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ABSTRACT 

The use of synthesizable reconfigurable IP cores has increasingly become a trend 

in System on Chip (SOC) designs. Such domain-special cores are being used for their 

flexibility and powerful functionality. The market introduction of multi-featured platform 

FPGAs equipped with on-chip memory and embedded processor blocks has further 

extended the possibility of utilizing dynamic reconfiguration to improve overall system 

adaptability to meet varying product requirements. A dynamically reconfigurable Finite 

State Machine (FSM) can be implemented using on-chip memory and an embedded 

processor. Since FSMs are the vital part of sequential hardware designs, the 

reconfiguration can be achieved in all designs containing FSMs. 

In this thesis, a FSM-based reconfigurable hardware implementation is presented.  

The embedded soft-core processor is used for orchestrating the run-time reconfiguration. 

The FSM is implemented using an on-chip memory. The hardware can be reconfigured 

on-the-fly by only altering the memory content. The use of a processor for 

reconfiguration enables SOC designers to utilize both software and hardware capability 

to achieve reconfiguration. This scheme of reconfigurable hardware implementation is 

independent of the placement and routing of the hardware on the FPGA. To demonstrate 

the feasibility of the proposed approach, the Knuth-Morris-Pratt (KMP) algorithm was 

implemented. A unique way of using memory-based FSM to reconfigure and speed up 

the KMP search algorithm has been introduced. With the proposed technique, the system 
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can reconfigure itself based on a new incoming pattern and perform a pattern search on a 

given text without involving a host processor.  

Data extracted from test cases shows that the proposed approach made the 

maximum achievable frequency of the design independent of the pattern length. The 

number of clock cycles required to match the pattern in the worst case is equal to the 

pattern length plus the text length (O (m+n)). 
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CHAPTER 1—INTRODUCTION 

The rising speed performance of modern FPGAs enabled them to offer possible 

parallelism of Application Specific Integrated Circuits (ASICs) along with flexibility. 

However, their increasing manufacturing cost has raised the demand to add more 

flexibility to System on Chip (SOC) without sacrificing performance. Reconfiguration 

technologies are viewed by the SOC designers as a tool to achieve this target. 

Dynamically reconfigurable hardware has added a new dimension to SOC design by 

combining the capability introducing modifications to post-fabrication functionality 

modification (not present in conventional ASICs) with the spatial/parallel computation 

style (not present in instruction set processors). These technologies allow the hardware to 

be customized after device fabrication to meet the instantaneous needs of a specific 

application. 

The concept of reconfigurable hardware is not new and has been in the market for 

quite some time. It was first introduced by G. Estrin, B. Bussell, R. Turn and J. Bibb in 

1963 [1]. These early techniques used a general purpose processor to reconfigure its 

computational resources for independent computations and a multiplexer to control 

routing between these computational resources. In the mid-1980s, the advancement of 

reconfigurable hardware technology led the way to the development of new techniques 

for FPGA reconfiguration.  Since then, various techniques for achieving reconfiguration 

have been explored.   
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FPGA devices contain configurable logic blocks whose functionality is 

determined through the programmable configuration bits. Vendor specific tools generate 

a configuration bit-stream to program FPGA devices. Reconfiguration technologies 

manipulate the configuration bit-stream to achieve reconfiguration. Partial 

reconfiguration of FPGAs is based upon the partial manipulation of configuration bit-

streams and downloading them to FPGA devices. Self-reconfiguration can also be 

realized by multi-context FPGA devices [2, 3].  These FPGA devices support dynamic 

reconfiguration by allowing the storage of multiple configuration bit-streams in FPGA 

memory and switching between them using a dedicated signal for control. A multi-

context FPGA-based self-reconfigurable string matching hardware design was first 

presented in 1999 [3]. 

The advent of Static Random Access Memory (SRAM) based FPGAs has made 

Run Time Reconfiguration (RTR) feasible by changing the value of the configuration 

stream stored in SRAM cells to realize a new function. A RTR system is a heterogeneous 

system consisting of at least one FPGA and a configuration manager. Markus Koster and 

Jurgen Teich [5] proposed a hardware configuration manager design for the 

implementation of a RTR Finite State Machine (FSM) in 2002 [5]. The external (host) or 

embedded processor can also be used to achieve RTR. The use of an embedded processor 

in such a capacity is proposed by Joao Canas Ferreira in 2005 [17]. 

Modern FPGAs are complex structures.  They have embedded configurable logic 

blocks that can be used to implement logic as well as distributed memory. Such memory 

blocks allow implementation of sequential blocks in such a way that it requires fewer 
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logic cells than traditional flip-flop based implementations. This can be utilized to 

implement the sequential part of the design as an FSM. The functionality of such 

sequential design can be reconfigured by altering the functionality of the finite state 

machines. Reconfigurable FSMs have given an alternative to achieving reconfiguration 

without the need to manipulate configuration bit-stream. 

This thesis provides an in-depth discussion of a memory-based FSM 

implementation that is dynamically reconfigurable using an embedded processor. A 

hardware-software co-design is developed as a run-time reconfigurable system. The 

Knuth-Morris-Pratt string matching hardware is implemented to prove the feasibility of 

this approach [13]. This thesis provides a core framework design for a portable hardware 

design for run-time reconfiguration for FSM-based sequential designs. 

1.1 Organization 

The organization of this thesis is as follows. Chapter 1 briefly introduces and outlines the 

thesis organization; Chapter 2 reviews the current reconfiguration techniques. Finite state 

machines and implementation approaches of reconfigurable FSM are detailed in Chapter 

3. Since KMP string matching algorithm is implemented to prove feasibility of concept, 

Chapter 4 provides the explanation of the KMP string matching algorithm in detail.  

In Chapter 5, information gathered in previous chapters is used to develop the 

hardware and software co-design system for the KMP. Chapter 6 details the various tests 

conducted to verify the functionality and to assess the system performance. Chapter 7 

concludes the thesis and discusses future work.  
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CHAPTER 2—RECONFIGURABLE HARDWARE & CURRENT APPROACHES 

A system which allows changing behavior or adds new features to an existing 

system after product manufacturing is defined as an upgradable system. Device 

manufacturers search for a field upgradeable system to meet the stringent time-to-market 

requirement. Such a system enables manufacturers to release the initial version of the 

product to the market, and extends the features during the product life time by system 

upgrades. The FPGA-based reconfigurable hardware provides a similar solution by 

adding reconfiguration capability to the system to meet additional product requirements.  

In a static implementation strategy of FPGA-based systems, the implementation 

uses a fixed configuration of hardware logic resources. These resources are configured 

before the system operates, and maintains the same configuration throughout the 

operation. The techniques of reconfiguration allow the hardware logic resources to 

accommodate different applications or to add new features to the existing application. 

Much work has been accomplished on device reconfiguration techniques for FPGA-based 

systems.  This chapter reviews some of the most common reconfiguration techniques. 

2.1 Reconfiguration Techniques 

Development of any FPGA-based system starts with entering the schematic of the 

hardware design using a FPGA platform specific front end tool or describing the design 

using a Hardware Description Language (HDL such as VHDL or Verilog). Then, a 

software synthesis tool is used to convert the design into a netlist of FPGA family 
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specific logic resources such as LUTs (Loop up table array) and flip-flops. After 

synthesis, a Place and Route tool performs the task of placing and routing the synthesized 

logic onto the target device and generates the bit-stream file. The generated bit-stream 

(configuration bit-stream) file is downloaded onto the FPGA to implement the design on 

its fabric. 

2.1.1 Dynamic Reconfiguration 

Traditional FPGA-based systems are usually configured before starting the 

execution of the application and referred to as statically reconfigurable. To reconfigure 

the FPGA, the system has to be halted till reconfiguration is done and then the FPGA 

needs to be restarted with the new configuration. On the other hand, a dynamically 

reconfigurable system allows one to run the reconfiguration and application execution in 

parallel. It is based on the concept of virtual memory. When the physical resources of the 

FPGA is much less than the overall system requirement, the system is divided into 

hardware segments that do not need to run concurrently and a dynamic allocation scheme 

is used to re-allocate the logic resources to hardware segments at run time [8]. It enhances 

the system flexibility and performance by dynamically loading and unloading the 

optimized circuit configuration during system operation. Dynamic reconfiguration is 

supported on FPGA devices via JTAG or vendor specific external interface ports. 

External intelligent hardware such as a processor or microcontroller or dedicated 

hardware blocks residing on the FPGA itself are used to reconfigure the device. 

Configurations required for reconfiguration are stored either on FPGA memory if enough 

memory is available or in external memory. Figure 2.1 shows the static and dynamic 
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reconfiguration approaches. A statically configured FPGA system, once configured 

cannot be reconfigured again, while a dynamically configurable FPGA system can be 

reconfigured multiple times to implement different functionalities. 

 

 

Figure 2.1: FPGA configuration approaches: a) Static configuration, b) Dynamic 

reconfiguration [8] 

2.1.2 Partial Reconfiguration 

Some applications require modifying only part of the circuit for reconfiguration. 

