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ABSTRACT 

 

 

Robust communication methods are integral to advances in modern technology.  

Software defined radios (SDRs) have been the chief instruments of communication for 

the last three decades.  Upcoming generations of wireless networks and phone systems 

depend on successful implementations of increasingly sophisticated software defined 

modulation methods.  The challenges presented by encoding, modulation, signal 

conditioning, timing, and decision algorithms are non-trivial.  Adapting to the impacts of 

wired and wireless channels adds further complexity.   

While not comprehensive on the subject of communications, this text serves to 

introduce the practical concepts of binary communications, modulation methods, the 

digital signal processor (DSP), and software defined radio (SDR).  The practical nature of 

this work is demonstrated through Matlab® simulation of quadrature phase shift key 

(QPSK) transmitter and receiver algorithms.  The algorithms utilize automated controls 

for gain, I/Q constellation de-rotation, and symbol synchronization.  The functionality of 

these algorithms is then verified on a modern floating point processor in a real-time 

implementation.   

This thesis can serve as a starting reference for any similar real world 

implementation of digital modulation schemes, such as OFDM or 16QAM.  In addition, 
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this document demonstrates detailed analysis of the functionality required to enable 

robust QPSK transmission and reception.  
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Organization 

Chapter 1 begins this thesis with a brief industrial motivation leading into 

background information on information theory and binary communications in Chapter 2.  

Chapter 3 follows with discussions of frequency, phase, and amplitude shift keying, and 

also wired and wireless channels.  Chapter 4 contains a detailed description of the scheme 

of interest, quadrature phase shift keying (QPSK).  

Chapter 5 clarifies how digital signal processing aides signal modulation 

implementation, and describes the architectural changes that lead to software defined 

radio.  There is a brief mention of the requirements for real-time DSP, which includes 

several industrial tradeoffs that motivate the functionality of these processors.  Chapter 6 

describes a Matlab® simulated implementation of QPSK, carefully noting simplifications 

and QPSK transmitter details.  It concludes with complicated receiver details, including 

demodulation, a matched filter, automatic gain control, phase de-rotation, and symbol 

synchronization.   

Chapter 7 presents a real-time implementation of the same QPSK transmitter and 

receiver.  These are implemented on two linked Texas Instruments C6713 floating point 

DSPs.  Details are provided pertaining to subsystems similar to those in Chapter 6, as 
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well as verification waveforms.  Chapter 8 ties the theory and practicality back to 

industry, concluding this full-circle thesis. 

 

1.2 Contributions of This Thesis 

This thesis is intended to be a QPSK implementation starting guide for someone 

with basic communications knowledge and minimal programming skills.  This document 

moves briefly through background information, and then delves into the detailed 

functions required for generation and reception of QPSK type data on a floating point 

DSP.  These functions are not novel and the subsystems are commonplace in PSK type 

modulation algorithms.  The main contribution provided by this thesis is a full-circle 

investigation from industrial considerations, to detailed background theory, to simulation 

results, and then real-world functionality of a QPSK communications algorithm.  This 

process is not well documented currently, making this document an asset to anyone 

attempting similar work or beginning an investigation of practical DSP-based 

communications. 
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CHAPTER 2: COMMUNICATIONS BACKGROUND 

 

 

2.1 Introduction 

Telegraphy may have roots with Polybius (circa 150 BC) who was one of the first 

to represent letters with numbers.  Such schemes then allowed signals to be transmitted 

via columns of torches.  Almost exactly two thousand years later, in 1844, a single skilled 

telegrapher, who might be considered the original electric binary or digital 

communications specialist [1, pg. 1], was capable of either transmitting or receiving 

around 5 bits per second.  This was only possible given the right equipment and 

infrastructure terminating at a local telegraph station [2, pg. 1].  150 years later, in 1989, 

the personal computer community elite used 9.6 kb/s modems costing around $1000 

each.  In 2000 and at around $50, a 56 kb/s modem was a common device in a technically 

inclined American household, pushing the limits of the plain old telephone system 

(commonly abbreviated as POTS).  Currently, existing 4th generation cellular phone 

technology (OFDM [3, pg. 447] via E-UTRA) places 200 Mbit/s wireless throughput in 

the hands of thousands of roaming teenagers with a minor cost increase in their monthly 

cell phone contracts.  Demonstrated by such history, the societal impact of 

communications technology continues to widen exponentially, not only as the speed of 

technology allows, but also as the range of people capable of utilizing this technology 

grows increasingly broader [2, pg. 9].   
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As communications methodology matured in speed and reduced cost of 

implementation, faster throughput was available to more people.  This enabled a business 

opportunity of scale.  If modern engineers could manufacture just a single phone capable 

of sharing 10 Terabits of data per second, it is quite possible nothing would ever come of 

it.  But if they can make a million cell phones just slightly cheaper and faster than the 

previous generation, they might just make a fortune and change the world. 

 

2.2 Information Theory 

 Claude E. Shannon pioneered information theory in the pivotal years around 1950 

[3 pg. 567].  For the purposes of this investigation, it is enough to know that information, 

be it voice, data, pictures, or a web site, can be represented by a series of numbers.  At a 

minimum, this means real-world (analog) signals must be captured, quantized, encoded, 

stored, and streamed directly into a communications device.  Some of the most used data 

transmission protocols don’t require continuous streams of data at the higher levels.  The 

Internet requires only finite packets, while the lower-level devices in the same system 

will require at least the full packet frame of bits available.  It is required that the origin 

and destination share common knowledge, regarding the structure and syntax of 

quantized information. 

 

2.3 Binary Communications 

The requirement of a digital communication system is not only numerical data, 

but binary data.  All data values and the numbers used to represent them are then 

represented by a series of 1’s and 0’s.  This format is used commonly today at the 
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assembly level of a computer processor, and thus is not a major complication for most 

streaming applications.  But in all cases, a binary system must be implemented to encode 

the data.  The most common system in use is the American Standard Code for 

Information Interchange, or ASCII, an excerpt of which is shown in Table 2.1.  This 

example relates seven common alphanumerical letters and numbers (or Glyphs) into their 

binary, octal, decimal, and hexadecimal ASCII encoded values.  ASCII is a standardized 

length glyph encoding scheme, where each character is always represented by exactly 

seven bits. 

 

Table 2.1 Excerpt from the ASCII Encoding Scheme 

Binary 

        

Oct Dec Hex Glyph 

010 0000 40 32 20 Space 

011 0100 64 52 34 4 

011 0101 65 53 35 5 

011 0110 66 54 36 6 

100 0001 101 65 41 A 

100 0010 102 66 42 B 

100 0011 103 67 43 C 

      

Another common example of a simple binary coding methodology for 

alphanumeric characters is Morse code, utilizing an efficient and well-known dash-dot 

representation for ones and zeros.  The efficiency improvement over a standard length 

character scheme, such as ASCII, comes in where the more common letters receive 

shorter length keys, such as ‘E’ in Table 2.2, represented by a single ‘dot.’ 
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Table 2.2: “Morse Code” Binary Encoding 

 

 

Again, it is required that the origin of the encoded values, and the destination, 

share common understandings as to the meaning.   

Once a binary data stream is provided to a communications transmitter, it must be 

modulated in order to make it suitable for transmission across the ‘channel.’ 
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CHAPTER 3: THE CHANNEL AND MODULATION 

 

 

3.1 The Channel and Distortion Types 

 If verbal communication were analogous to the electrical world, thoughts would 

be the digital data stream, muscle movement would accomplish the digital-to-analog 

conversion, the larynx or “vocal box” would be the communications processor, and air 

would be the channel.  The communications processor, the larynx, is required as thoughts 

are not in a format capable of transmission through the air, but when encoded into a 

series of vibrations from 80 Hz to 1100 Hz, the air acts as a medium, or channel, between 

the transmitting larynx and the receiving eardrum.   

 

3.1.1 The Wired Channel 

Electrical communications channels, for the most part, are simply copper wires.  

These wires, along with repeater stations and hubs, spanned the country to enable the 

telegraph, which required only a few Hz above DC in bandwidth.  More advanced 

systems are coaxial cable with a shield around the transmission line to reduce noise.  The 

throughput capacity of a single coaxial cable often replaces 1500 strands of copper wire.  

Coaxial cable, on which channels in the 370 MHz range are multiplexed, is widely used 

today for television and Internet communications.  There is large available bandwidth and 

a minimal amount of distortion.  Error rates for coaxial are around one in one billion.  
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However, the skin effect limits the upper frequency capability and series resistance 

causes attenuation and also a slight susceptibility to noise, limiting the length of a cable 

to a few hundred miles. 

 A more advanced hard-line is fiber, using light as a medium, and relying on the 

total internal reflection of a translucent tube.  These are much less susceptible to noise, 

practically immune to electrical noise, are higher bandwidth, and longer ranging.  Fiber 

channels can currently support rates up to 160 Gb/s over ranges as long as 4,500 miles. 

The bottom line for wired communications in the modern age is that they possess 

the highest throughput and signal-to-noise ratios, but the requirement of a wired 

infrastructure is not suitable for some locations, such as older, highly populated cities.  

Also, the requirement of portability prohibits hard-line use for many modern 

communications applications, like satellite links, vehicular networks, cellular phones, and 

portable computers. 

 

3.1.2 The Wireless Channel 

 When electromagnetic waves are released via antennas into free space, or in a 

specific direction, and then received in the same manner, a communications channel is 

formed without wires [2 pg. 10].  The wireless channel shares many unfortunate and a 

few fortunate dualities with the wired channel.  Instead of being high bandwidth, it is 

often low bandwidth.  The nature of transmission over the free space channel typically 

results in the signal not being completely shielded from other signals, so there is 

significantly more noise.  As the signal propagation path is not completely controlled, 

there are also large amounts of reflection, multipath delays, and attenuation.  This is the 
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performance cost necessary to avoid using a hard-line.  This performance cost is 

acceptable as a tradeoff to enable the portability requirements of many applications, or 

avoid the difficulty of installing hard-line infrastructures in many places.  Wireless 

communications often require only an access point and a network of wireless transceivers 

for common applications, such as wireless LAN or cell phone networks.  Note that even 

in wireless networks, all links that do not require wireless transmission will use hard-

lines.  In a cell-phone network, base stations maintain a wireless link with cell phones, 

but hard-lines connect base stations to the main telephone switching network.  In wireless 

LAN implementations, wireless routers or access points are usually hard-wired into the 

wired Ethernet and Internet. 

 

3.1.3 Amplitude Distortion 

 In wireless networks, and to a much lesser degree in wired networks, various 

forms of distortion are present.  Amplitude distortion, usually due to the inconsistent 

physical layout of a channel, causes various degrees of attenuation, depending on the 

propagation paths.  Electromagnetic waves have numerous simultaneous paths and 

propagate through different objects.  With the multi-path propagation characteristics of 

most wireless devices, absolute amplitude consistency is not dependable and therefore 

usually not the sole basis of data differentiation decisions. 

 

3.1.4 Phase Distortion 

In addition to various forms of amplitude distortion, the multipath nature of 

wireless propagation also introduces propagation paths of different physical lengths, 
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causing time delays between a more direct path’s arrival and a more convoluted path, 

which may or may not be weaker than the more direct path [2, pg. 344].  A classic way of 

modeling amplitude and phase distortion in urban environments is a Rayleigh 

distribution, seen in Figure 3.1, resulting in what is called a Rayleigh fading channel.  

Note the mode of sigma = 1, which is most likely to be sampled, and the distributions 

around it. 

 

 

Figure 3.1 A Rayleigh Fading Channel Distribution 

  

 Amplitude and phase distortion affect the transmitted signal by either altering the 

amplitude or adding time delay, respectively.  An undistorted data-eye waveform [4, pg. 

254] is shown in Figure 3.2.   
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Figure 3.2 Data-eye Without Multipath Amplitude and Phase Distortion 

 

 Time is noted as a fraction of a single-symbol period, Tb.  Note the undistorted 

pulse shapes, and the sharp data points at time t = 0, giving a very wide, ideal, data-eye 

from -1 to 1.  A waveform with multipath distortion is shown in Figure 3.3.  Note that 

due to both amplitude and phase issues, the values at t = 0 have wide variations.  This 

could cause issues if the multi-path effects get much worse.  The value of the signal in 

regard to its proximity to 1 or -1 is still differentiable.   
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Figure 3.3 Data-eye With Multipath Amplitude and Phase Distortion 

 

Multi-path propagation will distort specific characteristics of the signal, such as 

phase or amplitude, resulting in important distinctions between the types of modulation 

used.  Some modulation types rely on amplitude for differentiation of data, while other 

methods rely on frequency or phase and are usually more robust. 

 

3.2 Digital Modulation Methods 

3.2.1 Amplitude Shift Keying (ASK) 

This simplest form of digital modulation relies on transmission and detection of 

shifting amplitudes on a carrier frequency [3, pg. 345].  Figure 3.4 shows this concept 

with a unit circle mapping of two amplitudes to 1 and 0 and their associated waveforms.  
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This type of modulation is highly sensitive to noise and attenuation or ‘amplitude fading’ 

in the wired or wireless channel as amplitude is the only key used for data differentiation. 

