
As human populations expand, understanding the impacts anthropogenic disturbances have on nestling birds will 
become increasingly important. Human disturbance related to urbanization, scientific investigation, and tourism has 
been linked to nestling and fledgling baseline and stress-induced CORT levels [31, 50, 33].  These factors may elicit 
a stress response in young birds as human noise may impair communication between adults and nestlings (e.g. 
begging vocalizations) [1], or because nestlings may perceive human activity as a p redation threat [2].  As a 
consequence of long-term exposure to stressors such as human disturbance, nestling competition as a result of large 
brood size, or variation in body condition, nestlings may display a sensitized stress response (i.e. higher CORT 
concentrations), which may facilitate coping or lead to repercussions associated with chronically elevated CORT 
[13, 9].  A lternatively, nestlings may respond with a down-regulated or dampened stress response [36, 52] 
presumably to minimize the long-term negative effects elevated CORT has during development [49].  
 
American Kestrels (Falco sparverius) are cavity-nesting raptors that readily utilize nest boxes in human-dominated 
environments near urban developments, roads, and agricultural areas.  B rood size ranges from 3-6 semi-altricial 
nestlings, which can create competitive social hierarchies with the potential for brood reduction [42].  Kestrels as 
young as 10 days old respond to acute handling stress and by fledging age (~27 days) are able to mount an adult-like 
stress response [25].  We investigated whether human disturbance affected American Kestrel HPA-axis activity via 
a mixed-factor design (i.e., nestlings were “naturally” exposed to different levels of environmental disturbance, such 
as urban development or road use, and we experimentally treated some nests with a standardized disturbance 
protocol).  We predicted that if human disturbance affects HPA axis development in nestling kestrels then nestlings 
inhabiting high disturbance areas, or birds exposed to the disturbance protocol, would show elevated baseline and 
stress-induced CORT patterns.   Secondly, we compared whether human disturbance outside the nest cavity, brood 
conditions within the nest box, or nestling body condition best explained baseline and stress-induced CORT patterns 
to compare the relative effect of human disturbance to other known HPA effectors.   
 

2. Materials and Methods 
 

We monitored 89 nest boxes during the 2008 and 2009 breeding seasons in southwestern Idaho to examine the roles 
of human disturbance on kestrel HPA-activity.  Nest boxes were mounted on posts along secondary roads, on trees 
or posts in rural and suburban residential areas, and on signs along Interstate 84.  Nest boxes have been posted in 
these areas for over 20 years to facilitate a long term study of kestrel demography and dispersal [45].  Over time, 
suburban sprawl has considerably changed land use within the study site, but kestrel occupancy rates remained 
within the range of 50-65 % [45].  Each year, prior to the breeding season, we cleaned boxes and added new pine 
shavings.  We checked nest boxes weekly from approximately mid-March through mid-August to determine 
occupancy, clutch initiation, and hatch date.  I f nestlings were discovered as hatchlings they were aged following 
Griggs and Steenhof [17].  We banded 10 day old nestlings with USGS aluminum bands.  We visited nests again 
when nestlings were 25 da ys old to collect baseline and stress-induced CORT blood samples (see disturbance 
protocol below), obtain a final brood count, and score subcutaneous fat scores.  We assigned birds a fat score (0-3) 
based upon the size and shape of fat deposits in the right subalar region.  A score of 0 indicated no fat present, 1 
represented a trace of fat, 2 indicated a wide streak, and 3 was assigned to fat pads that visibly protruded above the 
level of the muscle [14].  All procedures were conducted with approval from Boise State University’s Institutional 
Animal Care and Use Committee (protocol #006-08-007).  