In such cases, partial reconfiguration can be used. Partial reconfiguration is an important 

feature in some FPGA architectures. It is the ability to reconfigure a portion of a FPGA 

while the remainder of the design is still operational. Certain areas of a device can be 

reconfigured while other areas remain operational and unaffected by reprogramming [8, 

12]. Partial reconfiguration is done while the device is active without the need of 

restarting.  

 On Xilinx FPGA devices, Virtex series (such as Virtex II and Virtex Pro) support 

dynamic partial reconfiguration via an Internal Configuration Access Port (ICAP) 

interface [19]. The system already implemented on FPGA can internally access it. It 
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becomes available after an initial (externally controlled) configuration is complete and 

allows the designer to control device reconfiguration at run-time. The reconfiguration is 

controlled by an on-chip embedded processor via ICAP. The advantage of 

reconfiguration via ICAP is that it does not require an external configuration port. It can 

partially alter the configuration bit-stream. The drawback of this technique is that it is 

slow and it must perform a memory read operation first. Figure 2.2 shows a partial 

reconfigurable architecture inside FPGA memory. The first left block represents the 

partial configuration that needs to be loaded on the FPGA. The next block represents the 

configuration memory before reconfiguration takes place. The dark grey area in this 

block is the unused area of the configuration memory while the area in white is the 

configured part. The final block shows the status of configuration memory after 

reconfiguration. 

 

Figure 2.2: Partial reconfigurable architecture 

 There are two styles of Partial Reconfiguration: Module based and Difference 

based. Module-based partial reconfiguration is used when the modules are inter-

dependant (have common signals) and need to communicate. To achieve inter-module 

communication, a special bus macro is used to provide a fixed bus for inter-design 
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communications and allow signals to cross over the module boundaries. At each 

reconfiguration, the bus macro is used to establish the unchanging routing channels 

between the modules to guarantee correct connections. 

 Difference-based partial reconfiguration is accomplished when a very small 

change in the design is needed to achieve the reconfiguration. Instead of storing the full 

configuration stream, the difference-based configuration bit-stream stores only the 

difference between the base configuration and the configuration needed to reconfigure 

the device. At first, a configuration bit-stream is generated. Then, a vendor specific 

software tool (such as FPGA-Editor) is used to make changes in the existing 

configuration to generate the difference-based configuration bit-stream. Since bit-stream 

differences are extremely small compared to the bit-stream of the entire device, fast 

switching between configurations of module(s) is possible. 

2.1.3 Multi-Context Architecture 

Self-reconfiguration can be realized by multi-context FPGA devices that allow 

on-chip manipulation of configuration bit-streams [3, 8].  Multi-context FPGA devices 

have on-chip RAM that can store multiple pre-programmed configuration contexts 

(configuration bit-streams). Only one context can be active at a given time. The 

architecture can switch quickly between different configurations using a dedicated signal 

that determines which configuration data should be used. Overlapping of computation 

with reconfiguration is allowed through background loading of configuration data during 

circuit operation. Figure 2.3 shows single context and Figure 2.4 shows multi-context 

dynamically reconfigurable architectures. The configuration memory of a multi-context 
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FPGA can be visualized as multiple planes of configuration memory stacked on each 

other. Each plane can store an individual configuration bit-stream. Since single context 

FPGAs have only one memory plane, they can store only one configuration, on the other 

hand multi-context FPGA configuration bit-stream can store several configurations on 

any of the available memory planes. For example, in Figure 2.4, the incoming 

configuration bit-stream is stored on the top memory plane. 

 

Figure 2.3: Single context dynamically reconfigurable architecture [8] 

 

Figure 2.4: Multi-context dynamically reconfigurable architecture [8] 
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2.1.4 Reconfiguration Using On-Chip Memory  

All the reconfiguration techniques described previously are based on manipulation of the 

configuration bit-stream. The on-chip memory (memory available on the FPGA device 

itself that can be accessed by the design) provides another alternative way to achieve 

reconfiguration. Instead of implementing logic that alters the configuration bit-stream, 

logic to control the functionality on-the-fly via altering on-chip data memory can be 

implemented. The self-reconfiguration can be abstracted as a set of programmable 

primitive logic elements (logic-lets) and a network of programmable interconnection 

networks [4]. These elements are an application-specific hardware block used to 

implement some logic functionality. For example, given a block to implement an 8-bit 

arithmetic unit, a 16-bit arithmetic component can be realized by connecting two of these 

8-bit arithmetic units. The interconnection networks can be considered as a sort of 

multiplexer, which is controlled by memory bits. Two logic elements can be connected 

by interconnection networks. The functionality of logic-lets and interconnection between 

them can be altered by the memory-based lookup-up table. A problem-specific control 

circuit determines the functionality and interconnection between them. In this way, the 

control circuit performs self-reconfiguration. 

2.1.5 Reconfiguration Using a Self-Reconfigurable Finite State Machine 

Finite state machines are the most vital components of any sequential logic 

system. Accordingly, functionality of these systems can be altered by reconfiguring the 

FSM. The functionality of the FSM can be changed by simply changing the FSM’s state 



11 

 

 

 

transitions and/or their outputs. A lot of research has been done to develop various 

techniques of reconfigurable FSM implementation such as F-RAM and G-RAM based 

FSM, Forward Transmission Expression (FTE) based FSM, RAM/ROM based 

hierarchical FSM etc. [4-7]. This is the most flexible way to achieve run-time 

reconfiguration which, can be applied to almost any FPGA platform and is explored in 

this research. 

2.2 Summary 

Functionality implemented on FPGA logic resources can be altered by 

downloading a manipulated configuration bit-stream to the device. While partial 

reconfiguration usually uses an external access port to download the modified 

configuration bit-stream to the FPGA, some FPGA devices can be partially reconfigured 

using an internal access port. The partial reconfiguration models require configuration 

bit-streams to be modified by either a host processor or by an on-chip processor. In 

memory-based reconfigurable models, an on-chip hardcore processor is normally used 

for reconfiguration. A soft-core processor can also be utilized for the same purpose. Since 

in this thesis a reconfigurable FSM is used to implement pattern matching hardware, the 

next chapter analyzes the various approaches published in the literature to implement 

reconfigurable FSMs.  
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CHAPTER 3—RECONFIGURABLE FINITE STATE MACHINE: PROBLEM 

STATEMENT AND SOLUTION 

This chapter describes in brief finite state machines (FSMs) and their relevance. 

Then, it reviews existing approaches to reconfigurable FSM implementation. A solution 

to avoid some of the drawbacks of existing approaches is presented. A brief design 

strategy of the proposed solution is also discussed. 

3.1 Finite State Machines (FSMs) 

Finite state machines model the behavior of a system or a complex object, with a 

limited number of modes or states, where states or modes change with circumstances.  

A finite state machine consists of four main elements: 

1) States that define behavior and may produce actions (outputs). 

2) State transitions or changes from one state to another. 

3) Conditions to allow changes from one state to another. 

4) Externally or internally generated input events that trigger state transitions. 

FSMs can be deterministic or non-deterministic. A deterministic FSM, also 

known as deterministic finite automaton (DFA), has one and only one transition to the 

next state for each set of current state and input vectors. A non-deterministic FSM, also 

known as non-deterministic finite automaton (NFA), can have more than one possible 

next state for each pair of current state and input vectors. NFAs are typically used to 
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reduce the complexity of the mathematical model required to establish many important 

properties in the theory of computation. 

For practical applications, FSMs can be broadly divided in two types: Mealy and 

Moore FSMs. A Moore FSM is the state machine whose output vectors are a function of 

the current state only and do not depend on the input vector. On the other hand, with a 

Mealy FSM, output vector and next state depend on both the current state and input 

vector. The block diagram of Moore and Mealy FSMs are shown in Figure 3.1 and Figure 

3.2, respectively. For this implementation, Moore type DFA FSMs are considered. 

 

Figure 3.1: Mealy FSM 

 

Figure 3.2: Moore FSM 
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3.1.1 Reconfigurable Finite State Machines 

A reconfigurable finite state machine can be defined as a formal finite state 

machine, which has the ability to change output function and transition function or both 

during operation [5]. If the reconfiguration is initiated autonomously by the system itself, 

the FSM is called self-reconfigurable. Reconfiguration can also be initiated by external 

events, known as reconfiguration events. 

3.1.2 Relevance of Reconfigurable Finite State Machines 

Digital systems with statically and dynamically modifiable FSM functionality are 

required in a number of practical applications. They can be used in communication 

systems, in a crypto-processor, in embedded controllers, etc. Applications that need 

reconfigurable FSMs can be divided in two categories: 

1. Autonomous sequential modules that are components of more complicated 

digital systems. For example, reconfiguration of a Mealy FSM that detects a 

sequence of two or more successive zeros makes it possible to change to 

detect successive ones instead of zeros. 

2. Control circuits that require reprogrammable control units for a processor. The 

reconfigurable FSM allows the processor to be optimized for a particular 

problem that requires a specific subset of operations. For example, 

computations over Boolean and ternary matrices can be performed using 

reconfigurable control units. These units can solve different combinatorial 

problems such as covering of Boolean matrices, discovering subsets of vectors 
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with some pre-defined properties, etc. If a control unit is modeled by a 

reconfigurable FSM, it is possible to increase its performance by modifying 

the functionality of its FSM.  