 

 

Figure 3.4 Amplitude Shift Keying 

 

3.2.2 Frequency Shift Keying (FSK) 

 When two frequencies are available, changing between the two can provide 

differentiation between one and zero [3, pg. 351].  There need not be a sharp phase 

change between the two frequencies, only a smooth transition as the new frequency 

determines.  Figure 3.5 below shows a single phase on the unit circle oscillating at two 

angular frequencies decoded into zero and one.  Frequency is the only key used for 

differentiation. 
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Figure 3.5 Frequency Shift Keying Example 

 

 As a frequency change is the differential of a phase change, multi-path phase 

distortion can impact the perceived frequency of FSK signals. 

 

3.2.3 Phase Shift Keying (PSK) 

 The modulation method of phase shifting requires no additional frequency or 

amplitude space, and relies on changes in phase to be detected [2, pg. 24, 345].  The 

simplest phase change, shown below in Figure 3.6 as a binary PSK example, is simply 

180 degrees, π, or more practically, just inverting the signal.  Phase is the only key used 

for differentiation.  There can also be additional phase divisions resulting in more than 

just two data states, going beyond binary communications. 

 



15 

 

 

 

 

Figure 3.6 Binary Phase Shift Keying 
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CHAPTER 4: QUADRATURE PHASE SHIFT KEYING 

 

 

4.1 Orthogonality 

 QPSK, an extension of phase shift keying, uses the orthogonality of the complex 

phase dimension to multiplex two data streams into one complex signal.  Fundamental to 

the understanding of QPSK is the orthogonality of the sine and cosine functions [2, pg. 

238].  To understand this, first examine the sine and cosine function described in Figure 

4.1.   

 

 

Figure 4.1 Peak Amplitude Sample Points on Sine and Cosine Functions 

 

Data will be modulated (or more simply, multiplied) with these carrier functions, 

and only the highlighted peaks of these signals will be sampled.  Next, note these ideal 
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sample point values of the sine and cosine functions in relation to each other in Figure 

4.2. 

 

 

Figure 4.2 The Orthogonality of Sine and Cosine 

 

At the two peak points on the sine function, 1 and -1, the cosine function is zero.  

More than this, at all peak points on either function, the other is zero.  For sampling 

purposes, if these two signals are multiplied together, they will always integrate out to 

zero.  This is congruent with the mathematical criteria for orthogonality, which states that 

the dot product must be zero.   

 This allows the magnitude of either the cosine modulated signal (called the in-

phase component) or the sine modulated signal (called the quadrature-phase component) 

to be inverted without affecting the other signal.  This creates two orthogonal modulation 

channels, or two unrelated phase keys that can be modified independently, contained in 
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the same signal.  A block diagram of how two data streams can be combined and 

recovered using these orthogonal sinusoid signals is shown in Figure 4.3. 

 

 

Figure 4.3 Block Diagram of Orthogonally Combined Data Streams 

 

Note:  This figure is not a valid communications system as the source and 

destination are assumed coherent.  This is merely to show mathematically 

how two data streams can be combined and recovered. 

 

 In Figure 4.3, two input data streams are each modulated with a sine or cosine, 

and then added.  Their separate waveforms were orthogonal, so by combining them, the 

zero valued points in one function are combined with the non-zero points of the other.  

The only signal data lost is the zeros, which are known.  Then, in the recovery step, the 

signals are multiplied by identical sinusoids, which cancel out the orthogonally 

modulated signal, and the original data streams are recovered.   

This results in the constellation diagram for QPSK, Figure 4.4.  Note that the 

overall phase of the combined signal is a combination of the two input signal amplitudes 
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from the more complex domain.  The cosine modulated signal affects the in-phase or real 

component, ‘I,’ and the sine modulated signal affects the quadrature-phase, complex 

component, ‘Q.’  Each bit of input data has the power to modify the phase of the 

modulated signal by 90 degrees, or π/2.  This can result in four possible data states, called 

symbols, and each symbol represents two bits of data.   

 

 

Figure 4.4 The Constellation Diagram of QPSK 

 

 

4.2 The QPSK Transmitter 

 The transmission of QPSK modulated data can be done with a system very similar 

to the left half of Figure 4.3.  However, a raised cosine filtered waveform is superior to an 

impulse for each one or zero.  A raised cosine, shown in Figure 4.5, has much lower 

bandwidth than an impulse and still satisfies Nyquist’s requirements for no inter-symbol 

interference.  Please note in Figure 4.5 that the desired data point has a value of ‘1’ at the 
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origin, similar to an impulse, but the waveform used to form this ‘1’ has much less high 

frequency content than an impulse.   

 

Figure 4.5 A Raised Cosine Filter from Matlab
® 

 

 Also, the values at every 40 samples (or one symbol period) in either direction 

from the origin are zero.  This means that when transmitted with a string of pulses with 

40 sample spacing, this pulse’s raised cosine waveform will not interfere with the value 

of the other data pulses.  This is described as having no inter-symbol interference.  Figure 

4.6 shows a string of several raised cosine pulses to demonstrate the lack of inter-symbol 

interference.   
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Figure 4.6 Several Raised Cosine Filtered Data Values in Series 

 

One example of a transmitter utilizing a raised cosine filter is shown in Figure 4.7.  

Note that binary data streams are first filtered into raised cosine waveforms, then 

modulated with the orthogonal carriers, combined, and transmitted via the channel. 
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Figure 4.7 A QPSK Transmitter 

 

 

4.3 The QPSK Receiver 

 In order to receive a QPSK signal, there are a few stages to implement, namely: 

demodulation, match filtering, gain control, I/Q constellation de-rotation, symbol 

synchronization, and data decisions.  As such, a receiver capable of decoding a QPSK 

transmission can be more easily understood when broken down into several subsystems.   

 

4.3.1 Demodulation and Matched Filtering 

The incoming signal must be split into the in-phase and quadrature-phase 

components, and mixed down into baseband.  This can be accomplished using the same 

modulation scheme as the transmitter.  Also, to remove inter-symbol interference, a 

matched filter [4, pg. 253] must be placed after demodulation.  This will result in a full 

raised cosine filter on every data point.  These components are shown in Figure 4.8. 

 



23 

 

 

 

 

Figure 4.8 The Orthogonal Demodulation and Raised Cosine Matched Filter 

 

4.3.2 Automatic Gain Control 

As mentioned in Chapter 3, the channel may have multiple attenuation effects, 

resulting in unpredictable amplitudes on the received signal.  A control loop affecting 

gain must be implemented to compensate for unknown attenuation in the channel.  This 

also provides error-magnitude stability for the control loops further downstream.  A 

common type of control, used three times in this implementation, is negative feedback 

error-proportional control.  This automatic gain control (AGC) loop [5, pg. 29] will be 

described in detail in the simulation and implementation in Chapters 6 and 7.  A block 

diagram of AGC added to the previously described demodulation and match filtering is 

shown in Figure 4.9. 
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Figure 4.9 Receiver Block Diagram through Automatic Gain Control 

 

4.3.3 In-Phase / Quadrature-Phase Constellation De-rotation 

 Due to uncompensated carrier phase offsets [5, pg. 28], and frequency 

differences, the I/Q constellation will be received at some arbitrary rotation [2, pg. 257; 5, 

pg. 17].  As the receiver does not know which phase quadrant is the correct one, and must 

stabilize somewhere, it will chose the phase angle closest to the initially assumed 

quadrant.  The 90 degree phase ambiguity will be corrected in the simulation and 

implementation chapters through data encoding, but for now, it is enough to know that 

the signal must be phase incremented to be regarded as close to square in the receiver.  

This second negative feedback error-proportional control is placed after the gain control, 

and is shown in Figure 4.10. 

 

Figure 4.10 QPSK Receiver through I/Q Constellation De-rotation 
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4.3.4 Symbol Synchronization and the Decision 

 There must be a decision made to determine if the digital data in each symbol 

stream is a one or a zero.  The system must make that decision close to the correct time in 

each symbol in order to maximize the data-eye.  This timing is calculated based on the 

previous decision’s location and the shape of the de-rotated waveforms [2, pg. 513] and 

will be described in more detail in later chapters.  This subsystem is used to detect 

maximum data-eye and will send timing to the decision mechanism, which will result in a 

value of one or zero.  The synchronization subsystem is shown added to the receiver in 

Figure 4.11, completing the block diagram of the theoretical QPSK receiver. 

 

 

Figure 4.11 Block Diagram of the QPSK Receiver 
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Chapter 5: DIGITAL SIGNAL PROCESSING 

 

 

5.1 Digital Signal Processors 

 Before the simulation and implementation of the QPSK algorithm are described, it 

is helpful to understand the motivation and hierarchy of modern digital signal processing.  

Initial signal processors, such as the Intel 2980 in 1978 and the SMI S2811 in 1979, were 

not very powerful or successful.  The Intel 2980 lacked a hardware multiplier, and the 

SMI S2811 was not capable of stand-alone operation.  Some of the first true stand-alone 

digital signal processors (DSPs) were introduced in 1980, but it was not until 1983 that 

the TI TMS32010 entered the market.  It was the first Harvard architecture design [5, pg. 

344], with separate data and instruction memory, which is more representative of the 

DSP hierarchy, that has been maintained through 30 years of innovation.   

The initial motivation behind digital signal processing was that certain 

functionality was either cheaper or possible in the digital domain but not in analog.  The 

DSP was to take a piece of the signal modulation/demodulation or conditioning 

functionality requirements, and implement them mathematically instead of using physical 

analog circuitry. This required an analog-to-digital (A/D) converter, the processor, and a 

digital-to-analog (D/A) converter to deliver an analog signal back to the main 

communications circuitry [1, pg. 2].  An example of this combination of analog and 

digital circuitry is represented in Figure 5.1. 
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Figure 5.1 Block Diagram of Digital and Analog Interaction 

 

 

5.2 Software Defined Radio 

 Once the initial conversion to the digital domain has taken place somewhere in 

the communications circuitry, moving additional functionality on-board the processor can 

reduce hardware costs as long as the DSP can still compute the desired instructions in the 

available time [1, pg. 6].  As processor capability and desired modulation complexity 

both grew, it followed naturally that more of the radio functionality would be moved into 

the digital processing arena.  Instead of analog oscillator, multiplication, and filtering 

components, the modulation and filtration was moved onto the processor in software.  As 

this process continued throughout the decades, fewer and fewer components remained 

external to the DSP.  The A/D converter usually does not have the dynamic range [5, pg. 

13, 202] or bandwidth to be connected directly to the antenna in wireless systems.  So 
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there is usually a low noise amplifier (LNA) external to the A/D converter [5, pg. 27].  A 

block diagram of this architecture is shown in Figure 5.2. 

 

 

 

Figure 5.2 Possible Framework for an SDR Implementation 

 

 This movement of most of the components in a wireless communications device, 

or ‘radio,’ into software is called ‘Software Defined Radio’ (SDR).  An SDR 

characteristically has very few analog components and is much more flexible than the 

previous analog equivalent.  In the analog world, when there is a combination FM or AM 

receiver, there must be almost two complete demodulation hardware strings, one for the 

FM demodulation type, and one for the AM.  While with SDR, the same LNA and A/D 

converter can pipe the signal into the same DSP, and the DSP simply runs a different 

instruction set to demodulate AM vs. FM.  This software flexibility [5, pg. 21] also leads 
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to much more sophistication in modulation algorithm complexity, like frequency 

hopping, the switching of modulation schemes on the fly, and security encoding.  Code 

has many advantages over hardware, such as development and debugging costs, and 

future upgradability.  SDR equips the average cell phone to ship with undiscovered bugs 

and have its firmware reprogrammed wirelessly in the field, with or without consumer 

intervention. 

 

Note:  Most DSP functions in SDR implementations act as interrupt service 

routines, ISRs.  This means that as each sample of data is available from 

the A/D converter, the ISR in the DSP slated to process that piece of data 

is called.  In other words, only one sample is processed at a time, and all 

system functionality must exist in the ISR loop that processes each sample. 

 

5.3 Industrial Considerations 

5.3.1 Processor Cost vs. Capability 

In the 30 years that there has been a DSP market, successful processors have been 

not always the lowest cost but always capable for their time, containing all mainstream 

features [5, pg. 342].  In 1983, this meant stand-alone operation and a multiply-

accumulate function.  When a processor lacks any critical functionality, it is doomed for 

failure in the marketplace.  Likewise, while a processor is seldom too powerful, it can be 

too costly to produce, also failing in the marketplace. 
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5.3.2 Floating vs. Fixed Point 

 There are two main types of numeric representation implemented in DSPs in the 

market: fixed point and floating point [5, pg. 347].  Floating point DSP’s store scaling 

factors for every value individually instead of storing one fixed scaling factor for all 

values.  This extra dynamic range of floating scaling factors makes development much 

easier because a programmer does not need to be as concerned with the magnitude of the 

calculations, either saturating at the upper end or falling victim to quantization noise at 

the lower end.  However, this functionality and ease of development come with increased 

die size and thus additional cost, making floating point implementations on mass 

marketed devices that do not require high precision financially prohibitive.   