 
2.1 Environmental Human Disturbance Analysis 
 
We selected variables related to traffic noise, visual disturbance from passing vehicles, and presence of humans to 
represent environmental human disturbance [16, 32].  At each occupied nest box we recorded the number of lanes 
and posted roadway speed (mph) and compiled data on average number of vehicles per day from Ada and Canyon 
County Highway Districts [11] and the Idaho Department of Transportation [20].  If a nest box was at the 
intersection of more than one road we averaged all values.  We selected traffic volume and vehicle speed because 
traffic noise is best predicted by these two variables and the number of trucks on the road [47].  The proportion of 
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human development within a 900 m radius buffer around the nest box was quantified using Northwest Gap Analysis 
Program (NWGAP) satellite imagery of southwest Idaho [48].  Human development land cover types consisted of 
developed open space, developed low, medium and high intensity (reflects presence or absence of structures and 
roads) and strip or gravel mines. Road, traffic, and human development variables were entered into a p rincipal 
components analysis (PCA) to create a disturbance index.  Some locations may not be independent of one another as 
some nest boxes were occupied in both 2008 and 2009 or twice in one year.  To account for this we removed nest 
boxes from the PCA if traffic did not vary at those nests between years.  The first principal component (PC1) 
included the variables average number of vehicles per day, posted roadway speed, number of lanes and proportion of 
human developed area within a 900 m buffer surrounding the nest. PC1 accounted for 80% of the total variation 
among occupied nest boxes and each box was assigned individual PC1 scores to represent environmental human 
disturbance (Table 1).  D isturbance scores ranged from -2.40 to 2.57 with higher PC1 scores indicating higher 
disturbance areas (i.e. the interstate, busy secondary roads, or highly developed areas) while lower scores indicated 
lower disturbance areas such as smaller secondary roads with few or no buildings.  We classified boxes as low 
disturbance if they had a PC score of < -0.78 and high disturbance is the PC score was > -0.78 because of a natural 
break in the distribution of PC scores at -0.78.  
 
2.2 Disturbance Protocol 
 
We used a stratified-random approach to assign nests to a disturbance protocol or control group (no disturbance 
protocol) to ensure nests from high and low environmental human disturbance areas received treatment and control 
assignments. The disturbance protocol began when nestlings were approximately 17 days old and ended at 23-24 
days old.  Control nests were not visited, except for when young were 10 days old, and again when nestlings were 
25 days old.  We adapted Cyr and Romero’s [13] field chronic stress protocol by adding stimuli associated with 
human disturbance patterns in our study area (residential and agricultural activity).  In addition, stimuli were 
presented to the broods in an unpredictable pattern, a key component of a stressor [36, 13].  Disturbance protocol 
broods were exposed to a rotation of six stressors that included loud radio placed within the nest box, a novel object 
placed in or on top of the nest box, a Great-Horned Owl (Bubo virginianus) decoy positioned within view of the 
nest-box entrance, a human talking, and a human and dog (intermittently barking) near the nest box.  These stressors 
were similar to those used by Cyr and Romero [13].  The disturbance protocol consisted of three randomly selected 
stressors administered for 30 minutes, spaced 30 minutes to one hour apart for seven days.  We randomly chose one 
day out of the seven-day period in which disturbance protocol broods did not receive the protocol.  
 
We followed a standardized capture and restraint stress protocol to assess the affects of disturbance on baseline and 
stress-induced CORT within 24 - 48 hrs after completion of the disturbance protocol [54].  From every brood one or 
two 25-day-old nestlings were bled within four min (mean = 3 min 15 sec, SD = 45 sec) of nest box contact to 
reflect baseline CORT.  For samples collected in < 4 min, there was no relationship between time and baseline 
nestling CORT (r = -0.14, P = 0.31). After baseline sampling, nestlings were placed in a co vered, 
compartmentalized plastic bucket.  We collected stress-induced samples 15 min after opening the nest box from two 
(or one if limited by brood size) nestlings.  We sampled stress-induced CORT at 15 min because previous research 
on juvenile kestrel CORT secretion patterns showed that most birds reached maximum CORT concentrations within 
10-20 minutes [19, 25]. We did not bleed the same birds twice to avoid underestimating CORT levels [15].  If a 
brood consisted of one nestling, we collected only baseline from this individual.  For all samples, 0.1 - 0.4 ml of 
blood was collected using a 26 ½ gauge needle and syringe via the jugular vein.  Samples were stored in heparinized 
vials, placed on ice and returned to the lab within five hours of sampling. 
 
2.3 Corticosterone Determination  
 
Samples were centrifuged at 10,000 rpm for 15 min to separate the plasma from the cellular fraction.  Plasma was 
extracted and stored in 1.5 ml microcentrifuge tubes at -80°C until analysis.  We determined total CORT 
concentrations by running eight different enzyme-linked immunosorbent assays (ELISA, Cayman Chemicals).  
Samples were run in duplicate when possible.  Briefly, we twice extracted CORT from 10-30 µl of plasma with 5 ml 
diethyl ether.  The lipophilic supernatant was poured off and dried under a stream of nitrogen gas in a warm water 
bath.  Extracted samples were reconstituted with 100 µl of EIA buffer, vortexed and 50 µl aliquots were added to 
96-well plates coated with mouse monoclonal antibody.  W e added corticosterone-specific acetylcholinesterase 
tracer and rabbit corticosterone antiserum and then placed plates on an orbital shaker for two hours.  P lates were 
then developed and read at 405 nm with a Biotek EL800 plate reader.  The concentration of CORT was calculated 
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by comparing results to a s tandard curve. Extraction efficiency was determined by analyzing a s tandard CORT 
sample.  Inter-assay variation was calculated from repeated values of a pooled sample.  All values were corrected for 
assay extraction efficiency (mean ± SD) 83 ± 7.6%.  Inter-assay variation averaged 8.63 % and average intra-assay 
variation was 2.02%. 
 