The design of MPEG4 natural video decoders and hardware implementation of string 

matching algorithms are examples of the use of reconfigurable FSM. 

3.2 Related Work 

A reconfigurable FSM can be realized by using distributed on-chip memory. An 

approach to implement such an FSM is presented in [5]. In this FSM implementation, two 

memory blocks, F-RAM and G-RAM, are used to implement the state transition and 

output functions of the FSM, respectively. The transition sequence required to 

reconfigure the initial FSM (referred to as a delta transition) is determined by a heuristic 

approach. The reconfiguration is realized by taking a sequence of delta transitions where, 

during each transition, the output and state transition function are updated until the FSM 

is reconfigured into the target FSM. Figure 3.3 shows the transition of a FSM used to 

count the number of ones in a bit-stream to a FSM that counts the number of zeros 

instead. Step one shows the original FSM and Step 4 shows the target FSM.  The 

highlighted transitions are the delta transitions, which are taken to reconfigure the FSM. 

Reconfiguration is done in four steps by supplying the input sequence {1, 1, 0, 0}. In the 

first step, the FSM transitions into state S1. In the second step, the input/output function 

changes from 1/1 to 1/0. After this, the FSM transits into state S0; and at the final step, 

the input/output function changes from 0/0 to 0/1. 
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Figure 3.3: Transition taken during FSM reconfiguration [5] 

In this approach, F-RAM and G-RAM memory blocks of the FPGA are used for 

FSM implementation and a hardware re-configurator is used for reconfiguration. The 

hardware re-configurator block is a hardware block that stores the delta transition 

sequences. On reception of a reconfiguration event, reconfiguration is initialized and the 

existing FSM is reconfigured into the target FSM. The architecture of such an FSM is 

shown in Figure 3.4. The input vector is connected to F-RAM and G-RAM memory 

blocks via the IN-MUX. In the normal mode of operation, the input vector is fed to both 

the F-RAM and G-RAM blocks. On reception of reconfigure event ‘r’, the reconfigurator 

block emits delta transitions. The computed set of transitions required for reconfiguration 

sometimes includes dummy transitions that are not part of the target FSM [5]. 
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Figure 3.4: Reconfigurable FSM implementation [5] 

Another alternative for FSM reconfiguration is the Forward Transition Expression 

(FTE) [6]. FTE is a Boolean expression needed for transition from the current state to the 

next state of an FSM. Each FTE can be optimized to utilize minimum FPGA resources.  

The optimized FTE is computed for each state transition. FTEs are stored in the FPGA 

memory and utilized for reconfiguration by the hardware re-configurator. The hardware 

re-configurator is a combinatorial logic block that is responsible for reconfiguration of 

FSM. This approach saves hardware logic cells over those required for traditional FSM 

implementations. The number of reconfigurations is limited and FTE needs to be 

calculated and optimized for each state. Also, during run-time, at each transition into a 

new state, a new FTE needs to be obtained from memory and then loaded onto the FPGA. 

In this technique, the number of reconfigurations is fixed and depends on the available 
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memory. The architecture of such an FSM is shown in Figure 3.5. The input vector is fed 

to a combinational logic block having the FTE. The comparator compares the current 

state with the next state. If a mismatch between the current and next state is found, a new 

FTE from memory is loaded into the combinatorial block.  

 

Figure 3.5: Custom reconfigurable circuit for FSM implementation [6] 

Another approach is based on RAM/ROM hierarchical FSM implementation. 

Reconfiguration is achieved either by swapping pre-allocated areas on a partially 

dynamically reconfigurable FPGA, or by reloading memory-based cells in statically 

configured FPGAs [7]. In this approach, the number of reconfigurations is limited and 

depends on the size of the design and available chip area. To reconfigure the statically 

configured FPGA, a software model of the reconfigurable FSM has to be constructed and 

verified on the host system. Then, the bit-streams for memories such as MRAM, 

STRAM, and output RAM are represented as arrays. The FSM is verified on the host 
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system. After verification, these respective arrays are formally converted into the bit-

streams for the FPGA, which can be downloaded using the dual-port capability of 

FPGAs. Again with this approach, a host system is required for generating configuration 

bit-streams. 

An approach to implement reconfigurable hardware for string matching using the 

KMP algorithm is described in [3]. Reconfiguration is achieved via switching between 

multiple configuration contexts of a multi-context FPGAs. The pattern-specific back 

edges are constructed in the form of FSM, which is mapped onto hardware using a pre-

configured template. With this approach, a specific (multi-context) feature is required for 

reconfiguration and a different context needs to be computed for each pattern. It also 

requires direct manipulation of configuration bits by the host processor. Another flaw 

with this technique is that the maximum achievable clock frequency of the system 

depends on the search pattern and increases with the pattern length.  

Another method for KMP implementation using on-chip memory-based logic-lets 

is explained in [4]. These logic-lets can be connected in a network by altering the 

contents of memory-based FSMs. The FSM is computed for each specific application. 

3.3 Proposed Approach 

A new approach to reconfigurable pattern matching hardware implementation is 

proposed in this thesis. To develop device-independent reconfigurable hardware, a 

memory-based FSM is implemented and an on-chip processor is used for initiating the 

reconfiguration.  
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 Traditional reconfiguration approaches require generation of configuration 

sequences in the form of technology dependent bit-streams. A reset is needed for a new 

reconfiguration to take effect. In multi-context FPGA-based reconfiguration methods, 

these pre-compiled configuration bit-streams need to be stored in configuration memory. 

Since there is a limited configuration memory space on FPGA devices, the number of 

reconfigurations is limited to the available configuration memory depending upon the 

size of configuration bit-streams. The use of an on-chip processor for reconfiguring the 

FSM eliminates the dependency upon a dedicated design of a hardware re-configurator 

and a limited number of reconfigurations. The use of the proposed approach also avoids 

the need of a reset to achieve reconfiguration.  It also eliminates the effort exerted on 

generating configuration bit-streams for each configuration and saving these onto 

configuration memory. The proposed technique speeds up the hardware pattern search. 

With the use of an embedded processor (soft-core such as MicroBlaze or hard-

core processor such as Power PC), reconfiguration can be done on-the-fly [8, 23]. The 

speed of reconfiguration depends only on the processor clock cycles required to update 

the FSM memory contents. This approach is more generic than traditional reconfiguration 

approaches as it does not depend on device-specific features.  

3.4 Design Strategy 

The FSM is implemented using dual-port embedded RAM. The combination of 

current state and input vectors are used as an address to locate the RAM content. These 

contents consist of the next state transition and the output vector for each current state 

corresponding to the input vector. The FSM can be reconfigured easily by 



21 

 

 

 

reprogramming the RAM with a new or updated state transition table and output function 

table. The embedded soft-core processor (MicroBlaze) is used for reconfiguration. 

This implementation strategy provides the flexibility of changing the width of 

input and output vectors using a multiplexer at the input and latches at the output. This 

strategy can be used in designs that need varying widths of input and output vectors. The 

multiplexers are enabled/disabled by controlling the bits stored in the memory, and 

updated by changing the contents of corresponding memory bits. The width of these 

vectors can be reconfigured by updating the contents of the memory locations providing 

the necessary control signals.  

Several efficient software-based string matching algorithms such as Boyer-Moore 

Algorithm, Berry-Revindran, Suffix tree, Morris-Pratt, Knuth-Morris-Pratt (KMP) 

algorithm, and Colussi algorithm exist [15]. The KMP algorithm is one of the most 

efficient pattern matching algorithms that uses an FSM for search execution. Therefore, it 

is an ideal candidate for reconfigurable hardware implementation using a memory-based 

FSM. Also, previous hardware implementation of KMP algorithms is used as a base for 

performance comparisons with the proposed technique [3, 4].  

The proposed implementation reconfigures itself to optimize the pattern search at 

each reception of a new search pattern. The delta transition required for reconfiguration is 

simply the difference between the existing FSM and target FSM state transition tables. 

Only memory contents for delta transition are needed to update and reconfigure the FSM. 

Unlike the approach described in [6], FTE is not needed to implement the FSM, freeing 

extra logic cells for design usage.  
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3.5 Summary 

A reconfigurable FSM gives flexibility to change the functionality of sequential 

digital systems without the need of an external configuration bit-stream manipulation. 

Various techniques have been devised for efficiently implementing the FSM. On-chip 

memory-based FSM implementation is the simplest method of implementing a 

reconfigurable FSM. The hardware implementation of a KMP algorithm is proposed as 

an application of reconfigurable FSMs. The design exploits the reconfigurable feature of 

the memory-based FSM to self-reconfigure to adopt for each incoming search pattern 

instantly. Before proceeding to the implementation details of the proposed system, the 

next chapter details the architecture and functionality of the of KMP algorithm.  
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CHAPTER 4—KMP STRING MATCHING ALGORITHM 

String matching algorithms are considered ideal models for dynamically 

reconfigurable FSM implementations. The string matching problem consists of finding 

all occurrences of a pattern within a given text. This chapter gives a brief overview of a 

naive method of brute force string matching. Then, the KMP string matching algorithm is 

described in detail. Later in Chapter 5, the design and implementation of the proposed 

system is explained using the same test pattern. In Chapter 6, simulation waveforms of 

the search execution of the same test pattern are presented. 