 

5.3.3 Scale 

 It is said that when General Motors investigates which body panel screw to install 

on a new vehicle, something you might purchase for a few cents at a hardware store, they 

see a million dollar part after considering its cost to manufacture, install, warranty, and 

replace on every vehicle that will be manufactured with that screw.   It is a commonality 

between engineering disciplines that when a device is planned to be manufactured in 

mass quantities, cents per unit are not wasted.  Much more thought goes into each piece 

during development, to the tune of many tens or hundreds of thousand dollars in selecting 

a screw on a Silverado®.   

 In translation to DSP implementation, the cost is ‘minimal’ for a $350 or 

$350,000 engineering development station on which algorithms are developed that may 



31 

 

 

 

need to be implemented on $3.50 or $1.00 DSP’s in the actual product that goes to 

market.   

Some DSP implementations require nothing special and are easily duplicated on 

cheaper DSP’s, like a CD player.  While other items, such as high end audio reverb 

processors, will either require the builder to pay $30 per unit for a floating point DSP 

capable of implementing their specific algorithm, or perhaps develop a fixed point DSP 

more specifically designed for their requirements.  While a device manufacturer can 

afford to use an expensive development processor, their production line must use the 

cheapest functional unit available in order to remain competitive. 
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CHAPTER 6: SIMULATING QPSK TX/RX 

 

 

6.1 Matlab
®
 Implementation Notes 

6.1.1 Introduction 

In order to present the Matlab® implementation of the QPSK communications 

transmitter and receiver, some important characteristics must be understood.  Mainly 

these are simplifications of the reality of real-time implementations. 

 

6.1.2. The Lack of Time Constraint 

 A physical DSP can perform a certain number of instructions per second, and also 

receives so many samples of data per second, resulting in only a tiny fraction of those 

instructions available per sample.  In Chapter 7, due to the sampling rate of 48 kHz, that 

fraction is 1/48,000 of the C6713’s rated 1.8 billion instructions per second [4, pg. 319].  

This is 37,500 instructions per sample. 

It must be understood that in this simulation, many realities of time do not apply.  

Time itself is simulated over a set length, data is generated to associate with that specific 

time and the data is fed through the transmitter/receiver in an interrupt service routine 

(ISR) type implementation, similar to a real DSP, but the physical limitations of time on 

the computational capacity of the digital signal processor do not exist.  In fact, the digital 

signal processor does not exist in this implementation, because Matlab® depends on a 
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personal computer processor that is not constrained to process the current sample before 

the next one arrives.  This one second simulation takes a little over 30 seconds to perform 

and display on an 8-core processor, indicating that Matlab® is far less efficient than the 

Texas Instruments C6713 DSP utilized in Chapter 7, which is capable of performing 

almost identical operations in real-time.  The effects of time are also simulated.  In order 

to model the ISR type reality of a DSP, the system is causal.  This is not because future 

data was not available to the receiver in Matlab®, but only because the presented ISR was 

programmed to model reality. 

 

6.1.3 Single Clock Frequency 

 Another simplification in this simulation is that the QPSK transmitter and receiver 

are operating on identical clock frequencies.  While this may seem minor, it removes 

much complication in the receiver.  At 48 kHz, a 1% difference in clock frequency 

between the transmitter and receiver would work out to be 480 extra or missing samples 

per second.  This would work out to be the timing equivalent of 12 symbols that must be 

either ignored or inserted by a compensating receiver algorithm each second in order to 

maintain symbol synchronization and data integrity. 

 

6.1.4 Dynamic Range of Processor Capability 

 Another difference between using an Intel-based Matlab® implementation and a 

single precision floating point DSP is that variables are modeled as double precision 

floating point values, capable of exponents or logs to the value of 10308, while the 

physical DSP is limited to 1038.   
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6.1.5 An Ideal Channel  

 Another reality not taken into account in this simulation is the phase and 

amplitude distortion of a real channel.  This simulation will maintain the transmitted 

value perfectly into the receiver in double precision.  More than this, there will also be no 

A/D and D/A conversion to introduce quantization error.   

 

6.1.6 Constants and declarations 

 Now that the simplifications of the simulation are understood, the code can be 

expounded.  The first section of the simulation code, APPENDIX A lines 1 through 22, 

also shown in Figure 6.1, is preparation to run the simulation mainly via declarations of 

constants, arrays, and counters.  Line 6 clears the variable memory, the screen, and all 

open windows and initiates a stopwatch counter. 

Over the next few lines, the simulated time length is established at 1 second at a 

sample rate of 48 kb/s.  The symbol rate is established at 1,200 symbols per second, at 40 

samples per symbol.  As this is QPSK, the data rate is twice the symbol rate or 2,400 bits 

per second.  The total number of samples in the simulation is 48,000.   
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Figure 6.1 QPSK Simulation - Initial Declarations 

 

Also, the raised cosine filter in both the transmitter and receiver is defined.  It is 

first created via an infinite impulse response filter command in lines 16-17, and then 

converted to second order sections to maintain stability in line 18.  It is created as a ‘sqrt’ 

or square-root of a true raised cosine filter so that when implemented twice on the same 

data the result will be a full raised cosine waveform.  This allows matching filters to be 

used in both the transmitter and receiver with an overall effect of a raised cosine.   

Next, in lines 19-20, a single period of the orthogonal modulation signals is 

created as four element cosine and sine functions.  And, finally, the two counters used in 

the algorithm are declared in lines 21-22. 
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6.2 The Simulated Transmitter 

6.2.1 Overview 

This QPSK transmitter script, full code available in APPENDIX A lines 24-35 

and 74-128, will accomplish the following operations: 

 

1. Generate two streams of random binary data. 

2. Differentially encode the two streams into I/Q data streams. 

3. Place one bit of data every 40 samples. 

4. Filter the data with a second order sections (SOS) implementation of the 

square root raised cosine filter. 

5. Modulate the two data streams together using the orthogonal modulation 

signals declared earlier. 

 

This functionality is described in the block diagram in Figure 6.2.  Details on a 

few of these steps are provided in the following section. 

 

 

Figure 6.2 Simulated Transmitter Block Diagram 
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6.2.2 Transmitter Differential Encoding 

 As was described earlier in the QPSK receiver description and will be described 

further in the receiver simulation section, there is a 90 degree phase ambiguity in QPSK 

data transmission that must be corrected [2, pg. 398].  This correction is accomplished 

before filtration and modulation in the transmitter via data encoding, lines 83-100, as 

shown in Figure 6.3.   

 

 

Figure 6.3 Transmitter Data Encoding 

   

 This encoding scheme utilizes the current and the previous data values, which are 

appended with ‘z1’, to determine if the current phase should be incremented by +90, -90, 
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or 180 degrees, translated from changes in the respective in-phase, quadrature-phase or 

both data states.  The encoded data is then filtered, modulated, and sent on to the receiver. 

 

6.3 The Simulated Receiver 

6.3.1 Overview 

 The receiver will accomplish the following functionality for every sample in the 

input signal: 

1. Demodulate, separate orthogonal channels, and filter. 

2. Apply I/Q constellation de-rotation. 

3. Apply automatic gain control. 

4. If at the correct sample in the symbol, enter the symbol loop: 

a. Determine next automatic gain control adjustment. 

b. Make a decision. 

c. Decode the raw decision data. 

d. Determine the symbol synchronization adjustment. 

e. Determine the next I/Q constellation de-rotation adjustment. 

 

This is described in the following block diagram, Figure 6.4.  The subsystems will 

be described in the next few sections. 
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Figure 6.4 The Simulated Receiver Block Diagram 

 

6.3.2 Automatic Gain Control 

The AGC algorithm is a negative feedback, error proportional control loop.  The 

calculation of this control signal is shown in Figure 6.5, also in APPENDIX A lines 166-

172.   

 

 

Figure 6.5 Automatic Gain Control Calculations 

 

The AGC control compares the magnitude of the current symbol with the target 

gain, which is set at 24,000 so as to not overload the analog converters’ range of  about 

32,700.  The determined error is multiplied by the AGC control gain, and added to the 

overall system input amplitude adjustment variable.  The control response is shown in 

Figure 6.6.   
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Figure 6.6 AGC Control Response 

 

 In this simulation, the gain was increased by a factor of about 11,300.  Figure 6.9 

shows that this places the resulting constellation right in the correct range, from about 

20,000 to 28,000, to have significant value, and thus detail, but not overload the integer 

based analog converters.  The control loop gain on this control is sufficiently high that the 

gain will stabilize over four hundred samples, but not high enough that the stability is 

affected in large amounts by minor variation in the other control loops.  It favors a 

slightly over-damped condition as this tends to result in a tighter constellation once the 

system is stable. 

 

6.3.3 I/Q Constellation De-Rotation 

 The second control to be calculated is the de-rotation control.  The code for this 

calculation is viewable in APPENDIX A lines 240-243, and in Figure 6.7. 
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Figure 6.7 I/Q Constellation De-rotation Control Adjustment Calculation 

 

 The basic error determined by this calculation is the difference between the I and 

Q phase magnitudes.  In this example, the Q magnitude is greater.  This determines the 

magnitude of the correction.  Note, in Figure 6.8, that when the constellation is de-rotated 

to the correct location, the I and Q magnitudes are equal, resulting in no correction.   

 

 

Figure 6.8 I/Q De-rotation Calculation Physical Meaning 

 

Also note in lines 242 and 243 that the current binary data decisions, which are 

unity gain, are multiplied with the I and Q magnitudes.  This determines in which 
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quadrant the decision was made, and affects the sign on the correction. This error 

correction is multiplied by the receiver I/Q control gain, then added to the current rotation 

position.   

Similar to the AGC, this too is a negative feedback, error proportional control 

system, and slightly over-damped to favor a tight constellation when stable as shown in 

Figure 6.8.  Even at startup, the calculation is close to target by around 400 symbols and 

very stable at 700 symbols. 

 

 

Figure 6.8 I/Q Constellation De-rotation Control Response 

 

 This is the response resulting from a preset π/10 rotation in the transmitter.  The 

original constellation and the corrected one are shown in Figure 6.9.   
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Figure 6.9 Left: Transmitted Constellation Diagram 

Right: AGC and I/Q De-rotation Corrected Constellation Diagram 

 

Also resulting from the correct AGC and de-rotation are improvements in the 

data-eye, as shown before AGC and de-rotation in Figure 6.10 and afterwards in Figure 

6.11.   
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Figure 6.10 I/Q Phase Data-eyes Before Correction 

 

In Figure 6.10, note the four possible waveform states at the ideal sample point 

20, which indicate that the constellation is rotated.  Also note the amplitudes of the 

transmitted signal, around 3, and the corrected signal below, around 17,000 on sample 

point 20. 

 



45 

 

 

 

 

Figure 6.11 I/Q Phase Data-eyes Fesulting from AGC and Constellation De-Rotation 

 

6.3.4 Symbol Synchronization 

 The third and final control in this receiver is for symbol synchronization timing.  

Note in Figure 6.11 that at point 20 there is a large data-eye, but at any other point in the 

waveform the eye is either smaller or non-existent.  Due to group delay through the 

transmitter and receiver, this lands at 20 in this simulation.  This calculation is shown in 

Figure 6.12 and APPENDIX A lines 218-221.  The synchronization control uses the data 
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value in the current decision, denoted as I2 and Q2, and the slopes of the points 

immediately before and after it, to determine if the sample point should be moved.   

 

 

Figure 6.12 Symbol Synchronization Calculations 

 

This theory depends on the average slopes around the desired sample point to fit 

with randomly combined raised cosine waveforms [4, pg. 255].  To help understand this, 

averages of the four common data paths 01, 10, 11, and 00 are shown by thick black lines 

in Figure 6.13.  Then, the averages of those averages are shown in blue.  The 

calculations, described in Figure 6.13, go like this:  

A.  Calculate the slope around the current sample point. 

B. Take the sign only. 

C. Examine the sign on the current data decision. 

D. Multiply the sign of the slope by the sign on the data to determine the 

desired correction direction. 

E. Move in the resulting direction proportional to the magnitude of the 

slope from A.  
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Figure 6.13 Symbol Synchronization Calculation Physical Meaning 

 

Note in the progression from A to E how the slope was negative on average, and 

the data decision was also negative, resulting in a positive correction factor.  This way, if 

the slope is flat (the case for the widest point in the data-eye), minimal movement will 

occur, resulting in stability.  The response of this system is in Figure 6.13. 