2.4 Statistical Analyses  
 
2.4.1 Environmental Human Disturbance and Disturbance Protocol Analysis 
 
To examine the effects of environmental human disturbance and disturbance protocol treatment on nestling CORT 
we ran a three factor repeated measures ANOVA with a block for year.  Treatment (control or disturbance protocol) 
and environmental human disturbance (high or low) were between-group factors and bleed time (0-15 min) was a 
within-subjects factor.  Both baseline and stress-induced CORT was log transformed to meet the assumptions of a 
parametric test.  Nests with only one nestling were removed from the disturbance protocol analysis [46, 3].  Data 
from males and females were combined because there was no difference in baseline or stress-induced CORT 
between sexes (all P’s > 0.05).  We compared our P-value to an α = 0.05.  
  
2.4.2 Analyses of Environmental Human Disturbance, Brood Size and Nestling Condition 
 
To evaluate the influences of human disturbance, brood size, and condition in explaining nestling kestrel HPA-axis 
activity we used generalized estimating equations (GEE).  This approach was utilized as GEEs do not require 
independent observations and can thus be used to analyze clustered and longitudinal data [18] such as when multiple 
nestlings are measured within a brood, as was our case.  We used GEEs with a normal distribution (Proc GENMOD 
in Sas 9.2) for the response variables log baseline and log stress-induced CORT and specified a repeated statement 
for brood.  We report parameter estimates (β) as well as 95% confidence intervals (CI). 
 

3. Results 
 

We sampled 106 nestlings from 42 nest boxes.  Baseline CORT (n = 57) ranged from 1,187 – 17,281 pg/ml with a 
mean ± SD of 5,328 ± 3,705 pg/ml and stress-induced CORT (n = 49) ranged from 4,893-46,698 pg/ml with a mean 
± SD of 17,022 ± 8,608 pg/ml. Brood size ranged from 1-6 nestlings and averaged 3.9 ± 1.3 nestlings per nest.  Fat 
score did not differ with brood size (P > 0 .3), nor were there relationships between environmental human 
disturbance score and brood size or fat score (all P > 0.2).  
 
PC scores and human disturbance categories reliably represented human activity around nest sites.  H igh 
environmental human disturbance areas had more vehicles, faster vehicles, more traffic lanes and more human 
development compared to low environmental human disturbance areas (Table 2). 
 
3.1 Disturbance Protocol 
 
Thirty-three nest boxes with 93 nestlings were used in the disturbance protocol study.  Nestlings of all 
environmental human disturbance groups and disturbance protocol treatment groups responded to acute handling 
stress as indicated by an increase in total CORT from 0- 15 min (Figure 1).  However, nestlings did not display a 
significant difference in baseline or stress-induced CORT across environmental human disturbance levels (F1, 27 = 
1.97, P = 0.17), disturbance protocol treatment (F1, 27 = 0.00, P = 0 .97), or the interaction between environmental 
human disturbance and disturbance protocol treatment (F1, 27 = 0.00, P = 0.97) (Figure 1).  
 
3.2 Environmental Human Disturbance, Brood Size, and Nestling Condition 
 
Nestling baseline CORT did not differ with environmental human disturbance, brood size, or nestling fat score 
(Table 3).  Fat score best explained variation in nestling stress-induced CORT.  Nestlings with higher fat scores had 
higher stress-induced CORT (β = 0.38, 95% CI: 0.20-0.56, Table 3, Figure 2).   
 