4.1 Relevance of String Matching Algorithm 

The string matching problem has very high relevance to the field of Computer 

Science. Problems such as intrusion detection engines for internet network security, text 

processing, and pattern recognition and image matching present some examples where 

the string matching algorithm can be applied. Biology is another field that benefits 

greatly from such string matching problems. Finding patterns of DNA inside longer 

sequences has become central in the analysis of human genomes. 

4.2 Brute Force Search for String Matching 

A simple approach to match a pattern within a text could be implemented as a do-

loop operation to check whether all the characters of the pattern match with the characters 

of a text string. If a pattern P of m character length is to be searched within a text string T 
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of n character length, the search procedure is as follows: Starting at any position i, the do-

loop compares the characters of the pattern with the text characters until a mismatch is 

found. If a mismatch is found at some position, for example i + j, it starts searching again 

at position i +1. This would lead to a very simple but inefficient search. Suppose a search 

pattern consisting of character array ‘ababca’ has to be searched within the text 

consisting of character array ‘tabacababcaxtab’, several iterations of the brute force 

search using loops have to be executed. Table 4.1 tabulates the iterations verses matched 

characters for this iterative process.  Column 1 in the table lists the iteration number and 

row 2 lists the characters of the text string. ‘X’ is placed where a mismatch between text 

characters and pattern characters is found.  

Table 4.1: Brute force search iteration result for iterations i=0 to i=7 

                 Character  
                    Number 
Pattern 
Iterations 

1 2 3 4 5 6 7 8 9 10 11 12 

t e a b a c a b a b c a 

i=0 X                      
i=1   X                     
i=2     a b a X             
i=3       X                 
i=4         a X             
i=5           X             
i=6             A b a b c a 

 

The table shows that the attempt to search the pattern at column position 4 in 

iteration 3, after a mismatch in iteration 2 at column 6, does not yield any match. 

Similarly, starting the pattern search at column position 6 in iteration 5, after a mismatch 

in iteration 4 at column 6, did not yield any match.  It can be concluded that trying to 

match the character at position i + 1 after a mismatch is only necessary if the pattern is 
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such that its first j – 1 characters are exactly equal to h - 1 (where h < m, m is pattern 

length) characters starting at the second position in the search pattern itself. For example, 

in search pattern “aaabca”, the first and second characters (‘aa’) are exactly similar to the 

second and third character (‘aa’) within the same pattern ‘aaabc’. This pattern has to be 

searched from a text that contains character string “aaaabca”. It can be noticed that the 

search pattern contains three consecutive characters of ‘a’ while the text contains 4 

consecutive characters of ‘a’.  If the pattern search starts at character position ‘0’, then 

the first iteration i = 0 will find a mismatch at the 3rd character position. Next iteration i + 

1(search start at second character ‘a’) will find the pattern match.  If the pattern is not 

such that first j – 1 characters are exactly equal to h – 1 characters starting at the second 

position, then trying to match the characters from position i + 1 in the text with the 

pattern would be wasteful and should be avoided. The time complexity of this algorithm 

is O (mn). In the worst case (if text does not contain any search pattern), m x n 

comparisons need to be performed to know that there is no match pattern, where m is the 

length of search pattern and n is the length of the text.  

4.3 KMP Algorithm 

The KMP algorithm is one of the most efficient pattern matching algorithms for 

exact string searches. It was conceptualized by Donald Knuth and Vaughan Pratt, and 

independently by J. H. Morris. They published a paper “Fast pattern matching in strings” 

jointly in 1977 [13]. The main features of the KMP algorithm are: 

 Performs the comparisons from left to right. 

 Preprocessing phase in O(m) space and time complexity. 
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 Searching phase in O(n+m) time complexity (independent from the alphabet size); 

 Delay is bounded by log (m), where  is the golden ratio and given by  

 

The KMP string algorithm bypasses the re-examination of previously matched 

characters by employing the fact that when mismatch occurs, the pattern characters 

themselves embed sufficient information to determine where the next match would occur. 

The KMP algorithm reduces the search work of the naive method in two ways: skipping 

outer iteration and skipping inner iterations. To explain both, the pattern search example 

described in Section 4.1 is extended further as described next.  

4.3.1 Skipping Outer Iterations 

Some iterations can be skipped for which no match is possible. For example, if a 

partial match is found in an iteration, it should be overlapped with the new match to be 

found. As shown in Table 4.1, iteration 2 has a mismatch at the fourth position (column 

6).  If the search starts again from column 4 in iteration 3, a conflict in the placement of 

the characters is found and a mismatch occurs. Iterations 2 and 3 are shown in Figure 4.1. 

i=2: a b  a 
i=3:      a  b 

Figure 4.1: Iteration 2 and 3 

It is known from iteration i=2 that T[3] and T[4] are ‘b’ and ‘a’, so they cannot 

match with ‘a’ and ‘b’ respectively, which iteration i=3 is trying to find. Positions then 

can be skipped until no conflict is found. As shown in Figure 4.2, the first pattern 

character ‘a’ in iteration 4 coincides with text character ‘a’. 

 



27 

 

 

 

i=2: a b  a 
i=4:          a 

Figure 4.2: Iteration 2 and 4 

The overlap of two strings x and y is the longest word that is a suffix of x and 

prefix of y. The number of iterations that can be skipped is the largest overlap in the 

current partial match. Figure 4.3 shows the pseudo code for string matching with skipped 

iterations [16]. Two loops ‘while’ and ‘for’ are used for pattern search. The outer while 

loop is for iteration and the inner for loop for pattern character comparison with the text 

at any iteration i. If a mismatch at any position j is found, the iterations for the overlapped 

characters are skipped. 

    i=0; 
    while (i<n) 
    { 
     for (j=0; T[i+j] != '\0' && P[j] != '\0' && T[i+j]==P[j]; j++); 
     if (P[j] == '\0') found a match; 
      i = i + max(1, j-overlap(T[0..j-1],P[0..m])); 
     } 

Figure 4.3: Pseudo code with skipped outer iteration 

4.3.2 Skipping Inner Iterations 

Some iterations in the inner loop can also be skipped. As in the previous example 

in which iterations from i = 2 to i = 4 were skipped, the overlap of text character ‘a’ with 

pattern character (‘a’) has already been tested in the second iteration and should not be 

tested again in the fourth iteration. Every time an overlap occurs with the last partial 

match, testing a number of characters equal to the length of the overlap can be skipped. 

For example, suppose that text string contains characters “abababca” and the search 

pattern string is “ababca”. If we start search at 0th position, the first mismatch would 
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occurs at the 4th position. We can skip character comparisons in the outer loop by starting 

the search at the 2nd position in the text string. We can realize that characters “ab” at the 

2nd and 3rd position in the text are equal to the characters at the 0th and 1st position in the 

search pattern and these characters have already been matched in the previous iteration. 

So we can skip comparing these two characters in the inner loop and restart searching by 

comparing characters from the 4th position onwards in the text string with the characters 

from the 2nd position onwards in the search pattern. 

The KMP algorithm utilizes these two key ideas to increase the efficiency of the 

string search [16]. It computes, for each position j in the pattern, the longest prefix that is 

also a suffix of the first h characters of the same pattern. This information is stored in an 

integer array often referred to as function π. This function is independent of the text (the 

string of characters from which the pattern is searched) and can be computed using the 

pattern only.  

The information stored in the π function can be represented by a state machine. 

Figure 4.4 shows the state transition diagram for pattern “ababca”. Each node in the state 

diagram represents a character in the pattern and transition arrows are labeled with match 

and mismatch: a transition arrow connected from any node j to node j+1 for match or a 

backward arrow to the overlap node for mismatch. For this pattern the calculated array 

would be  

π [i]={0, 0, 0, 1, 2, 0}.  
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Figure 4.4: State transition diagram for pattern “ababca” 

A string search with the KMP algorithm is done in two phases. In the first phase, 

the π function is computed based on the search pattern. In the second phase, the π 

function, computed in the first phase, is used to speed up the pattern search. For each 

search pattern, the π array is computed and utilized during the pattern search. At each 

step of the pattern search, a matcher moves from index q in the pattern to index q+1 if a 

match is found or else moves backward to the node π[q] as connected by the transition 

arrow from node q. The search execution for pattern “ababca” is shown in Figure 4.5. 

The first mismatch in iteration i = 0 is found at column j = 4 position. Since π[4] = 2, the 

search in iteration 2 continues by comparing the pattern at character position 2 with text 

character at column j = 4 and results in a pattern match.  