 

 

Figure 6.13 Symbol Synchronization Control Response, Blue: Synchronization 

Control Value, Red: Resulting Sample Integer 
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 This system is also a negative feedback, error proportional control loop; however, 

there was a slight complication in order for the system to be stable.  The nature of digital 

data transmission waveforms is that the slope before and after the correct sample point 

sometimes varies depending on the previous and next data states.  This creates some 

random adjustment if only the current data point and surrounding slopes were used to 

compute the symbol synchronization adjustment.  As a result, either the gain on this 

control loop must be very small to prevent transitioning to erroneous samples, such as 

sample 21 or 19, or some other control function must be used. 

 To solve this, the control adjustment calculated in Figure 6.12 is filtered by a 13th 

order IIR moving average filter.  The impulse response for this filter is shown in Figure 

6.13, and the step response is shown in Figure 6.14.  

 

 

Figure 6.13 Impulse Response of an IIR 13
th
 Order Moving Average Filter 
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Figure 6.14 Step Response of an IIR 13
th
 Order Moving Average Filter 

 

 As shown, this will spread the impact of any given error reading over 14 symbols.  

This effectively removes high frequency components by emphasizing the errors that 

remain for up to 14 symbols. This also minimizes the impact of a single erroneous 

correction calculation by combining it with the previous 13 to determine the current 

calculation.  This low pass behavior is also identifiable in the frequency response of this 

filter, shown in Figure 6.15, and signified by the lack of zero’s on the positive real axis of 

the pole/zero plot shown in Figure 6.16. 
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Figure 6.15 Frequency Response of an IIR 13
th
 Order Moving Average Filter 

 

 

Figure 6.16 Pole/Zero Plot of an IIR 13
th
 Order Moving Average Filter 
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This causes the system to respond a few symbols later, but allows the gain to be 

increased substantially while still remaining stable on the correct sample. 

 When the system is stable, meaning that the AGC, I/Q constellation de-rotation 

and symbol synchronization controls are no longer compensating for major errors, the 

resulting data points are sampled in very tight distributions.  The red crosses in Figure 

6.14 show the four possible data states and the distribution over which the data is 

sampled. 

 

 

Figure 6.14 QPSK Receiver Data Samples after Stability 
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 These data points result in the data streams shown in Figure 6.15, which indicate 

that from a very poor situation at startup, the algorithm has valid data after ~175 samples, 

and is very stable after around 400. 

 

 

Figure 6.15 I/Q Phase Data Streams 

 

 There is one further detail to this algorithm, and it resides in the fact that although 

the AGC, de-rotation, and symbol synchronization controls function in a certain order on 

each sample, overall on the entire signal they are each operating at the same time.  Also, 

mathematically, the controls have a large amount of interaction.  The amplitude of the 

signal after AGC determines the magnitude of the errors corrected in the de-rotation and 

synchronization controls.  This means that only after the AGC control is stable can the 

I/Q constellation de-rotation loop have a stable input.  Also, the sample points considered 

for the AGC error calculation are determined by symbol synchronization and adjusted by 
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I/Q de-rotation, meaning all the controls are interdependent.  This leads to simultaneous 

stability only as all three converge on their target locations, as shown in Figure 6.16. 

 

 

Figure 6.16 Simultaneous Control Stabilization 

 

6.3.5 Data Decoding 

 The final stage in the QPSK receiver is data decoding.  As mentioned in the 

transmitter section, there is a 90 degree phase ambiguity requiring the data to be encoded 

based on the previous and current raw data states.  This must be decoded after the data is 

sampled, and results in the correct in-phase and quadrature-phase data strings on the 

output as shown in Figure 6.17.  
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Figure 6:17 Resulting Decoded Raw Data Compared to Encoded Raw Data 

 

 There were two raised cosine filters implemented in the overall system, one in the 

transmitter and one in the receiver.  Note the delay from the transmitter to the receiver, 6 

symbols, or twice the group delay in each of the raised cosine filters. 

  



55 

 

 

 

 

 

CHAPTER 7: A REAL-TIME QPSK IMPLEMENTATION 

 

 

7.1 Introduction 

7.1.1 Introduction to a Real Time QPSK Transmitter and Receiver 

 This chapter will discuss the real-time implementation of the QPSK transmitter 

and receiver on separate Texas Instruments C6713 floating point DSPs.  After the 

presentation of the Matlab® simulated transmitter and receiver, a description of a real-

time implementation offers only subtle differences in implementation, not any new 

functionality.   To begin with, some simplifications were outlined at the beginning of the 

simulation chapter.  The same issues are here, but instead of simplifying the 

implementation, they act to obscure it.   

 

7.1.2. Processor Time Constraints 

 As mentioned previously, a C6713 DSP can perform 1.8 billion instructions per 

second.  The sample frequency, based on the target frequency of the C6713 DSK [4, pg. 

5], is 48 kHz.  This leaves the processor, pending no other limiting factors, 37,500 

instructions per sample.  This may sound like a substantial amount, but when considering 

the functionality that must be implemented for each sample, and the number of 

instructions that are used in each line of those functions, much consideration for 

operating efficiency had to be given to this implementation.  In reality, there were several 
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steps even in the simulation that were targeted towards improving the real-time 

implementation, for example: 

1.  ISR Based Routine – The Matlab® simulation was written in a way that 

although the script processed a string of 48,000 samples, it processed one at a 

time.  This allowed the same basic algorithm to be moved into the real-time 

code. 

2. IIR Based Raised Cosine Filter – Initially in the simulation, the raised cosine 

filter was a 240th order FIR filter [4, pg. 25].  This was implemented easily in 

real-time on the transmitter, where only 6 points in the filter memory have 

non-zero values, and thus require calculation, due to valid data only on every 

40th sample.  But in the receiver, where it is unknown where the desired data 

sample lies, all samples must be calculated, resulting in two channels (in-

phase and quadrature-phase) of 240th order convolution.  This processing 

requirement was greatly reduced by changing the raised cosine 

implementation to a 13th order IIR filter [4, pg. 47]. 

3. Circular Memory Buffers – The sine and cosine functions, as well as the 

symbol synchronization buffers were implemented in a circular manner, 

where the actual memory locations of the buffer values do not need to change 

in order to increment through them, only the pointer used to address them [5, 

pg. 352].  This saved processing power previously used in shifting the buffer 

locations. 

4. Lack of Non-Deterministic Functions –  A function that performs a set of 

given operations in the same way every time is characterized as deterministic, 
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like ‘add’ or ‘multiply.’  Some functions are not deterministic, meaning they 

do not do the same process of operations at every call.  Some examples are 

‘sqrt’ or ‘divide.’  These operations depend very much on the computational 

context and the input to determine the output and the number of instruction 

cycles consumed in computing the output.  Non-deterministic functions are 

concerning in the implementation of an ISR on a DSP, as there are a limited 

number of instructions available.  In both the simulation and the real-time 

implementation, there are no instances of divide or square root. 

 

In short, for this real-time implementation, time does exist.  If the next sample 

arrives before the DSP has finished processing the current one, the system will respond in 

an undesirable way and the modulation scheme will be broken. 

 

7.1.3 Presence of Multiple Clock Frequencies 

 As the transmitter will be implemented on one DSK and the receiver on another, 

there will be minor variation between the clock frequencies of the on-board oscillator.  

This presents problems for both the timing of in-phase and quadrature-phase 

differentiation and symbol synchronization.  This potential unstable timing differential 

must be constantly detected and corrected.  This is the reason for the existence and 

continual operation of the timing control loops. 

 

7.1.4 Lack of Dynamic Range On-Board the Processor 
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 As mentioned earlier, double precision floating point values can carry exponents 

with magnitudes of 308, while single precision floating point is limited to exponent 

magnitudes of 38.  This requires some consideration of calculation values.  This is 

nowhere near as complicated as implementation on a fixed point DSP, but does require 

the advanced floating point functionality of the C6713. 

 

7.1.5 A Non-Ideal Channel  

 A real channel, such as the transmission line used to link the two DSP’s in this 

implementation, will cause some noise injection into the signal path, hindering the clarity 

of the data transmission and inserting spurious errors into the control loops.  In addition 

to this, there will be D/A and A/D conversions that add quantization noise. 

 

Note:  The A/D and D/A converters on the C6713 DSK are integer based with positive 

and negative ranges ~32,000.  The quantization noise alone makes this one of the 

most inaccurate steps in the entire algorithm [5, pg. 186]. 

 

 

7.2 C6713 Overview 

The two DSP’s used in this implementation are built onto what are called a DSP 

Starter Kits (DSKs) each equipped with A/D converters, various memories, a power 

supply and a USB interface.  A DSK and circuit breakdown is shown in Figure 7.1. 

 



59 

 

 

 

 

Figure 7.1 The Texas Instruments C6713 DSK 

 

One DSK is programmed with the transmitter and one with the receiver.  The 

DSKs are then linked with a transmission line on one channel only.  These DSKs are 

tools capable of a number of programming and debugging functions as well as storage, 

and other functionality summarized in this list: 

• Embedded JTAG support via USB 

• High-quality 24-bit stereo codec 

• Four 3.5mm audio jacks for microphone, line in, speaker and line out 

• 512K words of Flash and 16 MB SDRAM 

• Expansion port connector for plug-in modules 

• On-board standard IEEE JTAG interface 

• +5V universal power supply 

 



60 

 

 

 

One further detail about the TI DSK involves the supplied development 

environment, Code Composer Studio, or CCS [4, pg. 273].  This integrated development 

environment and hardware interface enables the creation, debugging, loading, running, 

and analysis of real-time DSP programs on TI hardware. 

 

 

7.3 The Real-Time Transmitter 

7.3.1 Description 

 The transmitter system is basically identical to the one implemented in the 

simulation chapter, although written in 216 lines of C-code in CCS, not in Matlab®.  The 

entire transmitter ISR is available in APPENDIX B.  The functionality of the real-time 

transmitter is summarized here: 

 

1. Generate two streams of random binary data [4, pg. 231]. 

2. Place one bit of data every 40 samples. 

3. Filter the data with a 240th order FIR implementation of the square root raised 

cosine filter. 

4. Modulate the two data streams together using the orthogonal modulation 

signals. 

5. Send these to the D/A converter and output on the right channel. 
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There are minor variations in the algorithm to compensate for implementation 

differences, but otherwise the block diagram of the transmitter is identical to the 

simulated one, shown again in Figure 7.2. 

 

 

Figure 7.2 The QPSK Transmitter Block Diagram 

 

 However, in order to demonstrate the compatibility of the FIR and IIR versions of 

the raised cosine filter, and to stress the computational power of the C6713 DSK, the 

240th order FIR raised cosine filter was implemented in the QPSK transmitter only.   The 

real-time receiver, due to lack of computational capacity, uses the 13th order IIR version. 

 

7.3.2 Transmitter Details 

 The code begins with constant declarations, including the 240th order FIR filter 

array, and inclusions of standard libraries like ‘math.h’.  There is also some framework 

code to link this routine as the per-sample ISR that runs.  Practically, the entire algorithm, 

however, is contained between lines 142 and 177; shown in Figure 7.3. 
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Figure 7.3 The Main Functional Part of the Transmitter  

 

 First, once in every 40 samples, random data is created in lines 46-50.  Then, all 

other samples are set to zero in lines 153 and 154.  The signal string of data and zeros are 

convolved with the 240th order filter in lines 156 through 160.  Note here that only six 

data points actually need computation as the 39 other points between them are all zero.  
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Next, on the right side of line 162, the circular referenced cosine and sine functions are 

multiplied by the signal string, effectively modeling the signals.  The transmitter output 

value is equated to the combination of these orthogonally modulated signals.  Finally, the 

counters are incremented and the signal is output on the left and right channels, lines 165-

177. 

 

 

7.4 The Real-Time Receiver 

7.4.1 Description 

 The real-time receiver, found in APPENDIX C, is 223 lines of c-code, including 

the DSP framework to input the QPSK signal and output the current data decisions.  The 

QPSK functionality is mainly contained in the 107 lines of calculations executed per 

sample, lines 70-177.  This implementation is the main motivation for all the complexity 

of the Matlab® simulation of Chapter 4.   It performs the following functions: 

 

1.  Demodulate into separate orthogonal channels 

2. Matched filter with an IIR root-raised cosine. 

3. Apply I/Q constellation de-rotation. 

4. Apply automatic gain control. 

5. If at the correct sample in the symbol enter the per-symbol loop: 

a. Determine next automatic gain control adjustment. 

b. Make a digital data value decision on both I and Q channels. 

c. Determine the symbol synchronization adjustment. 
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d. Determine the next I/Q constellation de-rotation adjustment. 

 

 

7.4.2 Receiver Operation Verification 

 The receiver has two input channels and two output channels available.  A single 

input channel is used for the QPSK transmitted signal; the other is not required for QPSK 

and is ignored.  The two output channels have three operating modes depending on which 

is selected: 

 

A. Data Mode - Will output, on the two receiver output channels, the current data 

decisions on the in-phase and quadrature-phase data streams for every symbol.  

These keep updating as the algorithm runs allowing the received data to be 

compared to the transmitted data and verify the basic functionality of the 

receiver.  This is seen in Figure 7.4. 

