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Abstract 
In this article we examine how secondary school students think about functional 
relationships. More specifically, we examined seven students’ intuitive knowledge 
in regards to representing two real-world situations with functions. We found 
students do not tend to represent functional relationships with coordinate graphs 
even though they are able to do so. Instead, these students tend to represent the 
physical characteristics of the situation. In addition, we discovered that middle-
school students had sophisticated ideas of dependency and covariance. All the 
students were able to use their models of the situation to generalize and make 
predictions. These findings suggest that secondary students have the ability to 
describe covariant and dependent relations and that their models of functions tend 
to be more intuitive than mathematical – even for the students in algebra II and 
calculus. Our work suggests a possible framework that begins describing a way of 
analyzing students’ understanding of functions. 
 
Keywords:  Functions; Students’ Thinking, Mathematics 

 
Introduction 

Reform efforts in mathematics education have broadened the focus of teaching and 
learning to include not only how students perform, but also how students come to understand 
important ideas in mathematics (NCTM, 1991, 1995, 2000; NGA, 2010). The concept of a 
functional relationship is foundational to understanding mathematics throughout the K-12 
curriculum (Smith, 2003, 1996). In the U.S., understanding functions is a key component in the 
adoption of the Common Core State Standards for Mathematics (CCSSM) and in the assessment 
of students’ ability to model real-world situations (Darling-Hammond, Burkhardt, & Schoenfeld, 
2011).  

Much of the earlier research about the learning and teaching of functions has focused on 
describing how student understandings differ from the formal notion of function. Researchers of 
concept images have documented secondary and undergraduate student misconceptions of the 
formal definition of function and how these misconceptions reveal student concept images that 
differ from the formal definition in stable ways (Vinner, 1992; Vinner & Dreyfus, 1989). Other 
researchers have documented students’ misunderstandings of coordinate graphing conventions 
(Schoenfeld, Smith, & Arcavi, 1993) and of student difficulties with translating among various 
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formal representations of functional relationships (Dreyfus & Eisenberg, 1982; Moschkovich, 
Schoenfeld, & Arcavi, 1993). Indeed, these difficulties with the formal definition and 
representations of function are displayed not only by secondary and undergraduate students, but 
also by many mathematics teachers (Even, 1993; Even & Tirosh, 2002; Norman, 1992; Stein, 
1990). 

Although this significant body of research has detailed students’ understandings of the 
formal definition and representations of function at the secondary level, only recently have 
researchers investigated students’ informal and pre-formal understandings of functions at the 
elementary and middle school levels (Ainley, Pratt, & Hansen, 2006; Blanton & Kaput, 2011; 
Doorman & Gravemeijer, 2009; Ellis, 2007; Gravemeijer, 1999; Rivera & Becker, 2008; Warren, 
Cooper, & Lamb, 2006). Much of this research has demonstrated that when young students are 
provided with specific mathematical models, students are able to demonstrate some functional 
relationships. This research provides a window into students’ implicit understandings of functions 
and their abilities to construct very specific representations: tables and some symbolic 
representations.  However, if students begin to develop the means to model and discuss functional 
relationships without formal instruction, then is it the case that middle and high school students 
can bridge between this informal or formal knowledge to new functional situations?  

We propose that knowledge of students’ intuitive understanding of functional 
relationships, as represented by their modeling schemes and verbal communication, is crucial in 
helping teachers build from students’ informal thinking toward the formal concept of function. In 
addition, we hold that students should learn mathematics “so as to be useful” (Freudenthal, 1968); 
we expect students will employ the mathematics they learn in school in responding to novel 
mathematical situations. For example, one would imagine secondary students at different grade 
levels to respond differently to realistic situations based on their experience and instruction in 
function over time. The purpose of this article is to describe how secondary students from across 
grade levels demonstrate understandings of functional relationships in two physical contexts, 
outside of formal function instruction.     

The central concern of this work is to better understand student thinking about 
contextualized situations that can be modeled by functions in order to promote understanding and 
reasoning in algebra. We use the term student thinking to refer to what students say or do, which 
is a proxy for their understanding. In more detail, understanding is a complex, dynamic state in 
which a student is able to connect a piece of knowledge to other, related pieces of knowledge 
(Carpenter & Lehrer, 1999; Hiebert & Carpenter, 1992; Hiebert et al., 1997). In this view, 
understanding means a student’s knowledge is organized into networks of mental representations 
in which the strength of the network is related to the number of connections linking the common 
conceptual ideas (Carpenter & Lehrer, 1999).  

Most work in the past literature on student knowledge of functions focuses upon students’ 
acquisition of formal knowledge of functions and the procedural skills necessary to construct and 
manipulate conventional representations of functions (Dreyfus & Eisenberg, 1982; Schoenfeld et 
al., 1993; Vinner & Dreyfus, 1989). This research often describes students’ knowledge of functions 
as fragmented and inflexible in utilizing different representations of functions (Confrey, 1988; 
Dreyfus & Eisenberg, 1982; Rizzuti & Confrey, 1988); it focuses on students’ concept image of 
functions and the extent to which that concept image is aligned, or misaligned, with a formal 
definition of functions (Vinner & Dreyfus, 1989); it debates students’ inabilities to perceive 
functions as higher-level, abstract objects (Sfard, 1992; Slavit, 1997). These findings have 
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implications for teaching because teachers have to understand the limits of students’ formal 
procedural and conceptual thinking about functions.   

