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CHAPTER 1: THESIS OVERVIEW 

Nesting density in birds is influenced by a number of factors including food 

availability, predation, and breeding site availability.  As a result of a species’ nesting 

density, individuals can incur certain costs and benefits related to predation rates, parasite 

levels, egg-yolk hormones, and nestling productivity.  I evaluated hypotheses related to 

these costs and benefits in burrowing owls (Athene cunicularia hypugaea) that nested 

within the Morley Nelson Snake River Birds of Prey National Conservation Area in 

southern Idaho during 2006-2007.  I studied the possibility that (1) increasing nest 

density would attract more predators, but group warning and mutual defense in high-

density areas may help to deter predators, (2) increasing density would amplify flea levels 

in nestlings and these increased flea loads would negatively impact fledgling body 

condition, (3) increasing nest density would raise egg-yolk hormone levels potentially 

because of increased aggressive conspecific interactions among nesting female owls, and 

(4) increasing density would result in a net benefit for burrowing owls resulting in higher 

productivity at individual nests in these high-density sites.  I also examined effects of 

distance to agriculture, female body condition, and median hatch date (or initial laying 

date for egg-yolk hormones) as potential covariates on predation, fleas, egg-yolk 

hormones, and productivity.  In addition, I examined the effect of egg order on egg-yolk 

hormones to determine if early- or late-laid eggs within a clutch had greater hormone 

levels.   
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During the 2006-2007 breeding seasons, I observed the effects of density in 107 

actual burrowing owl nests.  I calculated territory overlap, an index of nesting density, in 

actual nests by creating a 200m radius buffer around each nest and measuring the 

percentage that a focal nest buffer was overlapped by neighboring nest buffers.  Territory 

overlap varied from 0% to 100%.  I examined predation rates in actual nests (n=105) and 

within dummy (artificial nests containing quail [Coturnix spp.] eggs) nests in high-

density (n=16) and low-density (n=16) configurations.  In addition, I observed male 

burrowing owl behavior in both high-density (n=5) and low-density (n=2) nests in 

response to a mock predator (i.e., a stuffed badger, Taxidea taxus) and observed the 

responses of neighboring owls in high-density areas.  Parasites were counted and ranked 

for each nestling within a nest.  To examine effects on fledgling body condition, some 

nests were sprayed with Avian Insect Liquidator (n=17) to remove parasites, whereas 

control nests (n=16) were sprayed with water.  I examined the relationship between flea 

abundance on owls and nest density in 52 other nests to examine the prediction that fleas 

increased in high-density nesting areas.  I extracted a small sample of yolk (~75mg) from 

one randomly selected early- and one late-laid egg in each nest (n=46 nests) to determine 

the effects of nesting density, laying date, and egg order within a clutch on egg-yolk 

hormones.  Finally, I counted the number of 30-day old nestlings to measure productivity 

in all nests (n=107).  

Burrowing owl nests in artificial burrows (n=107) contained 8.8±0.14 eggs 

(range: 5-14), 7.6±0.23 hatchlings (range: 0-11), 5.5±0.26 20-day old nestlings (range: 0-

10), and 4.8±0.29 30-day old fledglings (range: 0-10).  Of the 107 nests, 14 failed to 
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fledge young.  When examining the effects of predation, I found an interaction between 

nest density and agriculture where burrowing owls nesting in high-density and in 

proximity to agriculture had lower odds of predation.  Predators detected high-density 

and low-density dummy burrowing owl nests with similar frequency, which indicates 

little if any added cost associated with detection by predators in higher density areas.  

Trials with the mock predator indicated that male owls in high-density nests may be more 

aggressive in attacking predators, participate in mutual defense against predators, and 

behave such that nearby owls are warned of approaching predators.  Thus owls in high-

density nesting areas appear to benefit from early warning, group defense, and perhaps a 

higher chance of driving a potential predator away.  There was no evidence that any of 

the variables I examined influenced flea loads in nestlings or that increased flea loads 

lowered nestling body condition.  Many burrowing owl fleas may come from their rodent 

prey, and this may help explain the lack of a relationship with nest density.  Of the five 

hormones analyzed, only three androgens (testosterone, dihydrotestosterone, and 

androstenedione) were found in enough eggs and at sufficient quantities to conduct 

analyses.  There was no evidence that egg-yolk androgens increased with increasing nest 

density, but egg-yolk androgens increased from early- to late-laid eggs within a nest.  

Egg- yolk androgens were low early and late in the laying season but peaked near the 

middle of the laying season.  Finally, I found that productivity increased with (1) 

increasing female body condition, (2) decreasing flea loads, and (3) the lack of predation 

events.  There was also a significant interaction between hatch date and nesting density: 

productivity in higher density nests declined with median hatch date, whereas burrowing 
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owl nests in lower density (0% territory overlap) had relatively consistent productivity 

throughout the season.  However, productivity was generally much higher in high-density 

nests unless nesting very late in the season, which suggests that burrowing owls benefit 

from living in higher densities.   

In conclusion, burrowing owls appear to gain benefits from living in high-

densities, whereas I uncovered few costs.  Burrowing owls living in high-density 

configurations communicated the presence of predators and participated in mutual 

defense while incurring no apparent costs of added ectoparasites.  These results may help 

to explain why we see a majority of burrowing owls living in high-density areas even at 

times when ample nest burrows seem to be available elsewhere.  There was no effect of 

nesting density on egg androgens, but egg-yolk androgens exhibited high variation in 

burrowing owls and appeared to be a product of both the within-nest environment (egg 

order) and the external environment (laying date).  These results increase our 

understanding of the biology and ecology of burrowing owls in relation to factors driving 

nesting and the consequences of nesting density. 
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CHAPTER 2: COSTS AND BENEFITS OF VARIABLE NESTING DENSITY IN 

BURROWING OWLS: EFFECTS ON PREDATION, ECTOPARASITE LEVELS, 

AND OVERALL PRODUCTIVITY 

Abstract 

Nesting density in birds is influenced by a number of factors including food 

availability, predation, and breeding site availability.  As a result of a species’ nesting 

density, individuals incur certain costs and benefits related to predation rates, parasite 

levels, and productivity.  I evaluated hypotheses related to these costs and benefits in 

burrowing owls (Athene cunicularia hypugaea) that nested within the Morley Nelson 

Snake River Birds of Prey National Conservation Area in southern Idaho.  I calculated 

territory overlap, an index of nesting density, of actual nests by creating a 200m radius 

buffer around each nest and measuring the percentage that a focal nest buffer was 

overlapped by neighboring nest buffers.  Territory overlap varied from 0% to 100.  

Nesting density interacted with distance to agriculture to influence predation rates and 

with hatching date to affect productivity.  Lower odds of predation attempts were realized 

in higher nesting densities, and nests without an observed predation attempt produced 

nearly twice the number of fledglings.  Reduced predation in nests from high-density 

areas may partially be explained by owls receiving early warning about predators through 

the actions of neighbors, which I documented in experiments using a mock predator.  

These same experiments documented a case of mutual defense against predators by 
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neighboring owls.  Increased productivity in higher densities may also be the result of 

grouping around a localized food source.  In addition, I found that increasing fleas 

reduced productivity but not through reduced nestling body condition.  Finally, increased 

adult female body condition during the nesting season resulted in more fledglings.  These 

results suggest that rather than being forced to live in high-density configurations because 

of limited resources such as the availability of nest burrows, burrowing owls can benefit 

from nesting in higher densities under some circumstances.  
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Introduction 

Nesting density in birds can be influenced by a number of factors including food 

availability (Johnson and Sherry 2001, Christie and Reimchen 2008), predation (Arnold 

2000, Roos 2002, Serrano et al. 2005), and breeding site availability (Arambarri and 

Rodríguez 2000, Cockle et al. 2008).  Benefits of nesting in higher densities for 

individuals include increased vigilance towards predators and the potential for mutual 

defense (Robinson 1985, Arnold 2000, Olendorf et al. 2003, Williams et al. 2003, 

Semeniuk and Dill 2005, Watson et al. 2007, Hollen et al. 2008, Krams et al. 2008, 

Theuerkauf et al. 2009).  Increased densities may also provide opportunities for 

intentional and unintentional information sharing about the location of food or other 

resources (Brown 1988, Marzluff et al. 1996, Campobello and Hare 2007, Forsman et al. 

2007).  Costs of increased nesting density include increased vulnerability to predators 

because of increased detectability (Roos 2002, Krams et al. 2007) and increased disease 

or parasite transmission via increased contact with neighbors (Brown and Brown 1986, 

Shields and Crook 1987, Nilsson 2003, Brown and Brown 2004, Simon et al. 2005, 

Kleindorfer and Dudaniec 2009).  High-density groups may also face increased 

competition for resources that can reduce individual productivity (Sillett et al. 2004, 

Mallord et al. 2007).   

An evaluation of the costs and benefits of variable nesting density in birds could 

be informed by an examination of a species where some individuals live in higher 

densities and others nest in much lower densities within the same region.  Western 

burrowing owls (Athene cunicularia hypugaea) are such a species in that they nest in 
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both high-density and low-density configurations in many portions of their range 

(Desmond and Savidge 1996, Desmond et al. 2000, DeSante et al. 2004, Lantz et al. 

2007, Tipton et al. 2008).  For example, burrowing owl nesting configurations can range 

from having one or a few breeding pairs within a kilometer radius to situations where 

more than 20 pairs nest within a relatively small area, e.g., a prairie dog, Cynomys spp., 

colony (DeSante et al. 2004, Lantz et al. 2007, Tipton et al. 2008).  Researchers have 

hypothesized that burrowing owls nest in higher densities around a localized food source 

(Desmond and Savidge 1996), but it is unclear how burrowing owls select their nest sites 

or why nesting density can be so variable.  However, whether individual burrowing owls 

incur certain costs or reap benefits by nesting in high- or low-density configurations 

remains poorly understood. Therefore, I undertook a suite of investigations designed to 

examine the potential costs and benefits of variable nesting density in this species. 

Burrowing owls nest in underground burrows located in prairies, grasslands, 

steppes, and other open areas (Haug et al. 1993, Poulin et al. 2005, Lantz et al. 2007).  

Although they frequently nest in well-drained areas, they also show an affinity for nesting 

near irrigated agriculture in some portions of their range (Rich 1986, Leptich 1994, 

DeSante et al. 2004, Conway et al. 2006, Moulton et al. 2006, Restani et al. 2008).  They 

nest in burrows previously excavated by other animals such as American badgers 

(Taxidea taxus) or prairie dogs (Gleason and Johnson 1985, Rich 1986, Poulin et al. 

2005, Lantz et al. 2007, Tipton et al. 2008).  However, burrowing owls also nest in 

artificial burrows placed by observers (Henny and Blus 1981, Trulio 1995, Smith and 

Belthoff 2001a, Todd et al. 2003, Smith et al. 2005, Barclay 2008).  Artificial burrows 
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typically consist of an underground nesting chamber (e.g., a bucket or tub) with a tunnel 

leading to the surface (Smith and Belthoff 2001a).  Adults generally weigh 120-200g, are 

19-25cm in length, and have ~16cm wing chord (Haug et al. 1993).  They are 

opportunistic predators that feed on rodents, small birds, amphibians, reptiles, and a 

variety of invertebrates (Moulton et al. 2005, Poulin and Todd 2006, Littles et al. 2007, 

Williford et al. 2009).  Burrowing owls are socially monogamous and, in one study in 

California, rates of extrapair offspring were around 5-10% (Johnson 1997).  Females 

typically lay 8-12 eggs per clutch and incubate while their mates provision them (Haug et 

al. 1993, Kaufman 1996).  Pairs produce, on average, 0.9 to 4.9 nestlings per nesting 

attempt (Haug et al. 1993, Kaufman 1996, Smith et al. 2005, Wellicome 2005, Conway et 

al. 2006, Griebel 2007).  In northern portions of their range, burrowing owls are annual 

migrants, whereas they are non-migratory elsewhere (Haug et al. 1993).  Migration routes 

for Idaho burrowing owls remain relatively unknown (Haug et al. 1993, King and 

Belthoff 2001); however, a small number of band returns indicates that at least some 

Idaho burrowing owls may overwinter in California (Belthoff, unpublished data).   

Study Area  

 I studied burrowing owls in and around the Morley Nelson Snake River Birds of 

Prey National Conservation Area (NCA) located in southern Idaho.  The NCA 

encompasses 195,325ha, approximately 5% of which is irrigated agriculture (i.e., 

agricultural areas that require human supplied water to grow crops).  The agricultural 

areas grow primarily alfalfa, corn, sugar beets, and mint.  While some native shrub steppe 

remains, much of the rest of the NCA is disturbed shrub steppe and invasive grasslands 
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upon which some cattle and sheep grazing occurs, primarily during winter (USDI 1996, 

Moulton et al. 2005).  There are approximately 300 artificial burrows in the NCA 

available for burrowing owls for nesting or roosting (Smith and Belthoff 2001a, Belthoff 

and Smith 2003, Moulton et al. 2006).  These artificial burrows allow easy access for 

researchers to monitor burrow activity, count, measure and sample eggs, and count, 

capture, and mark adults and young.  From 1997-2007, burrowing owl nesting pairs 

occupied 30-60 of the artificial burrows in the NCA each year (Belthoff and Smith 2003, 

Belthoff, unpublished data).  As in many portions of their range, the nest distributions of 

burrowing owls in southern Idaho within both natural and artificial burrows vary from 

high-density (e.g., 6 neighbors within 400m of a focal nest) to very low-density where 

kilometers separate nesting pairs (this study and Belthoff, unpublished data).   