 

Figure 4.5: Phase 2 pattern “ababca” search execution using π[] array 
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The algorithms for both phases are listed in Figure 4.6 and Figure 4.7, 

respectively. The pattern to be searched is stored in array P[i] and the text string on which 

the search is to be performed is stored in array T[]. The function “ComputePrefix” 

computes the π function and stores it in array π[]. The array π[] is used in the procedure 

“TextSearch” to search the given text array T[] for the pattern. It can be proved that the 

KMP algorithm is very efficient and requires only m+n iterations to perform the search 

[13, 16]. 

Function ComputePrefix(P) 
m = length(P); 
π[1] = 0; 
i = 1, q = 0; 
while( i < m) do 
 if (P[i] ≠ P[q]) and (q == 0) then 
  ++i; 
  π[i] = 0; 
 else if (P[i] ≠ P[q]) and (q ≠ 0) then 
  q = π[q]; 
 else if(P[i] == P[q])  
  ++i; ++q; 
  π[i] = q; 
 end if; 
end while; 

Figure 4.6: KMP algorithm phase 1: Prefix function computation [3] 
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Procedure TextSearch(P,T) 
n = length(T); // length of whole text 
m = length(P); 
π = ComputePrefixFunction(P); 
i = 0, q = 0; 
while( i < n) do 
 if (T[i] ≠ P[q]) and (q == 0) then 
  i++; 
 else if (T[i] ≠ P[q]) and (q ≠ 0) then 
  q = π[q]; 
 else if (T[i] ==P[q]) and (q ≠ m - 1) then 
  i++; q++; 
 else if (T[i] ==P[q]) and (q == m - 1) then 
  print “match found” 
  i++; q++; 
           end if 
end while 
 
Figure 4.7: KMP algorithm phase 2: Text search [3] 

4.4 Summary 

String matching algorithms are used to search all occurrences of a pattern within a 

string of text characters. The KMP string matching algorithm employs the observation 

that, at a mismatch, the pattern contains enough information to determine the location of 

the next possible match. It speeds up the string search by skipping the re-examination of 

previously matched characters. Before search execution, it builds the prefix function table 

based upon the specific pattern. This table, which can also be viewed as a state machine, 

is utilized to speed up the search execution. In the proposed implementation, the π 

function is converted into a state machine and implemented as a reconfigurable FSM. The 

next chapter describes KMP hardware implementation in detail. 
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CHAPTER 5—DESIGN IMPLEMENTATION 

This chapter describes the tools and techniques used in this research. The system 

involves hardware/software co-design. The design of both the hardware and software 

components is discussed in detail.   

Xilinx™ provided the EDK 10.1 tool chain for design development [18]. Platform 

Studio (XPS), a part of Xilinx’s tool set, is used for on-chip processor-based hardware 

logic description and XPS SDK development environment is used for software 

development. The hardware logic design is modeled in VHDL. FSM construction and 

reconfiguration is designed in software and coded in the ‘C’ programming language.  The 

development stages of hardware and software components and their integration to 

generate the FPGA configuration bit-stream is shown in Figure 5.1.  
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Figure 5.1: Elements and stages of XPS and EDK leading to FPGA configuration 

The design and implementation of the KMP system is divided into two 

components: hardware and software. The hardware component involves processor-based 

system description and hardware implementation of the KMP algorithm as a user 

intellectual property (IP) core. The software development involves pattern specific π 

function computation, conversion of the π function into the FSM, and the software 

needed to update the FSM. 
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5.1 Design Modeling 

The Xilinx EDK tool provides a user-interactive GUI to describe the on-chip 

processor-based design [19], while the XPS GUI provides options to customize the 

processor features and peripherals. MicroBlaze® is customized to include a universal 

asynchronous receiver/transmitter (UART) and LED peripherals. The UART is used to 

serially communicate with the host processor for test purposes, while the LEDs are used 

as a debugging tool for self-testing of the board. The Processor Local Bus (PLB) is 

chosen to integrate the KMP hardware logic with the processor system. 

The FSM design for implementing a KMP finite state machine and KMP search 

execution logic is modeled as two separate VHDL entities. Xilinx ISE 10.1 is used for 

creating and synthesizing these models. 

 The Base System Builder (BSB), part of the XPS tool, is used to create the 

processor-based project [18]. It generates a MHS file (system.mhs) describing the 

Microprocessor Hardware Specification and a PBD file (system.pbd) representing the 

schematic view along with several other supporting files. A MSS file (system.mss) 

specifying Microprocessor Software Specification is also generated. The Import 

Peripheral Wizard is used to integrate the KMP hardware logic design into the processor 

system. The wizard creates the necessary directory structure and files needed for 

development. The HDL template files generated by the wizard provide an interface to 

hook up the top design entity of KMP logic with the processor system. The wizard also 

generates a software driver template header and source files to add user software logic to 

the designed system. These driver files are modified to include KMP phase-I software 
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logic and FSM creation logic. The driver file for UART communication is modified to 

add software logic to receive search patterns from a host system and dump debug 

messages on a HyperTerminal. MicroBlaze system is described as a top module. The 

KMP design peripheral is imported to the design through the XPS flow. The Xilinx 

generated software application is modified to access the KMP hardware logic. The 

developed embedded system is implemented on the FPGA by generating and 

downloading the bit-stream into the hardware board. Verification is done to prove the 

functionality through simulation and testing. 

5.2 Design Implementation 

The Xilinx Spartan® 3E Starter board is used for hardware implementation of the 

design [21].  Figure 5.2 shows a picture of such a board. In this section, hardware and 

software design of the proposed system is described in detail. 



36 

 

 

 

 

Figure 5.2: Spartan-3E FPGA Starter Kit Board 

5.2.1 Hardware  

A block diagram of the designed system is shown in Figure 5.3. The FSM and 

KMP logic block constitute the hardware implementation of the KMP algorithm. The 

KMP hardware is connected to a Processor Local Bus (PLB) via an Intellectual Property 

Interface (IPIF). The PLB-IPIF provides a bidirectional interface between a user-defined 

core and the PLB bus. The PLB bus connects peripheral devices to an on-chip processor. 

The RS232 is used to interface a host PC with the designed system. A customized 

MicroBlaze® processor core is utilized for receiving a new pattern from the host machine, 

execute the pattern search, debugging, and displaying the results of the pattern search.  
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Figure 5.3: KMP system block diagram 

The hardware implementation of the design is done in two sub phases. First, the 

RAM-based FSM is realized and tested using a simulation test-bench. Then, the 

developed FSM is used for implementing the KMP algorithm. In the second phase, the 

KMP hardware developed in the first phase is integrated with the MicroBlaze system. 

The FSM for implementing a KMP finite state machine and KMP search 

execution logic is modeled as separate VHDL entities. Xilinx ISE 10.1 is used for 

creation and synthesis of source files. 

FSMs are traditionally implemented in FPGA using state register and some 

combinational logic. The combinational logic receives the input vector and produces the 

output vector and the next state vectors. The next state vector is stored in the state 

register. The current state is again fed back to the combinational logic block to determine 

the next state transition and output vector.   
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As mentioned earlier, a FSM can be implemented using memory blocks. In the 

memory-based FSM, state vector (S0, S1, S2… Sn) and input vector (i0, i1, i2, …in) 

constitute a RAM address vector [5, 24]. The next state is determined by the feedback 

information: the present state and input vector.  For this implementation, embedded block 

RAM is used for FSM implementation. Two sets of memory blocks, one for storing 

encoded state transitions (next state function table) and the other for storing the output 

vector are used. The block diagram for such FSM implementation is shown in Figure 5.4. 

Memory blocks have dual ports, where one port is synchronous read-write and the other 

one is synchronous read. The synchronous read-write port is used by the embedded 

processor to configure the new FSM state transition and output tables into a FSM 

memory block. A new FSM is constructed to recognize a new pattern. Also, state 

transition of the old FSM needs to be reconfigured. The other port of each memory block 

is accessed by the KMP hardware logic to run the KMP algorithm in the search execution 

phase. 

 

Figure 5.4: RAM-based FSM implementation 
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The FSM is modeled based on the back edges construction (π function). The FSM 

memory for output function is programmed in such a way that, at any stage of string 

comparison, the output vector represents the next pattern character.  The state vectors are 

binary encoded to reduce the memory requirement. 

As described earlier, the computed prefix function is used to compute the state 

transition and output functions of the FSM. Consider the pattern “ababca” as an example 

of which same state transition diagram of Figure 4.4 can be adapted. The calculated 

prefix function would be π[] = {0, 0, 0, 1, 2, 0}. The length of the prefix function is equal 

to the pattern length. Table 5.1 shows the translation of the prefix function to the FSM 

state transition and output functions. 

Table 5.1: Translation from π[i] to FSM next state transition and output function 

Pattern 
characters 

π[i] Current 
State 

Next state 
transition 

 (match = 1) 

Next state  
transition 
 (match=0) 

Output 
function 

 
 a 0 0 1 0 a 

 b 0 1 2 0 b 

a 0 2 3 0 a 

b 1 3 4 1 b 

c 2 4 5 2 c 

a 0 5 1 0 a 

 

Column 3 in the table lists all the applicable states that the FSM will traverse if 

the input text character matches with the pattern characters. Column 4 lists the states the 

FSM will traverse if the input text character does not match with the pattern characters. 

