

DIFFERENTIALLY ENCODED QUADRATURE PHASE SHIFT KEY

COMMUNICATION AND REAL-TIME IMPLEMENTATION

by

Robert Walton Conant

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Boise State University

August 2010

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Robert Walton Conant

Thesis Title: Differentially Encoded Quadrature Phase Shift Key Communication

And Real Time Implementation

Date of Final Oral Examination: 11 June 2010

The following individuals read and discussed the thesis submitted by student Robert
Walton Conant, and they also evaluated his presentation and response to questions during
the final oral examination. They found that the student passed the final oral examination,
and that the thesis was satisfactory for a master’s degree and ready for any final
modifications that they explicitly required.

Thad B. Welch, Ph.D. Chair, Supervisory Committee

Nader Rafla, Ph.D. Member, Supervisory Committee

John Chiasson, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Thad B. Welch, Ph.D., Chair of
the Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

iii

ACKNOWLEDGMENTS

Micron has enabled this pursuit financially, and without the cooperation and

flexibility of my immediate supervisors, David Kohtz and Anthony Ngo, and the Test

Engineering Department, this work would not have been possible.

Thanks to Dr. Nader Rafla and Dr. John Chiasson for participating in the

verification and refinement of this document.

Dr. Thad Welch was the main enabler of my opportunity at Boise State University

and my guide through this intricate process. His willingness to address the uniqueness of

my situation as a working student, and his advice, were essential to my success. Thanks

also to Mrs. Donna Welch for her assistance in proofing this text.

More than anyone, my wife Carmen's support is the foundation of any success I

have experienced in the last 4 great years. Proverbs 31:10.

iv

DEDICATION

To the engineer - whose continually curious nature and lack of satisfaction with

the current level of innovation makes the digital electronics field uniquely exciting for the

inquiring mind.

v

ABSTRACT

Robust communication methods are integral to advances in modern technology.

Software defined radios (SDRs) have been the chief instruments of communication for

the last three decades. Upcoming generations of wireless networks and phone systems

depend on successful implementations of increasingly sophisticated software defined

modulation methods. The challenges presented by encoding, modulation, signal

conditioning, timing, and decision algorithms are non-trivial. Adapting to the impacts of

wired and wireless channels adds further complexity.

While not comprehensive on the subject of communications, this text serves to

introduce the practical concepts of binary communications, modulation methods, the

digital signal processor (DSP), and software defined radio (SDR). The practical nature of

this work is demonstrated through Matlab® simulation of quadrature phase shift key

(QPSK) transmitter and receiver algorithms. The algorithms utilize automated controls

for gain, I/Q constellation de-rotation, and symbol synchronization. The functionality of

these algorithms is then verified on a modern floating point processor in a real-time

implementation.

This thesis can serve as a starting reference for any similar real world

implementation of digital modulation schemes, such as OFDM or 16QAM. In addition,

vi

this document demonstrates detailed analysis of the functionality required to enable

robust QPSK transmission and reception.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iii

DEDICATION .. iv

ABSTRACT ... v

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

ACRONYMS DEFINED .. xv

CHAPTER 1: INTRODUCTION ... 1

1.1 Organization .. 1

1.2 Contributions of This Thesis ... 2

CHAPTER 2: COMMUNICATIONS BACKGROUND ... 3

 2.1 Introduction ... 3

 2.2 Information Theory ... 4

 2.3 Binary Communications ... 4

CHAPTER 3: THE CHANNEL AND MODULATION .. 7

3.1 The Channel and Distortion Types ... 7

 3.1.1 The Wired Channel .. 7

 3.1.2 The Wireless Channel .. 8

 3.1.3 Amplitude Distortion ... 9

 3.1.4 Phase Distortion ... 9

viii

3.2 Digital Modulation Methods ... 12

3.2.1 Amplitude Shift Keying ... 12

3.2.2 Frequency Shift Keying ... 13

3.2.3 Phase Shift Keying ... 14

CHAPTER 4: QUADRATURE PHASE SHIFT KEYING .. 16

 4.1 Orthogonality .. 16

4.2 The Quadrature Phase Shift Key Transmitter ... 19

4.3 The Quadrature Phase Shift Key Receiver ... 22

 4.3.1 Demodulation and Matched Filtering .. 22

 4.3.2 Automatic Gain Control ... 23

 4.3.3 I/Q Phase Constellation De-rotation .. 24

 4.3.4 Symbol Synchronization and the Decision 25

CHAPTER 5: DIGITAL SIGNAL PROCESSING .. 26

 5.1 Digital Signal Processing .. 26

 5.2 Software Defined Radio .. 27

 5.3 Industrial Considerations .. 29

 5.3.1 Processor Cost vs. Capability .. 29

 5.3.2 Floating vs. Fixed Point ... 30

 5.3.3 Scale ... 30

CHAPTER 6: SIMULATING QPSK TX/RX .. 32

 6.1 Matlab® Implementation Notes ... 32

 6.1.1 Introduction .. 32

 6.1.2 The Lack of Time Constraint ... 32

ix

 6.1.3 Single Clock Frequency ... 33

 6.1.3 Dynamic Range of Processor Capability 33

 6.1.5 An Ideal Channel ... 34

 6.1.6 Constants and Declarations .. 34

 6.2 The Simulated Transmitter ... 36

 6.2.1 Overview .. 36

 6.2.2 Transmitter Differential Encoding ... 37

 6.3 The Simulated Receiver .. 38

 6.3.1 Overview .. 38

 6.3.2 Automatic Gain Control ... 39

 6.3.3 I/Q Constellation De-rotation .. 40

 6.3.4 Symbol Synchronization .. 45

 6.3.5 Data Decoding ... 53

CHAPTER 7: A REAL-TIME QPSK IMPLEMENTATION 55

 7.1 Introduction ... 55

 7.1.1 Introduction to a Real-Time QPSK Transmitter and Receiver .. 55

 7.1.2 Processor Time Constraints ... 55

 7.1.3 Presence of Multiple Clock Frequencies 57

 7.1.4 Lack of Dynamic Range Onboard the Processor 57

 7.1.5 A Non-Ideal Channel ... 58

 7.2 Overview of Texas Instruments C6713 DSK ... 58

 7.3 The Real-Time Transmitter ... 60

 7.3.1 Description ... 60

x

 7.3.2 Transmitter Details ... 61

 7.4 The Real-Time Receiver ... 63

 7.4.1 Description ... 63

 7.4.2 Receiver Operation Verification .. 64

CHAPTER 8: CONCLUSIONS ... 68

BIBLIOGRAPHY ... 70

APPENDIX A ... 71

Matlab® Implementation of a QPSK Transmitter and Receiver

APPENDIX B ... 85

Matlab® Implementation of an SOS Filter

APPENDIX C ... 88

C CODE Implementation of a QPSK Transmitter

APPENDIX D ... 95

C CODE Implementation of a QPSK Receiver

xi

LIST OF TABLES

Table 2.1 Excerpt from the ASCII Encoding Scheme .. 5

Table 2.2 “Morse Code” Binary Encoding ... 6

xii

LIST OF FIGURES

Figure 3.1 A Rayleigh Fading Channel Distribution ... 10

Figure 3.2 Data-eye Without Multipath Amplitude and Phase Distortion 11

Figure 3.3 Data-eye With Multipath Amplitude and Phase Distortion 12

Figure 3.4 Amplitude Shift Keying .. 13

Figure 3.5 Frequency Shift Keying Example ... 14

Figure 3.6 Binary Phase Shift Keying .. 15

Figure 4.1 Peak Amplitude Sample Points on Sine and Cosine 16

Figure 4.2 The Orthogonality of Sine and Cosine .. 17

Figure 4.3 Block Diagram of Orthogonally Combined Data Streams 18

Figure 4.4 The Constellation Diagram of QPSK ... 19

Figure 4.5 A Raised Cosine Filter from Matlab® ... 20

Figure 4.6 Several Raised Cosine Filtered Data Values in Series 21

Figure 4.7 A QPSK Transmitter ... 22

Figure 4.8 The Orthogonal Demodulation and Raised Cosine Matched Filter 23

Figure 4.9 Receiver Block Diagram through Automatic Gain Control 24

Figure 4.10 QPSK Receiver through I/Q Constellation De-rotation 24

Figure 4.11 Block Diagram of the QPSK Receiver ... 25

Figure 5.1 Block Diagram of Digital and Analog Interaction 27

xiii

Figure 5.2 Possible Framework for an SDR Implementation 28

Figure 6.1 QPSK Simulation - Initial Declarations .. 35

Figure 6.2 Simulated Transmitter Block Diagram ... 36

Figure 6.3 Transmitter Data Encoding ... 37

Figure 6.4 The Simulated Receiver Block Diagram .. 39

Figure 6.5 Automatic Gain Control Calculations ... 39

Figure 6.6 AGC Control Response ... 40

Figure 6.7 I/Q Constellation De-rotation Control Adjustment Calculation 41

Figure 6.8 I/Q De-rotation Calculation Physical Meaning 41

Figure 6.9 I/Q Constellation De-rotation Control Response 42

Figure 6.10 Left: Transmitted Constellation Diagram

 Right: AGC and I/Q De-rotation Corrected Constellation Diagram .. 43

Figure 6.11 I/Q Phase Data-eyes Before Correction .. 44

Figure 6.12 I/Q Phase Data-eyes Resulting from AGC and

 Constellation De-rotation .. 45

Figure 6.13 Symbol Synchronization Calculation ... 46

Figure 6.14 Symbol Synchronization Calculation Physical Meaning 47

Figure 6.15 Symbol Synchronization Control Response 47

Figure 6.16 Impulse Response of an IIR 13th Order Moving Average Filter 48

Figure 6.17 Step Response of an IIR 13th Order Moving Average Filter 49

Figure 6.18 Frequency Response of an IIR 13th Order Moving Average Filter 50

Figure 6.19 Pole/Zero Plot of an IIR 13th Order Moving Average Filter 50

xiv

Figure 6.20 QPSK Receiver Data Samples after Stability 51

Figure 6.21 I/Q Phase Data Streams .. 52

Figure 6.22 Simultaneous Control Stabilization .. 53

Figure 6.23 Resulting Decoded Raw Data Compared to Encoded Raw Data 54

Figure 7.1 The Texas Instruments C6713 DSK ... 59

Figure 7.2 The QPSK Transmitter Block Diagram .. 61

Figure 7.3 The Main Functional Part of the Transmitter 62

Figure 7.4 Transmitted Data and Matching Received Data 64

Figure 7.5 X/Y Plot of a De-rotated, AGC Corrected I/Q Constellation 65

Figure 7.6 Control Signal Output Mode of the QPSK Transmitter 66

xv

LIST OF ACRONYMS

16QAM 16 Constellation State Quadrature Amplitude Modulation

A/D Analog-to-Digital Converter

AGC Automatic Gain Control

AM Amplitude Modulation

ASCII American Standard Code for Information Interchange

ASK Amplitude Shift Key (Modulation)

BPSK Binary Phase Shift Key (Modulation)

CCS Code Composer Studio

D/A Digital-to-Analog Converter

DC Direct Current

DSK DSP Startup Kit

DSP Digital Signal Processor or Digital Signal Processing

E-UTRA Evolved UMTS Terrestrial Radio Access

FM Frequency Modulation

FSK Frequency Shift Key (Modulation)

Gb/s Gigabit, or 1,000,000,000 bits per second

I/Q In-phase and Quadrature-phase

ISR Interrupt Service Routine

kb/s kilobit, or 1000 bits per second

xvi

LNA Low-noise Amplifier

Mb/s Megabit, or 1,000,000 bits per second

OFDM Orthogonal Frequency Division Multiplexing (Modulation)

POTS Plain Old Telephone Service

PSK Phase Shift Key (Modulation)

QPSK Quadrature Phase Shift Key (Modulation)

SDR Software Defined Radio

SOS Second Order Section

TI Texas Instruments

UMTS Universal Mobile Telecommunications System

1

CHAPTER 1: INTRODUCTION

1.1 Organization

Chapter 1 begins this thesis with a brief industrial motivation leading into

background information on information theory and binary communications in Chapter 2.

Chapter 3 follows with discussions of frequency, phase, and amplitude shift keying, and

also wired and wireless channels. Chapter 4 contains a detailed description of the scheme

of interest, quadrature phase shift keying (QPSK).

Chapter 5 clarifies how digital signal processing aides signal modulation

implementation, and describes the architectural changes that lead to software defined

radio. There is a brief mention of the requirements for real-time DSP, which includes

several industrial tradeoffs that motivate the functionality of these processors. Chapter 6

describes a Matlab® simulated implementation of QPSK, carefully noting simplifications

and QPSK transmitter details. It concludes with complicated receiver details, including

demodulation, a matched filter, automatic gain control, phase de-rotation, and symbol

synchronization.

Chapter 7 presents a real-time implementation of the same QPSK transmitter and

receiver. These are implemented on two linked Texas Instruments C6713 floating point

DSPs. Details are provided pertaining to subsystems similar to those in Chapter 6, as

2

well as verification waveforms. Chapter 8 ties the theory and practicality back to

industry, concluding this full-circle thesis.

1.2 Contributions of This Thesis

This thesis is intended to be a QPSK implementation starting guide for someone

with basic communications knowledge and minimal programming skills. This document

moves briefly through background information, and then delves into the detailed

functions required for generation and reception of QPSK type data on a floating point

DSP. These functions are not novel and the subsystems are commonplace in PSK type

modulation algorithms. The main contribution provided by this thesis is a full-circle

investigation from industrial considerations, to detailed background theory, to simulation

results, and then real-world functionality of a QPSK communications algorithm. This

process is not well documented currently, making this document an asset to anyone

attempting similar work or beginning an investigation of practical DSP-based

communications.