Hypotheses 

My study addressed a suite of hypotheses about potential costs and benefits of 

variable nesting densities for burrowing owls.  These related to predation, ectoparasites, 

and productivity, as explained below.  

Predation 

Burrowing owl adults, young, and eggs are prey for a number of species including 

American badgers (which appear to be their main predator), coyotes (Canis latrans), 

weasels (Mustela spp.), snakes, and large raptors (Green and Anthony 1989, Desmond et 

al. 2000, Leupin and Low 2001, Todd et al. 2003, Chipman et al. 2008).  High-density 

nesting areas likely create more visual (e.g., owls on perches and activities surrounding 

nests), auditory (owl vocalizations), and scent (defecation, pellets) cues for predators to 
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detect.  Therefore, the predation hypothesis predicts that predators have a higher 

probability of detecting and depredating burrowing owl nests in high-density areas.  

However, while higher nesting densities may allow greater detection by predators, 

burrowing owls living in these areas may identify predators earlier because of increased 

numbers of eyes and potentially take more aggressive actions to avoid or repel them, such 

as engaging in mutual defense.  Therefore, the predator response hypothesis predicts that 

burrowing owl males in high-density areas respond to predators differently than their 

counterparts nesting in lower densities (i.e., responses in high-density areas could include 

more visual cues or audio cues to warn neighbors, focal owls could be more aggressive in 

defense, and mutual defense by neighboring owls could occur). 

Ectoparasites 

Another potential cost of nesting in higher densities is increased ectoparasite 

transmission (Simon et al. 2005, Kleindorfer and Dudaniec 2009).  The most common 

parasites found on burrowing owls in southern Idaho are four different species of fleas 

(Smith and Belthoff 2001b).  Ninety percent of these fleas are the human flea (Pulex 

irritans), and burrowing owls can harbor 0 to >100 fleas (Smith and Belthoff 2001b, pers. 

observ.), although the costs of fleas on burrowing owls remains mostly unknown (but see 

Smith 1999).  To examine the potential effects of nest density on ectoparasites in 

burrowing owls, I examined (1) the relationship between nest density and flea abundance 

on burrowing owl nestlings, and (2) the effects of parasite removal on nestling body 

condition in both low and high nest density areas.  I predicted that flea levels would be 

higher in high-density nest areas, potentially because of more frequent contact among 
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owls in these areas and the use of the same roosting or satellite burrows that could 

facilitate transmission of fleas among neighbors.  If flea infestations are costly to owls, I 

predicted that removal of fleas would improve fledgling body condition. 

Productivity 

Desmond and Savidge (1996) reported that as burrowing owl nest site availability 

in Nebraska increased from few sites (badger burrows) to many (prairie dog colonies), 

burrowing owls nested in higher densities.  As prairie dog colony size and burrowing owl 

nest availability continued to increase, burrowing owl density decreased slightly but was 

denser than in the badger site nesting areas.  Their results suggest that burrowing owls 

have a preferred nesting density that falls between extreme high-density groups and 

solitary nests.  However, the relationship between nesting density and productivity 

remains relatively poorly studied (but see Lutz and Plumpton 1999).  Therefore, I 

examined a suite of variables including nesting density, distance to agriculture, female 

body condition, median nestling hatch date, predation attempts, and average flea load in 

the nest to assess their effects on burrowing owl productivity. 

Methods 

Data Collection 

During the 2006 and 2007 breeding seasons (March through August), I monitored 

more than 300 artificial burrows located in or near the NCA for nesting by burrowing 

owls.  Once I detected adult owls at an artificial burrow, I revisited at appropriate 

intervals to confirm egg-laying; determine initial laying date, clutch size, and median 

hatch date; and capture and measure nestlings at 20 and 30 days post-hatch.  I captured 
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adults by hand at nests either directly from artificial burrow tunnels or chambers after 

excavation, or by using a one-way door trap placed at the mouth of an artificial burrow 

combined with playback of burrowing owl vocalizations on a small tape recorder placed 

in the tunnel of an artificial burrow adjacent to the nest burrow (Belthoff, unpublished).  

Upon capture, I measured the following for each owl: mass (to the nearest gram), wing 

chord length, tarsus length, exposed culmen length, and tail length (all to the nearest 

0.5mm) and abundance of fleas.  I quantified flea loads by visually inspecting plumage 

and skin in the abdominal, wing, head, and back regions.  I ranked flea load on a scale of 

0-4 with 0=no fleas, 1=low (1-4), 2=medium (5-9), 3=high (10-19), and 4=very high 

(≥20) flea loads (Smith and Belthoff 2001b).  Adult owls with brood patches were 

classified as females (Martin 1973, Haug et al. 1993), but gender determination of 

nestlings was not possible because juvenile burrowing owls are sexually monomorphic in 

size and plumage (Haug et al. 1993).  Each captured owl received a U.S. Geological 

Survey aluminum leg band (size 4) and three colored plastic leg bands arranged in a 

unique combination for subsequent visual identification in the field.  I also obtained 

blood (100-300ul) from adults and 20-day old juveniles at the time of banding for use in 

future DNA studies.  To do so, I made a small puncture in a wing vein with a Microlance 

Blood Lancet and collected blood into microhematocrit capillary tubes.  I immediately 

transferred blood into 1.5-ml polypropylene microcentrifuge tubes and then stored the 

blood frozen at -20 °C.     
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High-Density Versus Low-Density Nests 

While most analyses used a continuous measure of nest density (described 

below), for certain experiments (flea removal experiment, predator response experiment) 

I had to establish an operational definition of high-density and low-density nests before 

the experiments commenced.  Moulton et al. (2004) determined that the maximum 

distance that nesting burrowing owls typically move toward a novel, broadcasted 

conspecific call is 100m, although they respond vocally beyond this distance.  Therefore, 

200m represents a distance by which two nests can be separated and be predicted to have 

high levels of interaction.  Therefore, for these experiments, I considered those nests 

within 200m of a neighboring nest as high-density nests.  I considered a nest to be low-

density if there were no other burrowing owls nests ≤400m from the focal nest.  In low-

density situations, interactions between nesting owls are expected to be infrequent, as 

each of the neighbors would have to travel twice the maximum distance observed in 

previously conducted controlled field experiments (Moulton et al. 2004).   

Predation 

To examine the effects of density on predation rates, I inspected nests during each 

visit for signs that a predator had detected the nest.  Looking for visual signs of nest 

predation likely underestimates the number of predation attempts as predators could be 

driven from a nesting site by the aggressive behavior of the burrowing owls and, thus, the 

predators leave no visible sign.  However, I had no way to quantify failed predation 

attempts.  Therefore, if digging at the burrow entrance or above the underground tub 

occurred (typical of badger or coyote predation), or if large numbers of burrowing owl 
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feathers were found around the nesting site (indicating a possible raptor attack), I 

concluded that the nest had been detected by a predator.   

I also evaluated patterns of predation using a field experiment that deployed 

dummy nests in both low-density (n=16) and high-density (n=16) configurations.  I 

constructed dummy nests (as in Brady 2004) in early to mid-May and monitored them for 

signs of predation once a week for six weeks.  Briefly, these nests were typical artificial 

burrows containing shredded livestock dung around the tunnel entrance and inside the 

chamber to imitate the appearance of an actual nest.  Each dummy nest also contained 

eight quail (Coturnix spp.) eggs to mimic an actual owl clutch.  High-density 

configurations included four dummy nests arranged in a square with nests on each side 

separated by 40m.  Low-density dummy nests were a single nest placed ≥400m from 

other dummy nests.  Both low- and high-density dummy nests were ≥400m from known 

actual burrowing owl nests.  I scored dummy nests as depredated if digging occurred at 

the mouth of burrows or above nest chambers, or if I found eggs broken or chewed upon.  

If one nest within a group was depredated, I marked the entire group as depredated but 

also recorded status of individual nests within the cluster to determine if a predator was 

likely to detect more than one nest in that cluster.  

To study the behavior of burrowing owls in response to predators, I observed the 

reaction of focal males whose nests were either in high-density (neighbors within ~200m) 

or very low-density (no neighbors ≤1km) settings to the presence of a mock predator or 

to a control treatment.  If focal owls were nesting in high-density, I also determined if and 

how nearby burrowing owls responded to the behavior of the focal male.  I conducted 
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mock predator and corresponding control trials when nestlings were between 7 and 30 

days old.  The mock predator was a stuffed badger mounted on a running board with 

100m of monofilament attached (Figure 2.1).  I used a dead Russian thistle (Salsolsa sp., 

i.e., tumbleweed, a common element within the natural setting in which burrowing owls 

nest) with 100m of line attached as the control for this experiment (Figure 2.1).   

I conducted all trials between 1700 – 2200h before darkness set in and prevented 

visual observations of owl behavior.  This is a time period when owls are usually at or 

near their nests and the night’s activity period generally begins and overlaps normal 

badger activity periods.  At the start of each trial, I placed the mock predator or control 

treatment 50m from a focal nest and hid it from view using a camouflaged blanket.  I also 

established a portable observation blind constructed of wood and appropriately colored 

beige burlap placed 100m from the treatment.  In each case, the blind was situated such 

that the treatment would pass within 2 m of the focal nest upon retrieval (Figure 2.2).  In 

high-density areas, a second observer established an additional blind to record the 

response of owls at a neighboring nest (Figure 2.2a).  Trials did not commence until focal 

and neighboring owls, in high-density experiments, returned to their nests if they had 

flushed during the time that treatment or blind was deployed.  Once trials commenced, I 

recorded male burrowing owl behavior during a 5-min. pre-treatment period (used for 

comparison) followed by a 5-min. treatment period during which time I moved the 

stuffed badger or control toward the blind at a speed of approximately 20m/min by 

retrieving the monofilament line.  To determine if each focal male behaved differently 

during both the pre-treatment and treatment periods, I recorded the number of 
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vocalizations uttered, hovers (flying above the treatment in the same location for more 

than 3 seconds), aerial dives at the treatment (diving towards and swooping over the 

treatment), head bobs (bobbing the head up and down from a standing position), and any 

other types of behavior directed toward the treatment for each time period.  In high-

density areas, a field assistant recorded vocalizations and any other behavior of owls at 

the neighboring nest to determine if and how they were reacting to the behavior of the 

focal male in response to the treatment at the focal male’s nest. 

Ectoparasites 

To determine if and how fleas affected burrowing owl nestlings in both low- and 

high-density nests, I conducted a factorial experiment that involved treating nests/owls 

with an insecticide to remove fleas or with a control treatment (water).  Application of 

insecticide or control occurred twice at respective nests: once during the late incubation 

stage 3-5 days before expected hatch, and again when nestlings were 10-20 days old.  I 

sprayed nest tunnel entrances, nest chambers, nestlings, and adults with Avian Insect 

Liquidator (AIL, VetaFarm, Wagga Wagga, Australia), which is a liquid insecticide 

approved for birds.  Nest tunnels and chambers were sprayed with AIL until there was a 

thin covering of insecticide.  Nestlings and adults had their plumage moistened with AIL 

before being released, and I was careful to treat all regions of the plumage to kill all fleas 

currently on owls.  Control nest tunnels, chambers, and owls received similar applications 

but with water.  When nestlings were 30-days old, I measured their mass (grams), and 

wing, tail, and culmen lengths (in mm).  From these measurements, I calculated an index 

of nestling body condition (BCI).  To do so, I conducted a principal components (PC) 
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analysis using the size variables and regressed mass on scores along the first PC (index of 

size).  The residuals from this regression were the BCI scores (Jacob et al. 1996, but see 

Green 2001), with positive residuals indicating owls in better body condition than 

expected.  Ultimately, I examined the effects of insecticide treatment and nest density on 

the body condition of nestlings.  

Nest Variables 

I used ArcMap 9.2 and Hawth’s Analysis Toolpack for ArcMap (ESRI ArcMap 

9.2, Beyer 2004, respectively) to calculate nest density.  I calculated multiple density 

estimates in which each estimate of density included buffers around a focal nest at 100m, 

125m (measures of close neighbors), 200m (measure of intermediate neighbors), 400m, 

and 600m (measures of general area density).  The density estimates I calculated were the 

number of neighbors within the buffer, territory overlap of a focal nest (the total 

percentage that a focal nest buffer is overlapped by other buffers; 0-100%), and complete 

overlap of a focal nest (the sum of the percentage of each overlapping neighboring nest 

buffer on the focal nest; 0->100%; see Figures 2.3 and 2.4) at each buffer distance.  I also 

measured distance to nearest neighbor (Figure 2.3) and the number of neighbors within a 

buffer zone using Hawth’s Analysis Toolpack “Distance Between Points (Within Layer)” 

tool for ArcMap 9.2.  Hawth’s Analysis Toolpack “Polygon in Polygon Analysis” tool 

calculated the territory overlap and complete overlap at each distance.  

In addition to measuring nesting density, I included three covariates in my 

analyses of depredation, ectoparasites, and productivity in actual nests.  First, I measured 

distance to agricultural fields using ArcMap’s “Point to Polyline” Tool, because 
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burrowing owls often associate with irrigated agriculture, and this association often 

results in an increase in productivity (Rich 1986, Leptich 1994, Smith and Belthoff 

2001a, Belthoff and Smith 2003, DeSante et al. 2004, Conway et al. 2006, Moulton et al. 