In order to better understand how students develop and formalize the concept of function, 
we here examine students’ informal or initial ideas regarding functional relationships. To focus on 
students’ informal understandings’ of function, we rely on the notion of quantitative reasoning 
(Smith & Thompson, 1996; Thompson & Thompson, 1995), which is grounded in problems that 
are “verbal descriptions of situations constituted by interrelated quantities” (Smith & Thompson, 
2007, p. 102). These problems enable students to conceptualize the problem elements in ways that 
are related to the problem situation rather than only as quantities and operations – thus encouraging 
a focus on students’ notions of the functional relationships arising from the problem situation. 
Second, requiring students to focus on the relationships among quantities instead of procedural 
operations or formal notations can provide rich descriptions of students’ intuitive understandings 
of the functional relationships inherent in the problem situation and students’ abilities to 
communicate their thinking. As Confrey and Smith (1994) point out, when students are encouraged 
to “generate functional relationships by acting within contextual situations and by using multiple 
representations in both creating and representing their solution processes, legitimate and diverse 
ways of thinking about functions are created” (p. 32). 

To focus on students’ informal understandings and representations of functional 
relationships, rather than the ways they fall short in formal function analysis, we draw upon 
research that interprets students’ informal reasoning within contextual domains. First, covariance, 
or covariational reasoning, accounts for the development of students’ ability to coordinate the 
changes in two varying quantities (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). In Carlson et al.’s 
framework for covariational reasoning, students begin to model dynamic events by recognizing 
that there are two quantities changing in a given situation. In order to observe or see a quantity as 
changing, rather than just a real-world object as changing, the student must recognize how some 
quality of the object can be measured with numerical values (including a tacit recognition of a unit 
of measurement) and how these values vary in the situation (Thompson, 1994). As students display 
higher levels of covariational reasoning, they not only recognize the two covarying quantities, but 
they start to coordinate the changes in one quantity with the changes in the other, including the 
direction of change and the amount of change (Carlson et al., 2002). 

A second aspect of students’ informal reasoning about functions is the recognition of 
dependency – a relation between two quantities in which the values of one quantity depend on the 
values of the other. This reasoning entails viewing one quantity as an independent variable. In this 
way it differs from covariation, in which changes in two quantities can be coordinated without 
designating some priority of one quantity over the other. However, it is not a focus of this article 
to examine the way a person decides which variable to treat as independent. For instance, in a real-
world situation there may be a particular reason to treat a particular quantity as independent 
because it is perceived to have a causal relationship to the other quantity, such as a person’s height 
depending on her age rather than vice versa. But in purely mathematical situations where there is 
no causation, this assigning of an independent variable may be arbitrary or conventional, such as 
treating a circle’s area as depending on its radius rather than vice versa. 

Students are aware of the difference when they can describe or demonstrate when two 
variables covary or when the change is one variable is coordinated by a change in the other versus 
when one is dependent on the other. This knowledge does not necessarily address a students’ 
understanding that two variables might be covarying and both dependent on another third variable. 
In any case, as the student develops dependency reasoning, they can come not only to view one 
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quantity’s values as depending on the other’s, but also to determine a stable process by which the 
quantity’s values can be determined from the other’s. This process conception of the functional 
relationship between the two quantities is ultimately crucial to the development of the formal 
understanding of function (Dubinsky & Harel, 1992; Oehrtman, Carlson, & Thompson, 2008). 
Only when this process conception of function is developed can students later reify functions into 
abstract objects in a way that is necessary for advanced undergraduate mathematics (Sfard, 1992; 
Sfard & Thompson, 1994; Slavit, 1995, 1997). 

 Our goal was to learn how students demonstrate their understanding about functional 
relationships within contextual situations (and when not currently being taught about functions). 
The research questions were: 1) how might students from ages 12 – 17 demonstrate knowledge 
about functional relationships within a context, whether intuitively or based on their prior 
knowledge of mathematics and 2) how might students represent these relationships and use them 
to illustrate their understandings? 

With these questions in mind, we designed tasks and student interviews to encourage 
students to model and talk about their thinking. Our intent was to encourage them to represent the 
features of a given functional situation they considered important, but to do so without necessarily 
relying on prior formal knowledge of mathematics. We created tasks that would allow students to 
represent their thinking to us freely, yet allow them to quantify (Thompson & Thompson, 1995) 
the given situations as much or as little as they saw fit. Our intent was not to assess the extent of 
these students’ formal knowledge of functions and skills in constructing conventional 
representations, but to probe their ideas about functional relationships and to make note of their 
choice of salient features and means of representation. In short, we attempted to gain understanding 
of how these students make sense of functional relationships. 

One goal of the study was to describe these representations and discussions. A second goal 
was to develop a broad general coding scheme for levels of student understanding of functional 
relationships. The idea was that such a coding scheme could be used in a larger study, to evaluate 
the effectiveness of an instructional program or to compare different populations. We discuss this 
general scheme at the end of the article. 

We chose a small sample of students at the secondary level at different ages in varied 
courses to examine understandings of functional relationships. These seven students were from the 
U.S. in a Midwest urban area and volunteered to participate in a one-hour interview in which each 
student completed two tasks independently. The students were from two schools – a junior high 
and a high school. Interview transcripts of these students were analyzed for the purposes of this 
paper. These seven students varied in age (12 to 17), grade level (7th to 12th), mathematics course 
enrollment (pre-Algebra to pre-Calculus), and sex (male and female). Their characteristics are 
shown in Table 1 and their names have been changed to pseudonyms. 