3

CHAPTER 2: COMMUNICATIONS BACKGROUND

2.1 Introduction

Telegraphy may have roots with Polybius (circa 150 BC) who was one of the first

to represent letters with numbers. Such schemes then allowed signals to be transmitted

via columns of torches. Almost exactly two thousand years later, in 1844, a single skilled

telegrapher, who might be considered the original electric binary or digital

communications specialist [1, pg. 1], was capable of either transmitting or receiving

around 5 bits per second. This was only possible given the right equipment and

infrastructure terminating at a local telegraph station [2, pg. 1]. 150 years later, in 1989,

the personal computer community elite used 9.6 kb/s modems costing around $1000

each. In 2000 and at around $50, a 56 kb/s modem was a common device in a technically

inclined American household, pushing the limits of the plain old telephone system

(commonly abbreviated as POTS). Currently, existing 4th generation cellular phone

technology (OFDM [3, pg. 447] via E-UTRA) places 200 Mbit/s wireless throughput in

the hands of thousands of roaming teenagers with a minor cost increase in their monthly

cell phone contracts. Demonstrated by such history, the societal impact of

communications technology continues to widen exponentially, not only as the speed of

technology allows, but also as the range of people capable of utilizing this technology

grows increasingly broader [2, pg. 9].

4

As communications methodology matured in speed and reduced cost of

implementation, faster throughput was available to more people. This enabled a business

opportunity of scale. If modern engineers could manufacture just a single phone capable

of sharing 10 Terabits of data per second, it is quite possible nothing would ever come of

it. But if they can make a million cell phones just slightly cheaper and faster than the

previous generation, they might just make a fortune and change the world.

2.2 Information Theory

 Claude E. Shannon pioneered information theory in the pivotal years around 1950

[3 pg. 567]. For the purposes of this investigation, it is enough to know that information,

be it voice, data, pictures, or a web site, can be represented by a series of numbers. At a

minimum, this means real-world (analog) signals must be captured, quantized, encoded,

stored, and streamed directly into a communications device. Some of the most used data

transmission protocols don’t require continuous streams of data at the higher levels. The

Internet requires only finite packets, while the lower-level devices in the same system

will require at least the full packet frame of bits available. It is required that the origin

and destination share common knowledge, regarding the structure and syntax of

quantized information.

2.3 Binary Communications

The requirement of a digital communication system is not only numerical data,

but binary data. All data values and the numbers used to represent them are then

represented by a series of 1’s and 0’s. This format is used commonly today at the

5

assembly level of a computer processor, and thus is not a major complication for most

streaming applications. But in all cases, a binary system must be implemented to encode

the data. The most common system in use is the American Standard Code for

Information Interchange, or ASCII, an excerpt of which is shown in Table 2.1. This

example relates seven common alphanumerical letters and numbers (or Glyphs) into their

binary, octal, decimal, and hexadecimal ASCII encoded values. ASCII is a standardized

length glyph encoding scheme, where each character is always represented by exactly

seven bits.

Table 2.1 Excerpt from the ASCII Encoding Scheme

Binary

Oct Dec Hex Glyph

010 0000 40 32 20 Space

011 0100 64 52 34 4

011 0101 65 53 35 5

011 0110 66 54 36 6

100 0001 101 65 41 A

100 0010 102 66 42 B

100 0011 103 67 43 C

Another common example of a simple binary coding methodology for

alphanumeric characters is Morse code, utilizing an efficient and well-known dash-dot

representation for ones and zeros. The efficiency improvement over a standard length

character scheme, such as ASCII, comes in where the more common letters receive

shorter length keys, such as ‘E’ in Table 2.2, represented by a single ‘dot.’

6

Table 2.2: “Morse Code” Binary Encoding

Again, it is required that the origin of the encoded values, and the destination,

share common understandings as to the meaning.

Once a binary data stream is provided to a communications transmitter, it must be

modulated in order to make it suitable for transmission across the ‘channel.’

7

CHAPTER 3: THE CHANNEL AND MODULATION

3.1 The Channel and Distortion Types

 If verbal communication were analogous to the electrical world, thoughts would

be the digital data stream, muscle movement would accomplish the digital-to-analog

conversion, the larynx or “vocal box” would be the communications processor, and air

would be the channel. The communications processor, the larynx, is required as thoughts

are not in a format capable of transmission through the air, but when encoded into a

series of vibrations from 80 Hz to 1100 Hz, the air acts as a medium, or channel, between

the transmitting larynx and the receiving eardrum.

3.1.1 The Wired Channel

Electrical communications channels, for the most part, are simply copper wires.

These wires, along with repeater stations and hubs, spanned the country to enable the

telegraph, which required only a few Hz above DC in bandwidth. More advanced

systems are coaxial cable with a shield around the transmission line to reduce noise. The

throughput capacity of a single coaxial cable often replaces 1500 strands of copper wire.

Coaxial cable, on which channels in the 370 MHz range are multiplexed, is widely used

today for television and Internet communications. There is large available bandwidth and

a minimal amount of distortion. Error rates for coaxial are around one in one billion.

8

However, the skin effect limits the upper frequency capability and series resistance

causes attenuation and also a slight susceptibility to noise, limiting the length of a cable

to a few hundred miles.

 A more advanced hard-line is fiber, using light as a medium, and relying on the

total internal reflection of a translucent tube. These are much less susceptible to noise,

practically immune to electrical noise, are higher bandwidth, and longer ranging. Fiber

channels can currently support rates up to 160 Gb/s over ranges as long as 4,500 miles.

The bottom line for wired communications in the modern age is that they possess

the highest throughput and signal-to-noise ratios, but the requirement of a wired

infrastructure is not suitable for some locations, such as older, highly populated cities.

Also, the requirement of portability prohibits hard-line use for many modern

communications applications, like satellite links, vehicular networks, cellular phones, and

portable computers.

3.1.2 The Wireless Channel

 When electromagnetic waves are released via antennas into free space, or in a

specific direction, and then received in the same manner, a communications channel is

formed without wires [2 pg. 10]. The wireless channel shares many unfortunate and a

few fortunate dualities with the wired channel. Instead of being high bandwidth, it is

often low bandwidth. The nature of transmission over the free space channel typically

results in the signal not being completely shielded from other signals, so there is

significantly more noise. As the signal propagation path is not completely controlled,

there are also large amounts of reflection, multipath delays, and attenuation. This is the

9

performance cost necessary to avoid using a hard-line. This performance cost is

acceptable as a tradeoff to enable the portability requirements of many applications, or

avoid the difficulty of installing hard-line infrastructures in many places. Wireless

communications often require only an access point and a network of wireless transceivers

for common applications, such as wireless LAN or cell phone networks. Note that even

in wireless networks, all links that do not require wireless transmission will use hard-

lines. In a cell-phone network, base stations maintain a wireless link with cell phones,

but hard-lines connect base stations to the main telephone switching network. In wireless

LAN implementations, wireless routers or access points are usually hard-wired into the

wired Ethernet and Internet.

3.1.3 Amplitude Distortion

 In wireless networks, and to a much lesser degree in wired networks, various

forms of distortion are present. Amplitude distortion, usually due to the inconsistent

physical layout of a channel, causes various degrees of attenuation, depending on the

propagation paths. Electromagnetic waves have numerous simultaneous paths and

propagate through different objects. With the multi-path propagation characteristics of

most wireless devices, absolute amplitude consistency is not dependable and therefore

usually not the sole basis of data differentiation decisions.

3.1.4 Phase Distortion

In addition to various forms of amplitude distortion, the multipath nature of

wireless propagation also introduces propagation paths of different physical lengths,

10

causing time delays between a more direct path’s arrival and a more convoluted path,

which may or may not be weaker than the more direct path [2, pg. 344]. A classic way of

modeling amplitude and phase distortion in urban environments is a Rayleigh

distribution, seen in Figure 3.1, resulting in what is called a Rayleigh fading channel.

Note the mode of sigma = 1, which is most likely to be sampled, and the distributions

around it.

Figure 3.1 A Rayleigh Fading Channel Distribution

 Amplitude and phase distortion affect the transmitted signal by either altering the

amplitude or adding time delay, respectively. An undistorted data-eye waveform [4, pg.

254] is shown in Figure 3.2.

11

Figure 3.2 Data-eye Without Multipath Amplitude and Phase Distortion

 Time is noted as a fraction of a single-symbol period, Tb. Note the undistorted

pulse shapes, and the sharp data points at time t = 0, giving a very wide, ideal, data-eye

from -1 to 1. A waveform with multipath distortion is shown in Figure 3.3. Note that

due to both amplitude and phase issues, the values at t = 0 have wide variations. This

could cause issues if the multi-path effects get much worse. The value of the signal in

regard to its proximity to 1 or -1 is still differentiable.

12

Figure 3.3 Data-eye With Multipath Amplitude and Phase Distortion

Multi-path propagation will distort specific characteristics of the signal, such as

phase or amplitude, resulting in important distinctions between the types of modulation

used. Some modulation types rely on amplitude for differentiation of data, while other

methods rely on frequency or phase and are usually more robust.

3.2 Digital Modulation Methods

3.2.1 Amplitude Shift Keying (ASK)

This simplest form of digital modulation relies on transmission and detection of

shifting amplitudes on a carrier frequency [3, pg. 345]. Figure 3.4 shows this concept

with a unit circle mapping of two amplitudes to 1 and 0 and their associated waveforms.

13

This type of modulation is highly sensitive to noise and attenuation or ‘amplitude fading’

in the wired or wireless channel as amplitude is the only key used for data differentiation.

Figure 3.4 Amplitude Shift Keying

3.2.2 Frequency Shift Keying (FSK)

 When two frequencies are available, changing between the two can provide

differentiation between one and zero [3, pg. 351]. There need not be a sharp phase

change between the two frequencies, only a smooth transition as the new frequency

determines. Figure 3.5 below shows a single phase on the unit circle oscillating at two

angular frequencies decoded into zero and one. Frequency is the only key used for

differentiation.

14

Figure 3.5 Frequency Shift Keying Example

 As a frequency change is the differential of a phase change, multi-path phase

distortion can impact the perceived frequency of FSK signals.

3.2.3 Phase Shift Keying (PSK)

 The modulation method of phase shifting requires no additional frequency or

amplitude space, and relies on changes in phase to be detected [2, pg. 24, 345]. The

simplest phase change, shown below in Figure 3.6 as a binary PSK example, is simply

180 degrees, π, or more practically, just inverting the signal. Phase is the only key used

for differentiation. There can also be additional phase divisions resulting in more than

just two data states, going beyond binary communications.

15

Figure 3.6 Binary Phase Shift Keying

16

CHAPTER 4: QUADRATURE PHASE SHIFT KEYING

4.1 Orthogonality

 QPSK, an extension of phase shift keying, uses the orthogonality of the complex

phase dimension to multiplex two data streams into one complex signal. Fundamental to

the understanding of QPSK is the orthogonality of the sine and cosine functions [2, pg.

238]. To understand this, first examine the sine and cosine function described in Figure

4.1.

Figure 4.1 Peak Amplitude Sample Points on Sine and Cosine Functions

Data will be modulated (or more simply, multiplied) with these carrier functions,

and only the highlighted peaks of these signals will be sampled. Next, note these ideal

17

sample point values of the sine and cosine functions in relation to each other in Figure

4.2.

Figure 4.2 The Orthogonality of Sine and Cosine

At the two peak points on the sine function, 1 and -1, the cosine function is zero.

More than this, at all peak points on either function, the other is zero. For sampling

purposes, if these two signals are multiplied together, they will always integrate out to

zero. This is congruent with the mathematical criteria for orthogonality, which states that

the dot product must be zero.

 This allows the magnitude of either the cosine modulated signal (called the in-

phase component) or the sine modulated signal (called the quadrature-phase component)

to be inverted without affecting the other signal. This creates two orthogonal modulation

channels, or two unrelated phase keys that can be modified independently, contained in

18

the same signal. A block diagram of how two data streams can be combined and

recovered using these orthogonal sinusoid signals is shown in Figure 4.3.

Figure 4.3 Block Diagram of Orthogonally Combined Data Streams

Note: This figure is not a valid communications system as the source and

destination are assumed coherent. This is merely to show mathematically

how two data streams can be combined and recovered.

 In Figure 4.3, two input data streams are each modulated with a sine or cosine,

and then added. Their separate waveforms were orthogonal, so by combining them, the

zero valued points in one function are combined with the non-zero points of the other.

The only signal data lost is the zeros, which are known. Then, in the recovery step, the

signals are multiplied by identical sinusoids, which cancel out the orthogonally

modulated signal, and the original data streams are recovered.

This results in the constellation diagram for QPSK, Figure 4.4. Note that the

overall phase of the combined signal is a combination of the two input signal amplitudes

19

from the more complex domain. The cosine modulated signal affects the in-phase or real

component, ‘I,’ and the sine modulated signal affects the quadrature-phase, complex

component, ‘Q.’ Each bit of input data has the power to modify the phase of the

modulated signal by 90 degrees, or π/2. This can result in four possible data states, called

symbols, and each symbol represents two bits of data.

Figure 4.4 The Constellation Diagram of QPSK

4.2 The QPSK Transmitter

 The transmission of QPSK modulated data can be done with a system very similar

to the left half of Figure 4.3. However, a raised cosine filtered waveform is superior to an

impulse for each one or zero. A raised cosine, shown in Figure 4.5, has much lower

bandwidth than an impulse and still satisfies Nyquist’s requirements for no inter-symbol

interference. Please note in Figure 4.5 that the desired data point has a value of ‘1’ at the

20

origin, similar to an impulse, but the waveform used to form this ‘1’ has much less high

frequency content than an impulse.