Similarly, column 5 in the table lists the FSM output if a match is found between the 
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input text character and the pattern character, and column 6 lists the output if a mismatch 

is found. The FSM will traverse through states 0 to state 5 if a match pattern is found and 

the corresponding output would be the ASCII code of pattern characters. If the FSM 

reaches state 5 and a match is found, it transits to state 1 and the most significant bit of 

FSM output signal is set to ‘1’ for one clock cycle to indicate a match is found and the 

rest of the bits (bits 6 to 0) outputs 0x62, the ASCII code of the second matched 

character. The signal ‘match_addr’ contains a match address that points to the starting 

location of matched pattern within the text. 

The match memory location is calculated by simply subtracting the state value at 

the current state where match is found from the text memory address counter. The FSM is 

designed in such a way that at every pattern match, its current state value always is m – 1 

(pattern length - 1). The match address is then stored in a specified memory location 

within the block RAM. To keep a count of the number of occurrences of a match pattern, 

a hardware counter is implemented. The occurrence counter and memory location of 

match addresses are accessed by the software via user slave registers.  

This arrangement avoids the hardware implementation of the π function and the 

need to store the match pattern in internal memory, saving some of the FPGA logic 

resources. This implementation of FSM require less logic cells since the dual-port RAM 

block is used for storing the state transition table and output vector table. The state 

vectors are binary encoded to reduce the memory requirement. This design strategy saves 

logic cells of the FPGA device for more important sections of the designs. 
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5.2.2 Hardware Logic Implementation of the KMP Algorithm 

The second phase of the KMP search algorithm is realized in the hardware. The 

algorithm for phase two logic is shown in Figure 4.6 and reproduced again in Figure 5.5. 

The first three lines of the KMP algorithm calculates the length of the pattern and the 

prefix function. The length of pattern characters and prefix function is determined in 

software by the on-chip processor. The ‘while’ loop for pattern search (lines 5-16 in the 

code snippet) is translated into hardware logic. The algorithm uses two counters: ‘i’ to 

point current accessed characters position in the text array and ‘q’ to point current 

accessed character position in the pattern during search. The counter ‘i’ is implemented in 

the hardware. The counter ‘q’ is implemented implicitly in the form of an FSM state 

transition. As the search progresses, the FSM outputs pattern characters stored in the 

FSM’s output memory block and changes states based on match or mismatch. 

Procedure TextSearch(P,T) 
1 :  n = length(T); // length of whole text 
2:  m = length(P); 
3: π = ComputePrefixFunction(P); 
4: i = 0, q = 0; 
5: while( i < n) do 
6:  if (T[i] ≠ P[q]) and (q == 0) then 
7:   i++; 
8:  else if (T[i] ≠ P[q]) and (q ≠ 0) then 
9:   q = π[q]; 
10:  else if (T[i] ==P[q]) and (q ≠ m - 1) then 
11:   i++; q++; 
12:  else if (T[i] ==P[q]) and (q == m - 1) then 
13:   print “match found” 
14:   i++; q++; 
15:    end if 
16: end while 
 

Figure 5.5: KMP algorithm phase 2: Pattern search 
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The KMP phase 2 hardware logic is realized using an FSM, one comparator, and 

a small combinational logic block. The block diagram of the hardware logic is shown in 

Figure 5.6. The comparison of the text characters with pattern characters is done through 

an 8-bit hardware comparator. The comparator compares the FSM output vector (FSM 

outputs pattern characters) with the text memory output (text characters) and generates a 

match signal. The match signal is fed to the KMP combinational logic, which in turn 

controls the address counter. The address counter implements the counter ‘i’ of KMP 

phase 2 logic and is used as an address to access text character from text memory. KMP 

combinational logic does not increment the address counter if there is a mismatch 

between a text character and a pattern character, and the FSM is not in state 0, as 

mentioned in line 8 ((T[i] ≠ P[q]) and (q ≠ 0)) of the KMP phase 2 algorithm. The match 

signal concatenated with the next state function forms the address vector and is used to 

access the FSM’s state transition and output memory. The search result, which includes 

address locations of the matched pattern and occurrence count of pattern in text, is stored 

in internal memory blocks. 

 

Figure 5.6: Block diagram of KMP hardware logic 
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5.2.3 Processor  

As mentioned earlier, the design is implemented on a Spartan 3E FPGA. Since 

this particular chip does not have a built-in hard-core processor, MicroBlaze soft-core 

processor is used for receiving a new pattern as an input, back-edge construction, and 

dynamically reconfiguring the FSM. A MicroBlaze-based embedded system is comprised 

of a MicroBlaze soft-core processor, on-chip local memory, Standard Bus Interconnects, 

and on-chip Peripheral Bus (OPB) peripherals. 

The MicroBlaze is a 32-bit RISC Harvard-style soft-core processor offered with 

the Embedded Development Kit (EDK) tool provided by Xilinx to design an FPGA-

based system on-chip [19]. It is designed to deliver the highest possible performance on a 

single FPGA. It is highly customizable according to the application requirement. 

Processor instructions and local memory data are transmitted on the Local Memory Bus 

(LMB), which guarantees a single-cycle access to on-chip block RAM.  

The MicroBlaze system architecture is shown in Figure 5.7. FPGA’s on-chip 

block memory BRAM is connected to a processor via an Instruction Local Memory Bus 

(ILMB) and a Data Local Memory Bus (DLMB). An ILMB bus is used to access a 

processor’s instruction cache and a DLMB is used to access a processor’s data cache. 

There are two standard interfaces available to integrate customized IP cores into a 

MicroBlaze-based system: Processor Local Bus (PLB) and Fast Simplex Link Bus (FSL). 

The PLB is a part of the IBM Core Connect™ on-chip bus standard. The user core can be 

connected as a slave or master on the PLB bus. The FSL buses are just FIFOs (first in 

first out), linked to internal MicroBlaze registers. They act as buffers for point-to-point 
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data access at high speed. They can be used in time critical applications to provide high 

speed data transfer. Since the designed system does not require point-to-point data access, 

the Processor Local Bus (PLB 4.6 bus) is chosen to integrate the customized IP core 

(KMP logic) with the MicroBlaze processor system. 

 

 

Figure 5.7: MicroBlaze system with peripheral buses connecting user cores 

The hardware architecture of the implemented design is shown in Figure 5.8. The 

Processor Local Bus (PLB 4.6 bus) is chosen to integrate the customized IP core (KMP 

logic). Since the processor is instantiated as a top module in the system, KMP logic is 

connected to the PLB bus as a slave.  
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Figure 5.8: Hardware architecture of the reconfigurable KMP 

The KMP hardware core is designed to be accessed by user accessible 32-bit wide 

slave registers. The number of slave registers to be used in the design is chosen during 

the hardware description of a MicroBlaze system [20]. For this implementation, 9 slave 

registers are used. Table 5.2 lists the usage of each slave register. The processor boot 

code, software to implement dynamic reconfiguration, and logic to construct a  

pattern-specific π function are stored in the internal block RAM. No external memory is 

used for this implementation. 
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Table 5.2: Slave registers usage description 

Slave register Description 
0 Address for FSM next stage memory 

1 Address for FSM output memory 
2 Data for FSM next state memory 
3 Data for FSM next state memory 
4 Data to set FSM output signal width 

5 Data to set FSM output signal width 

6 Control signal for KMP system 

7 Match occurrence count 

8 Match address 

5.2.4 Processor Interface and Control Signals 

Interface signals are defined to initiate a pattern-specific system reconfiguration 

and control search execution. The signals are mapped to bits of slave register 6 and 

asserted via setting bits. The processor initiates reconfiguration and search execution by 

asserting these signals. Table 5.3 lists all defined interface signals and their usage for the 

designed system.  
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Table 5.3: Control signal definitions 

Bit Position Signal Name Description 

0 Configure 
1 -  during FSM update 
0 - otherwise 

1 write_byte_enable 
1 - during text memory update 
0 - otherwise 

2-3 X     unused 

4 we_ns 
1 - during state transition function FSM memory update
0 - otherwise 

5 we_ns_a 
1 - during state transition memory address update 
0 - otherwise 

6 we_op 
1 - during output function FSM memory update 
0 - otherwise 

7 we_op_a 
1 - during output function memory address update 
0 - otherwise 

8 en_op_mux 
1 - during FSM output vector width setting 
0 - otherwise 

9 en_in_mux 
1 - during FSM input vector width setting 
0 - otherwise 

10 X    unused 
11 FSM_reset 1 - to reset FSM logic 
 

The processor initiates the reconfiguration process at each reception of a new 

pattern as follows. Specific signals are activated by the processor to update FSM memory 

for the next state and output functions. During an FSM update, the ‘configure’ 

signal is activated to indicate a reconfiguration is in progress and the KMP core remains 

in reset state. After FSM update, the ‘configure’ signal is de-asserted, and the KMP 

search process runs to find the pattern within the text. 