In order to address our research questions, interview data were collected and analyzed 
using a qualitative methodology. All students were interviewed once, two months into the 
beginning of the school year. Each student was interviewed by one of the authors. These interviews 
consisted of two different tasks and were audio- and video-taped. The protocols for the two semi-
structured interviews are included in appendices A and B. Each student was asked to think about, 
describe, and represent the elements they recognized as changing in the situations. Although 
interviewers followed the protocol for each task, they also asked additional questions to further 
probe students’ thinking in relevant areas. 
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Table 1. Student characteristics 
 

Participants      

Student Age Grade Course Sex Ethnicity 

William 12 7 Pre-Algebra M African American 

Arlis 13 8 Pre-Algebra F Caucasian 

Rachel 14 8 Algebra F Hispanic 

Jennie 14 9 Geometry F Caucasian 

Movae 15 10 Algebra II F African American 

Ki 16 11 Algebra II M Caucasian 

Carlos 17 11 Pre-Calculus M Hispanic 

      
We chose two tasks for the interviews. The Ball Drop task was used so students could 

conduct the experiment more than once and see the action.  It consisted of an experiment in which 
a Ping-Pong ball was dropped from the height of a yardstick. Students watched the experiment and 
then described the elements they observed changing. They were asked to represent this situation 
on paper and to answer questions about their representations. The task also allowed students to 
examine different related variables. The Growth task was chosen as a realistic situation that 
allowed students to discuss the relationship of height and age and build and use a graph to make 
predictions beyond the teenage years. It included a description of a girl’s growth in height over 
several years of her life: 17 inches when she was born, 35 inches at age 2, and 45 inches at age 5. 
Students were asked to represent her growth, make generalizations, and explain their thinking 
about the relationship between age and height. 

To analyze the interview data we used qualitative techniques (Erickson, 1986; Schatzman 
& Strauss, 1973; Wolcott, 1994). Our process included a first read of the data in which initial and 
general coding took place. To ensure reliability of the codes, two readers discussed their results 
until consensus was reached. Through this process, general themes were identified. These themes 
emerged from both the literature review and this initial reading and are described below.  

The general themes were utilized to frame a second and more intense reading of the data. 
During this reading, categories within each of the themes were identified. Two readers met, 
discussed and refined the coding until consensus was reached. At this point, general assertions, 
largely through induction, were made for each category. These data were read a third time to search 
for confirming and disconfirming evidence to justify the assertions. Classes of data were 
organized, and relationships were drawn, where possible, between these classes. These 
relationships allowed further analysis. 

Initially, the following general themes were found based on the literature and the reading: 
representation, covariance, dependency, prediction, and pattern. Through a second read of the data, 
categories within each theme were derived. These themes and their categories are described below. 
Near the end of the article we also present the general scheme for functional reasoning that 
emerged from these categories. 

 Representations. We examined both student representations and explanatory comments 
in search of clues to student understanding of the functional relationships described or observed 
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during the interviews. We made note of the physical characteristics of these representations, 
whether graphic, pictorial, or numeric. We, then, reviewed student representations and transcripts 
for evidence of students’ tendencies to rely upon accuracy and detail in conveying information, as 
compared to their tendencies to rely upon trends or make estimates in creating their 
representations. Next, we examined student representations and their transcripts in search of 
evidence of their interest in, awareness of, and ability to illustrate observed change or movement 
in their representations. For instance, a student might use arrows between rows to denote a 
consistent change.  And, finally, we made note of student comments and explanations 
characterizing what they seemed to value as effective conveyance of information about functional 
relationships. From a second read of the data the following categories emerged: type, salient 
features, and use. 

Covariance.  Our second and third themes – covariance and dependency – were separated 
to understand how students think about these interconnected but different constructs. Covariance 
was defined as knowledge that two elements were changing in the problem in a coordinated 
manner. As we read each transcript, we searched for evidence that either confirmed or contradicted 
this notion of covariance. Once this initial analysis was completed, we discovered students’ 
responses could be categorized as explicit, implicit, indefinite, or no evidence. Students’ responses 
were categorized as explicit when they clearly expressed that two elements were changing. 
Responses were labeled implicit if there was some evidence that covariance was understood even 
though it was not directly stated. Both of these categories indicate what Carlson, et al. (2002) might 
describe as the first level of covariational reasoning, in which a student does recognize that there 
are two varying quantities, but does not necessarily coordinate these two quantities or their 
simultaneous variation (Carlson et al., 2002). On the other hand, if there was evidence of a higher 
level of covariational reasoning, in which the student recognizes simultaneous change between the 
two varying quantities, and coordinates these simultaneous changes in some way, then this was 
classified separately as dynamic change. If there was some evidence that seemed to imply that 
students might understand covariance, but this evidence was unclear, their notion of covariance 
was labeled indefinite. In some cases it was noted that students never mentioned or made reference 
to the idea that two elements in the problem were changing. Their notion of covariance was 
categorized as no evidence. 

Dependency. Dependency is the understanding that the values of one quantity depend on 
the values of the other. Evidence of students’ understandings of dependency was in a similar way 
to covariance categorized as explicit, implicit, indefinite, or no evidence. The understanding of 
dependency does not necessarily involve the quantification of how one quantity can be determined 
from the other. 

Prediction. For both tasks students were asked to make predictions at different points in 
the interview. Students did this on the basis of their model, the data given or collected, or intuition. 
These categories were not mutually exclusive. For example, at different points in the interview 
students used prior knowledge to make a prediction and at other times used their models for the 
same purpose. 

Pattern. This category refers to students’ attempts to describe the overall pattern of the 
functional relationship. Some students attempted to form rules or generalizations to describe the 
pattern. These written rules often were quantified in some way, but did not necessarily employ 
formal or conventional notations. Other students tended to describe the pattern verbally or 
qualitatively. Students’ verbal descriptions were labeled as either conceptually correct or 
conceptually flawed. In some cases students made no attempt to describe the overall pattern. 
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Sometimes a student may describe a rule quantifying how one quantity changes as the other 
changes; this indicates a higher level of covariational reasoning than simply noticing that two 
quantities are changing (Carlson et al., 2002). Sometimes a student may describe an explicit rule 
for the value of one quantity in terms of the other; this indicates a higher level of relational 
reasoning than simply noticing that one quantity’s values depend on the other quantity’s values. 
The categories for this theme were no pattern, verbally stated, and rule stated.  