2006, Restani et al. 2008, Verboven et al. 2008, Poisbleau et al. 2009) and has the 

potential to influence other variables.  Second, I calculated female BCI in the same 

manner as nestling BCI (described above), as female BCI can influence productivity in 

birds (Arroyo et al. 2007, Warner et al. 2007, Love et al. 2008, Robb et al. 2008, Hargitai 

et al. 2009).  Finally, I included hatch date (fitted as median hatch date for that brood) 

because hatch date can influence productivity through seasonal changes in prey 

abundance and high quality/older females potentially nesting earlier in the season than 

low quality/younger females (Spear and Nur 1994, Krapu et al. 2000, Pilz et al. 2003, 

Michl et al. 2005, Arroyo et al. 2007).  Hatch date was the ordinal date (1 representing 

January 1st to 365 representing December 31st) on which the nestlings hatched.   

Data Analysis 

Nest Density 

I used SAS 9.1 (SAS Institute, Cary, North Carolina) for data analyses and 

considered effects significant when p<0.05.  Means ± SE are presented throughout.  I 

determined that all measures of nesting density were highly correlated (Spearman 

Correlation Analyses: range of r: 0.6-1, all P < 0.0001; see Appendix A).  Thus, to avoid 

multicollinearity in linear models I used just one of these measures, i.e., territory overlap 

of a focal nest with a 200m buffer, henceforth called nest density, when modeling effects 

of nesting density in burrowing owls.   
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Predation 

For actual burrowing owl nests, I examined potential effects of nest density, 

distance to agriculture, female body condition, and hatch date on the odds of nest 

depredation.  I used contingency analysis to determine if predation was uniform for low-

density and high-density dummy nests.  In addition, I wanted to determine the probability 

of a predator detecting two or more nests given that one nest was already detected in a 

high-density dummy nest site.  To analyze this probability, I calculated the conditional 

probabilities of detecting 0, 1, 2, 3, or 4 nests in a group along with conservative 

confidence intervals around those probabilities.  To address the predator response 

hypothesis, I compared aggressive behavior toward the mock predator in focal adult 

males from high-density and low-density nests; as samples sizes were small for this set of 

experiments, no statistical analyses were employed.   

Ectoparasites 

I used mixed model analysis of variance to determine if fleas varied with nest 

density.  Nestlings within a nest are likely to have similar flea loads so I modeled 

nestlings within a nest as non-independent using the repeated statement in SAS.  Using a 

similar approach, I examined the effect of nest density (high-density or low-density) and 

insecticide treatment (treatment and control) on the BCI of nestlings that participated in 

the flea removal experiment.  I calculated both the overall means (sum of all fledgling 

BCIs/n) as well as second order means (mean of nest means/n). 
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Productivity 

I used the number of 30-day old nestlings at each nest as the index for 

productivity.  Using a mixed model regression, I examined the relationship between 

burrowing owl productivity and nest density, distance to agriculture, hatching date, 

female BCI, nest depredation (depredated or not), mean flea load in a nest, and treatment 

with AIL (0=water/no treatment, 1=AIL application).   

Results 

Burrowing owl nests in artificial burrows (n=107) contained 8.8±0.14 eggs 

(range: 5-14), 7.6±0.23 hatchlings (range: 0-11), 5.5±0.26 20-day old nestlings (range: 0-

10), and 4.8±0.29 30-day old fledglings (range: 0-10).  Of the 107 nests, 14 failed to 

fledge young.  Of the nest failures, 10 nests were destroyed by predators, two involved 

starvation of all nestlings (I suspected, but could not confirm, predation of at least one 

adult caretaker), and flooding killed all eggs or nestlings within the other two nests (one 

during the incubation stage and the other when the nestlings were ~10 days old).  

Average hatch date of nestlings was 20 May±1.20 days (range: 26 April-25 June, n=104 

nests with one nest lost due to flooding during the egg stage and two nests where the 

adult female disappeared, likely depredated, and the male re-nested with another female).  

Nests were 2.7±0.36km from agriculture (median: 1km; range 0.03-13.0km, n=107 

nests).  Median female BCI was 0.2±1.97 (range: -59.44-41.01, n=91).  Nest density, 

estimated using the 200m buffer, was 36.0±3.23% (range: 0-100, n=107 nests) with a 

median nearest neighbor distance of 238m.     
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Predation 

For analyses of actual nests, I removed the two nests that were flooded.  Of the 

remaining 105 nests, 30 experienced a predation attempt, and 75 escaped visible signs of 

predation.  Of the 30 nests that experienced a predation attempt, 10 (33.3%) failed to 

fledge young, whereas the other nests generally lost some portion of the brood.  Only 

5.3% (n=4) of the remaining nests that escaped observable predation attempts failed to 

fledge any nestlings.  Nests with an observed predation attempt produced 3.0±0.51 

fledglings (range: 0-9), whereas nests that escaped predation attempts produced 5.5±0.31 

fledglings (range: 0-10).   

The predation hypothesis predicted that the odds of predation would increase with 

increased nest density.  For actual nests, hatching date and female body condition did not 

affect the odds of predation, but there was a significant interaction between nest density 

and distance to agriculture (Table 2.1).  The odds of a depredation event were lowest for 

high-density nests irrespective of their distance to agriculture.  For lower density nests, 

odds of predation increased as distance from agriculture increased (Figure 2.5).   

Of 16 low-density and 16 high-density dummy nests, nine (56.2%) were 

depredated in each case.  Thus, predators detected low-density nests at the same rate that 

they detected at least one nest in a high-density group (contingency analysis: χ2=0.0, 

p=1.0).  When determining if predators would detect more than one dummy nest in a 

high-density group given that a single dummy nest was already detected, I found that the 

conservative confidence intervals that were calculated overlapped, indicating no 

significance.  Therefore, there was no need to conduct further analyses that would only 
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increase the size of the confidence intervals making the outcome even less significant.  

However, sample sizes were likely too small to produce a meaningful result in this 

instance.     

The predator response hypothesis predicted that burrowing owl males in high-

density areas respond to predators differently than their low-density counterparts.  During 

initial field experiments to test the predator response hypothesis, male burrowing owls 

consistently failed to respond to control treatments or during the 5-min. pre-trial 

observation period.  Thus, I removed the control treatment from the experimental 

protocol for subsequent trials, and focused only on the mock predator treatment preceded 

by the 5-min. pre-trial observation period.   

I attempted the experiment on eight focal males attending nests in high-density 

areas and eight low-density males.  Unfortunately, because owls did not return to their 

nests before dark or other logistical issues including difficulty moving the mock predator 

through thick vegetation in some nest areas causing the monofilament line to snap, I was 

able to collect data from just seven of these nests (n=2 low-density and n=5 high-

density).   

All but one owl responded to the mock predator, indicating that they recognized it 

as a potential threat.  Focal males in low-density areas (n=2) responded with a small 

number of calls (n=2) and bobs (n=2; total behavior: 2.0±2.0, range: 0–4) before these 

males and their putative mates left their nest site as the mock predator approached.  In 

both cases, these owls flew out of view and did not return to the nest during the 

remainder of the trials.  Focal males in the high-density group exhibited 8.8±5.07 (range: 
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0–12) responses, including bobs (n=6), calls (n=14), hovers (n=13), and dives (n=10).  

None of the high-density males left the nest site in response to the mock predator, and 

three of their putative mates also responded to the predator with calls and dives along 

with the males.  One of the high-density males also approached the predator while on the 

ground with wings fully expanded while within 2m of the predator.  One high-density 

male failed to respond to the mock predator with overt behavior, perhaps because 

vegetation surrounding its nest was much taller than in other cases (1m tall versus less 

than 0.25m, typically) and it could not recognize the stimulus as a potential threat.  

Alternatively, owls may not have wished to advertise the location of their nesting site to a 

predator with such high vegetation acting to screen the nest from view. 

In three of five trials for high-density males, neighboring owls reacted to the focal 

male.  In one instance, nestlings that were outside of a nearby nest chamber immediately 

fled on foot to their burrows as the focal male began calling in response to the predator.  

At another nest, the neighboring female (identified by color-band combination) began to 

call immediately after the focal male called.  In the last instance, a neighboring male 

approached the predator and responded with calls, hovers, and dives when the predator 

was near the nest of the focal male and while the focal male and its putative mate 

responded with similar defensive behavior.  This resulted in three owls from two nests 

that were separated by less then 80m responding to the stimulus in apparent mutual nest 

defense. 
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Ectoparasites 

I predicted that as nesting density increased, flea levels on nestling burrowing 

owls would also increase, and that increased flea levels would negatively impact 

fledgling body condition.  The flea index for 295 fledglings from 52 untreated nests (i.e., 

nestlings not treated with AIL or sprayed with water as part of the flea removal 

experiment) averaged 1.4±0.07 (1.6±0.17 second order mean) on the index of flea 

abundance (~5-10 fleas per individual; range 0-4 on the ranked index).  In contrast to the 

prediction of the parasite hypothesis, nest density did not affect flea abundance (Table 

2.2).  Similarly, hatching date, female BCI, and distance to agriculture were not 

significant predictors of flea levels on burrowing owl fledglings (Table 2.2).     

 Nests treated with AIL had flea ranks (overall mean=0.2±0.04; second order 

mean=0.2±0.06; n=17 nests, 103 fledglings) that were significantly lower than control 

nests (overall mean=1.0±0.11; n=16 nests; second order mean=1.0±0.20; 96 fledglings; 

F1,31=12.11, p<0.001).  Thus, AIL was effective in reducing flea loads in nests.  Despite 

this reduction in fleas, there was no indication that fledgling BCI differed in AIL-treated 

or control nests or in nests from low- or high-density areas, and the two factors did not 

interact (2-way ANOVA: AIL treatment status x nest density interaction: F1,29=2.11, 

P=0.16 interaction; AIL treatment: F1,29=0.76, Figure 2.6a; and P=0.39; nest density: 

F1,29=2.71, P=0.11, Figure 2.6b).   

Productivity 

I examined the effects of 1) nesting density, 2) distance to agriculture, 3) hatching 

date, 4) adult female BCI, 5) depredation status, 6) mean flea abundance in a nest, and 7) 
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AIL treatment application at a nest on the outcome variable nest productivity for 81 of 

107 nests in which I had all variables recorded.  Neither application of AIL nor the 

distance from agriculture was significantly related to productivity.  Of the remaining 

variables, female body condition, depredation status, and flea load had significant effects 

on productivity (Table 2.3).  Productivity increased as female BCI increased (Figure 

2.7a), as depredation status changed from depredated to not depredated (Figure 2.7b), and 

as flea load decreased (Figure 2.7c).  There was also a significant interaction between 

hatch date and nest density (Table 2.3).  Productivity in both higher density nests declines 

with median hatch date, whereas lower density nests appear to have more uniform 

productivity throughout the season (Figure 2.7d).  Finally, I noted a negative relationship 

between female body condition and median hatch date (Figure 2.8).  

Discussion 

Commonly understood costs of living in higher densities include increased 

detection by predators and potential increased exposure to parasites while benefits 

include early warning of predators, cooperative defense, and the potential for information 

sharing (Krause and Ruxton 2002).  My results suggest that burrowing owls nesting in 

high-density areas gained multiple benefits compared to owls nesting in lower densities.  

The benefits for high-density nests included decreased odds of predation, warning of 

approaching predators, and higher productivity for nestlings that hatched early in the 

season.  My study also uncovered instances of apparent mutual defense against predators 

by burrowing owls in high-density areas.  There was no apparent cost of increased 

detection by predators as the experiment with dummy burrows demonstrated.  I found 
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that increased flea loads decreased productivity, but there was no evidence that flea loads 

increased from low- to high-density areas.  One cost of nesting in higher densities was 

lower productivity if nesting was later in the season.  Figure 2.9 summarizes the effects 

of grouping and other covariates I examined on burrowing owl nesting.   

Predation 

Predators can have a large influence on productivity in bird populations (Martin 

1993, Martin 1995, Wesolowski and Tomialojc 2005, Fontaine and Martin 2006).  For 

instance, black kites (Milvus migrans) failed to fledge any nestlings when they nested 

within one kilometer of an eagle owl (Bubo bubo) nest because of predation by the owls 

(Sergio et al. 2003).  Animals existing in high-densities, however, may work in 

conjunction to mitigate the influence or effectiveness of predators through early warning 

and cooperative defense (Lazarus 1979, Griesser and Elkman 2005, Krams et al. 2007, 

Pays et al. 2007).  To my knowledge, my observations of the existence of early warning 

of burrowing owl neighbors is among the first reports of this in relation to anti-predator 

behavior in burrowing owls.  I believe that it is probably not a rare occurrence but instead 

is just difficult to document unless focal owls and their neighbors are under simultaneous 

observation.  The two cases of early warning that I observed demonstrate that burrowing 

owls in high-density areas can benefit from a neighbor’s reaction to a predator and then 

take appropriate steps to avoid potential depredation of their nest.  Thomsen (1971) noted 

that adult males and females “chatter” in response to predators and suggested the function 

of such chatter is to warn nestlings (see also Martin 1973).  Whether focal adults are 

simply calling to warn their nestlings or including warnings specific for neighboring owls 
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as well is unknown, but neighboring owls clearly have the potential to pick up on these 

cues.  My study also demonstrated that burrowing owls nesting in close proximity to one 

another are also capable of mutual defense.  Martin (1973) described similar cooperative 

defense (or mobbing) when he placed a great horned owl (Bubo virginianus) near a nest 

and observed (1) that the resident pair of owls “mobbed” the great horned owl, and (2) 

adults from other burrows as far as 300m away joined in.  Similarly, Brady (2004) also 

observed an instance of a neighboring burrowing owl in mutual defense against a mock 

predator in an area of high nest density where there were five nests within a 1ha area.  