 
 
 

4

elizabethwalker
Text Box
NOTICE: This is the author's version of a work accepted for publication by Elsevier.  Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version has been published in General and Comparative Endocrinology, Volume 173, Issue 1, 2011.  DOI: 10.1016/j.ygcen.2011.05.010




4. Discussion 
 
In this study we investigated the effects of developmental conditions specifically, exposure to human disturbance, 
brood size, and individual condition on nestling kestrel HPA-axis activity.  N estling kestrel baseline and stress-
induced CORT did not vary with environmental human disturbance or disturbance protocol treatment.  These results 
suggest that nestling kestrels may not have perceived environmental human disturbance or our disturbance protocol 
as a t hreat, or nestlings exposed to the environmental human disturbance, the disturbance protocol, or both may 
acclimate and not react with a physiological stress response.  The disturbance protocol as well as environmental 
human disturbance might not have been high enough or of a long enough duration to elicit a stress response in 
nestling kestrels nor did we determine if individual stressors led to acute stress in nestlings. We expected nestlings to 
respond to the disturbance protocol because kestrel nestlings do not have the ability to escape stressors and similar 
stressors have been found to elicit a stress response in other cavity nesting birds [13]. Sounds from talking and dog 
barking easily transmitted to the box and the radio speakers were placed in the nest box.  We observed a strong 
behavioral reaction (rolled on back and exposed talons) to placement of the stressors and nestlings occasionally 
vocalized during human presence indicating that the disturbance protocol was perceived as dangerous. However we 
did not systematically observe these behaviors. It is also plausible that nestlings would respond to the disturbance 
protocol because of indirect effects such as changes in nest visitation or provisioning rates by adults during the 
disturbance protocol, a trend suggested by Cyr and Romero [13].  Limited qualitative data showed that adults spent 
time away from the nest when stressors were present and would vocalize and attack the owl decoy.  In regards to the 
level of environmental human disturbance, the relationship between disturbance and CORT may be noticeable only 
when human disturbance has reached a cer tain threshold.  A lthough nest boxes located in presumably high 
environmental disturbance areas (e.g. along an interstate) were included in our analyses, a significant number of 
adult kestrels within our nest box population abandoned nests during incubation in high environmental disturbance 
areas [44].  Thus, birds in the high environmental human disturbance group, while exposed to more noise, traffic, 
and human activity compared to birds in our low environmental human disturbance group, may have been 
surrounded by tolerable human disturbance levels because nests in the highest human disturbance category had 
already failed.     
 
Our results are similar to several studies suggesting that young birds habituate to human disturbance.  For example, 
fledgling Magellanic Penguins (Spheniscus magellanicus) showed no difference in baseline or stress-induced CORT 
across tourist and non-tourist visited areas [51] and Black-legged Kittiwake chicks (Rissa tridactyla) did not differ 
in their baseline or stress-induced CORT across levels of investigator disturbance [7].  R epeated exposure to 
stressors may have severe negative consequences on developing young such as suppression of growth [29] and 
reduced cognition [21] and even influence the probability of survival [4].  Thus the ability to maintain low baseline 
and stress-induced CORT in the face of environmental perturbations may act to minimize the deleterious effects of 
CORT on developing kestrels.   
 
Although we saw no change in nestling CORT, the consequences of human disturbance could become evident at a 
later kestrel life stages, as documented in hoatzins (Opisthocomus hoazin).  Nestling hoatzin stress response did not 
differ between undisturbed and tourist exposed nests, but juveniles raised in tourist-exposed sites were sensitized to 
human presence [31].  It should be noted that interspecific differences in hoatzin and kestrel nest structures, open 
stick vs. cavity, respectively, might affect exposure to environmental stressors. 
 
As cavity nesters, kestrel nestlings may be buffered from external conditions.  Consequently kestrel HPA-axis 
development and activity may be better explained by conditions within the nest, such as brood size.  A lthough a 
number of studies have demonstrated the importance of brood size in determining nestling CORT [38, 22] others 
have implied otherwise [30, 35] as was the case in our study; nestling kestrel baseline and stress-induced CORT did 
not vary with brood size.  Food may not be a limiting factor for nestling kestrels in our study or area and thus 
nestlings may not display pronounced social or developmental hierarchies. Brood reduction can be adaptive by 
matching a b roods’ nutritional needs to food abundance and nestling hierarchies in size or strength may lead to 
brood reduction, often by means of mortality of the weakest offspring. We documented few (8 out of 42 nests) cases 
of brood reduction. We were unable to determine the causes of nestling mortality at these nests. Further, nestling 
condition (fat score) did not vary significantly with brood size, suggesting that variation in nestling condition is not a 
factor of food limitation because of larger broods.  
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Variation in body condition best explained nestling stress-induced CORT patterns. Nestlings with higher fat scores 
had significantly elevated stress-induced CORT. Baseline CORT was consistent across condition. Heath and Dufty 
[19] did not detect differences in baseline or maximum CORT across juvenile kestrels of varying body condition. 
However kestrels in better condition reached maximum CORT levels faster compared to kestrels in poorer 
condition.  If kestrels in this study displayed similar temporal patterns, poorer condition kestrels may have a slower 
rate of increase in stress-induced CORT concentrations compared to kestrels in relatively better condition.  Thus 
within a time-standardized sampling scheme, it may appear that birds in better condition have elevated stress-
induced CORT compared with low fat score nestlings.  
 