 

 

Figure 7.4 Transmitted Data and Matching Received Data 
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Note:   Although not shown here, it would be helpful to record a scope shot of the 

instability as the receiver is activated.  Although difficult to relate here, 

the data output by the receiver for the first fractions of a second are 

random and not aligned with the transmitted data.  This is where the 

control loops are stabilizing.   

 

B. Signal Mode – In this mode, the two outputs relate the demodulated, de-

rotated, and gain controlled in-phase and quadrature-phase waveforms.  These 

can be X/Y plotted on an oscilloscope to recover a properly amplified, de-

rotated constellation, shown in Figure 7.5.  This verifies the AGC and I/Q 

constellation de-rotation control stability. 

 

 

Figure 7.5 X/Y Plot of a De-Rotated, AGC Corrected I/Q Constellation 
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C. Control mode – Due to the DC decoupling capacitors on the inputs and 

outputs of the DSK, it is impossible to relate any signal much lower than 

around 100 Hz.  This prevents the straight output of the control loop levels, as 

they will be pulled to ground since they are often stable for a length of time 

greater than 0.01 seconds.  Instead, for every sample, a different control level 

is output on each of the two channels.  The right channel relates two samples 

of the I/Q de-rotation control level, one sample of the AGC control level and 

one sample of ground.  The left channel similarly relates two samples of the 

symbol synchronization control level, one sample of the AGC control level 

and one sample of ground.  This creates two waveforms relating the dynamic 

state of the control logic, and allows an observer to visibly verify that the 

control logic is smoothly compensating for minor differences between the 

DSP clock frequencies.  Control outputs are shown in Figure 7.6. 

 

 

Figure 7.6 Control Signal Output Mode of the QPSK Transmitter (enhanced for 

clarity) 
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The receiver algorithm results in the correct data after stabilizing.  The control 

signals smoothly track the required variations in the transmitted signal.  This 

implementation of the QPSK receiver is functional on real processors over a real 

wired channel. 
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CHAPTER 8: CONCLUSION 

 

 

The ability to send a string of ones and zeros and recover them either several feet 

away, or several thousand miles away, has been of significant impact on our society.  

This accomplishment has consumed thousands of engineering careers over the last few 

decades.  For the foreseeable future, communications will continue to have this same 

impact and industry attention. 

This thesis has attempted to describe, theorize, and implement solutions to many 

of the common problems experienced in the physical world of communications as well as 

discuss industrial considerations behind current DSP technology.  Basic data transmission 

and reception on physical processors introduces numerous problems.  Adding a non-

trivial modulation method increases the complexity by an order of magnitude.  If this was 

implemented on a fixed point processor simple and cheap enough to survive in the 

marketplace, the complication of these algorithms would need to increase by at least 

another order of magnitude, perhaps several. 

While the simulation of a theoretical communications algorithm can ignore many 

realities and still result in successful, albeit artificial data transmission, the real world is 

not forgiving.  Any variation between processors will need to be accounted for.  Even on 

today’s most powerful processors, the limitations of computational ability will break the 

algorithm if not taken into account.  Methods will have to be adapted to applications and 
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creative solutions found to complicated problems.  The more capable floating point 

processors, which made this implementation possible, will not work in the marketplace 

for similar solutions due to the high dollar amount per unit.   

While this thesis dwells on reliable QPSK communication, further work along this 

line would improve on these algorithms to make them more efficient and updated with a 

more powerful modulation scheme, such as 16QAM or OFDM.  Also, the data rate could  

be increased in order to maximize the utility of the C6713 processor.  If this was to be a 

more complete communications investigation, there may also be an application selected, 

either wired or wireless.  These devices and algorithms could then be utilized to 

maximize reliable throughput or distance, while maintaining a required bit error rate. 

Surely communications implementations in industry are riddled with issues.  

When one billion cell phones are sold globally per year, there is massive potential to 

make money solving these problems.  As long as there are problems to solve and a billion 

people per year willing to pay to have them solved, engineers will continue devoting 

energy to the development of better communications algorithms. 
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 Implementation  

of a QPSK Transmitter and Receiver 
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% QPSK transmitter and receiver simulation program 1 

% 2 

% developed from Fall 2009 to Spring 2010 3 

% by Rob Conant 4 

  5 

clear; clc; close all; tic; 6 

Simulation_Time = 1.0;   % Seconds 7 

  8 

% Default Declarations and Constants 9 

Rate_Sample = 48000; 10 

Rate_Data = 2400; 11 

Rate_Symbol = Rate_Data / 2; 12 

Sample_Per_Symbol = Rate_Sample / Rate_Symbol; 13 

Number_of_Samples = Rate_Sample * Simulation_Time; 14 

Raised_Cosine_IIR_Alpha = .35; 15 

[B, A] = 16 

rcosiir(Raised_Cosine_IIR_Alpha,3,Sample_Per_Symbol,3,.01,'sqrt'); 17 

[SOS, SOS_Gain] = tf2sos(B, A); 18 

Cosine = [1 0 -1 0]; 19 

Sine = [0 1 0 -1]; 20 

Count_40 = 1; 21 

Count_14 = 0; 22 

  23 

%Transmitter Declarations and Constants 24 

Tx_Amplitude = 3;  % Arbitrary Transmitter Gain will be corrected 25 

Tx_IQ_Rotation = pi/10;  % Arbitrary I/Q rotation will be corrected 26 

Tx_Sine_Offset = sin(Tx_IQ_Rotation); 27 

Tx_Cosine_Offset = cos(Tx_IQ_Rotation); 28 
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Tx_Filter_Memory_I = zeros(4, 3); 29 

Tx_Filter_Memory_Q = zeros(4, 3); 30 

Tx_Modulated_I = zeros(1, Number_of_Samples); 31 

Tx_Modulated_Q = zeros(1, Number_of_Samples); 32 

Tx_Out = []; 33 

Tx_Data_I_Enc = 0; 34 

Tx_Data_Q_Enc = 0; 35 

  36 

%Receiver Declarations and Constants 37 

Rx_AGC_Target = 24000; 38 

Rx_AGC_Gain = 0.0000002 * (20000/Rx_AGC_Target); % AGC Control Gain 39 

Rx_AGC_Amplitude=1;  % Arbitrary starting point for AGC 40 

Rx_SymbolSync_Gain = 1.5 * (20000/Rx_AGC_Target); % Gain SymbolSync 41 

Control 42 

Rx_SymbolSync_Adjustment_Buffer = [0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 43 

Rx_SymbolSync_Sample = 12;  % Arbitrary Starting Point 44 

Rx_SymbolSync_SamplePoint = 35; 45 

Rx_SymbolSync_Adjustment_Buffer_mean =  0; 46 

Rx_IQ_Gain = 0.0000004 * (20000/Rx_AGC_Target); % I/Q Derotation Gain 47 

Rx_IQ_Rotate = 0;  48 

Rx_Filter_Memory_I = zeros(4, 3); 49 

Rx_Filter_Memory_Q = zeros(4, 3); 50 

Rx_Input_I = zeros(1, Number_of_Samples); 51 

Rx_Input_Q = zeros(1, Number_of_Samples); 52 

Rx_Decision_Buffer_I1 = 0;  Rx_Decision_Buffer_Q1 = 0; 53 

Rx_Decision_Buffer_I2 = 0;  Rx_Decision_Buffer_Q2 = 0; 54 

Rx_Decision_Buffer_I3 = 0;  Rx_Decision_Buffer_Q3 = 0; 55 

Rx_Data_I_Enc = 0; 56 
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Rx_Data_Q_Enc = 0; 57 

  58 

%Initiate Data Log Arrays 59 

log_Rx_AGC_Gain = []; 60 

log_Rx_Data_Result_I = []; 61 

log_Rx_Data_Result_Q = []; 62 

log_Rx_SymbolSync_SamplePoint = []; 63 

log_Rx_PreDecision_I = []; 64 

log_Rx_PreDecision_Q = []; 65 

log_Rx_Input_I = []; 66 

log_Rx_Input_Q = []; 67 

log_Rx_IQ_Rotation = [];  68 

log_Rx_Data_I_Raw = []; 69 

log_Rx_Data_Q_Raw = []; 70 

log_Tx_Data_I_Raw = []; 71 

log_Tx_Data_Q_Raw = []; 72 

  73 

% TRANSMITTER 74 

for Current_Sample = 1 : Number_of_Samples 75 

    if (Count_40 == 1) 76 

       % Create Random Raw Data 77 

       Tx_Data_I_Enc_z1 = Tx_Data_I_Enc; 78 

       Tx_Data_Q_Enc_z1 = Tx_Data_Q_Enc; 79 

       Tx_Data_I_Raw = (rand > 0.5); 80 

       Tx_Data_Q_Raw = (rand > 0.5); 81 

  82 

       % Differential Encoding 83 

       if Tx_Data_I_Raw == Tx_Data_Q_Raw 84 
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           if Tx_Data_I_Raw 85 

               Tx_Data_I_Enc = not(Tx_Data_I_Enc_z1); 86 

               Tx_Data_Q_Enc = not(Tx_Data_Q_Enc_z1); 87 

           else 88 

               Tx_Data_I_Enc = Tx_Data_I_Enc_z1; 89 

               Tx_Data_Q_Enc = Tx_Data_Q_Enc_z1;  90 

           end 91 

       else 92 

           if Tx_Data_I_Raw 93 

               Tx_Data_I_Enc = not(Tx_Data_Q_Enc_z1); 94 

               Tx_Data_Q_Enc = Tx_Data_I_Enc_z1; 95 

           else 96 

               Tx_Data_I_Enc = Tx_Data_Q_Enc_z1; 97 

               Tx_Data_Q_Enc = not(Tx_Data_I_Enc_z1);   98 

           end 99 

       end 100 

       log_Tx_Data_I_Raw = [log_Tx_Data_I_Raw Tx_Data_I_Raw]; 101 

       log_Tx_Data_Q_Raw = [log_Tx_Data_Q_Raw Tx_Data_Q_Raw];         102 

        103 

       Tx_Data_I = Tx_Amplitude*(2*(Tx_Data_I_Enc)-1); 104 

       Tx_Data_Q = Tx_Amplitude*(2*(Tx_Data_Q_Enc)-1); 105 

    else 106 

        Tx_Data_I = 0; 107 

        Tx_Data_Q = 0; 108 

    end 109 

    [Tx_Filter_Memory_I, Tx_Modulated_I] = mySOSfilt(SOS, SOS_Gain, ... 110 

        Tx_Filter_Memory_I, Current_Sample, Tx_Data_I, Tx_Modulated_I); 111 

    [Tx_Filter_Memory_Q, Tx_Modulated_Q] = mySOSfilt(SOS, SOS_Gain, ... 112 
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        Tx_Filter_Memory_Q, Current_Sample, Tx_Data_Q, Tx_Modulated_Q); 113 

     114 

    Tx_Current_Out = ... 115 

          (Tx_Modulated_I(Current_Sample) * Tx_Cosine_Offset ... 116 

           - Tx_Modulated_Q(Current_Sample) * Tx_Sine_Offset)... 117 

        * Cosine(mod(Current_Sample,4)+1) ... 118 

        - (Tx_Modulated_Q(Current_Sample) * Tx_Cosine_Offset ... 119 

           + Tx_Modulated_I(Current_Sample) * Tx_Sine_Offset)... 120 

        * Sine(mod(Current_Sample,4)+1); 121 

     122 

    Count_40 = Count_40 + 1;    123 

    if (Count_40 == 40) 124 

        Count_40 = 0; 125 

    end 126 

    Tx_Out = [Tx_Out Tx_Current_Out]; 127 

end 128 

  129 

% RECEIVER 130 

for Current_Sample = 1:Number_of_Samples 131 

    %Demodulate and Filter By Cos / Hilbert(Cos) 132 

    [Rx_Filter_Memory_I, Rx_Input_I] = mySOSfilt(SOS, SOS_Gain, ... 133 

        Rx_Filter_Memory_I,Current_Sample,Tx_Out(Current_Sample) .* ... 134 

        Cosine(mod(Current_Sample,4)+1), Rx_Input_I); 135 

    [Rx_Filter_Memory_Q, Rx_Input_Q] = mySOSfilt(SOS, SOS_Gain, ... 136 

        Rx_Filter_Memory_Q,Current_Sample,Tx_Out(Current_Sample) .* ... 137 

        Sine(mod(Current_Sample,4)+1), Rx_Input_Q); 138 

        139 

    %Actual I/Q Angular Adjustment 140 
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    Rx_IQ_Sine_Term    =  sin(Rx_IQ_Rotate); 141 