Mutual defense can occur for a number of reasons including kinship, by-product 

mutualism, or reciprocal altruism (Maklakov 2002, Olendorf et al. 2003, Krams et al. 

2007), all of which are possible in burrowing owls.  High relatedness in high-density 

areas may exist because male nestlings and adult male and female owls are philopatric 

(Catlin et al. 2005, Riding and Belthoff, unpublished data), which may lead to kin-

selected mutual defense.  Burrowing owl offspring can be the product of extrapair 

copulations (Johnson 1997) so the possibility of by-product mutualism (i.e., a male 

defending a nest where he sired extrapair young) exists.  A tit-for-tat strategy whereby 

burrowing owl males assist each other in nest defense for as long as the males reciprocate 

is also possible.  I also cannot rule out the possibility that the burrowing owl was acting 

selfishly in an attempt to drive the predator away from its own nest and the area in 

general.  Finally, four of the five focal males in high-density areas (and three of their 

putative mates) responded aggressively toward the mock predator whereas owls at both 

solitary nests in this experiment abandoned their nests while displaying few if any 
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aggressive behaviors.  While sample sizes are small, burrowing owls nesting in high-

density areas may be more aggressive in defending their nests than those in lower 

densities. Such an effect may help to explain the decrease in the odds of predation in 

high-density areas detected by my analyses. Alternatively, solitary owls may have left the 

nest site, not because they were less aggressive, but because it is more beneficial in a 

solitary environment to leave the nest site and not draw the attention of the approaching 

predator by making an aggressive display. 

In contrast to the benefits of early warning and cooperative defense for burrowing 

owls nesting in high-density configurations, one potential cost is increased detection by 

predators.  However, given that predators detected dummy nests placed in low- and high-

density configurations in equal frequency, it appears that high-density dummy nests were 

not at increased risk of detection.  I have no reason to believe that predator density varied 

in the locations where I placed high- and low-density dummy nests as I tried to place 

similar numbers of high- and low-density dummy nests in each location where the 

experiment occurred.  Of course, for these dummy nests, there were no adult burrowing 

owls tending the nests or nestlings in the area, which could potentially increase detection 

by predators, particularly in high-density areas. 

Data from actual burrowing owl nests indicated an interesting relationship 

between nest density and distance from agriculture with respect to predation attempts.  

Irrespective of distance from agriculture, odds of predation were low for higher density 

nests, and lower density nests farther from agriculture had substantially increased odds of 

predation (Figure 2.5).  I interpret this pattern as follows:  First, owls in high-density 
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areas may benefit from a level of protection from predators either through early warning, 

cooperative defense, or heightened anti-predator behavior, irrespective of their distance 

from agriculture.  Second, lower density nests farther from agriculture probably do not 

reap any of the benefits mentioned above so they suffer correspondingly higher odds of 

predation.  Why lower density nests in agricultural areas have decreased odds of 

predation relative to low-density nests elsewhere is not as clear.  Moulton et al. (2006) 

found a trend for greater numbers of badger burrows in non-agricultural areas (7.0±1.1, 

n=25) compared with plots in agricultural areas (5.4±1.1, n=25), although the difference 

was not significant.  Increasing odds of predation for lower density nests as distance from 

agriculture increases may reflect this trend in increasing badger (predator) abundance.  

Ectoparasites 

In addition to the harmful effects of predators, ectoparasites also typically have a 

negative impact on their hosts both in terms of body condition and survivorship (Brown 

and Brown 1986, Christe et al. 2000, Fitze 2004, Boughton et al. 2006).  In burrowing 

owls, fleas did not increase with increasing nest density, and removing ectoparasites had 

no effect on nestling body condition regardless of group (although sample sizes were 

relatively small for the latter experiment).  However, increased ectoparasites were 

correlated with decreased productivity, which suggests that parasites had an effect on at 

least some burrowing owl nestlings.  The lack of a density effect may be explained by the 

fact that fleas are probably brought into a nest via the rodent prey captured by owls 

(Smith and Belthoff 2001b) rather than transferred among owls through close contact.  

Flea abundance on rodent prey is unknown, so it is not possible to determine if burrows 
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are infested by a small number of rodents that harbor numerous fleas, or if all prey harbor 

a small number and fleas accumulate with increasing prey brought to a nest.  However, 

the latter seems less likely because more prey typically translate into higher productivity 

in burrowing owls (Wellicome 1997). The effects of lice and other ectoparasites found on 

burrowing owls as a function of nest density remain unknown as my study addressed 

fleas only.  

Productivity 

I found that burrowing owl productivity was influenced by a number of factors, 

including nesting density.  Burrowing owls nesting in higher densities benefited in terms 

of greater productivity (Figure 2.7d).  These nests fledged greater numbers of young than 

solitary nests, unless an individual started nesting very late in the season, in which case it 

appeared beneficial for owls to nest in more solitary situations.  Higher productivity in 

high-density burrowing owl nests may be related to benefits from decreased predation, 

early warning of predators, mutual defense, and possibly increased aggression towards 

predators.  Another potential explanation is that burrowing owls are nesting in high 

densities around a localized food source (Desmond and Savidge 1996).  Increased food 

resources have been linked with increased productivity in burrowing owls (Wellicome 

1997).  Along with decreases in predation, this could account for the increased 

productivity I observed when owls nested in higher densities.  Why late nesters may 

benefit more from solitary nesting potentially involves (1) avoiding competition in higher 

density areas (i.e., where numerous young that have a large head start for resources have 

hatched in other nests), or (2) avoiding losing young to cannibalism, which may occur 
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when adult or recently fledged burrowing owls prey on much smaller nestlings as they 

emerge from the later nests.   

Increased female BCI, decreased flea loads, and low levels of predation are all 

commonly associated with increases in productivity.  A female with a higher BCI 

suggests that she is in better overall health and may be more likely to produce a larger 

clutch (Sanz 1995).  In addition, I found evidence that female burrowing owls with a 

higher BCI generally nest earlier in the season, which, based on other studies in birds, 

may indicate these females are better provisioned (Nilsson 1994), more experienced (i.e., 

older; Wendeln 1997, Boal 2001), or a combination of these factors.  Increased numbers 

of fleas increase stress and reduce overall survivorship of hosts (Boughton et al. 2006), 

although specific effects of fleas on burrowing owls remain poorly understood so the 

mechanism of action on productivity requires further study.  Finally, predation has 

always been recognized as an important factor that decreases productivity (Nordström et 

al. 2004, Moore 2005, Hoover 2006, Hoover 2009). 

Burrowing owls in some areas nest near irrigated agriculture, and this association 

between owls and agriculture has been linked with higher productivity (Smith and 

Belthoff 2001a, Belthoff and Smith 2003, DeSante et al. 2004, Moulton et al. 2006, 

Verboven et al. 2008, Poisbleau et al. 2009).  My results indicated that nesting near 

agriculture was related to reduced odds of predation for all nest densities.  I was not able 

to gather information on the relative abundance of predators in natural and agricultural 

areas, so perhaps there are fewer predators in agricultural areas because of human activity 

(e.g., farmers and ranchers frequently kill badgers because they dig holes that disrupt 
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crops or livestock foraging) or other reasons.  Additionally, agriculture potentially 

contributes to productivity by providing a localized food resource, as one common prey 

species of burrowing owls (Microtus montanus) only occurs in irrigated agricultural areas 

in my study area, and burrowing owls in agricultural areas have a greater number of prey 

items and larger biomass per pellet than in natural areas (Moulton et al. 2005, 2006).  

However, it also appears that nesting in higher densities farther from agriculture can carry 

nearly the same advantages related to avoiding predation, or there may be localized food 

resources away from agriculture around which owls group.  These factors could account 

for some of the higher productivity that I observed in high-density nests there.  It is also 

possible that burrowing owls nesting in higher densities gain information from 

conspecifics about the locations of food resources, as they frequently forage outside of 

their own territorial boundaries, although my study did not address this aspect of group 

living explicitly. 

Other Potential Costs and Benefits 

In addition to the costs and benefits of variable nesting density for burrowing 

owls mentioned above, other factors such as egg-yolk hormones and frequency of 

extrapair young have the potential to be influenced by nest density.  Aggressive 

conspecific interactions can increase hormone levels in adult female birds.  Higher 

hormones in adult females can result in higher egg-yolk hormone levels within their eggs 

that can, in turn, potentially influence nestling development and aggression (Schwabl 

1993, Reed and Vleck 2001, Whittingham and Schwabl 2002, Pilz and Smith 2004, Love 

et al. 2008, Tanvez et al. 2008, Hargitai et al. 2009).  I found no evidence that increasing 
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nest density raised burrowing owl egg-yolk hormones (Chapter 3).  However, there was 

an increase in androgens (testosterone, dihydrotestosterone, and androstenedione) within 

a clutch from early- to late-laid eggs as well as a curvilinear pattern where androgens 

among clutches were lowest early and late in the laying season while peaking in the 

middle of the laying season (Chapter 3).   

In addition to hormones, increased breeding density can also raise the potential 

for extrapair copulations and extrapair young (Richardson and Burke 2001, Formica et al. 

2004, Augustin et al. 2006, Melles et al. 2009).  Extrapair copulations (i.e., copulation 

outside of a pair bond) resulting in increased extrapair young are a benefit to extrapair 

males but are costly to cuckolded males who raise offspring that do not carry their genes.  

Each burrowing owl captured in 2006 and 2007 had a small sample of blood removed for 

DNA analysis (see description in methods).  In 2006 and 2007, I collected blood and 

DNA from 48 families of burrowing owls (i.e., both parents and at least 1 nestling, 386 

individuals).  In addition to blood collected in 2006 and 2007, I obtained blood and DNA 

from previous field seasons 1997-2005 (n=74 families, 512 individuals).  Some of the 

DNA from 2006 and 2007 helped us identify and test 18 new microsatellite DNA primers 

(Faircloth et al. 2010).  These microsatellite primers will add to those already in the 

literature (Korfanta et al. 2002) to provide a sufficient number of markers to facilitate 

upcoming parentage tests that hopefully will provide not only exclusion of extrapair 

young but also assignment tests to identify genetic parents.  I am currently collaborating 

with a team of researchers at University of California, Los Angeles to analyze DNA 
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samples (122 families and 898 individuals) to determine if and how grouping affects 

extrapair mating in burrowing owls.  

Conclusions 

Burrowing owls appear to gain benefits from living in high densities while 

incurring but a few costs.  By demonstrating the benefits of decreased predation and 

increased productivity early in the season, I was able to quantify some of the factors 

involved in the ecology of burrowing owls and help clarify variables that contributed to 

their productivity.  Burrowing owls living in higher density configurations responded 

more aggressively to a mock predator, potentially communicated the presence of 

predators to nearby individuals, and participated in mutual defense while incurring no 

apparent costs of additional parasites.  My results may help to explain why we see many 

burrowing owls living in higher densities even at times when ample nest burrows may be 

available elsewhere.   
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Table 2.1. Results of logistic regression to examine effects of distance to agriculture, 
hatching date, female body condition, and nest density on odds of predation of actual 
burrowing owls nests (n=105) from the Snake River Birds of Prey National Conservation 
Area, Idaho in 2006 and 2007. 

Effects Estimate
Standard 

Error DF 
Chi-

Square P-value
Intercept -0.54 4.38 1 0.02 0.90 
Distance to Agriculture (km) 1.41 0.46 1 9.59 0.00 
Hatching Date -0.01 0.03 1 0.10 0.75 
Female Body Condition -0.00 0.02 1 0.00 0.96 
Nest Density1 -0.00 0.00 1 0.00 0.96 
Nest Density*Distance to Agriculture (km) -0.00 0.00 1 8.31 0.00 
 
Table 2.2. Results of linear model using Proc Mixed to assess main variables contributing 
to variation in parasite levels in burrowing owl fledglings (n=52 nests, 295 fledglings) 
from the Snake River Birds of Prey National Conservation Area, Idaho in 2006 and 2007. 

 

Effect Estimate
Standard 

Error DF t-value P-value 
Intercept 2.41 1.88 44 1.29 0.21 
Distance to Agriculture (km) -0.11 0.06 44 -1.82 0.08 
Nest Density1 0.09 0.53 44 0.17 0.86 
Hatching Date -0.00 0.01 44 -0.39 0.70 
Female Body Condition -0.01 0.01 44 -1.12 0.27 

Table 2.3. Results of linear model using Proc Mixed to assess variables contributing to 
variation in productivity in 81 burrowing owl nests from the Snake River Birds of Prey 
National Conservation Area, Idaho in 2006 and 2007. 