Figure 4.5 A Raised Cosine Filter from Matlab
®

 Also, the values at every 40 samples (or one symbol period) in either direction

from the origin are zero. This means that when transmitted with a string of pulses with

40 sample spacing, this pulse’s raised cosine waveform will not interfere with the value

of the other data pulses. This is described as having no inter-symbol interference. Figure

4.6 shows a string of several raised cosine pulses to demonstrate the lack of inter-symbol

interference.

21

Figure 4.6 Several Raised Cosine Filtered Data Values in Series

One example of a transmitter utilizing a raised cosine filter is shown in Figure 4.7.

Note that binary data streams are first filtered into raised cosine waveforms, then

modulated with the orthogonal carriers, combined, and transmitted via the channel.

22

Figure 4.7 A QPSK Transmitter

4.3 The QPSK Receiver

 In order to receive a QPSK signal, there are a few stages to implement, namely:

demodulation, match filtering, gain control, I/Q constellation de-rotation, symbol

synchronization, and data decisions. As such, a receiver capable of decoding a QPSK

transmission can be more easily understood when broken down into several subsystems.

4.3.1 Demodulation and Matched Filtering

The incoming signal must be split into the in-phase and quadrature-phase

components, and mixed down into baseband. This can be accomplished using the same

modulation scheme as the transmitter. Also, to remove inter-symbol interference, a

matched filter [4, pg. 253] must be placed after demodulation. This will result in a full

raised cosine filter on every data point. These components are shown in Figure 4.8.

23

Figure 4.8 The Orthogonal Demodulation and Raised Cosine Matched Filter

4.3.2 Automatic Gain Control

As mentioned in Chapter 3, the channel may have multiple attenuation effects,

resulting in unpredictable amplitudes on the received signal. A control loop affecting

gain must be implemented to compensate for unknown attenuation in the channel. This

also provides error-magnitude stability for the control loops further downstream. A

common type of control, used three times in this implementation, is negative feedback

error-proportional control. This automatic gain control (AGC) loop [5, pg. 29] will be

described in detail in the simulation and implementation in Chapters 6 and 7. A block

diagram of AGC added to the previously described demodulation and match filtering is

shown in Figure 4.9.

24

Figure 4.9 Receiver Block Diagram through Automatic Gain Control

4.3.3 In-Phase / Quadrature-Phase Constellation De-rotation

 Due to uncompensated carrier phase offsets [5, pg. 28], and frequency

differences, the I/Q constellation will be received at some arbitrary rotation [2, pg. 257; 5,

pg. 17]. As the receiver does not know which phase quadrant is the correct one, and must

stabilize somewhere, it will chose the phase angle closest to the initially assumed

quadrant. The 90 degree phase ambiguity will be corrected in the simulation and

implementation chapters through data encoding, but for now, it is enough to know that

the signal must be phase incremented to be regarded as close to square in the receiver.

This second negative feedback error-proportional control is placed after the gain control,

and is shown in Figure 4.10.

Figure 4.10 QPSK Receiver through I/Q Constellation De-rotation

25

4.3.4 Symbol Synchronization and the Decision

 There must be a decision made to determine if the digital data in each symbol

stream is a one or a zero. The system must make that decision close to the correct time in

each symbol in order to maximize the data-eye. This timing is calculated based on the

previous decision’s location and the shape of the de-rotated waveforms [2, pg. 513] and

will be described in more detail in later chapters. This subsystem is used to detect

maximum data-eye and will send timing to the decision mechanism, which will result in a

value of one or zero. The synchronization subsystem is shown added to the receiver in

Figure 4.11, completing the block diagram of the theoretical QPSK receiver.

Figure 4.11 Block Diagram of the QPSK Receiver

26

Chapter 5: DIGITAL SIGNAL PROCESSING

5.1 Digital Signal Processors

 Before the simulation and implementation of the QPSK algorithm are described, it

is helpful to understand the motivation and hierarchy of modern digital signal processing.

Initial signal processors, such as the Intel 2980 in 1978 and the SMI S2811 in 1979, were

not very powerful or successful. The Intel 2980 lacked a hardware multiplier, and the

SMI S2811 was not capable of stand-alone operation. Some of the first true stand-alone

digital signal processors (DSPs) were introduced in 1980, but it was not until 1983 that

the TI TMS32010 entered the market. It was the first Harvard architecture design [5, pg.

344], with separate data and instruction memory, which is more representative of the

DSP hierarchy, that has been maintained through 30 years of innovation.

The initial motivation behind digital signal processing was that certain

functionality was either cheaper or possible in the digital domain but not in analog. The

DSP was to take a piece of the signal modulation/demodulation or conditioning

functionality requirements, and implement them mathematically instead of using physical

analog circuitry. This required an analog-to-digital (A/D) converter, the processor, and a

digital-to-analog (D/A) converter to deliver an analog signal back to the main

communications circuitry [1, pg. 2]. An example of this combination of analog and

digital circuitry is represented in Figure 5.1.

27

Figure 5.1 Block Diagram of Digital and Analog Interaction

5.2 Software Defined Radio

 Once the initial conversion to the digital domain has taken place somewhere in

the communications circuitry, moving additional functionality on-board the processor can

reduce hardware costs as long as the DSP can still compute the desired instructions in the

available time [1, pg. 6]. As processor capability and desired modulation complexity

both grew, it followed naturally that more of the radio functionality would be moved into

the digital processing arena. Instead of analog oscillator, multiplication, and filtering

components, the modulation and filtration was moved onto the processor in software. As

this process continued throughout the decades, fewer and fewer components remained

external to the DSP. The A/D converter usually does not have the dynamic range [5, pg.

13, 202] or bandwidth to be connected directly to the antenna in wireless systems. So

28

there is usually a low noise amplifier (LNA) external to the A/D converter [5, pg. 27]. A

block diagram of this architecture is shown in Figure 5.2.

Figure 5.2 Possible Framework for an SDR Implementation

 This movement of most of the components in a wireless communications device,

or ‘radio,’ into software is called ‘Software Defined Radio’ (SDR). An SDR

characteristically has very few analog components and is much more flexible than the

previous analog equivalent. In the analog world, when there is a combination FM or AM

receiver, there must be almost two complete demodulation hardware strings, one for the

FM demodulation type, and one for the AM. While with SDR, the same LNA and A/D

converter can pipe the signal into the same DSP, and the DSP simply runs a different

instruction set to demodulate AM vs. FM. This software flexibility [5, pg. 21] also leads

29

to much more sophistication in modulation algorithm complexity, like frequency

hopping, the switching of modulation schemes on the fly, and security encoding. Code

has many advantages over hardware, such as development and debugging costs, and

future upgradability. SDR equips the average cell phone to ship with undiscovered bugs

and have its firmware reprogrammed wirelessly in the field, with or without consumer

intervention.

Note: Most DSP functions in SDR implementations act as interrupt service

routines, ISRs. This means that as each sample of data is available from

the A/D converter, the ISR in the DSP slated to process that piece of data

is called. In other words, only one sample is processed at a time, and all

system functionality must exist in the ISR loop that processes each sample.

5.3 Industrial Considerations

5.3.1 Processor Cost vs. Capability

In the 30 years that there has been a DSP market, successful processors have been

not always the lowest cost but always capable for their time, containing all mainstream

features [5, pg. 342]. In 1983, this meant stand-alone operation and a multiply-

accumulate function. When a processor lacks any critical functionality, it is doomed for

failure in the marketplace. Likewise, while a processor is seldom too powerful, it can be

too costly to produce, also failing in the marketplace.

30

5.3.2 Floating vs. Fixed Point

 There are two main types of numeric representation implemented in DSPs in the

market: fixed point and floating point [5, pg. 347]. Floating point DSP’s store scaling

factors for every value individually instead of storing one fixed scaling factor for all

values. This extra dynamic range of floating scaling factors makes development much

easier because a programmer does not need to be as concerned with the magnitude of the

calculations, either saturating at the upper end or falling victim to quantization noise at

the lower end. However, this functionality and ease of development come with increased

die size and thus additional cost, making floating point implementations on mass

marketed devices that do not require high precision financially prohibitive.

5.3.3 Scale

 It is said that when General Motors investigates which body panel screw to install

on a new vehicle, something you might purchase for a few cents at a hardware store, they

see a million dollar part after considering its cost to manufacture, install, warranty, and

replace on every vehicle that will be manufactured with that screw. It is a commonality

between engineering disciplines that when a device is planned to be manufactured in

mass quantities, cents per unit are not wasted. Much more thought goes into each piece

during development, to the tune of many tens or hundreds of thousand dollars in selecting

a screw on a Silverado®.

 In translation to DSP implementation, the cost is ‘minimal’ for a $350 or

$350,000 engineering development station on which algorithms are developed that may

31

need to be implemented on $3.50 or $1.00 DSP’s in the actual product that goes to

market.

Some DSP implementations require nothing special and are easily duplicated on

cheaper DSP’s, like a CD player. While other items, such as high end audio reverb

processors, will either require the builder to pay $30 per unit for a floating point DSP

capable of implementing their specific algorithm, or perhaps develop a fixed point DSP

more specifically designed for their requirements. While a device manufacturer can

afford to use an expensive development processor, their production line must use the

cheapest functional unit available in order to remain competitive.

32

CHAPTER 6: SIMULATING QPSK TX/RX

6.1 Matlab
®
 Implementation Notes

6.1.1 Introduction

In order to present the Matlab® implementation of the QPSK communications

transmitter and receiver, some important characteristics must be understood. Mainly

these are simplifications of the reality of real-time implementations.

6.1.2. The Lack of Time Constraint

 A physical DSP can perform a certain number of instructions per second, and also

receives so many samples of data per second, resulting in only a tiny fraction of those

instructions available per sample. In Chapter 7, due to the sampling rate of 48 kHz, that

fraction is 1/48,000 of the C6713’s rated 1.8 billion instructions per second [4, pg. 319].

This is 37,500 instructions per sample.

It must be understood that in this simulation, many realities of time do not apply.

Time itself is simulated over a set length, data is generated to associate with that specific

time and the data is fed through the transmitter/receiver in an interrupt service routine

(ISR) type implementation, similar to a real DSP, but the physical limitations of time on

the computational capacity of the digital signal processor do not exist. In fact, the digital

signal processor does not exist in this implementation, because Matlab® depends on a

33

personal computer processor that is not constrained to process the current sample before

the next one arrives. This one second simulation takes a little over 30 seconds to perform

and display on an 8-core processor, indicating that Matlab® is far less efficient than the

Texas Instruments C6713 DSP utilized in Chapter 7, which is capable of performing

almost identical operations in real-time. The effects of time are also simulated. In order

to model the ISR type reality of a DSP, the system is causal. This is not because future

data was not available to the receiver in Matlab®, but only because the presented ISR was

programmed to model reality.

6.1.3 Single Clock Frequency

 Another simplification in this simulation is that the QPSK transmitter and receiver

are operating on identical clock frequencies. While this may seem minor, it removes

much complication in the receiver. At 48 kHz, a 1% difference in clock frequency

between the transmitter and receiver would work out to be 480 extra or missing samples

per second. This would work out to be the timing equivalent of 12 symbols that must be

either ignored or inserted by a compensating receiver algorithm each second in order to

maintain symbol synchronization and data integrity.

6.1.4 Dynamic Range of Processor Capability

 Another difference between using an Intel-based Matlab® implementation and a

single precision floating point DSP is that variables are modeled as double precision

floating point values, capable of exponents or logs to the value of 10308, while the

physical DSP is limited to 1038.

34

6.1.5 An Ideal Channel

 Another reality not taken into account in this simulation is the phase and

amplitude distortion of a real channel. This simulation will maintain the transmitted

value perfectly into the receiver in double precision. More than this, there will also be no

A/D and D/A conversion to introduce quantization error.

6.1.6 Constants and declarations

 Now that the simplifications of the simulation are understood, the code can be

expounded. The first section of the simulation code, APPENDIX A lines 1 through 22,

also shown in Figure 6.1, is preparation to run the simulation mainly via declarations of

constants, arrays, and counters. Line 6 clears the variable memory, the screen, and all

open windows and initiates a stopwatch counter.

Over the next few lines, the simulated time length is established at 1 second at a

sample rate of 48 kb/s. The symbol rate is established at 1,200 symbols per second, at 40

samples per symbol. As this is QPSK, the data rate is twice the symbol rate or 2,400 bits

per second. The total number of samples in the simulation is 48,000.

35

Figure 6.1 QPSK Simulation - Initial Declarations

Also, the raised cosine filter in both the transmitter and receiver is defined. It is

first created via an infinite impulse response filter command in lines 16-17, and then

converted to second order sections to maintain stability in line 18. It is created as a ‘sqrt’

or square-root of a true raised cosine filter so that when implemented twice on the same

data the result will be a full raised cosine waveform. This allows matching filters to be

used in both the transmitter and receiver with an overall effect of a raised cosine.

Next, in lines 19-20, a single period of the orthogonal modulation signals is

created as four element cosine and sine functions. And, finally, the two counters used in

the algorithm are declared in lines 21-22.

36

6.2 The Simulated Transmitter

6.2.1 Overview

This QPSK transmitter script, full code available in APPENDIX A lines 24-35

and 74-128, will accomplish the following operations:

1. Generate two streams of random binary data.

2. Differentially encode the two streams into I/Q data streams.

3. Place one bit of data every 40 samples.

4. Filter the data with a second order sections (SOS) implementation of the

square root raised cosine filter.

5. Modulate the two data streams together using the orthogonal modulation

signals declared earlier.