    Rx_IQ_Cosine_Term  =  cos(Rx_IQ_Rotate); 142 

     143 

    %Shift Decision Data Memory 144 

    Rx_Decision_Buffer_I3 = Rx_Decision_Buffer_I2; 145 

    Rx_Decision_Buffer_I2 = Rx_Decision_Buffer_I1; 146 

    Rx_Decision_Buffer_Q3 = Rx_Decision_Buffer_Q2; 147 

    Rx_Decision_Buffer_Q2 = Rx_Decision_Buffer_Q1; 148 

    Rx_Decision_Buffer_I1 = Rx_Input_I(Current_Sample) ... 149 

       * Rx_IQ_Cosine_Term - Rx_Input_Q(Current_Sample) ... 150 

       * Rx_IQ_Sine_Term; 151 

    Rx_Decision_Buffer_Q1 = Rx_Input_Q(Current_Sample) ... 152 

       * Rx_IQ_Cosine_Term + Rx_Input_I(Current_Sample) ... 153 

       * Rx_IQ_Sine_Term; 154 

  155 

    %Apply automatic gain control 156 

    Rx_Decision_Buffer_I1 = Rx_Decision_Buffer_I1 * Rx_AGC_Amplitude; 157 

    Rx_Decision_Buffer_Q1 = Rx_Decision_Buffer_Q1 * Rx_AGC_Amplitude; 158 

  159 

    %Symbol Loop 160 

    if (Count_40 == Rx_SymbolSync_Sample+22 ... 161 

        | Count_40 == Rx_SymbolSync_Sample-18) 162 

  163 

        % Deterine automatic gain adjustment 164 

        if length(log_Rx_Data_Result_I) > 40 165 

            Rx_AGC_Change_Needed = (Rx_AGC_Target * Rx_AGC_Target ... 166 

                -(Rx_Decision_Buffer_I2^2+Rx_Decision_Buffer_Q2^2)) ... 167 

                * Rx_AGC_Gain; 168 
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            Rx_AGC_Amplitude = Rx_AGC_Amplitude + Rx_AGC_Change_Needed; 169 

        end 170 

         171 

        % Determine Digital Result Of Current Symbol 172 

        if Rx_Decision_Buffer_I2 > 0 173 

            Decision_I = 1; 174 

        else 175 

            Decision_I = -1; 176 

        end 177 

        if Rx_Decision_Buffer_Q2 > 0 178 

            Decision_Q = 1; 179 

        else 180 

            Decision_Q = -1; 181 

        end 182 

         183 

       % Transpose Encoded Data to T/F 184 

       Rx_Data_I_Enc_z1 = Rx_Data_I_Enc; 185 

       Rx_Data_Q_Enc_z1 = Rx_Data_Q_Enc;       186 

       Rx_Data_I_Enc = (Decision_I + 1) * 0.5; 187 

       Rx_Data_Q_Enc = (Decision_Q + 1) * 0.5; 188 

       % Differential Decoding 189 

       if Rx_Data_I_Enc_z1 == Rx_Data_Q_Enc_z1 190 

           if Rx_Data_I_Enc_z1 191 

               Rx_Data_I_Raw = not(Rx_Data_I_Enc); 192 

               Rx_Data_Q_Raw = not(Rx_Data_Q_Enc); 193 

           else 194 

               Rx_Data_I_Raw = Rx_Data_I_Enc; 195 

               Rx_Data_Q_Raw = Rx_Data_Q_Enc ; 196 
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           end 197 

       else 198 

           if Rx_Data_I_Enc_z1 199 

               Rx_Data_I_Raw = Rx_Data_Q_Enc; 200 

               Rx_Data_Q_Raw = not(Rx_Data_I_Enc); 201 

           else 202 

               Rx_Data_I_Raw = not(Rx_Data_Q_Enc); 203 

               Rx_Data_Q_Raw = Rx_Data_I_Enc  ; 204 

           end 205 

       end 206 

       log_Rx_Data_Q_Raw = [log_Rx_Data_Q_Raw Rx_Data_I_Raw]; 207 

       log_Rx_Data_I_Raw = [log_Rx_Data_I_Raw Rx_Data_Q_Raw];  208 

        209 

        % Calculate Next Symbol Timing Adjustment 210 

        % Increment Circular Buffer Address 211 

        Count_14 = Count_14 + 1; 212 

        if Count_14 == 15 213 

            Count_14 = 1; 214 

        end         215 

        %Current Syncronization Calculation 216 

        Rx_SymboxSync_Calc = Decision_I*(Rx_Decision_Buffer_I1 - ... 217 

           Rx_Decision_Buffer_I3)+Decision_Q*(Rx_Decision_Buffer_Q1 ... 218 

            -Rx_Decision_Buffer_Q3); 219 

        % IIR Moving Average Filter 220 

        Rx_SymbolSync_Adjustment_Buffer_mean = ... 221 

            Rx_SymbolSync_Adjustment_Buffer_mean + 0.0714 * ... 222 

            (Rx_SymboxSync_Calc - 223 

Rx_SymbolSync_Adjustment_Buffer(Count_14)); 224 
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        %Fill Circular Reference with Current Calculation 225 

        Rx_SymbolSync_Adjustment_Buffer(Count_14) = Rx_SymboxSync_Calc; 226 

        Rx_SymbolSync_Adjustment = Rx_SymbolSync_Gain * 0.0001225 ... 227 

            * (Rx_SymbolSync_Adjustment_Buffer_mean); 228 

        Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint ... 229 

            + Rx_SymbolSync_Adjustment; 230 

        if Rx_SymbolSync_SamplePoint>39.5 231 

            Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint - 40; 232 

        elseif Rx_SymbolSync_SamplePoint<.5 233 

            Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint + 40; 234 

        end 235 

        Rx_SymbolSync_Sample = round(Rx_SymbolSync_SamplePoint); 236 

         237 

        %Calculate next IQ derotation angle adjustment 238 

        Rx_IQ_Rotate  =  Rx_IQ_Rotate ... 239 

            + ( - (Decision_I * Rx_Decision_Buffer_Q2 ... 240 

                 - Decision_Q * Rx_Decision_Buffer_I2) * Rx_IQ_Gain); 241 

              242 

     %Symbol Loop Data Logging 243 

     log_Rx_Data_Result_I=[log_Rx_Data_Result_I Rx_Decision_Buffer_I2]; 244 

     log_Rx_Data_Result_Q=[log_Rx_Data_Result_Q Rx_Decision_Buffer_Q2]; 245 

     log_Rx_SymbolSync_SamplePoint = [log_Rx_SymbolSync_SamplePoint ... 246 

        (Rx_SymbolSync_SamplePoint)]; 247 

     log_Rx_AGC_Gain = [log_Rx_AGC_Gain Rx_AGC_Amplitude];                 248 

    end 249 

     250 

    %Reset Counter each symbol 251 

    Count_40 = Count_40 + 1; 252 
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    if (Count_40 == 40) 253 

        Count_40 = 0; 254 

    end 255 

     256 

    %Per Sample Data Logging 257 

    log_Rx_PreDecision_I =[log_Rx_PreDecision_I Rx_Decision_Buffer_I2]; 258 

    log_Rx_PreDecision_Q =[log_Rx_PreDecision_Q Rx_Decision_Buffer_Q2]; 259 

    log_Rx_Input_I = [log_Rx_Input_I Rx_Input_I(Current_Sample)]; 260 

    log_Rx_Input_Q = [log_Rx_Input_Q Rx_Input_Q(Current_Sample)]; 261 

    log_Rx_IQ_Rotation = [log_Rx_IQ_Rotation Rx_IQ_Rotate]; 262 

end 263 

  264 

 %The rest of this code is all displaying various log files in figures. 265 

figure 266 

for b = 5022:40:10000 267 

    subplot(4,1,1) 268 

    hold on 269 

    plot(log_Rx_Input_I(b:(b+40))) 270 

    title('In-phase waveform') 271 

    subplot(4,1,2) 272 

    hold on 273 

    plot(log_Rx_Input_Q(b:(b+40))) 274 

    title('Quadrature-phase waveform') 275 

end 276 

for b =(3*length(log_Rx_Input_I)/4 + 23):40:(length(log_Rx_Input_I)-40) 277 

        subplot(4,1,3) 278 

        hold on 279 

        plot(log_Rx_PreDecision_I(b:(b+40)),'r') 280 
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        title('In-phase waveform.  Blue = Innitial Stream,Red = ... 281 

           After Gain and I/Q angle control.') 282 

        subplot(4,1,4) 283 

        hold on 284 

        plot(log_Rx_PreDecision_Q(b:(b+40)),'r') 285 

        title('Quadrature-phase waveform.  Blue = Innitial Stream,... 286 

           Red = After Gain and I/Q angle control.') 287 

end 288 

  289 

  290 

  291 

% Plot Constellation Diagrams Before/After Rx Modification 292 

figure 293 

subplot(2,1,1) 294 

plot(log_Rx_Input_I(2400:1:end),log_Rx_Input_Q(2400:1:end)); 295 

title('Original I/Q Diagram') 296 

subplot(2,1,2) 297 

plot(log_Rx_PreDecision_I((Number_of_Samples/2):1:end),... 298 

    log_Rx_PreDecision_Q((Number_of_Samples/2):1:end),... 299 

    log_Rx_Data_Result_I((Number_of_Samples/40/2):1:end),... 300 

    log_Rx_Data_Result_Q((Number_of_Samples/40/2):1:end),'r+'); 301 

title('Angle Corrected I/Q Diagram') 302 

hold on 303 

plot([-32000  32000], [ 32000  32000], 'r') 304 

plot([ 32000  32000], [ 32000 -32000], 'r') 305 

plot( [32000 -32000], [-32000 -32000], 'r') 306 

plot([-32000 -32000], [-32000  32000], 'r') 307 

hold off 308 
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  309 

% Plot Control Responses 310 

figure 311 

subplot(3,1,1) 312 

plot(log_Rx_IQ_Rotation.*180/(2*pi)) 313 

title('I/Q Angle Adjustment') 314 

xlabel('Sample') 315 

subplot(3,1,2) 316 

plot(log_Rx_AGC_Gain) 317 

title('Gain Adjustment') 318 

xlabel('Symbols') 319 

subplot(3,1,3) 320 

plot(log_Rx_SymbolSync_SamplePoint) 321 

hold on 322 

plot(round(log_Rx_SymbolSync_SamplePoint),'r') 323 

title('Sample Point') 324 

xlabel('Symbols') 325 

hold off 326 

     327 

% Plot Rx Decoded Data Output 328 

figure 329 

subplot(2,1,1) 330 

plot(log_Rx_Data_Result_I,'.') 331 

title('I-Phase Data Stream') 332 

xlabel('Symbols') 333 

subplot(2,1,2) 334 

plot(log_Rx_Data_Result_Q,'.') 335 

title('Q-Phase Data Sream') 336 
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xlabel('Symbols') 337 

  338 

%Plot Differential Decoded Data Vs Raw Data 339 

figure 340 

stairs(0:150,(log_Tx_Data_I_Raw(500:650)+4)) 341 

hold on 342 

stairs(0:150,(log_Rx_Data_I_Raw(500:650)+2.5)) 343 

stairs(0:150,(log_Tx_Data_Q_Raw(500:650)-.5)) 344 

stairs(0:150,(log_Rx_Data_Q_Raw(500:650)-2)) 345 

hold off 346 

axis([0 150 -2.5 5.5]) 347 

title('Tx/Rx Inphase then Tx/Rx Quadrature Phase Raw Data Streams') 348 

xlabel('Bits') 349 

  350 

toc 351 
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function [w, ySOSfilter] = mySOSfilt(SOS, gain, w,index, x, 1 

ySOSfilter); 2 

% SOS filter routine 3 

% 4 

% by Dr. T.B. Welch, PE 5 

% written on 10 February 2010 6 

% 7 

% variable declaration 8 

  9 

% calculations 10 

    w(1,1) = gain*x - SOS(1,5)*w(1,2) - SOS(1,6)*w(1,3); 11 

    output = SOS(1,1)*w(1,1) + SOS(1,2)*w(1,2) + SOS(1,3)*w(1,3); 12 

    w(1,3) = w(1,2); 13 

    w(1,2) = w(1,1); 14 

     15 

    w(2,1) = output - SOS(2,5)*w(2,2) - SOS(2,6)*w(2,3); 16 

    output = SOS(2,1)*w(2,1) + SOS(2,2)*w(2,2) + SOS(2,3)*w(2,3); 17 

    w(2,3) = w(2,2); 18 

    w(2,2) = w(2,1); 19 

     20 

    w(3,1) = output - SOS(3,5)*w(3,2) - SOS(3,6)*w(3,3); 21 

    output = SOS(3,1)*w(3,1) + SOS(3,2)*w(3,2) + SOS(3,3)*w(3,3); 22 

    w(3,3) = w(3,2); 23 

    w(3,2) = w(3,1); 24 

  25 

    w(4,1) = output - SOS(4,5)*w(4,2) - SOS(4,6)*w(4,3); 26 

    ySOSfilter(index) = SOS(4,1)*w(4,1) + SOS(4,2)*w(4,2) ... 27 

       + SOS(4,3)*w(4,3); 28 
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    w(4,3) = w(4,2); 29 

    w(4,2) = w(4,1); 30 
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/////////////////////////////////////////////////////////////////////// 1 