Fixed Effects Estimate 
Standard 

Error DF t-value P-value 
Intercept 7.24 3.97 72 1.83 0.07 
Distance to Agriculture (km) -0.07 0.07 72 -1.03 0.31 
Hatching Date -0.01 0.03 72 -0.25 0.80 
Female Body Condition 0.03 0.01 72 2.40 0.02 
Nest Density1 0.20 0.09 72 2.29 0.02 
Depredation Status -1.26 0.63 72 -1.99 0.05 
Average Flea Load -0.61 0.22 72 -2.80 0.01 
Flea Treatment2 -0.49 0.52 72 -0.94 0.35 
Hatching Date * Nest Density -0.13 0.06 72 -2.19 0.03 
1Nest density is the territory overlap of a focal burrowing owl nest using a 200m buffer 
around each nest. 
2Flea Treatment was categorized as either 0 (No treatment or water) and 1 (AIL treatment 
application). 
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Figure 2.1. Photos of the mock badger used to determine response of male burrowing 
owls to the threat of predation and of the control (Russian thistle) in the Snake River 
Birds of Prey Area in southern Idaho.  Both were presented to focal male burrowing owls 
in 2006 while only the mock badger was presented in 2007 as the control was eliciting no 
response.   
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Figure 2.2. Illustration depicting how mock badger trials were conducted to record male 
burrowing owl behavior whose nests were in high-density or low-density configurations 
in the NCA during 2006 and 2007.  The mock badger or control was hidden 50m from 
the focal burrow and pulled toward and past the nest burrow at approximately 20m/min. 
while the observer(s) recorded the reactions of the focal male a blind (a and b).  In high-
density areas (a), a second observer measured the reactions of owls at the neighboring 
est. n 
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Figure 2.3. Examples of nest density parameters that were measured on burrowing owl 
nests in 2006 and 2007.  Note that for nest B, the closest neighbor is C, but C’s closest 
neighbor is D.  Number of neighbors counts the number of owls within a buffer around 
the nest.  Territory overlap determines the total buffered area of a nest that other 
territories overlap.   Complete overlap is the sum of each neighboring nest’s overlap with 
the focal nest.  The crosshatched areas indicate where more than one nest overlaps the 
same area and this area is counted multiple times accordingly.  All these nest density 
parameters were significantly correlated with each other (see Appendix A). 
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Figure 2.4. Examples of how differing buffer sizes influence territory overlap (top 2 
images) using 200m and 400m buffer sizes around a focal burrow which is highlighted in 
red.  Complete overlap (bottom 2 images) with the same buffer configuration is the total 
summed area of each neighboring burrow that overlapped the focal burrow.  In this 
example, actual burrow locations in 2006 from the NCA are used. 
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Figure 2.5. Odds of depredation in relation to territory overlap and proximity to 
agriculture for 105 actual burrowing owl nests from 2006 and 2007 in the NCA located in 
southern Idaho. Distance from agriculture was analyzed as a continuous variable in the 
model but is divided into categories in this figure for heuristic purposes to illustrate the 
interaction. 
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Figure 2.6. Body condition (BCI) of burrowing owl fledglings in the NCA in 2006 and 
2007 in relation to (a) AIL treatment (n=17) and control (water-treated, n=16); and (b) 
nest density (high-density, n=20; low-density, n=13).  
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Figure 2.7. Relationships between the number of fledglings (productivity) per nest and (a) 
female BCI, (b) depredation status, (c) average flea loads in a nest, and (d) interaction 
between territory overlap within a 200m buffer and hatching date, from n=81 nests in 
2006 and 2007 from southern Idaho.  The interaction between hatching date and nest 
density in relation to productivity shown in figure d. has been broken into two categories 
for heuristic purposes only to illustrate the interaction.  The actual model was run using 
density as a continuous variable. 
 

 
a. b.

c. d.
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Figure 2.8. Relationship between female BCI and median hatch date of their nestlings in 
burrowing owls from the NCA in 2006 and 2007.  The two red dots were re-nest attempts 
and were excluded from the analysis.  Female BCI was negatively associated with 
median hatch date (Simple Linear Regression, B = 140.04 - 0.20(Female BCI), 
F1,88=11.03, p<0.00, n=90)  
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Figure 2.9. Relationships among predation, parasites, and productivity in actual 
burrowing owl nests in the NCA from 2006 and 2007.  The direction of the effect 
(increase or decrease) is indicated.  Interactions are illustrated with merging lines 
connected with an asterisk (*). 
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CHAPTER 3: EFFECTS OF NEST DENSITY, LAYING DATE, AND EGG ORDER 

ON YOLK HORMONES IN BURROWING OWL EGGS 

Abstract 

 Avian egg-yolk hormones are of interest to scientists because variation among 

eggs within and among clutches may be adaptive.  Using Radioimmunoassay, I analyzed 

concentrations of egg-yolk androgens (testosterone, dihydrotestosterone, and 

androstenedione), estradiol and corticosterone from one early and one late-laid egg in 46 

western burrowing owl (Athene cunicularia hypugaea) nests located in the Morley 

Nelson Snake River Birds of Prey National Conservation Area in southern Idaho.  I 

evaluated hypotheses relating hormone levels to density of nesting pairs, laying date of 

the first egg in a nest, and laying order within a nest.  Estradiol and corticosterone 

concentrations were generally below detection levels of the assay, so my subsequent 

analyses focused on the three egg-yolk androgens.  Nesting density, calculated by 

measuring territory overlap with a 200m buffer around each nest, varied from 0% to 

100% but had no significant effect on yolk androgens.  However, egg-yolk androgens 

varied with laying date, peaking in the middle of the laying season while remaining low 

early and late in the breeding season.  This pattern appears unusual among bird species 

and may be a result of an interaction between high male quality early in the laying season 

and a decline in fledgling success as the nesting season progresses.  Moreover, within 

nests, late-laid eggs had higher testosterone, dihydrotestosterone, and androstenedione 
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than early-laid eggs.  This rise in androgens from early to late-laid eggs within a nest is 

present in many bird species.  In burrowing owls, it could reflect a mechanism to assist 

nestlings from late-laid eggs that hatch one to several days after their siblings to compete 

for resources within the nest, avoid being cannibalized by older siblings, or promote 

survival in the presence of larger siblings.   
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Introduction 

Avian egg-yolk hormones are of interest for scientific study because variation 

among eggs within a single clutch, between different clutches of the same species in the 

same area, across different species in the same area, and between similar species at 

different latitudes may be adaptive (Reed and Vleck 2001, Eising and Groothuis 2003, 

Gorman and Williams 2005, Navara et al. 2006a, Love et al. 2008, Martin and Schwabl 

2008).  Hormones can function as regulatory signals during the development of genotype 

into phenotype and mediators of phenotypic responses to environmental changes 

(reviewed by Groothuis and Schwabl 2007).  Although proximate mechanisms associated 

with egg-yolk hormone variation are only beginning to be understood, it appears that a 

female’s hormone level at the time of laying influences egg-yolk hormone levels (Reed 

and Vleck 2001, Whittingham and Schwabl 2002, Pilz and Smith 2004, Navara et al. 

2006a, Love et al. 2008, Tanvez et al. 2008, Hargitai et al. 2009).  In fact, Navara and 

Mendonça (2008) point to new evidence that suggests, given current environmental 

conditions, females may be capable of fine tuning hormone content in an egg at the time 

of laying to maximize reproductive success.  The factors that influence female and egg-

yolk hormones are relevant because increased egg hormone levels are related to multiple 

costs and benefits, including accelerated hatching times, increased nestling growth rates 

and aggression, decreased nestling immune response, decreased body condition in 

adulthood, and reduced life span (Schwabl 1993, Schwabl 1996a, Schwabl 1996b, Lipar 

and Ketterson 2000, Sockman and Schwabl 2000, Eising et al. 2001, Lipar 2001, Eising 
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and Groothuis 2003, Pilz et al. 2003, Navara et al. 2005, Navara et al. 2006a, Cucco et al. 

2008, Sockman et al. 2008).  

One factor that influences circulating hormone levels in adult birds is the level of 

interaction between conspecifics.  Birds that defend territories have to be continually alert 

for the presence of conspecific intruders who are interested in resources or an extrapair 

mating.  An aggressive display or attack is often required to drive the intruder from the 

territory, and hormone levels may rise before or as a result of these close encounters 

(Nephew and Romero 2003, Pilz and Smith 2004, Goymann et al. 2007).  This rise can 

occur in both males and females in high-density areas where interactions are frequent or 

dominance must be established (Wingfield and Wada 1989, Wingfield 1994, Pilz and 

Smith 2004, Aubin-Horth et al. 2007).  High conspecific neighbor density at the time of 

laying also is related to increased yolk hormone levels (Reed and Vleck 2001, Groothuis 

and Schwabl 2002, Whittingham and Schwabl 2002, Pilz and Smith 2004, Navara et al. 

2006a, Love et al. 2008).  Higher yolk hormone levels may give nestlings in high-density 

areas a competitive advantage (e.g., increased aggression) while competing for resources 

as adults in densely populated environments (Pilz and Smith 2004). 

Egg hormone levels can also vary with female laying date and with asynchronous 

hatching.  For example, Pilz et al. (2003) found European starling (Sturnus vulgaris) 

clutches laid earlier in the season had higher hormones (but see Michl et al. 2005).   In 

addition to laying date, laying order within a clutch can influence egg-yolk hormones, 

particularly when there is hatching asynchrony.  Hatching asynchrony often results in 

broods that show a hatching-order dependent size hierarchy (Clark and Wilson 1981).  
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Younger nestlings may be at both a size and competitive disadvantage against older, 

larger nestlings.  They are also less likely to survive to fledging (O’Conner 1978, Mock 

et al. 1990, Maddox and Weatherhead 2008).  An increase in egg-yolk hormones with 

laying order may help compensate for this disadvantage (Schwabl 1997, French et al. 

2001, Royle et al. 2001, Müller et al. 2004, Tschirren et al. 2004).  Increased egg 

hormones can promote overall growth of an embryo (Schwabl et al. 2007) or growth of 

the hatching muscle (Eising et al. 2001, Lipar 2001), both of which result in an earlier 

hatching date.  Earlier hatching allows for younger nestlings to be closer in age to their 

older siblings and, therefore, to more effectively compete with those larger siblings for 

resources (Schwabl 1993, Eising and Groothuis 2003).   

If increasing hormones are beneficial, why wouldn’t females maximize hormone 

levels in every egg?  There are also costs associated with increasing yolk hormones 

beyond a maximum threshold.  Sockman and Schwabl (2000) demonstrated that 

artificially increasing hormones in American kestrels (Falco sparverius) reduced the 

overall body condition of nestlings and resulted in higher mortality.  Artificially 

increased testosterone has also been linked to decreased immune response (Verboven et 

al. 2003, Navara et al. 2005).  In addition, high egg-yolk hormones can increase the 

metabolic rate without increasing growth rate (Tobler et al. 2007).  This requires the 

nestling to consume more resources to grow at the same rate as its siblings.  Thus, natural 

selection may select for an optimum egg-yolk hormone level for each egg based on 

multiple factors.  However, females may still be able to fine tune yolk hormone levels 

based on environmental conditions at the time of egg laying to provide a competitive 
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advantage to each nestling while balancing the negative effects that elevated egg-yolk 

hormones can impose on that nestling.  

As previous studies suggest, external factors such as nesting density, laying date, 

and egg order can affect the amount of hormones deposited in eggs. I examined the 

potential effects of these factors on egg-yolk hormones in burrowing owls (Athene 

cunicularia hypugaea) that breed in southern Idaho.   

Burrowing owls nest in underground burrows located in prairies, grasslands, 

steppes, and other open areas (Haug et al. 1993, Poulin et al. 2005, Lantz et al. 2007).  

Although burrowing owls frequently nest in well-drained open areas, they also show an 

affinity for nesting near irrigated agriculture (Rich 1986, Leptich 1994, DeSante et al. 

2004, Conway et al. 2006, Moulton et al. 2006, Restani et al. 2008).  Adults typically 

weigh 120-200g, are 19-25cm in length, and have approximately a 16cm wing chord 

(Haug et al. 1993).  They are opportunistic predators that feed on rodents, small birds, 

amphibians, reptiles, and a variety of invertebrates (Moulton et al. 2005, Poulin and Todd 

2006, Littles et al. 2007, Williford et al. 2009).  Burrowing owls are socially 

monogamous, and females lay, on average, 8-12 eggs per clutch and incubate while their 

mates provision them (Haug et al. 1993, Kaufman 1996).  On average, pairs produce 

approximately 0.9 to 4.9 nestlings per nesting attempt (Haug et al. 1993, Kaufman 1996, 

Smith et al. 2005, Wellicome 2005, Conway et al. 2006, Griebel 2007).  In northern 

portions of their range, burrowing owls tend to be migratory.  While most burrowing 

owls that breed in Idaho migrate, their migration routes and wintering areas remain 

poorly known (Haug et al. 1993, King and Belthoff 2001).  However, a small number of 
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band returns indicate that at least some Idaho burrowing owls may overwinter in 

California (Belthoff, unpublished data).   

Burrowing owls nest in underground burrows that have been previously excavated 

by other animals such as American badgers (Taxidea taxus) or prairie dogs (Cynomys 

spp.; Gleason and Johnson 1985, Rich 1986, Poulin et al. 2005, Lantz et al. 2007).  

However, burrowing owls also nest in artificial burrows placed by researchers (Trulio 

1995, Henny and Blus 1981, Smith and Belthoff 2001, Todd et al. 2003, Smith et al. 

2005, Barclay 2008).  Artificial burrows consist of an underground nesting chamber 

leading to the surface through a tunnel (Smith and Belthoff 2001).   