This functionality is described in the block diagram in Figure 6.2. Details on a

few of these steps are provided in the following section.

Figure 6.2 Simulated Transmitter Block Diagram

37

6.2.2 Transmitter Differential Encoding

 As was described earlier in the QPSK receiver description and will be described

further in the receiver simulation section, there is a 90 degree phase ambiguity in QPSK

data transmission that must be corrected [2, pg. 398]. This correction is accomplished

before filtration and modulation in the transmitter via data encoding, lines 83-100, as

shown in Figure 6.3.

Figure 6.3 Transmitter Data Encoding

 This encoding scheme utilizes the current and the previous data values, which are

appended with ‘z1’, to determine if the current phase should be incremented by +90, -90,

38

or 180 degrees, translated from changes in the respective in-phase, quadrature-phase or

both data states. The encoded data is then filtered, modulated, and sent on to the receiver.

6.3 The Simulated Receiver

6.3.1 Overview

 The receiver will accomplish the following functionality for every sample in the

input signal:

1. Demodulate, separate orthogonal channels, and filter.

2. Apply I/Q constellation de-rotation.

3. Apply automatic gain control.

4. If at the correct sample in the symbol, enter the symbol loop:

a. Determine next automatic gain control adjustment.

b. Make a decision.

c. Decode the raw decision data.

d. Determine the symbol synchronization adjustment.

e. Determine the next I/Q constellation de-rotation adjustment.

This is described in the following block diagram, Figure 6.4. The subsystems will

be described in the next few sections.

39

Figure 6.4 The Simulated Receiver Block Diagram

6.3.2 Automatic Gain Control

The AGC algorithm is a negative feedback, error proportional control loop. The

calculation of this control signal is shown in Figure 6.5, also in APPENDIX A lines 166-

172.

Figure 6.5 Automatic Gain Control Calculations

The AGC control compares the magnitude of the current symbol with the target

gain, which is set at 24,000 so as to not overload the analog converters’ range of about

32,700. The determined error is multiplied by the AGC control gain, and added to the

overall system input amplitude adjustment variable. The control response is shown in

Figure 6.6.

40

Figure 6.6 AGC Control Response

 In this simulation, the gain was increased by a factor of about 11,300. Figure 6.9

shows that this places the resulting constellation right in the correct range, from about

20,000 to 28,000, to have significant value, and thus detail, but not overload the integer

based analog converters. The control loop gain on this control is sufficiently high that the

gain will stabilize over four hundred samples, but not high enough that the stability is

affected in large amounts by minor variation in the other control loops. It favors a

slightly over-damped condition as this tends to result in a tighter constellation once the

system is stable.

6.3.3 I/Q Constellation De-Rotation

 The second control to be calculated is the de-rotation control. The code for this

calculation is viewable in APPENDIX A lines 240-243, and in Figure 6.7.

41

Figure 6.7 I/Q Constellation De-rotation Control Adjustment Calculation

 The basic error determined by this calculation is the difference between the I and

Q phase magnitudes. In this example, the Q magnitude is greater. This determines the

magnitude of the correction. Note, in Figure 6.8, that when the constellation is de-rotated

to the correct location, the I and Q magnitudes are equal, resulting in no correction.

Figure 6.8 I/Q De-rotation Calculation Physical Meaning

Also note in lines 242 and 243 that the current binary data decisions, which are

unity gain, are multiplied with the I and Q magnitudes. This determines in which

42

quadrant the decision was made, and affects the sign on the correction. This error

correction is multiplied by the receiver I/Q control gain, then added to the current rotation

position.

Similar to the AGC, this too is a negative feedback, error proportional control

system, and slightly over-damped to favor a tight constellation when stable as shown in

Figure 6.8. Even at startup, the calculation is close to target by around 400 symbols and

very stable at 700 symbols.

Figure 6.8 I/Q Constellation De-rotation Control Response

 This is the response resulting from a preset π/10 rotation in the transmitter. The

original constellation and the corrected one are shown in Figure 6.9.

43

Figure 6.9 Left: Transmitted Constellation Diagram

Right: AGC and I/Q De-rotation Corrected Constellation Diagram

Also resulting from the correct AGC and de-rotation are improvements in the

data-eye, as shown before AGC and de-rotation in Figure 6.10 and afterwards in Figure

6.11.

44

Figure 6.10 I/Q Phase Data-eyes Before Correction

In Figure 6.10, note the four possible waveform states at the ideal sample point

20, which indicate that the constellation is rotated. Also note the amplitudes of the

transmitted signal, around 3, and the corrected signal below, around 17,000 on sample

point 20.

45

Figure 6.11 I/Q Phase Data-eyes Fesulting from AGC and Constellation De-Rotation

6.3.4 Symbol Synchronization

 The third and final control in this receiver is for symbol synchronization timing.

Note in Figure 6.11 that at point 20 there is a large data-eye, but at any other point in the

waveform the eye is either smaller or non-existent. Due to group delay through the

transmitter and receiver, this lands at 20 in this simulation. This calculation is shown in

Figure 6.12 and APPENDIX A lines 218-221. The synchronization control uses the data

46

value in the current decision, denoted as I2 and Q2, and the slopes of the points

immediately before and after it, to determine if the sample point should be moved.

Figure 6.12 Symbol Synchronization Calculations

This theory depends on the average slopes around the desired sample point to fit

with randomly combined raised cosine waveforms [4, pg. 255]. To help understand this,

averages of the four common data paths 01, 10, 11, and 00 are shown by thick black lines

in Figure 6.13. Then, the averages of those averages are shown in blue. The

calculations, described in Figure 6.13, go like this:

A. Calculate the slope around the current sample point.

B. Take the sign only.

C. Examine the sign on the current data decision.

D. Multiply the sign of the slope by the sign on the data to determine the

desired correction direction.

E. Move in the resulting direction proportional to the magnitude of the

slope from A.

47

Figure 6.13 Symbol Synchronization Calculation Physical Meaning

Note in the progression from A to E how the slope was negative on average, and

the data decision was also negative, resulting in a positive correction factor. This way, if

the slope is flat (the case for the widest point in the data-eye), minimal movement will

occur, resulting in stability. The response of this system is in Figure 6.13.

Figure 6.13 Symbol Synchronization Control Response, Blue: Synchronization

Control Value, Red: Resulting Sample Integer

48

 This system is also a negative feedback, error proportional control loop; however,

there was a slight complication in order for the system to be stable. The nature of digital

data transmission waveforms is that the slope before and after the correct sample point

sometimes varies depending on the previous and next data states. This creates some

random adjustment if only the current data point and surrounding slopes were used to

compute the symbol synchronization adjustment. As a result, either the gain on this

control loop must be very small to prevent transitioning to erroneous samples, such as

sample 21 or 19, or some other control function must be used.

 To solve this, the control adjustment calculated in Figure 6.12 is filtered by a 13th

order IIR moving average filter. The impulse response for this filter is shown in Figure

6.13, and the step response is shown in Figure 6.14.

Figure 6.13 Impulse Response of an IIR 13
th
 Order Moving Average Filter

49

Figure 6.14 Step Response of an IIR 13
th
 Order Moving Average Filter

 As shown, this will spread the impact of any given error reading over 14 symbols.

This effectively removes high frequency components by emphasizing the errors that

remain for up to 14 symbols. This also minimizes the impact of a single erroneous

correction calculation by combining it with the previous 13 to determine the current

calculation. This low pass behavior is also identifiable in the frequency response of this

filter, shown in Figure 6.15, and signified by the lack of zero’s on the positive real axis of

the pole/zero plot shown in Figure 6.16.

50

Figure 6.15 Frequency Response of an IIR 13
th
 Order Moving Average Filter

Figure 6.16 Pole/Zero Plot of an IIR 13
th
 Order Moving Average Filter

51

This causes the system to respond a few symbols later, but allows the gain to be

increased substantially while still remaining stable on the correct sample.

 When the system is stable, meaning that the AGC, I/Q constellation de-rotation

and symbol synchronization controls are no longer compensating for major errors, the

resulting data points are sampled in very tight distributions. The red crosses in Figure

6.14 show the four possible data states and the distribution over which the data is

sampled.

Figure 6.14 QPSK Receiver Data Samples after Stability

52

 These data points result in the data streams shown in Figure 6.15, which indicate

that from a very poor situation at startup, the algorithm has valid data after ~175 samples,

and is very stable after around 400.

Figure 6.15 I/Q Phase Data Streams

 There is one further detail to this algorithm, and it resides in the fact that although

the AGC, de-rotation, and symbol synchronization controls function in a certain order on

each sample, overall on the entire signal they are each operating at the same time. Also,

mathematically, the controls have a large amount of interaction. The amplitude of the

signal after AGC determines the magnitude of the errors corrected in the de-rotation and

synchronization controls. This means that only after the AGC control is stable can the

I/Q constellation de-rotation loop have a stable input. Also, the sample points considered

for the AGC error calculation are determined by symbol synchronization and adjusted by

53

I/Q de-rotation, meaning all the controls are interdependent. This leads to simultaneous

stability only as all three converge on their target locations, as shown in Figure 6.16.

Figure 6.16 Simultaneous Control Stabilization

6.3.5 Data Decoding

 The final stage in the QPSK receiver is data decoding. As mentioned in the

transmitter section, there is a 90 degree phase ambiguity requiring the data to be encoded

based on the previous and current raw data states. This must be decoded after the data is

sampled, and results in the correct in-phase and quadrature-phase data strings on the

output as shown in Figure 6.17.

54

Figure 6:17 Resulting Decoded Raw Data Compared to Encoded Raw Data

 There were two raised cosine filters implemented in the overall system, one in the

transmitter and one in the receiver. Note the delay from the transmitter to the receiver, 6

symbols, or twice the group delay in each of the raised cosine filters.

55

CHAPTER 7: A REAL-TIME QPSK IMPLEMENTATION

7.1 Introduction

7.1.1 Introduction to a Real Time QPSK Transmitter and Receiver

 This chapter will discuss the real-time implementation of the QPSK transmitter

and receiver on separate Texas Instruments C6713 floating point DSPs. After the

presentation of the Matlab® simulated transmitter and receiver, a description of a real-

time implementation offers only subtle differences in implementation, not any new

functionality. To begin with, some simplifications were outlined at the beginning of the

simulation chapter. The same issues are here, but instead of simplifying the

implementation, they act to obscure it.

7.1.2. Processor Time Constraints

 As mentioned previously, a C6713 DSP can perform 1.8 billion instructions per

second. The sample frequency, based on the target frequency of the C6713 DSK [4, pg.

5], is 48 kHz. This leaves the processor, pending no other limiting factors, 37,500

instructions per sample. This may sound like a substantial amount, but when considering

the functionality that must be implemented for each sample, and the number of

instructions that are used in each line of those functions, much consideration for

operating efficiency had to be given to this implementation. In reality, there were several

56

steps even in the simulation that were targeted towards improving the real-time

implementation, for example:

1. ISR Based Routine – The Matlab® simulation was written in a way that

although the script processed a string of 48,000 samples, it processed one at a

time. This allowed the same basic algorithm to be moved into the real-time

code.

2. IIR Based Raised Cosine Filter – Initially in the simulation, the raised cosine

filter was a 240th order FIR filter [4, pg. 25]. This was implemented easily in

real-time on the transmitter, where only 6 points in the filter memory have

non-zero values, and thus require calculation, due to valid data only on every

40th sample. But in the receiver, where it is unknown where the desired data

sample lies, all samples must be calculated, resulting in two channels (in-

phase and quadrature-phase) of 240th order convolution. This processing

requirement was greatly reduced by changing the raised cosine

implementation to a 13th order IIR filter [4, pg. 47].

3. Circular Memory Buffers – The sine and cosine functions, as well as the

symbol synchronization buffers were implemented in a circular manner,

where the actual memory locations of the buffer values do not need to change

in order to increment through them, only the pointer used to address them [5,

pg. 352]. This saved processing power previously used in shifting the buffer

locations.

4. Lack of Non-Deterministic Functions – A function that performs a set of

given operations in the same way every time is characterized as deterministic,

57

like ‘add’ or ‘multiply.’ Some functions are not deterministic, meaning they

do not do the same process of operations at every call. Some examples are

‘sqrt’ or ‘divide.’ These operations depend very much on the computational

context and the input to determine the output and the number of instruction

cycles consumed in computing the output. Non-deterministic functions are

concerning in the implementation of an ISR on a DSP, as there are a limited

number of instructions available. In both the simulation and the real-time

implementation, there are no instances of divide or square root.

In short, for this real-time implementation, time does exist. If the next sample

arrives before the DSP has finished processing the current one, the system will respond in

an undesirable way and the modulation scheme will be broken.

7.1.3 Presence of Multiple Clock Frequencies

 As the transmitter will be implemented on one DSK and the receiver on another,

there will be minor variation between the clock frequencies of the on-board oscillator.

This presents problems for both the timing of in-phase and quadrature-phase

differentiation and symbol synchronization. This potential unstable timing differential

must be constantly detected and corrected. This is the reason for the existence and

continual operation of the timing control loops.

7.1.4 Lack of Dynamic Range On-Board the Processor

58

 As mentioned earlier, double precision floating point values can carry exponents

with magnitudes of 308, while single precision floating point is limited to exponent

magnitudes of 38. This requires some consideration of calculation values. This is

nowhere near as complicated as implementation on a fixed point DSP, but does require

the advanced floating point functionality of the C6713.

7.1.5 A Non-Ideal Channel

 A real channel, such as the transmission line used to link the two DSP’s in this

implementation, will cause some noise injection into the signal path, hindering the clarity

of the data transmission and inserting spurious errors into the control loops. In addition

to this, there will be D/A and A/D conversions that add quantization noise.