The seven students interviewed each completed the same two tasks. Table 2 lists the 
various types and characteristics of representations that students constructed to illustrate the ball 
drop and growth situations during the interviews. Every student for both tasks chose to graph the 
situations as one of their representations. Five of the seven chose it as the first representation for 
the growth task, but only three for the ball drop task. Four students, Arlis, Jennie, Movae, and 
Carlos, constructed two representations for each of the two tasks; and three students, William, 
Rachel, and Ki, completed one representation, only, for each task. The 22 total representations 
included 11 coordinate graphs, five other numerical representations (one vertical scale, three bar 
graphs, and one table of data), and six pictorial representations (stick figures for the growth task 
or the complete pathway of the bouncing ball for the ball drop task). 

 
Table 2. 
Students’ first and second representation of each task 
Participants Ball Drop Task Growth Task 

William Graph (bar) 

Table 

Graph (bar) 

Arlis Picture (ball path) 

Graph (linear) 

Table 

Graph (linear) 

Rachel Graph (linear) Graph (linear) 

Jennie Picture (ball path) 

Graph (linear) 

Vertical scale 

Graph (linear) 

Movae Picture (ball path) 

Graph (linear) 

Graph (linear) 

Picture (stick figures) 

Ki Graph (bar) Graph (linear) 

Carlos Picture (ball path) 

Graph (linear) 

Graph (linear) 

Picture (stick figures) 

 
Six of the seven students interviewed, all except William, demonstrated ability to construct 

coordinate graphs to illustrate either or both of the functional relationships inherent in the task 
situations. Only one student, Rachel, constructed coordinate graphs for her first representation for 
each task. Of the six students who constructed coordinate graphs, only five of their 12 first 
representations were coordinate graphs. The remaining seven first representations by these 
students were alternative representations, including the vertical scale, the table of data, one bar 
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graph, and four pictorial drawings of the pathway of the bouncing ball Table 3a below highlights 
students’ first choice of representing the data. 

 
Table 3a.  
Student representations and response analysis for Ball Drop task 

 Ball Drop - Representation Covariation Dependency Prediction Pattern 

William 
Age 12 

 

Implicit Implicit Model 
Data 

Verbal 
Correct 

Arlis 
Age 13 

 

Explicit Implicit Model Verbal 
Correct 

Rachel 
Age 14 

 

Explicit Explicit Data 

Rule  
 

Verbal 
Correct 

Jennie 
Age 14 

 

Implicit Implicit 
 Data Verbal 

Correct 
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Movae 
Age 15 

 

Explicit Implicit Model Rule 

Ki 
Age 16 

 

Implicit Implicit Model Rule 

Carlos 
Age 17 

 

Implicit Implicit Model Verbal 
Correct 

 
Here is a description of the students’ tendency to use exact measures or detail to convey 

information in their representations, as compared to any tendencies to abstract and model only 
essential information from the task situations. Seventeen instances of this tendency were observed, 
based on student comments and/or interviewer observations. Only one student, William, referred 
to his representation as an abstraction of the situation, when he commented that although numbers 
would provide exact information, his graph of the ball drop task, in comparison, provided a “sense” 
of the situation. In contrast, most other instances can be interpreted as a preference to use exact 
measures or detail to convey information. For example, Rachel commented that in her graph of 
the growth task, the three given heights were the most important information, while the other 
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heights shown on the graph were merely estimates. Jennie on two occasions added labels to her 
models in order to include additional information or to clarify her work. Jennie also commented 
that she did not show all of the actual bounces of the ball in her model because she could not count 
fast enough to track them all. Movae commented she was concerned that both her drawing and 
graph of the ball task omitted information she was unable to include. Arlis drew a very detailed 
drawing of the ball drop task, including the entire path of the ball as it bounced up and down the 
table upon which the yardstick was placed, as well as the fully detailed yardstick. 

Next, we summarize in Table 3b the manner in which students were able to connect 
observed changes in height for the growth task, or the movement of the ball or the change in its 
height for the ball drop task, to the manner in which they constructed their representations for these 
situations. Out of the tasks completed, five students, Arlis, Rachel, Jennie, Movae, and Carlos, 
were able to articulate these explanations, whether partial or complete, for six of the seven tasks. 
For example, both Rachel and Jennie commented they had used lines to connect the top of each 
bounce in order to highlight the decrease in height with each bounce. According to Jennie, 
“unconnected dots” in lieu of her connecting line would not convey this same information 
effectively. Other students were less successful in incorporating observed change in a 
representation. Carlos, for example, commented that he could not illustrate the “speed” (or the 
frequency, presumably) of the bounces in his graph of the ball drop task. Similarly, when Movae 
could not include the increasing frequency of the bounces in her drawing of the ball drop situation, 
she merely added a verbal description to convey this information. 