Study Area 

I studied burrowing owls in and around the Morley Nelson Snake River Birds of 

Prey National Conservation Area (NCA) located in southwestern Idaho.  The NCA 

encompasses 195,325ha, approximately 5% of which is irrigated agriculture (agricultural 

areas that require human supplied water to grow crops).  The agricultural areas grow 

primarily alfalfa, corn, sugar beets, and mint.  The remainder is disturbed shrub steppe 

and grassland upon which some cattle and sheep grazing occurs, primarily during winter 

(USDI 1996, Moulton et al. 2005).  There are approximately 300 artificial burrows in the 

NCA available for burrowing owls to nest and roost (Smith and Belthoff 2001, Belthoff 

and Smith 2003, Moulton et al. 2006).  The artificial burrows allow easy access for 

researchers to monitor burrow activity; to count, measure, and sample eggs; and to count, 

capture, and mark adults and young.  From 1997-2007, burrowing owl nesting pairs 
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occupied 30-60 of the artificial burrows in the NCA each year (Belthoff and Smith 2003, 

Belthoff, unpublished data).   

Hypotheses 

Burrowing owls are an appropriate species with which to study factors that 

influence egg hormone levels because (1) nesting density varies (i.e., high-density to low-

density nesting distributions), (2) they are partial migrants and can return and begin 

nesting at different times of the breeding season, and (3) females usually lay between 8-

12 eggs per clutch making the time between the laying of early and late eggs quite long, 

and this long laying period can result in partial asynchronous hatching.      

Nest Density 

Burrowing owl nesting density can vary from low-density to high-density 

configurations in many portions of their range and across my study area (e.g., one 

burrowing owl nest in a square kilometer to 6 neighbors within a 400m radius of a focal 

nest; Desmond and Savidge 1996, Moulton et al. 2005, Fisher et al. 2007) and both male 

and female burrowing owls have been observed interacting aggressively with 

conspecifics (Moulton et al. 2004, pers. observ.).  Because of the potential for varying 

amounts of aggressive interactions among females, the density hypothesis predicts that as 

neighbor density increases egg-yolk hormone levels will rise. 

Laying Date 

In northern portions of their range, burrowing owls are generally present only 

during the breeding season (Haug et al. 1993, Kaufman 1996, King and Belthoff 2001, 

Davies and Restani 2006); outside of this time, they winter elsewhere.  Egg laying in 
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Idaho generally begins in late March, peaks in April and continues through early May 

(pers. observ.).  Variability in laying date could alter burrowing owl egg hormones.  

Therefore, the laying date hypothesis predicts that as the laying season progresses egg 

hormone levels will change.   

Asynchrony 

I also examined the potential role of hatching asynchrony in altering egg 

hormones within nests.  The laying period for a given female burrowing owl is often 

quite long and can last at least two weeks (Haug et al. 1993, Wellicome 2005).  Females 

typically begin incubation after most, but not all, eggs have been laid, and some nestlings 

can hatch 1-7 days behind the rest of the clutch (mode=4 days; Wellicome 2005).  This 

hatching asynchrony is frequently evidenced by some size discrepancies in nestlings after 

all eggs have hatched.  The partial asynchronous hatching pattern may put late-laid 

burrowing owl nestlings at a competitive disadvantage.  Thus, the asynchrony hypothesis 

predicts that as laying progresses from early- to late-laid eggs, yolk hormones will 

increase to benefit the younger nestlings in late-laid eggs.  

Methods 

Yolk Androgen Collection and Assessment 

I collected yolk samples in 2006 - 2007 during the laying season (April through 

May) and analyzed concentrations of egg-yolk hormones.  Beginning in late March, I 

monitored artificial burrows once a week for the presence of adult burrowing owls.  

When I detected a mated pair, I inspected the nesting chamber in an artificial burrow to 

determine if the female had initiated egg-laying and to determine initial laying date.  I 
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sampled eggs from nests at different densities and from different laying dates to examine 

both the density and laying date hypotheses.  In addition, I wanted to include two 

possible confounding variables.  Burrowing owls often associate with irrigated 

agriculture, where the possibility of persistent organic pollutants or more frequent 

contacts with humans could influence egg-yolk hormone levels (Verboven et al. 2008, 

Poisbleau et al. 2009).  Therefore, I measured distance to agricultural fields to assess the 

relationship with egg hormones.  I also calculated a female body condition index (BCI; 

described in methods below) at the time of capture as female health can influence yolk 

hormones (Warner et al. 2007, Love et al. 2008, Hargitai et al. 2009).   

I was unable to determine exact laying order for eggs within each burrowing owl 

nest because increased disturbance could have resulted in nest abandonment.  Moreover, I 

limited nest visits to decrease the possibility that my visits resulted in physiological 

changes in adult females that might alter egg-yolk hormones (Poisbleau et al. 2009).  

Instead, I visited and inspected nests only with sufficient frequency (2-3 visits/nest) and 

at appropriate intervals such that I could divide eggs within a clutch into two categories 

that roughly corresponded with the first and second halves of each clutch.  I refer to these 

as early and late eggs, respectively.  I marked early-laid eggs on the shell with a small 

amount of dark ink to distinguish them from late-laid eggs.  I obtained a yolk sample 

from one randomly selected early and one randomly selected late egg from each clutch to 

examine the asynchrony hypothesis.  I avoided sampling nests that had signs of 

incubation; in so doing, I ensured that I was measuring hormones that the female had 
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allocated to the eggs and not hormone concentrations altered through embryo growth 

(Gilbert et al. 2007).   

Following Schwabl (1993), I extracted ~75mg of yolk using a 25-gauge, ½-inch 

butterfly needle to puncture the eggshell and enter the yolk.  I did not use a destructive 

sampling procedure that opened eggs and destroyed the embryo because I wanted to 

preserve the viability of eggs (but see Lipar et al. 1999a).  I swabbed eggs with an alcohol 

swab both before and after the needle puncture to reduce risk of infection and sealed the 

puncture with either Loctite Super Glue Gel Control (Henkel Consumer Adhesives, Inc., 

Avon, OH) or silicone (Window and Door Silicone II, Bioseal GE Sealants and 

Adhesives, Huntersville, NC).  I transferred yolk into a labeled centrifuge tube, and 

stored the sample at -20°C until analysis using radioimmunoassay techniques.   

I assayed burrowing owl egg-yolk samples to determine concentrations of three 

androgens (androstenedione (A4), 5α-dihydrotestosterone (DHT), testosterone (T)), 17β-

estradiol (E2), and corticosterone (CORT). CORT is an adrenal steroid hormone involved 

in metabolism, stress response, and immune response.  The other hormones are steroids 

that all have roles in growth, aggression, and sexual behavior.  A4 is metabolized into T 

and E2, and T is metabolized into DHT (Hadley and Levine 2006).  It is important to 

measure all three androgens (A4, T and DHT) because measuring only one could 

underestimate androgen levels.  For example, if only T is measured and most of the 

hormones within an egg have already been metabolized in to DHT, then concentrations of 

egg-yolk androgens would be underestimated. 
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Hormone Assays 

I performed Radioimmunoassay (RIA) in laboratories at Washington State 

University using the modified Schwabl (1993) yolk hormone protocol.  To conduct these 

assays, I added 20µl of stock titrated A4, DHT, T, E2, and CORT to each sample.  This 

method aids in extraction and purification of recoveries.  Samples were covered and 

placed in a 4°C refrigerator for at least 24 hours for equilibration.  Free steroids were 

extracted twice using 4ml 30:70 (vol/vol) petroleum ether/diethyl ether.  Samples were 

snap frozen and decanted into new tubes and dried in a 37°C water bath using 

compressed nitrogen.  The samples were re-dissolved in 1ml 90% ethanol, vortexed, 

covered, and placed in a –20°C freezer overnight.  Ethanol was separated from proteins 

and lipids by centrifuging at 1500rpm for 5min at 4°C and decanting the ethanol into a 

new tube.  Ethanol samples were dried using compressed nitrogen in a 50°C water bath.  

The extract was re-dissolved in 0.5ml 10:90 (vol/vol) ethylacetate/isooctane (EA/IO).  

The solution was transferred to a microcolumn containing diatomaceous earth, dH2O, and 

a 1:1 mixture of propylene glycol:ethylene glycol for hormone extraction.  Four 

milliliters of 2/98 EA/IO was used to extract A4.  DHT was extracted with 4.5 ml of 

10/90 EA/IO.  T was extracted using 4.5 ml of 30:70 EA/IO.  E2 was extracted using 4.0 

ml of 35:65 EA/IO.  Finally, 4.0 ml 45:55 EA/IO was used to extract CORT.   

I then dried the fractions under compressed nitrogen in a 45°C water bath.  The 

dried fractions were re-dissolved in 550µl PBSg and 100µl of the appropriate antibody 

(see below) along with 100ml of the appropriate labeled steroid (see below) were added 

to the tubes.  Of this solution, 100µl was used for recovery and 100µl duplicates (A4 and 
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T) or 200µl duplicates (DHT, E2, and CORT) were set up for the assays.  Antibodies 

used were B3-163 (Esoterix Endocrinology) for CORT, AR1702 (Biogenesis) for E2, T 

3003 (Wien Laboratories) for T and DHT, and A 1707 (Wien Laboratories) for A4.  The 

labeled steroids used were NET-399 (Perkin-Elmer) for CORT, NET-517 for E2, NET-

533 for T, NET-544 for DHT, and NET 469 for A4.  The samples were vortexed, 

covered, and refrigerated at 4°C for 12-18 hours.  I then added 500µl of charcoal solution 

(500mg charcoal, 20ml Dextran solution, and 180ml PBSg) to each tube except A4 tubes 

that contained 300µl of charcoal solution and centrifuged tubes at 2000rpm for 10min at 

4°C.  I added 5ml of scintillation fluid to each sample.  The following day, the samples 

were counted on a scintillation counter from which hormone levels were calculated.  

Nest Variables 

I used ArcMap 9.2 and Hawth’s Analysis Toolpack for ArcMap (ESRI ArcMap 

9.2, Beyer 2004, respectively) to calculate nest density.  I calculated multiple density 

estimates where each estimate of density included buffers around a focal nest at 100m, 

125m (measures of close neighbors), 200m (measure of intermediate neighbors), 400m, 

and 600m (measures of general area density).  The density estimates I calculated were the 

number of neighbors within the buffer, territory overlap of a focal nest (the total 

percentage that a focal nest buffer is overlapped by other buffers; 0-100%), and complete 

overlap of a focal nest (the sum of the percentage of each overlapping neighboring nest 

buffer on the focal nest; 0->100%; see Figures 3.1 and 3.2) at each buffer distance.  I also 

measured distance to the nearest neighbor (Figure 3.1).  I measured distance to the 

nearest neighbor and the number of neighbors within a buffer zone using Hawth’s 
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Analysis Toolpack “Distance Between Points (Within Layer)” tool for ArcMap 9.2.  

Hawth’s Analysis Toolpack “Polygon in Polygon Analysis” tool calculated the territory 

overlap and complete overlap at each distance.  Laying date was the integer day (0 

representing January 1st and 365 representing December 31st) on which the female began 

to lay eggs.  I measured the distance to irrigated agriculture using ArcMap’s “Point to 

Polyline” tool.  Finally, I calculated female BCI for adult females using weight (grams), 

wing length, tail length, and culmen length (in mm) of the female at the time of capture 

(usually 1-3 weeks after incubation started).  From these measurements, I calculated 

female BCI.  To do so, I conducted a principal components (PC) analysis using the size 

variables and regressed mass on scores along the first PC (index of size).  The residuals 

from this regression were the BCI scores (Jacob et al. 1996, but see Green 2001), with 

positive residuals indicating owls in better body condition than expected. 

Data Analysis 

The various measures of nesting density that I calculated were highly correlated 

(see Appendix A).  Thus, to avoid multicollinearity in linear models, I chose territory 

overlap of a focal nest with a 200m buffer as an index of nest density in modeling effects 

of nest density on egg hormones.  Moulton et al. (2004) found that burrowing owls 

defend their territory in response to simulated territorial intrusion to distances of 100m.  

Therefore, 200m represents the maximum distance by which two nests can be separated 

and be predicted to have high levels of interaction.  I then analyzed effects of nesting 

density, laying date, distance to agriculture, female body condition (all random effects 

among nests), laying order (the fixed effect within a nest), and their interactions on 
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burrowing owl egg-yolk hormone data using a mixed model (PROC MIXED) in SAS 

SAS 9.1 (SAS Institute, Cary, North Carolina).  Laying date had a curvilinear 

relationship with T, DHT, and A4, so I fit the appropriate exponential terms (Tables 3.1-

3.3, Figure 3.3 a-c).  No interaction terms were significant for any hormone in the 

analysis, so I removed them from final models.  

Results 

 I collected 46 yolk samples from 23 nests in 2006 and 46 samples from 23 nests 

in 2007.  I was unable to capture the adult female at four nests so could not calculate 

body condition for them.  Of the five hormones that I analyzed, E2 and CORT did not 

occur in detectable levels in most egg-yolks (see Appendix B); therefore, I focused 

subsequent analyses on the three androgens: T, DHT, and A4.  Yolk T, DHT, and A4 

averaged 10.8±0.81pg/mg (range: 0.4-39.2pg/mg), 8.4±0.56pg/mg yolk (range: 0.6-

27.0pg/mg), and 15.2±1.24pg/mg yolk (range: 0.7-62.4pg/mg), respectively (n=92 eggs 

from n=46 nests in each case).          