Note: The A/D and D/A converters on the C6713 DSK are integer based with positive

and negative ranges ~32,000. The quantization noise alone makes this one of the

most inaccurate steps in the entire algorithm [5, pg. 186].

7.2 C6713 Overview

The two DSP’s used in this implementation are built onto what are called a DSP

Starter Kits (DSKs) each equipped with A/D converters, various memories, a power

supply and a USB interface. A DSK and circuit breakdown is shown in Figure 7.1.

59

Figure 7.1 The Texas Instruments C6713 DSK

One DSK is programmed with the transmitter and one with the receiver. The

DSKs are then linked with a transmission line on one channel only. These DSKs are

tools capable of a number of programming and debugging functions as well as storage,

and other functionality summarized in this list:

• Embedded JTAG support via USB

• High-quality 24-bit stereo codec

• Four 3.5mm audio jacks for microphone, line in, speaker and line out

• 512K words of Flash and 16 MB SDRAM

• Expansion port connector for plug-in modules

• On-board standard IEEE JTAG interface

• +5V universal power supply

60

One further detail about the TI DSK involves the supplied development

environment, Code Composer Studio, or CCS [4, pg. 273]. This integrated development

environment and hardware interface enables the creation, debugging, loading, running,

and analysis of real-time DSP programs on TI hardware.

7.3 The Real-Time Transmitter

7.3.1 Description

 The transmitter system is basically identical to the one implemented in the

simulation chapter, although written in 216 lines of C-code in CCS, not in Matlab®. The

entire transmitter ISR is available in APPENDIX B. The functionality of the real-time

transmitter is summarized here:

1. Generate two streams of random binary data [4, pg. 231].

2. Place one bit of data every 40 samples.

3. Filter the data with a 240th order FIR implementation of the square root raised

cosine filter.

4. Modulate the two data streams together using the orthogonal modulation

signals.

5. Send these to the D/A converter and output on the right channel.

61

There are minor variations in the algorithm to compensate for implementation

differences, but otherwise the block diagram of the transmitter is identical to the

simulated one, shown again in Figure 7.2.

Figure 7.2 The QPSK Transmitter Block Diagram

 However, in order to demonstrate the compatibility of the FIR and IIR versions of

the raised cosine filter, and to stress the computational power of the C6713 DSK, the

240th order FIR raised cosine filter was implemented in the QPSK transmitter only. The

real-time receiver, due to lack of computational capacity, uses the 13th order IIR version.

7.3.2 Transmitter Details

 The code begins with constant declarations, including the 240th order FIR filter

array, and inclusions of standard libraries like ‘math.h’. There is also some framework

code to link this routine as the per-sample ISR that runs. Practically, the entire algorithm,

however, is contained between lines 142 and 177; shown in Figure 7.3.

62

Figure 7.3 The Main Functional Part of the Transmitter

 First, once in every 40 samples, random data is created in lines 46-50. Then, all

other samples are set to zero in lines 153 and 154. The signal string of data and zeros are

convolved with the 240th order filter in lines 156 through 160. Note here that only six

data points actually need computation as the 39 other points between them are all zero.

63

Next, on the right side of line 162, the circular referenced cosine and sine functions are

multiplied by the signal string, effectively modeling the signals. The transmitter output

value is equated to the combination of these orthogonally modulated signals. Finally, the

counters are incremented and the signal is output on the left and right channels, lines 165-

177.

7.4 The Real-Time Receiver

7.4.1 Description

 The real-time receiver, found in APPENDIX C, is 223 lines of c-code, including

the DSP framework to input the QPSK signal and output the current data decisions. The

QPSK functionality is mainly contained in the 107 lines of calculations executed per

sample, lines 70-177. This implementation is the main motivation for all the complexity

of the Matlab® simulation of Chapter 4. It performs the following functions:

1. Demodulate into separate orthogonal channels

2. Matched filter with an IIR root-raised cosine.

3. Apply I/Q constellation de-rotation.

4. Apply automatic gain control.

5. If at the correct sample in the symbol enter the per-symbol loop:

a. Determine next automatic gain control adjustment.

b. Make a digital data value decision on both I and Q channels.

c. Determine the symbol synchronization adjustment.

64

d. Determine the next I/Q constellation de-rotation adjustment.

7.4.2 Receiver Operation Verification

 The receiver has two input channels and two output channels available. A single

input channel is used for the QPSK transmitted signal; the other is not required for QPSK

and is ignored. The two output channels have three operating modes depending on which

is selected:

A. Data Mode - Will output, on the two receiver output channels, the current data

decisions on the in-phase and quadrature-phase data streams for every symbol.

These keep updating as the algorithm runs allowing the received data to be

compared to the transmitted data and verify the basic functionality of the

receiver. This is seen in Figure 7.4.

Figure 7.4 Transmitted Data and Matching Received Data

65

Note: Although not shown here, it would be helpful to record a scope shot of the

instability as the receiver is activated. Although difficult to relate here,

the data output by the receiver for the first fractions of a second are

random and not aligned with the transmitted data. This is where the

control loops are stabilizing.

B. Signal Mode – In this mode, the two outputs relate the demodulated, de-

rotated, and gain controlled in-phase and quadrature-phase waveforms. These

can be X/Y plotted on an oscilloscope to recover a properly amplified, de-

rotated constellation, shown in Figure 7.5. This verifies the AGC and I/Q

constellation de-rotation control stability.

Figure 7.5 X/Y Plot of a De-Rotated, AGC Corrected I/Q Constellation

66

C. Control mode – Due to the DC decoupling capacitors on the inputs and

outputs of the DSK, it is impossible to relate any signal much lower than

around 100 Hz. This prevents the straight output of the control loop levels, as

they will be pulled to ground since they are often stable for a length of time

greater than 0.01 seconds. Instead, for every sample, a different control level

is output on each of the two channels. The right channel relates two samples

of the I/Q de-rotation control level, one sample of the AGC control level and

one sample of ground. The left channel similarly relates two samples of the

symbol synchronization control level, one sample of the AGC control level

and one sample of ground. This creates two waveforms relating the dynamic

state of the control logic, and allows an observer to visibly verify that the

control logic is smoothly compensating for minor differences between the

DSP clock frequencies. Control outputs are shown in Figure 7.6.

Figure 7.6 Control Signal Output Mode of the QPSK Transmitter (enhanced for

clarity)

67

The receiver algorithm results in the correct data after stabilizing. The control

signals smoothly track the required variations in the transmitted signal. This

implementation of the QPSK receiver is functional on real processors over a real

wired channel.

68

CHAPTER 8: CONCLUSION

The ability to send a string of ones and zeros and recover them either several feet

away, or several thousand miles away, has been of significant impact on our society.

This accomplishment has consumed thousands of engineering careers over the last few

decades. For the foreseeable future, communications will continue to have this same

impact and industry attention.

This thesis has attempted to describe, theorize, and implement solutions to many

of the common problems experienced in the physical world of communications as well as

discuss industrial considerations behind current DSP technology. Basic data transmission

and reception on physical processors introduces numerous problems. Adding a non-

trivial modulation method increases the complexity by an order of magnitude. If this was

implemented on a fixed point processor simple and cheap enough to survive in the

marketplace, the complication of these algorithms would need to increase by at least

another order of magnitude, perhaps several.

While the simulation of a theoretical communications algorithm can ignore many

realities and still result in successful, albeit artificial data transmission, the real world is

not forgiving. Any variation between processors will need to be accounted for. Even on

today’s most powerful processors, the limitations of computational ability will break the

algorithm if not taken into account. Methods will have to be adapted to applications and

69

creative solutions found to complicated problems. The more capable floating point

processors, which made this implementation possible, will not work in the marketplace

for similar solutions due to the high dollar amount per unit.

While this thesis dwells on reliable QPSK communication, further work along this

line would improve on these algorithms to make them more efficient and updated with a

more powerful modulation scheme, such as 16QAM or OFDM. Also, the data rate could

be increased in order to maximize the utility of the C6713 processor. If this was to be a

more complete communications investigation, there may also be an application selected,

either wired or wireless. These devices and algorithms could then be utilized to

maximize reliable throughput or distance, while maintaining a required bit error rate.

Surely communications implementations in industry are riddled with issues.

When one billion cell phones are sold globally per year, there is massive potential to

make money solving these problems. As long as there are problems to solve and a billion

people per year willing to pay to have them solved, engineers will continue devoting

energy to the development of better communications algorithms.

70

BIBLIOGRAPHY

[1] Digital Communication. 3rd ed. Springer Publishing, The Netherlands:
John R. Barry, David G. Messerschmitt, Edward A. Lee. 2004.

[2] Digital Communications, A Discrete-Time Approach, Prentice Hall, 1st ed.
Michael Rice, 2008.

[3] Communications Systems, 4th ed. John Wiley and Sons, New Delhi, Simon Haykin,
2007.

[4] Real-Time Digital Signal Processing from Matlab to C with the TMS320C6x DSK,

1st ed. CRC Press. Thad B. Welch, Cameron H.G. Wright, Michael G. Morrow.
2005.

[5] Software Radio, A Modern Approach to Radio Engineering, Prentice Hall, New
Jersey, Jeffrey H. Reed, 2002.

71

APPENDIX A

Matlab
®
 Implementation

of a QPSK Transmitter and Receiver

72

% QPSK transmitter and receiver simulation program 1

% 2

% developed from Fall 2009 to Spring 2010 3

% by Rob Conant 4

 5

clear; clc; close all; tic; 6

Simulation_Time = 1.0; % Seconds 7

 8

% Default Declarations and Constants 9

Rate_Sample = 48000; 10

Rate_Data = 2400; 11

Rate_Symbol = Rate_Data / 2; 12

Sample_Per_Symbol = Rate_Sample / Rate_Symbol; 13

Number_of_Samples = Rate_Sample * Simulation_Time; 14

Raised_Cosine_IIR_Alpha = .35; 15

[B, A] = 16

rcosiir(Raised_Cosine_IIR_Alpha,3,Sample_Per_Symbol,3,.01,'sqrt'); 17

[SOS, SOS_Gain] = tf2sos(B, A); 18

Cosine = [1 0 -1 0]; 19

Sine = [0 1 0 -1]; 20

Count_40 = 1; 21

Count_14 = 0; 22

 23

%Transmitter Declarations and Constants 24

Tx_Amplitude = 3; % Arbitrary Transmitter Gain will be corrected 25

Tx_IQ_Rotation = pi/10; % Arbitrary I/Q rotation will be corrected 26

Tx_Sine_Offset = sin(Tx_IQ_Rotation); 27

Tx_Cosine_Offset = cos(Tx_IQ_Rotation); 28

73

Tx_Filter_Memory_I = zeros(4, 3); 29

Tx_Filter_Memory_Q = zeros(4, 3); 30

Tx_Modulated_I = zeros(1, Number_of_Samples); 31

Tx_Modulated_Q = zeros(1, Number_of_Samples); 32

Tx_Out = []; 33

Tx_Data_I_Enc = 0; 34

Tx_Data_Q_Enc = 0; 35

 36

%Receiver Declarations and Constants 37

Rx_AGC_Target = 24000; 38

Rx_AGC_Gain = 0.0000002 * (20000/Rx_AGC_Target); % AGC Control Gain 39

Rx_AGC_Amplitude=1; % Arbitrary starting point for AGC 40

Rx_SymbolSync_Gain = 1.5 * (20000/Rx_AGC_Target); % Gain SymbolSync 41

Control 42

Rx_SymbolSync_Adjustment_Buffer = [0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 43