To update the FSM memory block storing the state transition function, the 

processor places the starting address of the next state memory on slave register 0. Then, 

value 0x31 is placed on slave register 6 to activate the necessary signals for setting the 

memory starting address for the state transition function. Afterwards, the value 0x11 is 
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placed on slave register 6 to write-enable the next state memory where memory contents 

are updated via slave register 2. Table 5.4 lists the corresponding signals and their bit 

position in slave register 6. 

Table 5.4: Control signal values for FSM state transition memory update 

Slave Register6 
Bit Position 

Signal Name 
Next State 
Memory  

Address Update 

Next State 
Memory  
Data Update 

0 Configure 1 1 

1 write_byte_enable 0 0 

2-3 x 0 0 

4 we_ns 1 1 

5 we_ns_a 1 0 

6 we_op 0 0 

7 we_op_a 0 0 

8 en_op_mux 0 0 

9 en_in_mux 0 0 

10 x 0 0 

11 FSM_reset 0 0 

32 bit hex value 0x31 0x11 

 

The process of an output function memory update of the FSM is similar to the 

next state memory update. The processor first places the starting address of output 

function memory on slave register 1, and then places the value 0xc1 on slave register 6 to 

assert to the necessary signals. Afterwards, the value 0x41 is placed on slave register 6 to 

write enable the output function memory and memory contents are updated via slave 

register 3. Table 5.5 lists the corresponding signals and their bit position in slave register 

6. 
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Table 5.5: Control signal values for FSM output memory update 

Slave Register6 
Bit Position 

Signal Name Output Memory 
Address Update 

Output Memory 
Data Update 

0 Configure 1 1 

1 write_byte_enable 0 0 

2-3 x 0 0 

4 we_ns 0 0 

5 we_ns_a 0 0 

6 we_op 1 1 

7 we_op_a 1 0 

8 en_op_mux 0 0 

9 en_in_mux 0 0 

10 x 0 0 

11 FSM_reset 0 0 

32 bit hex value 0xc1 0x41 

 

The FSM is realized as a general purpose one, and the design gives flexibility to 

control the width of input and output signals. The signal width can be set by asserting 

appropriate control signals and placing the appropriate width value on slave register 4 (to 

set input signal width) or slave register 5 (to set output signal width). Table 5.6 lists all of 

the necessary control signals required to be set and their bit positions in slave register 6 

used for setting the FSM input and output vector width. For this implementation, the 

signal width is set to ‘1’ by placing 0x101 on slave register 6. The output signal width is 

set to ‘7’ by placing 0x201 on slave register 6, since text characters and pattern are stored 

in 7-bit ASCII codes. 
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Table 5.6: Control signal values for setting FSM output and input signal width 

Slave Register6 
Bit Position 

Signal Name Output Signal  
Width Setting 

Input Signal  
Width Setting 

0  Configure 1  1 

1  write_byte_enable 0  0 

2‐3  x 0  0 

4  we_ns 0  0 

5  we_ns_a 0  0 

6  we_op 0  0 

7  we_op_a 0  0 

8  en_op_mux 1  1 

9  en_in_mux 0  0 

10  x 0  0 

11  FSM_reset 0  0 

32 bit hex value 0x101 0x201 

 

5.2.5 Software Implementation 

The EDK tool set has built-in C/C++ compilers to generate the necessary machine 

code for the MicroBlaze processor. At reception of each pattern, pattern specific Prefix 

(π) function is constructed. The algorithm for computing a prefix is shown in Figure 4.5. 

The algorithm is implemented in ‘C’. Since the MicroBlaze system has limited memory, 

efficient software is written to use less memory and resources. The complete software 

implementation flow is shown in Figure 5.9. 
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Figure 5.9: Software implementation flow 
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5.4 Design Synthesis and Implementation 

The Base System Builder (BSB) is used in XPS to create the MicroBlaze-based 

project. To boot up the designed embedded processor system, both hardware and 

software components need to be downloaded to the FPGA and program memory, 

respectively. The XPS Software Development Kit combines the XPS generated hardware 

bit files with the XPS Software executable file into a system.bit file and initializes 

BRAMs in the bit-stream with the executable code. The generated bit-stream file is 

downloaded to FPGA using SDK GUI. 

5.5 Summary 

Developing a system that can reconfigure itself without involving a host processor 

requires an embedded processor to be utilized as a configuration manager. A platform-

independent reconfigurable system is developed by employing a reconfigurable FSM. A 

pattern-specific π function is needed to enable the KMP hardware to efficiently search a 

pattern of characters within a given text string. The π function is converted into an FSM 

in such a manner that embodies the search pattern within it. Thus, configuring the FSM 

onto an FPGA eliminated the extra step of storing it on FPGA memory. The number of 

possible reconfigurations of the developed system is only limited to the number of 

possible write operations on the FPGA memory. Since FPGA can access its internal 

memory at FPGA clock speed, a significant speed improvement can be achieved in the 

search execution phase. The next chapter describes the result of various experiments done 

on the system to assess its accuracy and efficiency.   
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CHAPTER 6—EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter describes the test procedure used to verify the design functionality. A 

ModelSim PE® 6.4d is used for simulation [22]. A XPS Software Development Kit is 

used to program the FPGA board with the configuration bit-stream. 

 System development is done in incremental steps. At each successive step, test 

cases are developed and simulation is done to verify the correct behavior. At any step, if 

any violation from the expected behavior is found, the design entry is modified to rectify 

the violation and the process is repeated until all design expectations are met. 

 Initially, after completing the design entry, simulation is done using several test-

benches. Once the behavior of each block is verified, the design is further synthesized, 

and placed and routed for SPARTAN 3E FPGA. Design is further verified by 

downloading the design on an FPGA board. Xilinx Platform Studio 10.1 is used to 

generate the configuration bit-stream and the XPS Software Development Kit is used to 

update the generated bit-stream with the embedded software. The bit-stream is then used 

to program the FPGA with the developed design.  The system under development is 

debugged via a RS232 HyperTerminal.  All the above steps are described in detail in 

further sections. 

6.1 Simulation Testing 

Simulation testing is done in two phases. First, a designed FSM for KMP logic is 

implemented and simulation is done to verify the correct behavior, then the design entry 
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for the KMP hardware search is tested by simulation. After verifying the functionality of 

the hardware blocks, the design is integrated with the MicroBlaze system. XPS generated 

a VHDL file (user_logic.vhd) that is used for integrating the designed KMP block with 

the processor.  

Simulation is targeted towards testing the implemented FSM and KMP logic for 

searching a given pattern from the text. A test-bench is designed to provide various test 

patterns to the implemented logic. The search patterns are also furnished by the 

simulation test-bench.  Simulation is done for various test patterns of sizes 3 to 20 

character lengths. Simulation waveform of a pattern search of one such pattern is shown 

in Figure 6.1. The search pattern consists of character string “ababca”. The ASCII code 

corresponding to the characters making the pattern is ‘0x61, 0x62, 0x61, 0x62, 0x63, and 

0x61’. The signal ‘configure’ is raised until the FSM is updated, then a search is 

initiated at its de-assertion. As the text characters match with pattern characters, the FSM 

traverses through states 0 to 5. When the match pattern is found, a MSB of the FSM 

output signal is set to ‘1’. As shown in waveform, the FSM output at state ‘5’ is 0xE1 

(0x80 | 0x61), Logic operation OR of the logic 1 concatenated with zeros and the ASCII 

code of the first pattern character.  The waveform also shows that the designed logic is 

capable of searching two consecutive patterns without loss of clock cycles. Signal 

‘match_found’ is asserted to indicate a pattern match and signal ‘match_addr’ 

points to the location of the pattern within the text. The implemented logic continues 

searching for the next match. 

 



55 

 

 

 

                       ‘Configure’ Signal de-asserted after updating FSM memory 

        kmp_reset’ signal de-asserted after one clock cycle and KMP search starts 
               Signal ‘mem_read_m’ asserted to enable text memory read 

          Address counter ‘mem_addr’ signal which points to text memory  
            start running 

           Data read from text memory as ‘in_sig_kmp’ 
                 FSM remains in state ‘0’ till first match character is received  
       FSM outputs ascii code of first match pattern character  

                      ‘comp_out’ =1 if text characters =pattern character  
                        ‘comp_out’ is fed to FSM as ‘in_sig_fsm’ 

           FSM traverses through states ‘0’ to ‘5’ text   
           Characters match with the pattern character 

  
  
FSM outputs MSB=’1’ to indicate pattern match found and ‘match_found’  
 signal set to ‘1’ for one clock cycle     
         ‘match_addr’ contains the location of first match character at the same time, when 
           match_found’=1  
                 First match at address 0x00000004 is found and ‘comp_out’ sets to ‘1’  
                                 FSM again reset to state ‘0’ and output the ascii value of first match pattern 
 

Figure 6.1: Simulation waveform of KMP search run for pattern “ababca” 
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The implemented logic is capable of searching for two consecutive patterns 

without any loss of clock cycle time. Figure 6.2 shows a simulation waveform of such a 

search execution. The text string for the test contains “In ababcababce” and the pattern to 

be searched is “ababca”. The simulation waveform shows that the search execution found 

two matches at addresses 0x4 and 0x9, which proves that the system can find two 

overlapped search patterns. 
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                                                                 Text memory address counter 
                                                   Data read from text memory “In ababcababce ” 

                                               Pattern character output from FSM 
                 Comparator output signal 
                        FSM state transition 
                                                                                         Pattern match signal  
                          Pattern match addresses 

 

 

Figure 6.2: Simulation waveform of KMP search run for pattern “ababca” with text containing two overlapped 

patterns 
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6.2 Hardware Testing 

To test the pattern search functionality, first a text file needs to be stored either in 

the board’s external memory or in the FPGA’s internal memory. For this 

experimentation, a text file is stored in the FPGA’s block RAM. A VHDL source file is 

coded to instantiate a block ‘RAM’ entity using a ‘RAMB16_S9’ tool construct. Each 

FPGA device has two types of RAM: Block RAM and Distributed RAM. Block RAM is 

the dedicated memory inside the FPGA, which can be configured through programming. 