This section summarizes students’ comments and explanations regarding features of their 
graphs and other representations of the growth and ball situations, indicating their perceptions of 
necessary features of an effective representation. Four students, Arlis, Rachel, Movae, and Carlos, 
indicated that a representation should include all given data or observed measures, that it not omit 
any important details, and that its size should be adequate to accommodate all of these important 
facts. Jennie seemed concerned that her drawing for the growth task and that her graph for the ball 
drop task include sufficient labels. Rachel and Jennie both wanted their models to be easy for an 
observer to understand, and in addition, Jennie did not want an observer to have to estimate any 
measures on her graph of the growth situation. Most students indicated that visual conveyance of 
information was important to them in making their models. For example, Jennie wanted her 
coordinate graph to “look” like the growth situation, which, as she told us, was the reason she 
chose the vertical axis to represent the girl’s height. Movae drew the entire pathway of the 
bouncing ball because it illustrated what she “sees happening.” Carlos drew a coordinate graph to 
represent the growth situation because, in his words, that design was the easiest for him to see. 
Arlis, who drew a pictorial model of the bouncing ball for the ball task, was reluctant to construct 
a second representation of the situation because doing so would require an observer also to “watch 
the experiment to be able to understand what things are doing.” 
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Table 3b.  
Student representations of Growth task and analysis of student thinking 

 Ball Drop - Representation Covariation Dependency Prediction Pattern 

William 
Age 12 

 

Implicit Implicit Data 
Intuitive Verbal Correct 

Arlis 
Age 13 

 

Implicit Indefinite Data Verbal 

Rachel 
Age 14 

 

Explicit Explicit Data 
Intuitive Rule State 

Jennie 
Age 14 

 

No Evidence No Evidence Model 
Intuitive No Pattern 
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Movae 
Age 15 

 

Implicit Indefinite Intuitive No Pattern 

Ki 
Age 16 

 

Explicit No Evidence Data Verbal 

Carlos 
Age 17 

 

Implicit Indefinite Data Verbal 

 
Students’ notions of covariance and dependency were intertwined in their comments about 

elements changing in the problem situation. Typically, students tended to talk about the 
relationship of these elements at three different points in the interview: when asked to describe in 
general what was changing in the situation, when asked to reflect on what their model represented, 
and when describing the pattern of the data. And from these probes students’ responses were 
described as explicitly, implicitly, indefinitely, or not demonstrating a notion of covariance and 
dependency. Students’ responses will be used in the following discussion. 

The responses were broken down into these four categories to distinguish students’ 
attention to the relationship between the elements they found changing in the situation. To 
understand students’ notions of covariance and dependency, how these two notions at times 
differed and at other times were woven together in students’ comments, and how their responses 
were categorized, we will examine three individual cases – Rachel, William, and Movae – that 
depict these key features, but that also share common elements with the other four cases. 

 For both tasks, Rachel clearly explained that two elements were changing in a coordinated 
manner, and that one was dependent on the other. Early in the interview when asked what she saw 
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happening in the ball drop experiment she explained, “As you bounce the ball, the height after 
each bounce started to like decrease.” From this comment it appears she noticed that two 
elements— bounce number and the height of the ball— were changing. Her use of the word ‘after’ 
demonstrated an understanding that the height was dependent on each consecutive bounce. There 
were two other instances in the interview in which Rachel again focused on the dependent 
relationship. When asked about the important features of her graph she stated, “The number of 
bounces and the height that they reach.” And when she was asked to describe the ball drop 
experiment to someone else she said, “After every bounce, the height that the ball will reach will 
decrease.” Rachel’s understanding of covariance and dependency were not limited to one task. She 
also described in the growth task how two elements changed and how one was dependent on the 
other. When asked what she would tell her parents about this situation she stated, “We had to show 
incrementation on how a girl’s height changed and we made a graph and showed how much height 
she increased by at different points in her life.” Rachel’s language described the 
interconnectedness of covariance and dependency. There were no instances in which she described 
the two elements changing but did not mention the dependent relationship. 

William’s comments were similar to Rachel’s in that his language indicated ideas for both 
covariance and dependency consistently across both tasks. However, his comments were 
categorized as implicit. Initially, when discussing what he saw occurring in the ball drop 
experiment he stated, “Well the jumps start out big and then each, the next jump is smaller than 
the jump before and eventually it’s not bouncing anymore.” This is what Carlson et al. (2002) 
describes as type 1 covariation. Clearly, his language depicts a dependent relationship; however, 
the two elements changing are implied. This might be reflected in the notion that time, which is 
continually changing, does not need to be explicitly pointed out. He used the word “jump” to refer 
to both the bounce and the height simultaneously. Similarly, in the growth task he used ambiguous 
language to refer to the changing elements and their relationship. He stated, “Each year the girl 
shows a good amount of growth;” and, “Well basically they start, every year they grow a couple 
more inches.” Again his language focused on the dependent relationship using words such as 
“each” in the first quote and “every” in the second quote. He never directly stated that age and 
height are the two elements changing or that height is necessarily dependent on age. 

The third case (Movae) is similar to the first two cases in that her language for one of the 
tasks is explicit although not as consistent. For the other task, her responses were similar to other 
cases in that she used language that did not focus on how two elements changed. For example, in 
the ball drop task she did not always refer to the dependent relationship of the ball’s height to its 
bounce. When describing her representation she stated, “the information is like the height each 
one bounced and like for each bounce how high it went approximately.” Here, she stated that two 
elements were changing, an indication of the notion of covariance, but not of dependency. 
However, later she stated, “As the ball bounced more times it bounced less high.” Here she referred 
to the dependency of the ball’s height to further bounces. There was even less evidence of 
understanding of covariance and dependency in her responses to the growth task. There was only 
one response in which she described the relationship: “You see something getting bigger like a 
person (you) usually think, oh they’re getting older.” In this instance, her notion of covariance was 
implicit in that bigger refers to height and older to age. The notion of dependency was reversed; 
her statement depicts age as dependent on height. Movae’s case demonstrates instances in which 
students’ notions of covariance and dependency were at times indefinite and unrelated. Students’ 
understanding of functions: predictions 
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 For both tasks, students were asked to use the data given to create a representation of the 
situation. They were then asked to explain their thinking, make predictions and if possible to make 
generalizations. Through these interchanges, data on how students made predictions and 
generalizations were collected. After an initial reading and coding of the data, it was evident that 
students tended to make predictions and generalize based on the following categories: their model, 
(a mathematical or verbal description of how one variable depends on the other including diagrams 
or graphs), the given data, and/or prior knowledge or intuition. In some cases students used more 
than one method for a single task. 