Rx_SymbolSync_Sample = 12; % Arbitrary Starting Point 44

Rx_SymbolSync_SamplePoint = 35; 45

Rx_SymbolSync_Adjustment_Buffer_mean = 0; 46

Rx_IQ_Gain = 0.0000004 * (20000/Rx_AGC_Target); % I/Q Derotation Gain 47

Rx_IQ_Rotate = 0; 48

Rx_Filter_Memory_I = zeros(4, 3); 49

Rx_Filter_Memory_Q = zeros(4, 3); 50

Rx_Input_I = zeros(1, Number_of_Samples); 51

Rx_Input_Q = zeros(1, Number_of_Samples); 52

Rx_Decision_Buffer_I1 = 0; Rx_Decision_Buffer_Q1 = 0; 53

Rx_Decision_Buffer_I2 = 0; Rx_Decision_Buffer_Q2 = 0; 54

Rx_Decision_Buffer_I3 = 0; Rx_Decision_Buffer_Q3 = 0; 55

Rx_Data_I_Enc = 0; 56

74

Rx_Data_Q_Enc = 0; 57

 58

%Initiate Data Log Arrays 59

log_Rx_AGC_Gain = []; 60

log_Rx_Data_Result_I = []; 61

log_Rx_Data_Result_Q = []; 62

log_Rx_SymbolSync_SamplePoint = []; 63

log_Rx_PreDecision_I = []; 64

log_Rx_PreDecision_Q = []; 65

log_Rx_Input_I = []; 66

log_Rx_Input_Q = []; 67

log_Rx_IQ_Rotation = []; 68

log_Rx_Data_I_Raw = []; 69

log_Rx_Data_Q_Raw = []; 70

log_Tx_Data_I_Raw = []; 71

log_Tx_Data_Q_Raw = []; 72

 73

% TRANSMITTER 74

for Current_Sample = 1 : Number_of_Samples 75

 if (Count_40 == 1) 76

 % Create Random Raw Data 77

 Tx_Data_I_Enc_z1 = Tx_Data_I_Enc; 78

 Tx_Data_Q_Enc_z1 = Tx_Data_Q_Enc; 79

 Tx_Data_I_Raw = (rand > 0.5); 80

 Tx_Data_Q_Raw = (rand > 0.5); 81

 82

 % Differential Encoding 83

 if Tx_Data_I_Raw == Tx_Data_Q_Raw 84

75

 if Tx_Data_I_Raw 85

 Tx_Data_I_Enc = not(Tx_Data_I_Enc_z1); 86

 Tx_Data_Q_Enc = not(Tx_Data_Q_Enc_z1); 87

 else 88

 Tx_Data_I_Enc = Tx_Data_I_Enc_z1; 89

 Tx_Data_Q_Enc = Tx_Data_Q_Enc_z1; 90

 end 91

 else 92

 if Tx_Data_I_Raw 93

 Tx_Data_I_Enc = not(Tx_Data_Q_Enc_z1); 94

 Tx_Data_Q_Enc = Tx_Data_I_Enc_z1; 95

 else 96

 Tx_Data_I_Enc = Tx_Data_Q_Enc_z1; 97

 Tx_Data_Q_Enc = not(Tx_Data_I_Enc_z1); 98

 end 99

 end 100

 log_Tx_Data_I_Raw = [log_Tx_Data_I_Raw Tx_Data_I_Raw]; 101

 log_Tx_Data_Q_Raw = [log_Tx_Data_Q_Raw Tx_Data_Q_Raw]; 102

 103

 Tx_Data_I = Tx_Amplitude*(2*(Tx_Data_I_Enc)-1); 104

 Tx_Data_Q = Tx_Amplitude*(2*(Tx_Data_Q_Enc)-1); 105

 else 106

 Tx_Data_I = 0; 107

 Tx_Data_Q = 0; 108

 end 109

 [Tx_Filter_Memory_I, Tx_Modulated_I] = mySOSfilt(SOS, SOS_Gain, ... 110

 Tx_Filter_Memory_I, Current_Sample, Tx_Data_I, Tx_Modulated_I); 111

 [Tx_Filter_Memory_Q, Tx_Modulated_Q] = mySOSfilt(SOS, SOS_Gain, ... 112

76

 Tx_Filter_Memory_Q, Current_Sample, Tx_Data_Q, Tx_Modulated_Q); 113

 114

 Tx_Current_Out = ... 115

 (Tx_Modulated_I(Current_Sample) * Tx_Cosine_Offset ... 116

 - Tx_Modulated_Q(Current_Sample) * Tx_Sine_Offset)... 117

 * Cosine(mod(Current_Sample,4)+1) ... 118

 - (Tx_Modulated_Q(Current_Sample) * Tx_Cosine_Offset ... 119

 + Tx_Modulated_I(Current_Sample) * Tx_Sine_Offset)... 120

 * Sine(mod(Current_Sample,4)+1); 121

 122

 Count_40 = Count_40 + 1; 123

 if (Count_40 == 40) 124

 Count_40 = 0; 125

 end 126

 Tx_Out = [Tx_Out Tx_Current_Out]; 127

end 128

 129

% RECEIVER 130

for Current_Sample = 1:Number_of_Samples 131

 %Demodulate and Filter By Cos / Hilbert(Cos) 132

 [Rx_Filter_Memory_I, Rx_Input_I] = mySOSfilt(SOS, SOS_Gain, ... 133

 Rx_Filter_Memory_I,Current_Sample,Tx_Out(Current_Sample) .* ... 134

 Cosine(mod(Current_Sample,4)+1), Rx_Input_I); 135

 [Rx_Filter_Memory_Q, Rx_Input_Q] = mySOSfilt(SOS, SOS_Gain, ... 136

 Rx_Filter_Memory_Q,Current_Sample,Tx_Out(Current_Sample) .* ... 137

 Sine(mod(Current_Sample,4)+1), Rx_Input_Q); 138

 139

 %Actual I/Q Angular Adjustment 140

77

 Rx_IQ_Sine_Term = sin(Rx_IQ_Rotate); 141

 Rx_IQ_Cosine_Term = cos(Rx_IQ_Rotate); 142

 143

 %Shift Decision Data Memory 144

 Rx_Decision_Buffer_I3 = Rx_Decision_Buffer_I2; 145

 Rx_Decision_Buffer_I2 = Rx_Decision_Buffer_I1; 146

 Rx_Decision_Buffer_Q3 = Rx_Decision_Buffer_Q2; 147

 Rx_Decision_Buffer_Q2 = Rx_Decision_Buffer_Q1; 148

 Rx_Decision_Buffer_I1 = Rx_Input_I(Current_Sample) ... 149

 * Rx_IQ_Cosine_Term - Rx_Input_Q(Current_Sample) ... 150

 * Rx_IQ_Sine_Term; 151

 Rx_Decision_Buffer_Q1 = Rx_Input_Q(Current_Sample) ... 152

 * Rx_IQ_Cosine_Term + Rx_Input_I(Current_Sample) ... 153

 * Rx_IQ_Sine_Term; 154

 155

 %Apply automatic gain control 156

 Rx_Decision_Buffer_I1 = Rx_Decision_Buffer_I1 * Rx_AGC_Amplitude; 157

 Rx_Decision_Buffer_Q1 = Rx_Decision_Buffer_Q1 * Rx_AGC_Amplitude; 158

 159

 %Symbol Loop 160

 if (Count_40 == Rx_SymbolSync_Sample+22 ... 161

 | Count_40 == Rx_SymbolSync_Sample-18) 162

 163

 % Deterine automatic gain adjustment 164

 if length(log_Rx_Data_Result_I) > 40 165

 Rx_AGC_Change_Needed = (Rx_AGC_Target * Rx_AGC_Target ... 166

 -(Rx_Decision_Buffer_I2^2+Rx_Decision_Buffer_Q2^2)) ... 167

 * Rx_AGC_Gain; 168

78

 Rx_AGC_Amplitude = Rx_AGC_Amplitude + Rx_AGC_Change_Needed; 169

 end 170

 171

 % Determine Digital Result Of Current Symbol 172

 if Rx_Decision_Buffer_I2 > 0 173

 Decision_I = 1; 174

 else 175

 Decision_I = -1; 176

 end 177

 if Rx_Decision_Buffer_Q2 > 0 178

 Decision_Q = 1; 179

 else 180

 Decision_Q = -1; 181

 end 182

 183

 % Transpose Encoded Data to T/F 184

 Rx_Data_I_Enc_z1 = Rx_Data_I_Enc; 185

 Rx_Data_Q_Enc_z1 = Rx_Data_Q_Enc; 186

 Rx_Data_I_Enc = (Decision_I + 1) * 0.5; 187

 Rx_Data_Q_Enc = (Decision_Q + 1) * 0.5; 188

 % Differential Decoding 189

 if Rx_Data_I_Enc_z1 == Rx_Data_Q_Enc_z1 190

 if Rx_Data_I_Enc_z1 191

 Rx_Data_I_Raw = not(Rx_Data_I_Enc); 192

 Rx_Data_Q_Raw = not(Rx_Data_Q_Enc); 193

 else 194

 Rx_Data_I_Raw = Rx_Data_I_Enc; 195

 Rx_Data_Q_Raw = Rx_Data_Q_Enc ; 196

79

 end 197

 else 198

 if Rx_Data_I_Enc_z1 199

 Rx_Data_I_Raw = Rx_Data_Q_Enc; 200

 Rx_Data_Q_Raw = not(Rx_Data_I_Enc); 201

 else 202

 Rx_Data_I_Raw = not(Rx_Data_Q_Enc); 203

 Rx_Data_Q_Raw = Rx_Data_I_Enc ; 204

 end 205

 end 206

 log_Rx_Data_Q_Raw = [log_Rx_Data_Q_Raw Rx_Data_I_Raw]; 207

 log_Rx_Data_I_Raw = [log_Rx_Data_I_Raw Rx_Data_Q_Raw]; 208

 209

 % Calculate Next Symbol Timing Adjustment 210

 % Increment Circular Buffer Address 211

 Count_14 = Count_14 + 1; 212

 if Count_14 == 15 213

 Count_14 = 1; 214

 end 215

 %Current Syncronization Calculation 216

 Rx_SymboxSync_Calc = Decision_I*(Rx_Decision_Buffer_I1 - ... 217

 Rx_Decision_Buffer_I3)+Decision_Q*(Rx_Decision_Buffer_Q1 ... 218

 -Rx_Decision_Buffer_Q3); 219

 % IIR Moving Average Filter 220

 Rx_SymbolSync_Adjustment_Buffer_mean = ... 221

 Rx_SymbolSync_Adjustment_Buffer_mean + 0.0714 * ... 222

 (Rx_SymboxSync_Calc - 223

Rx_SymbolSync_Adjustment_Buffer(Count_14)); 224

80

 %Fill Circular Reference with Current Calculation 225

 Rx_SymbolSync_Adjustment_Buffer(Count_14) = Rx_SymboxSync_Calc; 226

 Rx_SymbolSync_Adjustment = Rx_SymbolSync_Gain * 0.0001225 ... 227

 * (Rx_SymbolSync_Adjustment_Buffer_mean); 228

 Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint ... 229

 + Rx_SymbolSync_Adjustment; 230

 if Rx_SymbolSync_SamplePoint>39.5 231

 Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint - 40; 232

 elseif Rx_SymbolSync_SamplePoint<.5 233

 Rx_SymbolSync_SamplePoint = Rx_SymbolSync_SamplePoint + 40; 234

 end 235

 Rx_SymbolSync_Sample = round(Rx_SymbolSync_SamplePoint); 236

 237

 %Calculate next IQ derotation angle adjustment 238

 Rx_IQ_Rotate = Rx_IQ_Rotate ... 239

 + (- (Decision_I * Rx_Decision_Buffer_Q2 ... 240

 - Decision_Q * Rx_Decision_Buffer_I2) * Rx_IQ_Gain); 241

 242

 %Symbol Loop Data Logging 243

 log_Rx_Data_Result_I=[log_Rx_Data_Result_I Rx_Decision_Buffer_I2]; 244

 log_Rx_Data_Result_Q=[log_Rx_Data_Result_Q Rx_Decision_Buffer_Q2]; 245

 log_Rx_SymbolSync_SamplePoint = [log_Rx_SymbolSync_SamplePoint ... 246

 (Rx_SymbolSync_SamplePoint)]; 247

 log_Rx_AGC_Gain = [log_Rx_AGC_Gain Rx_AGC_Amplitude]; 248

 end 249

 250

 %Reset Counter each symbol 251

 Count_40 = Count_40 + 1; 252

81

 if (Count_40 == 40) 253

 Count_40 = 0; 254

 end 255

 256

 %Per Sample Data Logging 257

 log_Rx_PreDecision_I =[log_Rx_PreDecision_I Rx_Decision_Buffer_I2]; 258

 log_Rx_PreDecision_Q =[log_Rx_PreDecision_Q Rx_Decision_Buffer_Q2]; 259

 log_Rx_Input_I = [log_Rx_Input_I Rx_Input_I(Current_Sample)]; 260

 log_Rx_Input_Q = [log_Rx_Input_Q Rx_Input_Q(Current_Sample)]; 261

 log_Rx_IQ_Rotation = [log_Rx_IQ_Rotation Rx_IQ_Rotate]; 262

end 263

 264

 %The rest of this code is all displaying various log files in figures. 265

figure 266

for b = 5022:40:10000 267

 subplot(4,1,1) 268

 hold on 269

 plot(log_Rx_Input_I(b:(b+40))) 270

 title('In-phase waveform') 271

 subplot(4,1,2) 272

 hold on 273

 plot(log_Rx_Input_Q(b:(b+40))) 274

 title('Quadrature-phase waveform') 275

end 276

for b =(3*length(log_Rx_Input_I)/4 + 23):40:(length(log_Rx_Input_I)-40) 277

 subplot(4,1,3) 278

 hold on 279

 plot(log_Rx_PreDecision_I(b:(b+40)),'r') 280

82

 title('In-phase waveform. Blue = Innitial Stream,Red = ... 281

 After Gain and I/Q angle control.') 282

 subplot(4,1,4) 283

 hold on 284

 plot(log_Rx_PreDecision_Q(b:(b+40)),'r') 285

 title('Quadrature-phase waveform. Blue = Innitial Stream,... 286

 Red = After Gain and I/Q angle control.') 287

end 288

 289

 290

 291

% Plot Constellation Diagrams Before/After Rx Modification 292

figure 293

subplot(2,1,1) 294

plot(log_Rx_Input_I(2400:1:end),log_Rx_Input_Q(2400:1:end)); 295

title('Original I/Q Diagram') 296

subplot(2,1,2) 297

plot(log_Rx_PreDecision_I((Number_of_Samples/2):1:end),... 298

 log_Rx_PreDecision_Q((Number_of_Samples/2):1:end),... 299

 log_Rx_Data_Result_I((Number_of_Samples/40/2):1:end),... 300

 log_Rx_Data_Result_Q((Number_of_Samples/40/2):1:end),'r+'); 301

title('Angle Corrected I/Q Diagram') 302

hold on 303

plot([-32000 32000], [32000 32000], 'r') 304

plot([32000 32000], [32000 -32000], 'r') 305

plot([32000 -32000], [-32000 -32000], 'r') 306

plot([-32000 -32000], [-32000 32000], 'r') 307

hold off 308

83

 309

% Plot Control Responses 310

figure 311

subplot(3,1,1) 312

plot(log_Rx_IQ_Rotation.*180/(2*pi)) 313

title('I/Q Angle Adjustment') 314

xlabel('Sample') 315

subplot(3,1,2) 316

plot(log_Rx_AGC_Gain) 317