// Filename: ISRs.c 2 

// 3 

// Synopsis: Interrupt service routines for McBSP transmit and receive 4 

// Framework from Real-time Digital Signal Processing, 2005 5 

// Welch, Wright, & Morrow,  6 

// 7 

// With additional QPSK random data transmission. Added Spring 2010 by  8 

// Robert Conant and Chris Anderson 9 

// 10 

/////////////////////////////////////////////////////////////////////// 11 

 12 

 13 

#include ".\Common_Code\DSK_Config.h"    14 

#include <math.h>  15 

#include <stdlib.h> 16 

#include <stdio.h> 17 

 18 

// Data is received from the PCM3006 codec as 2 16-bit words (left/right)  19 

// packed into one 32-bit word.  The union allows the data to be accessed  20 

// as a single entity when transferring to and from the serial port, but  21 

// still be able to manipulate the left and right channels independently. 22 

 23 

#define LEFT  0 24 

#define RIGHT 1 25 

 26 

 27 

float temp; 28 

 29 

 float fs=48000; 30 

 float datarate=2400; 31 

 float alpha=.364; 32 

 float symbols=3; 33 

 float costable[4]={1, 0, -1, 0}; 34 

    float sintable[4]={0, 1, 0, -1}; 35 

 int counter=0; 36 

 37 

 float theta=0; 38 

 float gain=1; 39 
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 float symbolrate=1200;  //for QPSK 40 

 float rotationoffset=0; 41 

 float so; 42 

 float co; 43 

 float amplitude=14000; 44 

    float samplespersymbol=40; 45 

 46 

 #define N 240 47 

 48 

// float B=[241]; 49 

 50 

 51 

     float B[N+1]={ -3.6205932e-003,-3.7406889e-003,-3.8171915e-003,-3.8471142e-003, 52 

-3.8278644e-003,-3.7572865e-003,-3.6337013e-003,-3.4559417e-003,-3.2233850e-003,-2.9359801e-003, 53 

-2.5942704e-003,-2.1994113e-003,-1.7531824e-003,-1.2579936e-003,-7.1688573e-004,-1.3352392e-004, 54 

4.8781416e-004,1.1422573e-003,1.8243660e-003,2.5281640e-003,3.2471764e-003,3.9744736e-003, 55 

4.7027214e-003, 5.4242369e-003,6.1310492e-003,6.8149655e-003,7.4676416e-003,8.0806557e-003, 56 

8.6455868e-003, 9.1540947e-003,9.5980025e-003,9.9693813e-003,1.0260634e-002,1.0464582e-002, 57 

1.0574548e-002,1.0584436e-002, 1.0488819e-002,1.0283008e-002,9.9631305e-003,9.5261993e-003, 58 

8.9701740e-003,8.2940202e-003, 7.4977604e-003,6.5825180e-003,5.5505531e-003,4.4052902e-003, 59 

3.1513374e-003,1.7944960e-003,3.4176055e-004, -1.1986905e-003,-2.8175145e-003,-4.5042341e-003, 60 

-6.2472767e-003,-8.0340244e-003,-9.8508733e-003,-1.1683303e-002,-1.3515953e-002,-1.5332714e-002, 61 

-1.7116819e-002,-1.8850950e-002,-2.0517347e-002,-2.2097925e-002,-2.3574399e-002,-2.4928408e-002, 62 

-2.6141651e-002,-2.7196018e-002,-2.8073728e-002,-2.8757469e-002,-2.9230533e-002,-2.9476952e-002, 63 

-2.9481636e-002,-2.9230502e-002,-2.8710601e-002,-2.7910242e-002,-2.6819105e-002,-2.5428349e-002, 64 

-2.3730715e-002,-2.1720612e-002,-1.9394204e-002,-1.6749472e-002,-1.3786279e-002,-1.0506415e-002, 65 

-6.9136274e-003,-3.0136456e-003,1.1858140e-003,5.6750535e-003,1.0442414e-002,1.5474310e-002, 66 

2.0755277e-002,2.6268033e-002,3.1993553e-002,3.7911159e-002,4.3998618e-002,5.0232256e-002, 67 

5.6587082e-002, 6.3036918e-002,6.9554551e-002,7.6111878e-002,8.2680070e-002,8.9229738e-002, 68 

9.5731107e-002, 1.0215419e-001,1.0846897e-001,1.1464559e-001,1.2065451e-001,1.2646672e-001, 69 

1.3205391e-001,1.3738862e-001,1.4244447e-001,1.4719626e-001,1.5162017e-001,1.5569392e-001, 70 

1.5939688e-001,1.6271021e-001,1.6561700e-001,1.6810237e-001,1.7015356e-001,1.7176001e-001, 71 

1.7291343e-001,1.7360788e-001,1.7383976e-001,1.7360788e-001,1.7291343e-001,1.7176001e-001, 72 

1.7015356e-001,1.6810237e-001,1.6561700e-001,1.6271021e-001,1.5939688e-001,1.5569392e-001, 73 

1.5162017e-001,1.4719626e-001,1.4244447e-001,1.3738862e-001,1.3205391e-001,1.2646672e-001, 74 

1.2065451e-001,1.1464559e-001,1.0846897e-001,1.0215419e-001,9.5731107e-002,8.9229738e-002, 75 

8.2680070e-002,7.6111878e-002,6.9554551e-002,6.3036918e-002,5.6587082e-002,5.0232256e-002, 76 

4.3998618e-002,3.7911159e-002,3.1993553e-002,2.6268033e-002,2.0755277e-002,1.5474310e-002, 77 

1.0442414e-002,5.6750535e-003,1.1858140e-003,-3.0136456e-003,-6.9136274e-003,-1.0506415e-002, 78 

-1.3786279e-002,-1.6749472e-002,-1.9394204e-002,-2.1720612e-002,-2.3730715e-002,-2.5428349e-002, 79 

-2.6819105e-002,-2.7910242e-002,-2.8710601e-002,-2.9230502e-002,-2.9481636e-002,-2.9476952e-002, 80 
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-2.9230533e-002,-2.8757469e-002,-2.8073728e-002,-2.7196018e-002,-2.6141651e-002,-2.4928408e-002, 81 

-2.3574399e-002,-2.2097925e-002,-2.0517347e-002,-1.8850950e-002,-1.7116819e-002,-1.5332714e-002, 82 

-1.3515953e-002,-1.1683303e-002,-9.8508733e-003,-8.0340244e-003,-6.2472767e-003,-4.5042341e-003, 83 

-2.8175145e-003,-1.1986905e-003,3.4176055e-004,1.7944960e-003,3.1513374e-003,4.4052902e-003, 84 

5.5505531e-003,6.5825180e-003,7.4977604e-003,8.2940202e-003,8.9701740e-003,9.5261993e-003, 85 

9.9631305e-003,1.0283008e-002,1.0488819e-002,1.0584436e-002,1.0574548e-002,1.0464582e-002, 86 

1.0260634e-002, 9.9693813e-003,9.5980025e-003,9.1540947e-003,8.6455868e-003,8.0806557e-003, 87 

7.4676416e-003, 6.8149655e-003,6.1310492e-003,5.4242369e-003,4.7027214e-003,3.9744736e-003, 88 

3.2471764e-003,2.5281640e-003, 1.8243660e-003,1.1422573e-003,4.8781416e-004,-1.3352392e-004, 89 

-7.1688573e-004,-1.2579936e-003,-1.7531824e-003,-2.1994113e-003,-2.5942704e-003,-2.9359801e-003, 90 

-3.2233850e-003,-3.4559417e-003,-3.6337013e-003,-3.7572865e-003,-3.8278644e-003, 91 

-3.8471142e-003,-3.8171915e-003,-3.7406889e-003,-3.6205932e-003 }; 92 

 93 

 94 

 int fourcount=1; 95 

 float datai[6]; 96 

 float dataq[6]; 97 

 int i; 98 

 float di; 99 

 float dq; 100 

 float imdatai, imdataq, *pr, *pl; 101 

 float xRight[6], *pRight = xRight; 102 

 float xLeft[6], *pLeft = xLeft; 103 

 float output; 104 

 105 

volatile union { 106 

 unsigned int UINT; 107 

 short Channel[2]; 108 

 } CodecDataIn, CodecDataOut; 109 

 110 

 111 

interrupt void McBSP_Rx_ISR() 112 

/////////////////////////////////////////////////////////////////////// 113 

// Purpose:   McBSP receive interrupt service routine.  Codec data is 114 

//            stored in the global variable CodecData.  115 

// 116 

// Input:     None 117 

// 118 

// Returns:   Nothing 119 

// 120 

// Calls:     Nothing 121 
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// 122 

// Notes:     None 123 

/////////////////////////////////////////////////////////////////////// 124 

{                               125 

 McBSP *port; 126 

 127 

 if(CodecType == TLC320AD535) 128 

  port = McBSP0_Base; // McBSP0 used with TLC320AD535 129 

 else 130 

  port = McBSP1_Base; // McBSP1 used with codec daughtercards 131 

    CodecDataIn.UINT = port->drr;  // get input data from serial port 132 

 133 

 /* I added my routine here */ 134 

 135 

 136 

 so=sinf(rotationoffset); 137 

 co=cosf(rotationoffset); 138 

 139 

 140 

 141 

 if (counter==0)  142 

 { 143 

  for (i=0; i < 5; i++) 144 

  { 145 

   datai[i] = datai[i + 1]; 146 

   dataq[i] = dataq[i + 1]; 147 

  }  148 

  dataq[5] = amplitude * (2 * (rand() & 1) - 1); 149 

  datai[5] = amplitude * (2 * (rand() & 1) - 1); 150 

 } 151 

 152 

  dq=0; 153 

  di=0; 154 

 155 

 for (i=0; i < 6; i++) 156 

 { 157 

  di += datai[5 - i] * 8 * B[counter + (i * 40)]; 158 

  dq += dataq[5 - i] * 8 * B[counter + (i * 40)]; 159 

 } 160 

 161 

 output=((di * co - dq * so) * costable[fourcount] - (dq * co + di * so) ... 162 



93 

 

 

 

* sintable[fourcount]); 163 

 164 

 165 

 counter++; 166 

 if (counter > 39) 167 

  {counter=0;} 168 

  169 

 170 

 fourcount++; 171 

 if (fourcount > 3) 172 

  {fourcount=0;} 173 

 174 

 175 

 176 

 CodecDataOut.Channel[RIGHT] =   output; // L to R 177 

 CodecDataOut.Channel[LEFT]  =   output; // temp to L 178 

 179 

 180 

 181 

 /* end of my routine */ 182 

} 183 

 184 

interrupt void McBSP_Tx_ISR() 185 

/////////////////////////////////////////////////////////////////////// 186 

// Purpose:   McBSP transmit interrupt service routine.  Codec data  187 

//            stored in the global variable CodecData is sent to the 188 

//            codec.  189 

// 190 

// Input:     None 191 

// 192 

// Returns:   Nothing 193 

// 194 

// Calls:     Nothing 195 

// 196 

// Notes:     None 197 

/////////////////////////////////////////////////////////////////////// 198 

{ 199 

 McBSP *port; 200 

  201 

 // 202 

 // add code here to modify CodecData.Channel[RIGHT] and  203 
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 // CodecData.Channel[LEFT] as desired 204 

 // 205 

  206 

      // now, send the data to the codec 207 

 if(CodecType == TLC320AD535) { 208 

  port = McBSP0_Base;  // McBSP0 used with TLC320AD535 209 

  CodecDataOut.UINT &= 0xfffffffe;// mask off LSB to prevent codec reprogramming 210 

  } 211 

 else { 212 

  port = McBSP1_Base; // McBSP1 used with codec daughtercards 213 

 } 214 

 port->dxr = CodecDataOut.UINT;  // send output data to serial port 215 

} 216 
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/////////////////////////////////////////////////////////////////////// 1 

// Created by Robert Conant and Chistopher Anderson in RT-DSP 4/2010 2 

/////////////////////////////////////////////////////////////////////// 3 

// Filename: ISRs.c 4 

// Synopsis: Interrupt service routines for McBSP transmit and receive 5 

// With additional QPSK receiver. 6 

/////////////////////////////////////////////////////////////////////// 7 

// Framework Courtesy of: 8 

// Welch, Wright, & Morrow,  9 

// Real-time Digital Signal Processing, 2005 10 

/////////////////////////////////////////////////////////////////////// 11 

 12 

#include ".\Common_Code\DSK_Config.h"    13 

#include <math.h>  14 

#include <stdlib.h> 15 

#include <stdio.h> 16 

#define LEFT  0 17 

#define RIGHT 1 18 

 19 

//*************************** DEFS  ************************ 20 

float attenuation=.000001, temp,fs=48000,datarate=4800,alpha=.364,symbols=3; 21 

float costable[4]={1, 0, -1, 0},sintable[4]={0, 1, 0, -1}; 22 

int fourcount=0, counter=0, samplecounter=0, samplepoint=5,TargetGain=28288, i=0; 23 

float theta=0,gain=1,symbolrate=2400,st,ct,Iout,Qout,Ioutpre,Qoutpre,Iout2,Iout3,Qout2,Qout3;  24 

float control1[4],control2[4]; 25 

float dataradius, mean_Radius_Hist, changeneeded; 26 

float amplitude=14000; 27 

float samplespersymbol=40; 28 

float di,dq,Iadjmean,Qadjmean, output, phasegain,gaingain,IQthetagain, Iin, Qin; 29 