Nest Density 

Most burrowing owl nests had nearest neighbors that were located within 250m 

(Median=247m, range: 84-3470m, n=46 nests).  Thus, there was clear potential for many 

of these nesting individuals to interact with neighbors.  The density hypothesis predicts 

that increases in burrowing owl nest density will be related to higher egg hormone levels.  

My index for nest density (i.e., territory overlap within a 200m buffer) averaged 

32.0%±3.27% (n=46, range: 0.0-95.9%).  Despite substantial territory overlap of 
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burrowing owl territories in many cases, I did not detect an effect of nest density on T, 

DHT, or A4 levels (Tables 3.1-3.3).  

Laying Date 

The laying date hypothesis predicts that egg hormone levels will change as the 

laying season progresses.  The average date on which owls laid their first egg was 15 

April (integer day 105±1 days; range: 28 March-12 May).  The pattern of variation in T, 

DHT, and A4 across the laying season was similar.  Each hormone was low early in the 

season, peaked in mid-season, and declined during the end of the laying season.  As such, 

all three androgens showed a curvilinear relationship with laying date (Tables 3.1-3.3, 

Figure 3.3).     

Asynchrony 

T, DHT, and A4 was 7.6±0.97pg/mg yolk (range: 0.4-39.2pg/mg yolk), 

7.1±0.67pg/mg yolk (range: 0.6-25.2pg/mg yolk), and 13.2±1.62pg/mg yolk (range: 0.7-

43.1pg/mg yolk) in early laid eggs, and 13.9±1.04pg/mg yolk (range: 2.2-29.36 pg/mg 

yolk), 9.6±0.83pg/mg yolk (range: 2.7-27.0pg/mg yolk), and 16.9±1.74pg/mg yolk 

(range: 1.4-62.4pg/mg yolk) in later laid eggs.  The asynchrony hypothesis predicts yolk 

hormones increase as laying progresses from early- to late-laid eggs within a clutch.  I 

found a significant difference between early and late eggs for T and DHT but not A4.  T 

increased by 6.9±1.33pg/mg yolk from early to late eggs (range: -18.2-25.5pg/mg yolk; 

Table 3.1, Figure 3.4a).  DHT increased by 2.4±0.84 pg/mg yolk from early to late eggs 

(range: -19.1-16.1pg/mg yolk; Table 3.2, Figure 3.4b).  There was a 3.6±2.27pg/mg 

increase in A4 from early to late eggs (range: -29.1-54.1pg/mg yolk; Table 3.3, Figure 
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3.4c).  When examining T, DHT, and A4, there was an absolute increase in egg-yolk 

androgens from early to late eggs in 42, 35, and 29 of 47 nests, respectively.  In only 3 

nests were all three androgens higher in the early-laid egg. 

Agriculture and Female BCI 

Distance to irrigated agricultural fields averaged 3.0±0.41km (Median = 1.0km, 

n=46 nests, range: 0.1-12.9km).  Female body condition averaged 4.9±1.9 (n=42 adult 

females, range: -34.3-41.0).  Neither distance to agriculture nor female body condition 

affected egg-yolk androgens (Tables 3.1-3.3).   

Discussion 

My study is one of only a small number of studies of egg-yolk hormones in 

raptors and perhaps the first report in owls.  I found that both E2 and CORT 

concentrations were low and generally below the level of detection for the assay.  I 

documented the presence of and variability in three egg-yolk androgens in burrowing owl 

eggs and evaluated three potential explanations for the variability.  There was no effect of 

nest density, but laying date affected burrowing owl egg-yolk T, DHT, and A4.  Egg 

androgens peaked in the middle of the nesting season and were lower near the beginning 

and end.  In addition, T and DHT increased significantly from early to late eggs within a 

nest, and A4 trended in this direction.  Increases in egg androgens were consistent with 

predictions of the asynchrony hypothesis. 

Nest Density 

Despite relatively small nearest neighbor distances, substantial density overlap, 

other known effects of density in burrowing owls (see Chapter 2 of this thesis) and 
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substantial variability in T, DHT, and A4 levels among nests, I detected no effect of nest 

density on burrowing owl egg-yolk androgens.  One possible explanation for the lack of a 

density effect is that neighboring females did not interact with high enough frequency or 

aggression to affect hormones in adult females during the egg-laying period.  For 

instance, nesting burrowing owls respond to simulated territorial intrusion with more 

aggressive approaches when intruders are within 50m, but they respond more frequently 

with vocal displays when owls are >100m away (Moulton et al. 2004).  I found that the 

median distance to nearest nests was approximately 250m, which means that neighboring 

owls were generally at least 125m away from one another.  Thus, they may have 

responded simply with vocalizations rather than more aggressive behaviors, while the 

latter may be needed to substantially affect female hormones.  In addition, while 

aggressive female conspecific interactions have been observed, it is not well understood 

if and how aggressively female burrowing owls participate in these conspecific 

interactions.  Alternatively, with documented extrapair fertilizations in burrowing owls 

(Johnson 1997), the potential for extrapair matings may select for behavior on the part of 

males that protects paternity.  Males may have engaged in mate guarding during the 

laying season, as occurs in other raptors (Mougeot 2004). Mate guarding by males could 

limit forays of females and males into other territories where aggressive interactions with 

residents could subsequently alter their hormone milieu.  Finally, we do not know if, and 

for how long, an aggressive encounter may raise female androgen levels, if increases last 

throughout laying of the entire clutch or for just a single egg, or if they simply do not last 

long enough to influence egg androgens (see Göth et al. 2008).   
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Agriculture and Female BCI 

Neither distance of the nest to irrigated agricultural fields nor the BCI in females 

affected egg androgen levels in my study.  Theoretically, there is potential for agricultural 

pesticides or other human activities in agricultural areas to alter hormones in adults and 

therefore affect their eggs, as pesticides may act as estrogen mimics and reduce 

androgens.  Despite such potential, the literature contains no previous studies that I could 

find that documented effects of agriculture on egg-yolk androgens.  The lack of a BCI 

effect in burrowing owls that I observed is similar to that of Pilz et al. (2003), who found 

no relationship between body condition and egg androgens in European starlings, 

although they found higher androgen levels in eggs from older females.   

 Laying Date 

Burrowing owls in my study area initiated egg-laying as early as late-March and 

as late as mid-May.  T, DHT, and A4 in burrowing owl eggs were lower early in the 

season, peaked near mid-nesting season, and declined toward the end of the nesting 

season.  To the best of my knowledge, this is the first documentation of such a pattern.  In 

contrast to my study, Verboven et al. (2003) found that egg androgens increased from 

early to late eggs within a clutch but documented no change with laying date in lesser 

black-backed gulls (Larus fuscus).  Pilz et al. (2003) theorized that egg-yolk androgens in 

European starlings are higher earlier in the season because young that fledge early have a 

higher success rate, and females invest more by increasing yolk androgens in nestlings 

for which success is most likely.  Michl et al. (2005) found an increase in yolk androgens 

in clutches laid later in the season in collared flycatchers (Ficedula albicollis).  They 
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hypothesized that older males, who are better foragers, nest earlier in the season and later 

nesting females must compensate for younger, inexperienced males by increasing yolk 

androgens in those eggs.  They found that higher androgens increased begging behavior 

of the chicks and resulted in increased provisioning by the males.  Perhaps both of the 

latter possibilities can be applied to a potential explanation of the pattern of egg-yolk 

androgen change with laying date that I observed in burrowing owls.  Male burrowing 

owls that nest early in the year may be of higher quality and, as a result, females may not 

invest as many androgens into these eggs because the likelihood of fledging success is 

high.  Moreover, Belthoff (unpublished data) has documented a significant decline in the 

number of burrowing owl fledglings per nest as the nesting season progressed.  

Consequently, females may have deposited fewer androgens in eggs laid later in the 

season because of the decreased likelihood of success and possible poorer male quality.  

Androgens may peak near the middle of the breeding season if the pool of available 

males is of varied quality but chance of productivity remains relatively high if increased 

begging behavior in the burrowing owl chicks results in an increase in male provisioning. 

Asynchrony 

My results indicate that different levels of androgens were allocated to burrowing 

owl eggs in the early and late portions of clutches.  Finding increases in egg-yolk 

androgens within a nest has been common since Schwabl first reported this pattern in 

canaries (Serinus canaria, Schwabl 1993).  For example, Sockman and Schwabl (2000) 

found American kestrels (Falco sparverius) increase androgens with laying order.  

Additonally, Schmaltz et al. (2008) reported increases of T within clutches of smooth-

 
 



76 
 

billed ani (Crotophaga ani), and they found no effect of density on T, which is similar to 

what I observed in burrowing owls.   

Asynchronous hatching appears to be a common element in many of the species 

for which late-laid eggs have higher egg-yolk androgens (Schwabl 1993, Schwabl 1996b, 

Lipar et al. 1999b, Sockman and Schwabl 2000, Eising et al. 2001, Royle et al. 2001, 

Groothuis and Schwabl 2002, Eising and Groothuis 2003, Groothuis et al. 2005, 

Schmaltz et al. 2008, Tanvez et al. 2008).  In burrowing owls, Wellicome (2005) found 

age disparities between first- and last-hatched siblings (i.e., hatching spans) varied 

considerably (ranging between 1 and 7 days) with a mode of 4 days.  Thus, asynchronous 

hatching occurs in burrowing owls and may be related to the pattern of increased 

androgens in late-laid eggs that I observed. 

One of the most competitive periods in a bird’s life may be the nestling period 

(Ros 2008).  Increasing androgens decrease incubation time those eggs and increase 

aggression and begging behaviors within the nestlings that hatch from these eggs.  This, 

in turn, can allow younger nestlings who receive higher androgen levels to more 

effectively compete for the resources available within a nest (Schwabl 1993, Schwabl 

1996b, Lipar and Ketterson 2000, Eising et al. 2001, Lipar 2001, Eising and Groothuis 

2003, Goodship and Buchanan 2007, Groothuis and Schwabl 2007, Ros 2008, Müller and 

Eens 2009).  For burrowing owls and other raptors, competition within a nest for 

resources can be great depending on environmental conditions.  For instance, Smith and 

Johnson (1985), in a 7-year study of Townsend ground squirrel (Spermophilus townsendi) 

in southern Idaho, found that in one drought year grass cover decreased from 14.9% to 
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>1%, and this resulted in a 50% decline in the ground squirrel population.  Declines in 

prey density can have a direct negative effect on raptor density, breeding success, and 

fledgling success (Grant et al. 1991, Rutz and Bijlsma 2006, Weins et al. 2006, Sergio et 

al. 2008).   In times such as these, younger burrowing owl nestlings may gain some 

advantage from the physiological results of greater egg-yolk androgens that can include 

increased aggression and competition for resources within the nest.  On the other hand, 

later-hatched nestlings may act as a final food source for their older, stronger siblings.  

Buchanan et al. (2001) found that testosterone raises the metabolic rate in birds, so 

individual burrowing owl nestlings with higher testosterone levels may be at a metabolic 

and size disadvantage in poor food environments, starve, and be consumed by siblings 

after death.  Older nestlings may also attack and kill their smaller, undernourished 

siblings to increase provisioning of food resources to the remaining nestlings as is found 

in other raptors that practice siblicide (Simmons 2002).  When food is plentiful, higher 

androgen levels in later eggs may help these nestlings compete with their older siblings 

for food within the nest and allow these nestlings to become highly competitive as adults.  

However, despite these benefits, increased androgens in younger nestlings may result in 

costs including decreased immune response and reduced lifespan (Sockman and Schwabl 

2000, Navara et al. 2005).  Increasing egg androgens within a burrowing owl clutch may 

be one measure by which adults help to mediate the variable environmental conditions 

found in southern Idaho and fledge an optimum number of nestlings each year.  

 

 

 
 



78 
 

Further Research 

There are several other potential explanations for variation in egg-yolk androgens 

among nests that remain to be studied in burrowing owls.  Individual aggression and 

social status among females has been linked to changes in androgen levels (Whittingham 

and Schwabl 2002, Tanvez et al. 2008).  Gil et al. (2004, 2006) found greater amounts of 

testosterone in zebra finch (Taeniopygia guttataeggs) eggs when the female was exposed 

to preferred male songs and in barn swallow (Hirundo rustica) eggs when mates had 

experimentally elongated tails (also see Loyau et al. 2007).  However, Navara et al. 

(2006b) found female house finches (Carpodacus mexicanus) increased egg-yolk 

androgen levels in eggs sired by less attractive males, and Garamszegi et al. (2007) found 

that song duration and syllable repertoire size were significantly negatively related to 

testosterone levels in the egg across 36 passerine species.  Kingma et al. (2008) 

determined that experimentally altering a male’s appearance to a more or less dominant 

state affected androgens in the subsequently laid eggs of their mates.  Göth et al. (2008) 

found egg androgen levels varied among single egg clutches with no parental care 

depending on the size and depth of the incubation mound and size of the egg within the 

mound.  Their results suggest that even in the absence of siblings and adults, egg 

androgens may be important in embryo and nestling growth.  Addison et al. (2008) 

demonstrated high egg androgen variability, in two single-egg-laying seabird species, that 

was independent of the constantly changing marine environment.  Finally, only little is 

known about the role that hormone receptors and binding globulins play in regulating 

hormone levels in birds and other species.  I do not know what effects these two factors 
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may have had on the amount of androgens used by cells and how this compares to the 

circulating levels that I measured in the egg-yolk. 