title('Gain Adjustment') 318

xlabel('Symbols') 319

subplot(3,1,3) 320

plot(log_Rx_SymbolSync_SamplePoint) 321

hold on 322

plot(round(log_Rx_SymbolSync_SamplePoint),'r') 323

title('Sample Point') 324

xlabel('Symbols') 325

hold off 326

 327

% Plot Rx Decoded Data Output 328

figure 329

subplot(2,1,1) 330

plot(log_Rx_Data_Result_I,'.') 331

title('I-Phase Data Stream') 332

xlabel('Symbols') 333

subplot(2,1,2) 334

plot(log_Rx_Data_Result_Q,'.') 335

title('Q-Phase Data Sream') 336

84

xlabel('Symbols') 337

 338

%Plot Differential Decoded Data Vs Raw Data 339

figure 340

stairs(0:150,(log_Tx_Data_I_Raw(500:650)+4)) 341

hold on 342

stairs(0:150,(log_Rx_Data_I_Raw(500:650)+2.5)) 343

stairs(0:150,(log_Tx_Data_Q_Raw(500:650)-.5)) 344

stairs(0:150,(log_Rx_Data_Q_Raw(500:650)-2)) 345

hold off 346

axis([0 150 -2.5 5.5]) 347

title('Tx/Rx Inphase then Tx/Rx Quadrature Phase Raw Data Streams') 348

xlabel('Bits') 349

 350

toc 351

85

APPENDIX B

Matlab
®
 Implementation

of an SOS Filter

86

function [w, ySOSfilter] = mySOSfilt(SOS, gain, w,index, x, 1

ySOSfilter); 2

% SOS filter routine 3

% 4

% by Dr. T.B. Welch, PE 5

% written on 10 February 2010 6

% 7

% variable declaration 8

 9

% calculations 10

 w(1,1) = gain*x - SOS(1,5)*w(1,2) - SOS(1,6)*w(1,3); 11

 output = SOS(1,1)*w(1,1) + SOS(1,2)*w(1,2) + SOS(1,3)*w(1,3); 12

 w(1,3) = w(1,2); 13

 w(1,2) = w(1,1); 14

 15

 w(2,1) = output - SOS(2,5)*w(2,2) - SOS(2,6)*w(2,3); 16

 output = SOS(2,1)*w(2,1) + SOS(2,2)*w(2,2) + SOS(2,3)*w(2,3); 17

 w(2,3) = w(2,2); 18

 w(2,2) = w(2,1); 19

 20

 w(3,1) = output - SOS(3,5)*w(3,2) - SOS(3,6)*w(3,3); 21

 output = SOS(3,1)*w(3,1) + SOS(3,2)*w(3,2) + SOS(3,3)*w(3,3); 22

 w(3,3) = w(3,2); 23

 w(3,2) = w(3,1); 24

 25

 w(4,1) = output - SOS(4,5)*w(4,2) - SOS(4,6)*w(4,3); 26

 ySOSfilter(index) = SOS(4,1)*w(4,1) + SOS(4,2)*w(4,2) ... 27

 + SOS(4,3)*w(4,3); 28

87

 w(4,3) = w(4,2); 29

 w(4,2) = w(4,1); 30

88

APPENDIX C

C CODE Implementation

of a QPSK Transmitter

89

/// 1

// Filename: ISRs.c 2

// 3

// Synopsis: Interrupt service routines for McBSP transmit and receive 4

// Framework from Real-time Digital Signal Processing, 2005 5

// Welch, Wright, & Morrow, 6

// 7

// With additional QPSK random data transmission. Added Spring 2010 by 8

// Robert Conant and Chris Anderson 9

// 10

/// 11

 12

 13

#include ".\Common_Code\DSK_Config.h" 14

#include <math.h> 15

#include <stdlib.h> 16

#include <stdio.h> 17

 18

// Data is received from the PCM3006 codec as 2 16-bit words (left/right) 19

// packed into one 32-bit word. The union allows the data to be accessed 20

// as a single entity when transferring to and from the serial port, but 21

// still be able to manipulate the left and right channels independently. 22

 23

#define LEFT 0 24

#define RIGHT 1 25

 26

 27

float temp; 28

 29

 float fs=48000; 30

 float datarate=2400; 31

 float alpha=.364; 32

 float symbols=3; 33

 float costable[4]={1, 0, -1, 0}; 34

 float sintable[4]={0, 1, 0, -1}; 35

 int counter=0; 36

 37

 float theta=0; 38

 float gain=1; 39

90

 float symbolrate=1200; //for QPSK 40

 float rotationoffset=0; 41

 float so; 42

 float co; 43

 float amplitude=14000; 44

 float samplespersymbol=40; 45

 46

 #define N 240 47

 48

// float B=[241]; 49

 50

 51

 float B[N+1]={ -3.6205932e-003,-3.7406889e-003,-3.8171915e-003,-3.8471142e-003, 52

-3.8278644e-003,-3.7572865e-003,-3.6337013e-003,-3.4559417e-003,-3.2233850e-003,-2.9359801e-003, 53

-2.5942704e-003,-2.1994113e-003,-1.7531824e-003,-1.2579936e-003,-7.1688573e-004,-1.3352392e-004, 54

4.8781416e-004,1.1422573e-003,1.8243660e-003,2.5281640e-003,3.2471764e-003,3.9744736e-003, 55

4.7027214e-003, 5.4242369e-003,6.1310492e-003,6.8149655e-003,7.4676416e-003,8.0806557e-003, 56

8.6455868e-003, 9.1540947e-003,9.5980025e-003,9.9693813e-003,1.0260634e-002,1.0464582e-002, 57

1.0574548e-002,1.0584436e-002, 1.0488819e-002,1.0283008e-002,9.9631305e-003,9.5261993e-003, 58

8.9701740e-003,8.2940202e-003, 7.4977604e-003,6.5825180e-003,5.5505531e-003,4.4052902e-003, 59

3.1513374e-003,1.7944960e-003,3.4176055e-004, -1.1986905e-003,-2.8175145e-003,-4.5042341e-003, 60

-6.2472767e-003,-8.0340244e-003,-9.8508733e-003,-1.1683303e-002,-1.3515953e-002,-1.5332714e-002, 61

-1.7116819e-002,-1.8850950e-002,-2.0517347e-002,-2.2097925e-002,-2.3574399e-002,-2.4928408e-002, 62

-2.6141651e-002,-2.7196018e-002,-2.8073728e-002,-2.8757469e-002,-2.9230533e-002,-2.9476952e-002, 63

-2.9481636e-002,-2.9230502e-002,-2.8710601e-002,-2.7910242e-002,-2.6819105e-002,-2.5428349e-002, 64

-2.3730715e-002,-2.1720612e-002,-1.9394204e-002,-1.6749472e-002,-1.3786279e-002,-1.0506415e-002, 65

-6.9136274e-003,-3.0136456e-003,1.1858140e-003,5.6750535e-003,1.0442414e-002,1.5474310e-002, 66

2.0755277e-002,2.6268033e-002,3.1993553e-002,3.7911159e-002,4.3998618e-002,5.0232256e-002, 67

5.6587082e-002, 6.3036918e-002,6.9554551e-002,7.6111878e-002,8.2680070e-002,8.9229738e-002, 68

9.5731107e-002, 1.0215419e-001,1.0846897e-001,1.1464559e-001,1.2065451e-001,1.2646672e-001, 69

1.3205391e-001,1.3738862e-001,1.4244447e-001,1.4719626e-001,1.5162017e-001,1.5569392e-001, 70

1.5939688e-001,1.6271021e-001,1.6561700e-001,1.6810237e-001,1.7015356e-001,1.7176001e-001, 71

1.7291343e-001,1.7360788e-001,1.7383976e-001,1.7360788e-001,1.7291343e-001,1.7176001e-001, 72

1.7015356e-001,1.6810237e-001,1.6561700e-001,1.6271021e-001,1.5939688e-001,1.5569392e-001, 73

1.5162017e-001,1.4719626e-001,1.4244447e-001,1.3738862e-001,1.3205391e-001,1.2646672e-001, 74

1.2065451e-001,1.1464559e-001,1.0846897e-001,1.0215419e-001,9.5731107e-002,8.9229738e-002, 75

8.2680070e-002,7.6111878e-002,6.9554551e-002,6.3036918e-002,5.6587082e-002,5.0232256e-002, 76

4.3998618e-002,3.7911159e-002,3.1993553e-002,2.6268033e-002,2.0755277e-002,1.5474310e-002, 77

1.0442414e-002,5.6750535e-003,1.1858140e-003,-3.0136456e-003,-6.9136274e-003,-1.0506415e-002, 78

-1.3786279e-002,-1.6749472e-002,-1.9394204e-002,-2.1720612e-002,-2.3730715e-002,-2.5428349e-002, 79

-2.6819105e-002,-2.7910242e-002,-2.8710601e-002,-2.9230502e-002,-2.9481636e-002,-2.9476952e-002, 80

91

-2.9230533e-002,-2.8757469e-002,-2.8073728e-002,-2.7196018e-002,-2.6141651e-002,-2.4928408e-002, 81

-2.3574399e-002,-2.2097925e-002,-2.0517347e-002,-1.8850950e-002,-1.7116819e-002,-1.5332714e-002, 82

-1.3515953e-002,-1.1683303e-002,-9.8508733e-003,-8.0340244e-003,-6.2472767e-003,-4.5042341e-003, 83

-2.8175145e-003,-1.1986905e-003,3.4176055e-004,1.7944960e-003,3.1513374e-003,4.4052902e-003, 84

5.5505531e-003,6.5825180e-003,7.4977604e-003,8.2940202e-003,8.9701740e-003,9.5261993e-003, 85

9.9631305e-003,1.0283008e-002,1.0488819e-002,1.0584436e-002,1.0574548e-002,1.0464582e-002, 86

1.0260634e-002, 9.9693813e-003,9.5980025e-003,9.1540947e-003,8.6455868e-003,8.0806557e-003, 87

7.4676416e-003, 6.8149655e-003,6.1310492e-003,5.4242369e-003,4.7027214e-003,3.9744736e-003, 88

3.2471764e-003,2.5281640e-003, 1.8243660e-003,1.1422573e-003,4.8781416e-004,-1.3352392e-004, 89

-7.1688573e-004,-1.2579936e-003,-1.7531824e-003,-2.1994113e-003,-2.5942704e-003,-2.9359801e-003, 90

-3.2233850e-003,-3.4559417e-003,-3.6337013e-003,-3.7572865e-003,-3.8278644e-003, 91

-3.8471142e-003,-3.8171915e-003,-3.7406889e-003,-3.6205932e-003 }; 92

 93

 94

 int fourcount=1; 95

 float datai[6]; 96

 float dataq[6]; 97

 int i; 98

 float di; 99

 float dq; 100

 float imdatai, imdataq, *pr, *pl; 101

 float xRight[6], *pRight = xRight; 102

 float xLeft[6], *pLeft = xLeft; 103

 float output; 104

 105

volatile union { 106

 unsigned int UINT; 107

 short Channel[2]; 108

 } CodecDataIn, CodecDataOut; 109

 110

 111

interrupt void McBSP_Rx_ISR() 112

/// 113

// Purpose: McBSP receive interrupt service routine. Codec data is 114

// stored in the global variable CodecData. 115

// 116

// Input: None 117

// 118

// Returns: Nothing 119

// 120

// Calls: Nothing 121

92

// 122

// Notes: None 123

/// 124

{ 125

 McBSP *port; 126

 127

 if(CodecType == TLC320AD535) 128

 port = McBSP0_Base; // McBSP0 used with TLC320AD535 129

 else 130

 port = McBSP1_Base; // McBSP1 used with codec daughtercards 131

 CodecDataIn.UINT = port->drr; // get input data from serial port 132

 133

 /* I added my routine here */ 134

 135

 136

 so=sinf(rotationoffset); 137

 co=cosf(rotationoffset); 138

 139

 140

 141

 if (counter==0) 142

 { 143

 for (i=0; i < 5; i++) 144

 { 145

 datai[i] = datai[i + 1]; 146

 dataq[i] = dataq[i + 1]; 147

 } 148

 dataq[5] = amplitude * (2 * (rand() & 1) - 1); 149

 datai[5] = amplitude * (2 * (rand() & 1) - 1); 150

 } 151

 152

 dq=0; 153

 di=0; 154

 155

 for (i=0; i < 6; i++) 156

 { 157

 di += datai[5 - i] * 8 * B[counter + (i * 40)]; 158

 dq += dataq[5 - i] * 8 * B[counter + (i * 40)]; 159

 } 160

 161

 output=((di * co - dq * so) * costable[fourcount] - (dq * co + di * so) ... 162

93

* sintable[fourcount]); 163

 164

 165

 counter++; 166

 if (counter > 39) 167

 {counter=0;} 168

 169

 170

 fourcount++; 171

 if (fourcount > 3) 172

 {fourcount=0;} 173

 174

 175

 176

 CodecDataOut.Channel[RIGHT] = output; // L to R 177

 CodecDataOut.Channel[LEFT] = output; // temp to L 178

 179

 180

 181

 /* end of my routine */ 182

} 183

 184

interrupt void McBSP_Tx_ISR() 185

/// 186

// Purpose: McBSP transmit interrupt service routine. Codec data 187

// stored in the global variable CodecData is sent to the 188

// codec. 189

// 190

// Input: None 191

// 192

// Returns: Nothing 193

// 194

// Calls: Nothing 195

// 196

// Notes: None 197

/// 198

{ 199

 McBSP *port; 200

 201

 // 202

 // add code here to modify CodecData.Channel[RIGHT] and 203

94

 // CodecData.Channel[LEFT] as desired 204

 // 205

 206

 // now, send the data to the codec 207

 if(CodecType == TLC320AD535) { 208

 port = McBSP0_Base; // McBSP0 used with TLC320AD535 209

 CodecDataOut.UINT &= 0xfffffffe;// mask off LSB to prevent codec reprogramming 210