For the growth task, three of the students used a model as one way to estimate different 
heights for the girl in the problem. In all three cases, the students had drawn a continuous line 
graph to represent the girl’s growth. Each responded in a typical way explaining that the line was 
simply an estimate of the girl’s height and not her exact height. For example, Jennie responded, 
“Well, it is to connect the two years to five years and also because between the two and five years 
she did grow increasingly, but you don’t know exactly how much.” Another one of the students 
explained that the line represented her average height between known points.  

Four of the seven students used a model to generalize and extend the pattern in the ball 
drop task. These students tended to find the first four or five data points and then extended the 
pattern based on the pattern they observed in their representation. It may be argued, however, that 
the students simply extended the pattern from the experiment they just observed. This is an obvious 
effect but does not necessarily account for how students extended their graphs. Each of these four 
students drew the first few data points and then, when asked to extend the pattern to when the ball 
stopped, they noticed that the ball’s height decreased at a decreasing rate of change and drew the 
line accordingly.  

A fifth student used his model to generalize the pattern that would occur if the ball was 
dropped from twice the height. William stated, “Well I think these might be doubled. They might 
go like twice as high. So like this might be 2, 8, 14 (instead of 1, 4, and 7). . . . although that (the 
numbers) may not be as important as just the pattern.” This student focused on the overall pattern 
generated from his graph to generalize the pattern for the new situation. 

In the growth task four of the students used specific data points, rather than a holistic model 
of the situation, to make predictions. In each case the students determined how many inches the 
girl grew between ages 0 and 2, and 2 and 5 to create a rule to estimate her height at ages 10, 15, 
and 20. For example, Arlis used the following reasoning to determine that the girl would grow 15 
inches for each five-year period between the ages 5, 10, 15, and 20: 

Another student used a similar strategy. Ki determined, incorrectly, that the girl grew 45 
inches in the first five years and therefore would grow another 45 inches each subsequent five-
year span. So by age 10, by his calculations, the girl would be 80 inches (by adding incorrectly) 
and then 125 inches at age 15. Even though he described generally that a person’s growth slows 
as his or her age increases, this information seemed irrelevant or isolated from his model of the 
growth of this girl. The other two students used both common sense and the data to estimate the 
girl’s height at different ages. For example, Rachel stated, “Well every like five years the girl grew 
about ten inches taller and, but then when she like got to be like 16 or 17, she probably stayed just 
the same and didn’t grow too many more inches taller.” 

For the ball task, three students used the data to extend the pattern. For example, when 
asked how he was going to extend the graph, William stated, “Well it’d probably be, after 21 (the 
height of the fifth bounce), it’d go down to about maybe 10 and then 8, 7, 5, 3, 2, and then it 
bounces like one a couple times and then basically dies.” The other two students examined the 
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difference in heights between consecutive bounces and used this information to find points to 
extend the graph. Rachel explained how she determined the heights of the bounces that she had 
not observed, “It seems like it isn’t the same amount each time. You could take the average. For 
these three (bounces 1, 2, and 3), it’d probably decrease between two and three inches each time, 
like 2.5.” She disregarded the decrease in height between the starting point of the ball and its first 
bounce. She continued by saying, “And between the next two bounces that was about three inches. 
And then the next one was about 2.5 inches and then maybe about one (at the end).” For these 
three students it is evident that they examined the height of the ball for different bounce numbers 
or the differences in heights for the first few occurrences and then attempted to use this information 
to extend their pattern. 

There were four instances, all arising from the growth task, in which students relied on 
prior knowledge either partially or totally to make predictions. William and Rachel used the data 
to find a rule to estimate the girl’s growth, but used knowledge of how tall a girl probably would 
be for different ages to check whether their estimates made sense. The other two students, Jennie 
and Movae, both used an informal rule to determine that the girl’s adult height would be 70 inches. 
For example, Jennie stated, “I think she would be 70 inches tall. Because I heard that when you 
are two years old, how tall you are at two years old if you double that, that is how tall you will 
actually be when you grow up.” Movae’s response was similar. These instances describe two 
different ways students used prior knowledge. Two used it to determine the reasonableness of their 
answers while two other students used prior information as a steadfast rule discounting any data 
given in the problem. 

There are four ways in which students typically represent functional relationships: graphs, 
tables, verbal descriptions, and equations. This study focused particularly on students’ preferences 
in representing realistic functional situations for the two tasks. We chose to use two situations that 
could not be described by easily recognized rules or simple equations in order to encourage 
students to describe verbally the behavior of the relationship between the changing elements in 
each. This section focuses on how students described the overall pattern of the functional situation. 
We found that although the predominant choice of representation was a graph, some students 
nevertheless attempted to describe the functional relationship verbally and at times with rules. 
Below is a description of how students attempted to describe this pattern for the two tasks. 