It does not consume any logic resources of FPGA. Distributed RAM is configured as 

RAM using FPGA logic resources. The ‘RAMB16_S9’ construct is used to instruct the 

synthesis tool to use block RAM instead of distributed RAM for implementation. This 

technique is used to save the FPGA logic resources. This entity instantiates a 2kx8-bit 

block memory. A software tool written in ‘C’ takes the text file as input and populates the 

ASCII code of text characters as an initialization code for the ‘RAM’ entity. This VHDL 

file is compiled and loaded to the FPGA along with the design source file. This procedure 

is followed to eliminate the need for storing and accessing external memory for testing. 

An application, written in ‘C’, is developed to facilitate communication of the 

designed system on-chip with the host machine. This application used the UART 

peripheral of MicroBlaze® to establish serial communication with the host machine via 

HyperTerminal. It receives search commands and search patterns and outputs the search 

results back on HyperTerminal. 

The FPGA board is programmed with a DSK menu command and the host system 

is connected to the board via UART using a USB-to-serial converter. The pattern to be 
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searched within the text is furnished by typing it on the HyperTerminal. The embedded 

software running on MicroBlaze® receives the pattern characters. It reconfigures the FSM 

for each instance of received pattern and runs the search. It then accesses the search 

results via user slave registers and then prints back the search result, count of pattern 

occurrences, and start locations of each pattern within the text on the HyperTerminal 

port.   

Test results are verified using the ‘Microsoft Word’ application program’s utility 

‘word count’. Testing is done for various test patterns of sizes 3 to 20 character. A screen 

shot of the HyperTerminal showing results from one of these searches is shown in Figure 

6.3. 
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Figure 6.3: Result of pattern search “ababca” at the terminal console 

The KMP algorithm always requires n+m operations in the worst case where m is 

the length of the pattern and n is the length of the text. Experimental results show that, 

with the proposed design, the number of search iterations in phase 2 search is translated 

into the number of clock cycles. A number of tests were executed with pattern lengths of 
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3 to 20 characters. In every case, the number of clock cycles to execute a search is always 

equal to the number of search iterations. The relationship between the number of 

characters and clock cycles after the first match is found is shown in Figure 6.4.  

   

 

Figure 6.4: Clock cycles vs pattern length after first match 

The time required for computing the state transition table and output vector table 

for the KMP finite state machine depends upon the software implementation technique 

and the number of clock cycles needed for execution. The time required to reconfigure 

the KMP finite state machine on hardware logic depends on the PLB bus communication 

speed.  With the ‘C’ implementation using XPS SDK tool set, approximately 300 clock 

cycles are required to update the state transition function and the same amount of clock 

cycles to update the output function for a pattern of five characters length. The number of 
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clock cycles required increases by 50 cycles per increase of pattern character. These 

results are summarized in Table 6.1.  

Table 6.1: Clock cycle required for FSM update 

S. No.      FSM Update function Clock 
cycles 

1 State transition function 300 

2 Output function 300 

3 Clock cycle increase per character 50 

 

The clock cycle time depends only on the target FPGA device and is independent 

of the pattern size, as oppose to the implementation described in [3] and reproduced in 

Table 6.2. The table shows the result of the search execution of pattern length m within 

the text of n=104 characters long. Column 1 lists length of test patterns, column 2 lists the 

clock cycle time, column 3 and 4 (TM+TME) lists the time required for mapping of new 

configurations on the hardware. TE is the search execution time in phase 2.  

Table 6.2: Performance of the implementation for various values of m with 

n=104 [3] 

 

The performance of the implemented design is compared with the multi-context 

FPGA implementation mentioned in the literature [3]. Table 6.3 lists the reconfiguration 

and search execution times for various values of pattern length m and text size of 104 
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characters. Column A lists the performance with multi-context FPGA and column B list 

the results using the proposed approach. The time required for prefix computation and 

translation depends on the clock speed of the MicroBlaze® core and how and in which 

language the software is written. Sameer Wadhwa and Andreas Dandalis verified that the 

maximum achievable clock frequency is 110 MHz for a pattern size of 6 characters on 

Xilinx Virtex series FPGAs [4]. The maximum achievable frequency with the proposed 

approach is independent of pattern size and is 97.656 MHz for a SPARTAN 3E 500 

FPGA. Higher speeds can be achieved with more advanced FPGAs. It is noticeable that 

through memory-based FSM reconfiguration, a significant improvement of performance 

can be obtained.  

Table 6.3: Performance comparison for various values of m with n=104 

Match 
Pattern 

length(m) 

Clock 
Frequency 
TCLK(ns) 

FSM 
reconfiguration 

time TME(µs) 

Phase 2 search 
execution time 

TE(µs) 

Total Time 
 

(µs) 
 A B A B A B A B 

4 81.6 20 0.7 11 1428  204 1432 215 

8 97.6 20 2.1 18 1830 208 1841 226 

16 129.6 20 5.8 34 2511 216 2539 250 

 

This technique requires less hardware area, as opposed to prior implementations 

discussed in [3] and [4], since it does not need to store the pattern in internal memory. It 

also reduces reconfiguration time as it only needs to update the FSM for reconfiguration 

as opposed to implementation ([3] and [4]), which requires an update of pattern memory 

and back-edge lookup memory. Since an on-chip processor is used for reconfiguration, 
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the host system is not required for generating bit-streams. The dynamic loading of bit-

stream is also avoided in this scheme. 
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CHAPTER 7—CONCLUSION AND FUTURE WORK 

A new approach to FSM-based reconfigurable hardware is presented. The FSM is 

reconfigured on-the-fly by altering the memory contents using an on-chip processor. This 

approach of reconfigurable FSM is applied to implement a reconfigurable SoC for a 

pattern matching algorithm on hardware. The KMP phase 1 algorithm computes a 

pattern-specific prefix and stores it in array π. This array is used to form the state 

transition and output vector tables of an FSM. The FSM is utilized in a search execution 

phase. At any execution step, the FSM outputs the pattern character to be compared with 

text character.  Reconfiguration is initiated by the on-chip processor at each reception of 

a new search pattern. Software is written to receive a new search pattern from the host 

system via HyperTerminal and computes its specific π required to form the FSM. The on-

chip processor is used to reconfigure the FSM implemented on the hardware by updating 

the state transition and output vector tables with the computed values. The design 

functionality was verified using simulation and tests were run on actual hardware 

implementation. 

Results show that the implemented design increased the performance of a pattern 

matching application since search iterations ran at FPGA clock speed independent of the 

length of the search pattern.  Further improvement in the performance can be done only 

by using an FPGA with higher clock speeds. 
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Employing an on-chip processor to dynamically reconfigure implemented 

hardware increases a system’s versatility and allows the usage of low-cost FPGAs as a 

self-reconfigurable platform. Since no FPGA-specific feature is used, the design becomes 

a platform independent and portable. For example, the proposed design can be 

implemented on an Altera FPGA using a NIOS soft-core instead of MicroBlaze. 

Factors that limit performance improvement in this FPGA-based embedded 

system are: 1) data transfer rate of the interface between the embedded processor and the 

configurable hardware block, and 2) memory bandwidth. The most important bottlenecks 

are the bandwidth and latency of the interface connecting the embedded processor to the 

user core. The other performance bottleneck is the text memory access speed, if the text 

is stored in external memory. 

 Memory size required to implement an FSM increases with the size of input 

vector, output vector, and number of bits needed to represent the states. Since the size of 

embedded memory blocks are limited, decomposition-based methods can easily be 

applied to reduce the memory usage in such systems. 

 The present implementation of pattern matching searches only for exact pattern 

matches. Future work can be extended to search for non exact matches. The Boyer-

Moore pattern matching algorithm and its variants, which is also an FSM-based 

algorithm, can be implemented using the proposed reconfigurable FSM. 

  Another application area for the proposed technique is the efficient 

implementation of Cryptographic Ciphering algorithms, since these algorithms are FSM-

based and can be reconfigured by altering the FSM. 
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