 } 211

 else { 212

 port = McBSP1_Base; // McBSP1 used with codec daughtercards 213

 } 214

 port->dxr = CodecDataOut.UINT; // send output data to serial port 215

} 216

95

APPENDIX D

C CODE Implementation

of a QPSK Receiver

96

/// 1

// Created by Robert Conant and Chistopher Anderson in RT-DSP 4/2010 2

/// 3

// Filename: ISRs.c 4

// Synopsis: Interrupt service routines for McBSP transmit and receive 5

// With additional QPSK receiver. 6

/// 7

// Framework Courtesy of: 8

// Welch, Wright, & Morrow, 9

// Real-time Digital Signal Processing, 2005 10

/// 11

 12

#include ".\Common_Code\DSK_Config.h" 13

#include <math.h> 14

#include <stdlib.h> 15

#include <stdio.h> 16

#define LEFT 0 17

#define RIGHT 1 18

 19

//*************************** DEFS ************************ 20

float attenuation=.000001, temp,fs=48000,datarate=4800,alpha=.364,symbols=3; 21

float costable[4]={1, 0, -1, 0},sintable[4]={0, 1, 0, -1}; 22

int fourcount=0, counter=0, samplecounter=0, samplepoint=5,TargetGain=28288, i=0; 23

float theta=0,gain=1,symbolrate=2400,st,ct,Iout,Qout,Ioutpre,Qoutpre,Iout2,Iout3,Qout2,Qout3; 24

float control1[4],control2[4]; 25

float dataradius, mean_Radius_Hist, changeneeded; 26

float amplitude=14000; 27

float samplespersymbol=40; 28

float di,dq,Iadjmean,Qadjmean, output, phasegain,gaingain,IQthetagain, Iin, Qin; 29

 30

float phase=35; 31

 32

float gain_Q = 25000.0, gain_I = 25000.0, Output_Q[5], Output_I[5], StageOne_Q[3], StageTwo_Q[3], 33

StageThree_Q[3], StageFour_Q[3]; 34

float StageOne_I[3], StageTwo_I[3], StageThree_I[3], StageFour_I[3]; 35

 36

float StageOne_B[3] = {1, -0.582625392507615, -0.502242155533430},StageTwo_B[3] = ... 37

 {1, -1.841298371057681, 0.888254829549654}; 38

float StageThree_B[3] = {1, -2.096027914696049, 1.100253146443069},StageFour_B[3] = ... 39

97

 {1, -1.976008564183378, 0.989890509033266}; 40

float StageOne_A[3] = {1, -1.949708382042005, 0.950595238114926},StageTwo_A[3] = ... 41

{1, -1.951941630654312, 0.954755854568231}; 42

float StageThree_A[3] = {1, -1.958279766765397, 0.964046224796366},StageFour_A[3] = ... 43

{1, -1.969209262832968, 0.978554589881313}; 44

 45

//averaging arrays 46

float Iadj[14]; 47

float Qadj[14]; 48

float Radius_Hist[11]; 49

float comparray[15], phaseadj, comp; 50

 51

// ************** END RX DEFS ************************* 52

 53

volatile union { 54

 unsigned int UINT; 55

 short Channel[2]; 56

 } CodecDataIn, CodecDataOut; 57

interrupt void McBSP_Rx_ISR() 58

{ McBSP *port; 59

 if(CodecType == TLC320AD535) 60

 port = McBSP0_Base; // McBSP0 used with TLC320AD535 61

 else 62

 port = McBSP1_Base; // McBSP1 used with codec daughtercards 63

 CodecDataIn.UINT = port->drr; // get input data from serial port 64

 65

// Control Loop Gain Settings 66

 phasegain=2*(.707); // Control loop gain on the sample point adjustment 67

 gaingain=.0000002*(.707); // gain on the gain control loop 68

 IQthetagain=0.0000004*(.707); // gain on the I/Q theta control loop 69

 70

//DEMODULATION 71

 Output_I[0]=CodecDataIn.Channel[LEFT]*sintable[fourcount]; 72

 Output_Q[0]=CodecDataIn.Channel[LEFT]*costable[fourcount]; 73

 StageOne_Q[0]=StageOne_A[0]*Output_Q[0]-StageOne_A[1]*StageOne_Q[1]-StageOne_A[2]*StageOne_Q[2]; 74

 Output_Q[1]=StageOne_B[0]*StageOne_Q[0]+StageOne_B[1]*StageOne_Q[1]+StageOne_B[2]*StageOne_Q[2]; 75

 StageOne_I[0]=StageOne_A[0]*Output_I[0]-StageOne_A[1]*StageOne_I[1]-StageOne_A[2]*StageOne_I[2]; 76

 Output_I[1]=StageOne_B[0]*StageOne_I[0]+StageOne_B[1]*StageOne_I[1]+StageOne_B[2]*StageOne_I[2]; 77

 StageTwo_Q[0]=StageTwo_A[0]*Output_Q[1]-StageTwo_A[1]*StageTwo_Q[1]-StageTwo_A[2]*StageTwo_Q[2]; 78

 Output_Q[2]=StageTwo_B[0]*StageTwo_Q[0]+StageTwo_B[1]*StageTwo_Q[1]+StageTwo_B[2]*StageTwo_Q[2]; 79

 StageTwo_I[0]=StageTwo_A[0]*Output_I[1]-StageTwo_A[1]*StageTwo_I[1]-StageTwo_A[2]*StageTwo_I[2]; 80

 Output_I[2]=StageTwo_B[0]*StageTwo_I[0]+StageTwo_B[1]*StageTwo_I[1]+StageTwo_B[2]*StageTwo_I[2]; 81

 StageThree_Q[0]=StageThree_A[0]*Output_Q[2]-StageThree_A[1]*StageThree_Q[1]-StageThree_A[2]*StageThree_Q[2]; 82

98

 Output_Q[3]=StageThree_B[0]*StageThree_Q[0]+StageThree_B[1]*StageThree_Q[1]+StageThree_B[2]*StageThree_Q[2]; 83

 StageThree_I[0]=StageThree_A[0]*Output_I[2]-StageThree_A[1]*StageThree_I[1]-StageThree_A[2]*StageThree_I[2]; 84

 Output_I[3]=StageThree_B[0]*StageThree_I[0]+StageThree_B[1]*StageThree_I[1]+StageThree_B[2]*StageThree_I[2]; 85

 StageFour_Q[0]=StageFour_A[0]*Output_Q[3]-StageFour_A[1]*StageFour_Q[1]-StageFour_A[2]*StageFour_Q[2]; 86

 Output_Q[4]=StageFour_B[0]*StageFour_Q[0]+StageFour_B[1]*StageFour_Q[1]+StageFour_B[2]*StageFour_Q[2]; 87

 StageFour_I[0]=StageFour_A[0]*Output_I[3]-StageFour_A[1]*StageFour_I[1]-StageFour_A[2]*StageFour_I[2]; 88

 Output_I[4]=StageFour_B[0]*StageFour_I[0]+StageFour_B[1]*StageFour_I[1]+StageFour_B[2]*StageFour_I[2]; 89

 90

 for (i=0; i<2; i++) 91

 {StageOne_Q[2-i]=StageOne_Q[(2-i)-1]; 92

 StageTwo_Q[2-i]=StageTwo_Q[(2-i)-1]; 93

 StageThree_Q[2-i]=StageThree_Q[(2-i)-1]; 94

 StageFour_Q[2-i]=StageFour_Q[(2-i)-1]; 95

 96

 StageOne_I[2-i]=StageOne_I[(2-i)-1]; 97

 StageTwo_I[2-i]=StageTwo_I[(2-i)-1]; 98

 StageThree_I[2-i]=StageThree_I[(2-i)-1]; 99

 StageFour_I[2-i]=StageFour_I[(2-i)-1];} 100

 101

 // set current angular adjustment of I/Q data 102

 st = sinf(theta); 103

 ct = cosf(theta); 104

 105

 // Shift Memory HISTORY (MEANING:OLD) 106

 Iout3=Iout2; 107

 Iout2=Iout; 108

 Qout3=Qout2; 109

 Qout2=Qout; 110

 111

 //Variable Translation 112

 Iin=Output_I[4]*attenuation; // Gain set due to filter gain 113

 Qin=Output_Q[4]*attenuation; // Gain set due to filter gain 114

 //Calculate NEW Derotated Data 115

 Ioutpre = Iin*ct - Qin*st; 116

 Qoutpre = Qin*ct + Iin*st; 117

 118

 // Apply automatic gain control 119

 Iout=Ioutpre*gain; 120

 Qout=Qoutpre*gain; 121

 122

 // sample if at sampling location in symbol 123

 if (counter==samplepoint+22 | counter==samplepoint-18) 124

99

 { 125

 samplecounter++; 126

 dataradius = Iout * Iout + Qout * Qout; // actually dataradius squared 127

 for (i=0; i < 10; i++) 128

 { 129

 Radius_Hist[i] = Radius_Hist[i + 1]; 130

 } 131

 132

 Radius_Hist[10] = dataradius; 133

 mean_Radius_Hist= 0.08333333 * (Radius_Hist[0] + Radius_Hist[1] + Radius_Hist[2] ... 134

+ Radius_Hist[3] + Radius_Hist[4] + Radius_Hist[5] + Radius_Hist[6]... 135

+ Radius_Hist[7] + Radius_Hist[8] + Radius_Hist[9] + Radius_Hist[10]); 136

 changeneeded=(TargetGain*TargetGain-mean_Radius_Hist)*gaingain; 137

 if (samplecounter>40) 138

 { 139

 gain = gain + changeneeded; 140

 } 141

 142

 // determine digital result 143

 if (Iout2>0) 144

 {di=1;} 145

 else 146

 {di=-1;} 147

 if (Qout2>0) 148

 {dq=1;} 149

 else 150

 {dq=-1;} 151

 152

 //calculate next sample point adjustment 153

 for (i=0; i < 13; i++) 154

 { 155

 Iadj[i]=Iadj[i + 1]; 156

 Qadj[i]=Qadj[i + 1]; 157

 } 158

 159

 Iadj[13] = di*(Iout-Iout3); 160

 Qadj[13] = dq*(Qout-Qout3); 161

 Iadjmean = 0.071428571428571428571428571428571 * (Iadj[0] +Iadj[1] + Iadj[2] + Iadj[3]... 162

 + Iadj[4] + Iadj[5] + Iadj[6] + Iadj[7] + Iadj[8] + Iadj[9] + Iadj[10] + Iadj[11]... 163

 + Iadj[12] + Iadj[13]); 164

 Qadjmean = 0.071428571428571428571428571428571 * (Qadj[0] +Qadj[1] + Qadj[2] + Qadj[3]... 165

100

 + Qadj[4] + Qadj[5] + Qadj[6] + Qadj[7] + Qadj[8] + Qadj[9] + Qadj[10] + Qadj[11] … 166

 + Qadj[12] + Qadj[13]); 167

 phaseadj=phasegain*0.0000625*(Iadjmean+Qadjmean); 168

 phase=phase+phaseadj; 169

 170

 // recalculate next angle adjustment 171

 comp = -(di*Qout-dq*Iout)*IQthetagain; 172

 for (i=0; i < 14; i++) 173

 { 174

 comparray[i] = comparray[i + 1]; 175

 } 176

 comparray[14] = comp; 177

 theta = theta + 0.0714 *(comparray[1] + comparray[2] + comparray[3] + comparray[4]... 178

 + comparray[5] + comparray[6] + comparray[7] + comparray[8] + comparray[9]... 179

 + comparray[10] + comparray[11] + comparray[12] + comparray[13] + comparray[14]); 180

 if (theta>(2*3.14)) 181

 {theta=theta-(2*3.14);} 182

 183

// Data Mode 184

// CodecDataOut.Channel[RIGHT] = di * gain_Q; 185

// CodecDataOut.Channel[LEFT] = dq * gain_I;; 186

 187

 } // end symbol loop 188

 189

// Signal Mode 190

// CodecDataOut.Channel[RIGHT] = .6*Iout; 191

// CodecDataOut.Channel[LEFT] = .6*Qout; 192

 193

// Control Mode 194

 control1[0]= 3000*theta; 195

 control1[1]= 3000*theta; 196

 control1[2]= 10 * gain; 197

 control1[3]= 0; 198

 199

 control2[0]= 700*samplepoint; 200

 control2[1]= 700*samplepoint; 201

 control2[2]= 10 * gain; 202

 control2[3]= 0; 203

 204

 CodecDataOut.Channel[RIGHT] = control1[fourcount]; 205

 CodecDataOut.Channel[LEFT] = control2[fourcount]; 206

101

 207

 //Increment or Decrement a symbol on sample point timing 208

 if (phase > 39.5) 209

 phase = phase - 40; 210

 if (phase<-.5) 211

 phase = phase + 40; 212

 samplepoint=(phase+0.5); // round sample point timing to a single integer value. 213

 214

 // counters 215

 counter++; 216

 if (counter>39) 217

 {counter=0;} 218

 fourcount++; 219

 if (fourcount > 3) 220

 {fourcount=0;} 221

} 222

interrupt void McBSP_Tx_ISR() 223

{ McBSP *port; 224

 if(CodecType == TLC320AD535) { port = McBSP0_Base; // McBSP0 used with TLC320AD535 225

 CodecDataOut.UINT &= 0xfffffffe;}// mask off LSB to prevent codec reprogramming 226

 else { port = McBSP1_Base; } // McBSP1 used with codec daughtercards 227

 port->dxr = CodecDataOut.UINT;} // send output data to serial port 228