During the growth task only one student (Rachel) tried to use a rule to describe the pattern. 
Four described it verbally, but only one did so correctly; the other three described the pattern 
incorrectly or ambiguously. The final two students did not describe the pattern at all. Rachel’s rule 
was “Well every like five years, she grew about 10 inches taller and, but then when she like got to 
be like 16 or 17, she probably just stayed the same and didn’t grow too many more inches taller.” 
The rule does not fit the graph of the girl’s growth. In fact, the only description that closely 
modeled the girl’s growth was a statement made by William: “She kind of starts out growing fast 
and then she slowly slows down and by the time she’s 21, she’s really slowed down. She’s not 
really growing.” This was the only description that depicted the decrease in the rate of change. 
This is a higher level of Carlson et al.’s (2002) covariational reasoning: not just noticing the two 
covarying quantities (height and time), and not just coordinating the direction of change, but 
recognizing the change in the rate of change. Two of the students described the girl’s growth as 
being linear. For example, Carlos stated, “I figured it would be like a steady increase until she gets 
to a certain point and pretty much levels off and she won’t grow anymore.” Similarly, Ki stated, 
“It obviously goes up. It kind of is a little consistent as your grow. I mean not exactly, but close.” 
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Arlis’s description of her growth was ambiguous, “She is just getting older and the inches and 
keeps getting taller.” One possibility is that the pattern was too complex for students to describe.  

All seven of the students were able to depict correctly the pattern in the ball drop task 
verbally or to generate a rule. Three students used a rule to describe the overall pattern of this 
functional relationship. Rachel stated that “the ball’s height lowered at a constant rate.” Movae 
described the pattern as, “I have just been seeing it the whole time, that maybe it loses about a 
quarter of its height each time until it has no height to go.” And finally Ki described it as, “Well 
it’s losing at a ratio to how much it, to where it started from.” Each of these rules has some merit. 
The other students described the pattern in a similar manner. For example, William stated, “The 
bounces are getting smaller and smaller until the very end;” and Jennie said, “It kept getting lower 
and lower.” Perhaps because the functional relationship inherent in this situation appeared to them 
to exhibit a consistent decrease in the rate of change, students were able to make sense of the 
pattern, describe it verbally, and even attempt to impose a mathematical rule. 

To begin the discussion section, we want to make it clear to the reader that students’ 
understanding of functional relationships along with how they represent them are influenced by 
their current and previous mathematics instruction (Ainley et al., 2006). We are examining how 
students respond to functional situations because of and in spite of these experiences. We might 
expect that all the students who have previously taken algebra 1 to be able to explicitly represent 
and describe both covariational and dependent relationships and students who have not to only do 
so implicitly or not at all. Even with our small sample, this was not the case.  

Our findings indicate that these students did not always choose to construct a coordinate 
graph to represent the functional relationships, even though they indicated they were capable of 
doing so. Instead, they often chose a representation resembling some of the physical characteristics 
of the situation, even when the representation contained some degree of abstraction. The students 
are not engaging in vertically mathematizing, (Gravemeijer, 1999) or in other words, are still 
“mathematically impoverished” (Ainley et al., 2006, p.24). This fact is evidenced, for example, by 
Jennie’s choice of a one-dimensional vertical axis to represent the girl’s height over time in the 
growth task, and by Jennie’s, Movae’s, and Arlis’s drawings of the entire pathway of the bouncing 
ball for the ball task. In general, these students, in constructing their representations, were very 
interested in detail and showed preference for using labels and even verbal description to add 
additional information to their representations.  

This detail work parallels the emphasis that is put on the procedure of graphing in 
traditional curricular resources (such as labeling axes with capitalized words), but not what is state 
mandates and assessment specifications (Darling-Hammond et al., 2011) that focus more on 
interpretation. It might be that as Klahr and Simon (1999) suggest, students tend to use weak or 
informal methods to solve realistic or novel situations instead of more formalized or strong 
methods. This is similar to what we found in our study; although all the students have had 
experiences with formal graphing, their representations for examining an applied problem lack 
formality and instead focus on students’ perceptions of the problem mechanics. The implication 
for teachers and curriculum writers is to create a culture of practice where students are able to use 
strong or formalized methods (such as the coordinate plane) to solve problems that are more 
realistic in nature. One such framework is provided by Ainley et al. (2006), where they describe 
the importance and balance of placing students in realistic situations by creating tasks with both 
purpose and utility. “Whilst engaged in a purposeful task, learners may learn to use a particular 
mathematical idea in ways that allow them to understand how and why that idea is useful, by 
applying it in that purposeful context.” (Ainley et al., 2006, p. 30) 
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Our findings also indicate that what constitutes a good representation for these students is 
one that contains complete information, and that includes the specific data described in the given 
situation (as in the case of the growth task) or measured by the student during the task (as in the 
case of the ball task). We found these students were typically interested in precision and were not 
comfortable in dealing with unknowns or estimates in the process of initially constructing their 
representations. From these students’ perspectives, a good representation is one that presents 
information visually, or that does not require an observer to interpret symbolic or abstract notation. 
Rather, the way to present information most effectively is through inclusion of necessary, 
explanatory detail. Interestingly, after introducing the concept of function formally, many teachers 
find it difficult to get students to notate their graphs. Perhaps if the concept of function were 
allowed to grow naturally out of students’ informal understanding, students would more aptly 
notate and label graphs. 