 30 

float phase=35;   31 

 32 

float gain_Q = 25000.0, gain_I = 25000.0, Output_Q[5], Output_I[5], StageOne_Q[3], StageTwo_Q[3], 33 

StageThree_Q[3], StageFour_Q[3]; 34 

float StageOne_I[3], StageTwo_I[3], StageThree_I[3], StageFour_I[3]; 35 

 36 

float StageOne_B[3] = {1, -0.582625392507615, -0.502242155533430},StageTwo_B[3] = ... 37 

  {1, -1.841298371057681, 0.888254829549654}; 38 

float StageThree_B[3] = {1, -2.096027914696049, 1.100253146443069},StageFour_B[3] = ... 39 
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 {1, -1.976008564183378, 0.989890509033266}; 40 

float StageOne_A[3] = {1, -1.949708382042005, 0.950595238114926},StageTwo_A[3] = ... 41 

{1, -1.951941630654312, 0.954755854568231}; 42 

float StageThree_A[3] = {1, -1.958279766765397, 0.964046224796366},StageFour_A[3] = ... 43 

{1, -1.969209262832968, 0.978554589881313}; 44 

 45 

//averaging arrays 46 

float Iadj[14]; 47 

float Qadj[14]; 48 

float Radius_Hist[11]; 49 

float comparray[15], phaseadj, comp; 50 

 51 

// **************  END RX DEFS  ************************* 52 

 53 

volatile union { 54 

 unsigned int UINT; 55 

 short Channel[2]; 56 

 } CodecDataIn, CodecDataOut; 57 

interrupt void McBSP_Rx_ISR() 58 

{ McBSP *port; 59 

 if(CodecType == TLC320AD535) 60 

  port = McBSP0_Base; // McBSP0 used with TLC320AD535 61 

 else 62 

  port = McBSP1_Base; // McBSP1 used with codec daughtercards 63 

   CodecDataIn.UINT = port->drr;  // get input data from serial port 64 

 65 

// Control Loop Gain Settings 66 

 phasegain=2*(.707);    //  Control loop gain on the sample point adjustment 67 

 gaingain=.0000002*(.707);  //   gain on the gain control loop 68 

 IQthetagain=0.0000004*(.707);  //  gain on the I/Q theta control loop 69 

 70 

//DEMODULATION  71 

 Output_I[0]=CodecDataIn.Channel[LEFT]*sintable[fourcount]; 72 

 Output_Q[0]=CodecDataIn.Channel[LEFT]*costable[fourcount]; 73 

 StageOne_Q[0]=StageOne_A[0]*Output_Q[0]-StageOne_A[1]*StageOne_Q[1]-StageOne_A[2]*StageOne_Q[2]; 74 

 Output_Q[1]=StageOne_B[0]*StageOne_Q[0]+StageOne_B[1]*StageOne_Q[1]+StageOne_B[2]*StageOne_Q[2]; 75 

 StageOne_I[0]=StageOne_A[0]*Output_I[0]-StageOne_A[1]*StageOne_I[1]-StageOne_A[2]*StageOne_I[2]; 76 

 Output_I[1]=StageOne_B[0]*StageOne_I[0]+StageOne_B[1]*StageOne_I[1]+StageOne_B[2]*StageOne_I[2]; 77 

 StageTwo_Q[0]=StageTwo_A[0]*Output_Q[1]-StageTwo_A[1]*StageTwo_Q[1]-StageTwo_A[2]*StageTwo_Q[2]; 78 

 Output_Q[2]=StageTwo_B[0]*StageTwo_Q[0]+StageTwo_B[1]*StageTwo_Q[1]+StageTwo_B[2]*StageTwo_Q[2]; 79 

 StageTwo_I[0]=StageTwo_A[0]*Output_I[1]-StageTwo_A[1]*StageTwo_I[1]-StageTwo_A[2]*StageTwo_I[2]; 80 

 Output_I[2]=StageTwo_B[0]*StageTwo_I[0]+StageTwo_B[1]*StageTwo_I[1]+StageTwo_B[2]*StageTwo_I[2]; 81 

 StageThree_Q[0]=StageThree_A[0]*Output_Q[2]-StageThree_A[1]*StageThree_Q[1]-StageThree_A[2]*StageThree_Q[2]; 82 
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 Output_Q[3]=StageThree_B[0]*StageThree_Q[0]+StageThree_B[1]*StageThree_Q[1]+StageThree_B[2]*StageThree_Q[2]; 83 

 StageThree_I[0]=StageThree_A[0]*Output_I[2]-StageThree_A[1]*StageThree_I[1]-StageThree_A[2]*StageThree_I[2]; 84 

 Output_I[3]=StageThree_B[0]*StageThree_I[0]+StageThree_B[1]*StageThree_I[1]+StageThree_B[2]*StageThree_I[2]; 85 

 StageFour_Q[0]=StageFour_A[0]*Output_Q[3]-StageFour_A[1]*StageFour_Q[1]-StageFour_A[2]*StageFour_Q[2]; 86 

 Output_Q[4]=StageFour_B[0]*StageFour_Q[0]+StageFour_B[1]*StageFour_Q[1]+StageFour_B[2]*StageFour_Q[2]; 87 

 StageFour_I[0]=StageFour_A[0]*Output_I[3]-StageFour_A[1]*StageFour_I[1]-StageFour_A[2]*StageFour_I[2]; 88 

 Output_I[4]=StageFour_B[0]*StageFour_I[0]+StageFour_B[1]*StageFour_I[1]+StageFour_B[2]*StageFour_I[2]; 89 

 90 

 for (i=0; i<2; i++) 91 

        {StageOne_Q[2-i]=StageOne_Q[(2-i)-1]; 92 

  StageTwo_Q[2-i]=StageTwo_Q[(2-i)-1]; 93 

  StageThree_Q[2-i]=StageThree_Q[(2-i)-1]; 94 

  StageFour_Q[2-i]=StageFour_Q[(2-i)-1]; 95 

 96 

  StageOne_I[2-i]=StageOne_I[(2-i)-1]; 97 

  StageTwo_I[2-i]=StageTwo_I[(2-i)-1]; 98 

  StageThree_I[2-i]=StageThree_I[(2-i)-1]; 99 

  StageFour_I[2-i]=StageFour_I[(2-i)-1];} 100 

  101 

    // set current angular adjustment of I/Q data 102 

    st = sinf(theta); 103 

    ct = cosf(theta); 104 

     105 

    // Shift Memory HISTORY (MEANING:OLD) 106 

    Iout3=Iout2; 107 

    Iout2=Iout; 108 

    Qout3=Qout2; 109 

    Qout2=Qout; 110 

 111 

    //Variable Translation 112 

    Iin=Output_I[4]*attenuation;   // Gain set due to filter gain 113 

    Qin=Output_Q[4]*attenuation;   // Gain set due to filter gain 114 

    //Calculate NEW Derotated Data 115 

    Ioutpre = Iin*ct - Qin*st; 116 

    Qoutpre = Qin*ct + Iin*st; 117 

     118 

    // Apply automatic gain control 119 

    Iout=Ioutpre*gain; 120 

    Qout=Qoutpre*gain; 121 

      122 

    // sample if at sampling location in symbol 123 

    if (counter==samplepoint+22 | counter==samplepoint-18) 124 
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        { 125 

  samplecounter++; 126 

        dataradius = Iout * Iout + Qout * Qout;  // actually dataradius squared 127 

        for (i=0; i < 10; i++) 128 

            { 129 

                Radius_Hist[i] = Radius_Hist[i + 1]; 130 

            }  131 

   132 

        Radius_Hist[10] = dataradius; 133 

        mean_Radius_Hist= 0.08333333 * (Radius_Hist[0] + Radius_Hist[1]  + Radius_Hist[2]  ... 134 

+ Radius_Hist[3] + Radius_Hist[4] + Radius_Hist[5] + Radius_Hist[6]... 135 

+ Radius_Hist[7] + Radius_Hist[8] + Radius_Hist[9] + Radius_Hist[10]); 136 

        changeneeded=(TargetGain*TargetGain-mean_Radius_Hist)*gaingain; 137 

  if (samplecounter>40) 138 

  {   139 

  gain = gain + changeneeded; 140 

  } 141 

 142 

        // determine digital result 143 

        if (Iout2>0) 144 

            {di=1;} 145 

        else 146 

            {di=-1;} 147 

        if (Qout2>0) 148 

            {dq=1;} 149 

        else 150 

            {dq=-1;} 151 

 152 

        //calculate next sample point adjustment 153 

        for (i=0; i < 13; i++) 154 

            { 155 

            Iadj[i]=Iadj[i + 1]; 156 

            Qadj[i]=Qadj[i + 1]; 157 

            }  158 

  159 

        Iadj[13] = di*(Iout-Iout3); 160 

        Qadj[13] = dq*(Qout-Qout3); 161 

        Iadjmean = 0.071428571428571428571428571428571 * (Iadj[0] +Iadj[1] + Iadj[2] + Iadj[3]... 162 

 + Iadj[4] + Iadj[5] + Iadj[6] + Iadj[7] + Iadj[8] + Iadj[9] + Iadj[10] + Iadj[11]... 163 

 + Iadj[12] + Iadj[13]); 164 

        Qadjmean = 0.071428571428571428571428571428571 * (Qadj[0] +Qadj[1] + Qadj[2] + Qadj[3]... 165 
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 + Qadj[4] + Qadj[5] + Qadj[6] + Qadj[7] + Qadj[8] + Qadj[9] + Qadj[10] + Qadj[11] … 166 

 + Qadj[12] + Qadj[13]); 167 

        phaseadj=phasegain*0.0000625*(Iadjmean+Qadjmean); 168 

        phase=phase+phaseadj; 169 

 170 

        // recalculate next angle adjustment 171 

        comp = -(di*Qout-dq*Iout)*IQthetagain; 172 

        for (i=0; i < 14; i++) 173 

            { 174 

            comparray[i] = comparray[i + 1]; 175 

            }  176 

        comparray[14] = comp; 177 

        theta = theta + 0.0714 *(comparray[1] + comparray[2] + comparray[3] + comparray[4]... 178 

 + comparray[5] + comparray[6] + comparray[7] + comparray[8] + comparray[9]... 179 

 + comparray[10] + comparray[11] + comparray[12] + comparray[13] + comparray[14]); 180 

  if (theta>(2*3.14)) 181 

   {theta=theta-(2*3.14);} 182 

 183 

// Data Mode 184 

// CodecDataOut.Channel[RIGHT] = di * gain_Q; 185 

// CodecDataOut.Channel[LEFT]  = dq * gain_I;; 186 

 187 

    }   // end symbol loop 188 

     189 

// Signal Mode 190 

// CodecDataOut.Channel[RIGHT] = .6*Iout; 191 

// CodecDataOut.Channel[LEFT]  = .6*Qout; 192 

 193 

// Control Mode 194 

 control1[0]= 3000*theta; 195 

 control1[1]= 3000*theta; 196 

 control1[2]= 10 * gain; 197 

 control1[3]= 0; 198 

 199 

 control2[0]= 700*samplepoint; 200 

 control2[1]= 700*samplepoint; 201 

 control2[2]= 10 * gain; 202 

 control2[3]= 0; 203 

 204 

 CodecDataOut.Channel[RIGHT] = control1[fourcount]; 205 

 CodecDataOut.Channel[LEFT]  = control2[fourcount]; 206 
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 207 

    //Increment or Decrement a symbol on sample point timing 208 

    if ( phase > 39.5 ) 209 

        phase = phase - 40; 210 

    if (phase<-.5) 211 

        phase = phase + 40; 212 

    samplepoint=(phase+0.5); // round sample point timing to a single integer value. 213 

 214 

    //  counters 215 

    counter++; 216 

    if (counter>39)  217 

        {counter=0;} 218 

    fourcount++; 219 

    if (fourcount > 3) 220 

        {fourcount=0;} 221 

} 222 

interrupt void McBSP_Tx_ISR() 223 

{  McBSP *port; 224 

 if(CodecType == TLC320AD535) {  port = McBSP0_Base;  // McBSP0 used with TLC320AD535 225 

  CodecDataOut.UINT &= 0xfffffffe;}// mask off LSB to prevent codec reprogramming 226 

 else {  port = McBSP1_Base;  } // McBSP1 used with codec daughtercards 227 

 port->dxr = CodecDataOut.UINT;}  // send output data to serial port 228 