There may also be differences in HPA-axis patterns which require alternative assessments of stress.  Corticosteroid-
binding globulin (CBG) can regulate the amount of free CORT (i.e. unbound CORT) available for uptake into 
tissues [41] and hence may modulate the stress response.  Our study was restricted to total CORT which does not 
account for variation in free CORT and CBG, both of which respond differently to stressors [6].  F or example, 
although unstressed and chronically stressed European Starling (Sturnus vulgaris) chicks did not differ in their 
baseline or stress-induced total CORT, stressed nestlings had higher stress-induced free CORT [13].  In  Eurasian 
Kestrels (Falco tinnunculus) older nestlings displayed elevated total CORT and CBG in response to handling but 
there was no difference in free CORT between age groups [30].  Thus future research should address nestling kestrel 
CBG levels or free CORT better understand how nestling kestrels respond to potential stressors.   
 
In summary, nestling kestrel CORT patterns are best explained at the level of the individual bird.  Nestlings with 
higher fat scores had elevated stress-induced CORT, but baseline was similar across condition. Neither baseline nor 
stress-induced CORT varied with environmental or experimental human disturbance or with conditions in the nest, 
specifically brood size. If nestlings habituate to human disturbance, this could indicate that kestrels avoid the 
negative consequences elevated CORT has on developing young. However it remains to be known if there are long 
term effects from exposure to human disturbance or if elevated levels of stress-induced CORT in better condition 
nestlings is adaptive or not.  This study demonstrates the importance of considering the influences of developmental 
factors at a number of scales. 
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Figures 
Figure 1: Changes in plasma corticosterone concentrations (mean ± SE) over time between American Kestrel 
nestlings in nest boxes surrounded by high or low environmental human disturbance and exposed or not to an 
experimental disturbance protocol.  Nestlings did not display a significant difference in baseline or stress-induced 
CORT across environmental human disturbance levels (F1, 27 = 1.97, P = 0.17), experimental disturbance protocol 
treatments (F1, 27 = 0.00, P = 0.97), or the interaction between environmental human disturbance and experimental 
disturbance protocol treatments (F1, 27 = 0.00, P = 0.97). 
 
Figure 2: The relationship between fat score and stress-induced CORT (mean ± SE) of free-living 25-day-old 
nestling American Kestrels in southwestern Idaho.  Birds with more fat in the subalar region tended to have higher 
stress-induced CORT concentrations 15 min post capture.  Numbers beside symbols indicate sample sizes.  
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Principal component Eigenvalue Proportion of 
variability  

Cumulative proportion of 
variability  

PC1 3.21 0.80 0.80 
PC2 0.65 0.16 0.96 

 

Eigenvectors 

 

Table 1: Eigenvalues and eigenvectors for principal components created from the 

variables average daily traffic volume, posted roadway speed (mph), number of lanes and 

proportion of human developed land cover in a breeding territory.  

 

 

 

 

 

 

 

 

 

 

 

Variable  PRIN1 PRIN2 
Average daily traffic 0.55 -0.13 
Speed (mph) 0.53 -0.22 
Number of lanes 0.53 -0.30 
Proportion of human 
development 

0.37 0.92 
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Table 2: Variables used to explain nestling baseline and stress induced total corticosterone.  Effect size (β), upper and lower 95% 

confidence intervals, chi-square and p-values are shown. Bolded values indicate significance at P <0.05. 

 

 

 Baseline CORT Stress Induced CORT 
  95% CI   95% CI  
Variable β lower upper x2 P β lower upper x2 P 
Brood size a   0.13 -0.08 0.34 1.27 0.259 0.09 -0.77 0.25 0.77 0.379 

Disturbance b  -0.01 -0.09 0.07 0.02 0.877 0.00 -0.06 0.06 0.01 0.939 

Condition c  0.08 -0.11 0.27 0.43 0.511 0.38  0.20 0.56 7.62 0.006 
a Brood size = number of nestlings in a brood at fledging 
b Disturbance = disturbance PCA score generated from variables # lanes, avg. daily traffic, speed (mph), and % developed land cover 
within 900 m buffer around nest. 
c Condition= nestling subcutaneous fat score (0-3) as an index of body condition 
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