These students were not universally capable of incorporating the dynamic aspect of any 
change or movement inherent in the given situation – whether or not they recognized and 
articulated this change. The tendencies we observed among these students seem to indicate that 
they did not perceive their graphs or other representations as tools that possess some utilitarian 
value by virtue of the manner in which they were constructed, or by any inherent scheme of 
representation. We surmise that because the student was the one who created the representation, 
from his or her perspective, the creation held no more power or utility than had been granted by 
the creator; all of its features were subject to the control of the student-creator, which is similar to 
how Gravemeijer uses the ideas of emergent modeling and horizontal mathematizing (Doorman 
& Gravemeijer, 2009; Gravemeijer, 1999). Students first use these informal or emergent models 
to solve the problem. They must be able to do this a number of times before they are able to abstract 
the model and use it as an object to be manipulated or to generalize it to other similar sets of 
problems – the ability to vertically mathematize.  
 Our findings suggest students have notions of covariance and dependency. By aggregating 
explicit and implicit comments, we found every student referenced the covariant relationship in 
the situations and all but one referenced the dependent relationship. In fact, all but one student 
made reference to covariance for both tasks. There was some evidence but less consistency for the 
notion of dependency. All students commented on the dependent element in the ball task, but only 
two of them referenced the relationship in the growth task. More empirical work is needed to 
determine the reason for this, but one explanation might be that the growth task focused on the 
common element of time or age, either of which from the students’ perspective was simply 
assumed as one element of change and therefore not worthy of comment. This evidence that 
dependency relies on covariational reasoning is similar as to what Carlson et al. found (2002). 
 It is also apparent from our data that students across grade levels tend makes estimates, and 
predictions based on their model, the data, or intuition. It is reassuring that students tend to look 
for patterns graphically and numerically to generalize and make predictions. However, our data 
also demonstrate that students do not do so efficiently with data from realistic situations. 
Furthermore, students who had taken advanced mathematics courses did not show a noticeable 
difference in this skill.  

Although the interviews did not focus on students’ ability to represent the situations using 
formulas or rules, a few students attempted to do so. Neither situation, however, lent itself to an 
easily recognizable rule. Even so, three students (not dependent on age) constructed a rule that 
could have been tested if given enough time. The majority of the students (five out of seven) 
correctly described the overall pattern of the ball task while one student correctly described the 
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girl’s growth. It might be that the ball’s pattern was more predictable with a consistent rate of 
change whereas the girl’s growth was not, therefore leading students to correctly identify the ball’s 
pattern but not the girl’s growth.  

An emergent functional reasoning scheme 
With such a small data set, it is impossible to make any significant generalizations using 

the current coding/representation analysis. However, by looking so closely at that small sample it 
may allow us to begin analyzing larger sample sizes. To this end, we have merged our categories 
into a functional reasoning scheme that would be easier to use and could be valuable in further 
studies with larger populations (see Table 4 for a summary description of the levels). 

We notice, for instance, that in order to see dependence, one must be able to recognize 
covariance. If you treat explicit, implicit, and indefinite as scores of 3, 2, 1, no student should have 
a dependency score higher than a covariance score. This is true for this sample of 
students. Likewise, our sample supports the hypothesis that a student cannot generate a rule for 
the situation if they do not have some sense of dependency. As demonstrated in Table 4, this allows 
us to merge our scales for our categories of covariance, dependence, and pattern for our categories 
into the following scheme, where a student:  

 
Level 1:  Only attends to a single variable. 
Level 2:  Implicitly (2a) or explicitly (2b) indicates some understanding of covariance, but 

not dependence. 
Level 3:  Implicitly or explicitly indicates an understanding of dependence (i.e. that one 

variable's value is dependent on the other, but is unable to articulate a rule that 
might be used to generalize the situation). 

Level 4:  Generates a (verbal) rule that generalizes the situation that only attends to order 
(e.g. the ball's height decreases with the number of bounces (or time)). 

Level 5:  Generates a (mathematical) rule that could be used to generalize the situation 
quantitatively (e.g. at each bounce the ball half as high as it was on the previous 
bounce). 

 
Table 4.   
Students’ levels within overall scheme of functions understanding 

 Students Totals 

Level William Arlis Rachel Jennie Movae Ki Carlos Ball Growth 

1 –   One variable      G      0 1 

2a – Covariance Only 
(implicit) 

 G      G 0 2 

2b – Covariance Only 
(explicit) 

     G  0 1 

3 -   Dependence        G    0 1 

4 –  Verbal Rule BG B  B    B 4 1 

5 –  Quantitative Rule   BG  B B  3 1 

Key:  B – Ball Drop Task 
 G – Growth Task 
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Implications 
 
Our findings provide a small glimpse into secondary students’ thinking about functions. 

We found the students we interviewed did not always choose first to make coordinate graphs to 
represent their understanding of a given functional relationship and that this held true regardless 
of their ability to construct graphs. In addition, these students, regardless of their preferences for 
one type of representation over another, did not always use these representations to make 
predictions about the data. At the same time, all seven students were able to make some sort of 
extension or prediction about the data in one or both of the task situations. In contrast, only three 
students were able to state a quantitative rule to describe either or both of the task situations. This 
might, in part, be explained by the tasks, which themselves are tough to describe quantitatively. 
However, six of the seven students indicated they designed their representations so that they 
visually resembled the task situations. This may mean students are not accustomed to describing 
realistic situations this way or that the situations lend themselves to visually representing the data. 
Either way, if one goal is to have students describe situations with a rule, students are not doing 
this without being asked.  

We have extracted one possible explanation for these seemingly contradictory findings: 
Perhaps these students were able to use their representations to make predictions about the data 
because the predictions or extensions seemed to fit visually into the representational scheme 
comprising their models (e.g., the predicted measure fell along an existing line in the graph, or the 
extension merely required lengthening an existing line in an already-established direction), but not 
because of mathematical insight. 

If the above is true, it holds important implications for teaching. Students need to 
understand the latent power of a representational scheme such as the coordinate graphing system. 
Instruction should be designed to help them make connections between mathematical features (a 
descriptive rule or pattern) of the functional relationship being represented, and the method by 
which the representation is constructed. In addition, instruction should not be restricted to the 
procedural aspects of constructing coordinate graphs or to the technicalities of creating a 
mathematical rule that can accommodate a functional relationship. We need to bridge the gap 
between what students are thinking (i.e., visual resemblance) and what we want them ultimately 
to know and do. 
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