Conclusions 

My study indicates that E2 and CORT concentrations were low in burrowing owl 

egg-yolks and that many samples had concentrations below the level of detectability of 

the assay.  Thus, reasons for any variability in E2 and CORT concentrations and their 

respective role in altering burrowing owl nestling behavior or physiology remain 

unknown.  Yolk androgens exhibited high variation in burrowing owls but appeared to be 

a product of both the within-nest environment (egg order) and the external environment 

(laying date) in which the eggs were laid. That is, yolk androgens peaked near the middle 

of the nesting season while remaining low early and late in the season, and androgens 

increased from early- to late-laid eggs within a nest.  Possible benefits of increasing 

androgens may include more rapid growth of embryos and nestlings, increased 

aggression of nestlings, potential aggressive characteristics post-fledging, and increased 

male provisioning through enhanced begging behavior in nestlings.  Possible costs 

including decreased immune system response, adult body condition, and lifespan.   
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Table 3.1. Results of linear model using Proc Mixed to assess main variables contributing 
to variation in egg-yolk T in 84 burrowing owl eggs (n=42 nests) from the NCA, Idaho.   

Fixed Effects Estimate
Standard 

Error DF 
t 

Value P-value
Intercept -254.19 74.94 37 -3.39 <0.00 
Distance to Agriculture (km) 0.05 0.21 40 0.23 0.82 
Laying Date 4.81 1.37 40 3.51 <0.00 
Laying Date2 -0.02 0.01 40 -3.44 <0.00 
200m Territory Overlap 0.04 0.02 40 1.83 0.08 
Body Condition Index 0.06 0.05 40 1.29 0.20 
Laying Order (1st egg relative to 2nd) -6.90 1.33 40 -5.18 <0.00 
Random Effects      
Within-nest covariance 4.48 6.48    
Residual (overall error) 37.29 8.14    
 
Table 3.2. Results of linear model using Proc Mixed to assess main variables contributing 
to variation in egg-yolk DHT in 84 burrowing owl eggs (n=42 nests) in the NCA, Idaho.   

Fixed Effects Estimate
Standard 

Error DF 
t 

Value P-value
Intercept -157.85 65.87 37 -2.40 0.0217
Distance to Agriculture (km) 0.01 0.19 40 0.03 0.98 
Laying Date 3.13 1.21 40 2.60 0.01 
Laying Date2 -0.01 0.01 40 -2.66 0.01 
200m Territory Overlap (m) 0.01 0.02 40 0.39 0.70 
Body Condition Index 0.02 0.04 40 0.39 0.70 
Laying Order (1st egg relative to 2nd) -2.46 0.84 40 -2.93 0.01 
Random Effects      
Within-nest covariance 10.52 4.22    
Residual (overall error) 14.70 3.21    
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Table 3.3. Results of linear model using Proc Mixed to assess main variables contributing 
to variation in egg-yolk A4 in 84 burrowing owl eggs (n=42 nests) from the NCA, Idaho.   

Fixed Effects Estimate
Standard 

Error DF 
t 

Value P-value
Intercept -294.97 145.56 37 -2.03 0.05 
Distance to Agriculture (km) 0.16 0.42 40 0.38 0.71 
Laying Date 5.77 2.67 40 2.17 0.04 
Laying Date2 -0.03 0.01 40 -2.18 0.04 
200m Territory Overlap (m) 0.00 0.047 40 0.10 0.92 
Body Condition Index -0.14 0.10 40 -1.50 0.14 
Laying Order (1st egg relative to 2nd) -3.67 2.27 40 -1.61 0.11 
Random Effects      
Within-nest covariance 33.04 23.80    
Residual (overall error) 108.43 23.94    
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Figure 3.1. Examples of the different nesting density parameters that were measured on 
burrowing owl nests in 2006 and 2007.  Note that for nest B, the closest neighbor is C, 
but C’s closest neighbor is D.  Number of neighbors counts the number of owls within a 
buffer around the nest.  Territory overlap determines the total proportion of a nesting 
territory that is overlapped by other territories.   Complete overlap is the sum of each 
neighboring nest’s overlap with the focal nest.  The crosshatched areas indicate where 
more than one nest overlaps the same area.  All of these parameters were significantly 
correlated with each other (see Appendix A). 
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Figure 3.2. Examples of how differing buffer sizes influence territory overlap (top two 
images) using 200m and 400m buffer sizes around a focal burrow (highlighted in red).  
Complete overlap (bottom 2 images) with the same buffer configuration is the total 
summed area of each neighboring burrow that overlapped the focal burrow. In this 
example, actual burrowing owl nest locations from the NCA in southern Idaho are used. 
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Figure 3.3. Best-fit curve for T, DHT, and A4 levels in relationship to burrowing owl 
laying date in southwestern Idaho (n=92 during 2006 and 2007). 
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Figure 3.4. Mean (±SE) T, DHT, and A4 in one early and one later-laid burrowing owl 
eggs in 46 clutches during 2006 and 2007 in southwestern Idaho.   
 

b. 
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APPENDIX A 
 

Spearman correlations of the different burrowing owl nesting density variables from 2006 
and 2007 in NCA showing the high correlation among all nest density variables. 
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Variable By Variable Spearman p Prob>|p| 
# Neighbors within 400m # Neighbors within 200m 0.65485997 <.0001 
# Neighbors within 600m # Neighbors within 200m 0.62318857 <.0001 
# Neighbors within 600m # Neighbors within 400m 0.83945143 <.0001 
100m Territory Overlap # Neighbors within 200m 0.96995166 <.0001 
100m Territory Overlap # Neighbors within 400m 0.60085796 <.0001 
100m Territory Overlap # Neighbors within 600m 0.61157442 <.0001 
125m Territory Overlap # Neighbors within 200m 0.89108008 <.0001 
125m Territory Overlap # Neighbors within 400m 0.7359781 <.0001 
125m Territory Overlap # Neighbors within 600m 0.67389375 <.0001 
125m Territory Overlap 100m Territory Overlap 0.91497912 <.0001 
200m Territory Overlap # Neighbors within 200m 0.86628391 <.0001 
200m Territory Overlap # Neighbors within 400m 0.84302617 <.0001 
200m Territory Overlap # Neighbors within 600m 0.77464305 <.0001 
200m Territory Overlap 100m Territory Overlap 0.8676226 <.0001 
200m Territory Overlap 125m Territory Overlap 0.94003619 <.0001 
400m Territory Overlap # Neighbors within 200m 0.72542242 <.0001 
400m Territory Overlap # Neighbors within 400m 0.8275633 <.0001 
400m Territory Overlap # Neighbors within 600m 0.88675654 <.0001 
400m Territory Overlap 100m Territory Overlap 0.73098969 <.0001 
400m Territory Overlap 125m Territory Overlap 0.76746673 <.0001 
400m Territory Overlap 200m Territory Overlap 0.88687249 <.0001 
600m Territory Overlap # Neighbors within 200m 0.65364507 <.0001 
600m Territory Overlap # Neighbors within 400m 0.76889836 <.0001 
600m Territory Overlap # Neighbors within 600m 0.85578501 <.0001 
600m Territory Overlap 100m Territory Overlap 0.65315641 <.0001 
600m Territory Overlap 125m Territory Overlap 0.69658699 <.0001 
600m Territory Overlap 200m Territory Overlap 0.79376683 <.0001 
600m Territory Overlap 400m Territory Overlap 0.95971845 <.0001 
125m Total Overlap # Neighbors within 200m 0.78404977 <.0001 
125m Total Overlap # Neighbors within 400m 0.63996318 <.0001 
125m Total Overlap # Neighbors within 600m 0.68006706 <.0001 
125m Total Overlap 100m Territory Overlap 0.80941554 <.0001 
125m Total Overlap 125m Territory Overlap 0.7765944 <.0001 
125m Total Overlap 200m Territory Overlap 0.77178905 <.0001 
125m Total Overlap 400m Territory Overlap 0.70876127 <.0001 
125m Total Overlap 600m Territory Overlap 0.61503532 <.0001 
200m Total Overlap # Neighbors within 200m 0.83473664 <.0001 
200m Total Overlap # Neighbors within 400m 0.88137434 <.0001 
200m Total Overlap # Neighbors within 600m 0.78459586 <.0001 
200m Total Overlap 100m Territory Overlap 0.82260333 <.0001 
200m Total Overlap 125m Territory Overlap 0.92091429 <.0001 
200m Total Overlap 200m Territory Overlap 0.97218989 <.0001 
200m Total Overlap 400m Territory Overlap 0.85710842 <.0001 
200m Total Overlap 600m Territory Overlap 0.76668129 <.0001 
200m Total Overlap 125m Total Overlap 0.79433196 <.0001 
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400m Total Overlap # Neighbors within 200m 0.7274674 <.0001 
400m Total Overlap # Neighbors within 400m 0.91042185 <.0001 
400m Total Overlap # Neighbors within 600m 0.9661526 <.0001 
400m Total Overlap 100m Territory Overlap 0.70848527 <.0001 
400m Total Overlap 125m Territory Overlap 0.78060638 <.0001 
400m Total Overlap 200m Territory Overlap 0.87219569 <.0001 
400m Total Overlap 400m Territory Overlap 0.92783266 <.0001 
400m Total Overlap 600m Territory Overlap 0.88315442 <.0001 
400m Total Overlap 125m Total Overlap 0.73955293 <.0001 
400m Total Overlap 200m Total Overlap 0.88986073 <.0001 
600m Total Overlap # Neighbors within 200m 0.63533531 <.0001 
600m Total Overlap # Neighbors within 400m 0.82492462 <.0001 
600m Total Overlap # Neighbors within 600m 0.96627757 <.0001 
600m Total Overlap 100m Territory Overlap 0.61098125 <.0001 
600m Total Overlap 125m Territory Overlap 0.65685375 <.0001 
600m Total Overlap 200m Territory Overlap 0.77158209 <.0001 
600m Total Overlap 400m Territory Overlap 0.89395548 <.0001 
600m Total Overlap 600m Territory Overlap 0.88108609 <.0001 
600m Total Overlap 125m Total Overlap 0.64337389 <.0001 
600m Total Overlap 200m Total Overlap 0.77469075 <.0001 
600m Total Overlap 400m Total Overlap 0.95740347 <.0001 
Distance to Nearest Neighbor # Neighbors within 200m -0.8295908 <.0001 
Distance to Nearest Neighbor # Neighbors within 400m -0.7899537 <.0001 
Distance to Nearest Neighbor # Neighbors within 600m -0.7886792 <.0001 
Distance to Nearest Neighbor 100m Territory Overlap -0.8500257 <.0001 
Distance to Nearest Neighbor 125m Territory Overlap -0.930062 <.0001 
Distance to Nearest Neighbor 200m Territory Overlap -0.9427844 <.0001 
Distance to Nearest Neighbor 400m Territory Overlap -0.8733208 <.0001 
Distance to Nearest Neighbor 600m Territory Overlap -0.8128021 <.0001 
Distance to Nearest Neighbor 125m Total Overlap -0.770653 <.0001 
Distance to Nearest Neighbor 200m Total Overlap -0.9199278 <.0001 
Distance to Nearest Neighbor 400m Total Overlap -0.8703639 <.0001 
Distance to Nearest Neighbor 600m Total Overlap -0.7913545 <.0001 
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APPENDIX  B 
 

Original data for all variables analyzed in burrowing owl egg yolk androgens from 2006 
and 2007 in the Snake NCA.  Cells highlighted in yellow had only 1 duplicate on the 
curve (above 3.91gp/tube) while empty cells had neither duplicate on the curve. 
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    200m   Distance T T DHT DHT A4 A4 CORT CORT E2 E2 
    Territory Laying (meters) to pg/mg pg/mg pg/mg pg/mg pg/mg pg/mg pg/mg pg/mg pg/mg pg/mg

Burrow Year Overlap Date Agriculture Early Late Early Late Early Late Early Late Early Late 
398-3 2007 65.30% 96 1186 1.71 9.47 7.14 5.94 1.65 15.06 0.99 0.85 . . 
Backyard 9 2007 0% 110 167 4.48 17.51 4.5 10 1.09 13.53 . . . . 
Baja 10 2007 52% 96 586 12.79 19.61 8.22 9.23 3.43 13.13 . . . . 
Baja 2 2007 49.80% 121 131 8.55 10.13 4.09 4.88 23.87 22.27 . . . . 
Baja Pole 19 2007 51% 102 124 4.6 23.75 1.67 6.43 6.74 25.54 . . . . 
Canyon 4 2007 0% 123 304 4.3 6.01 3.19 5.7 9.73 6.57 . . . . 
Corner 3 2007 0% 104 1523 18.12 15.58 6.61 4.93 37.36 45.96 . . . . 
Delta 2 2007 52.30% 103 9483 1.69 6.11 0.94 6.56 0.97 7.38 . . . . 
Delta 3 2007 49.30% 96 9519 6.46 14.13 5.4 8.12 10.02 24 . 0.76 . . 
Dirtmound 5 2007 58% 90 889 6.23 8.19 8.78 9.61 8.74 20.06 0.66 0.93 . . 
Dorsey East 6 2007 0% 113 4384 10.99 7.59 6.28 3.65 18.15 35.08 . . . . 
Highway 2 2007 0% 102 1069 0.78 7.42 1.66 6.9 1.86 15.59 . . . . 
Hilltop 1 2007 0% 87 3518 0.66 3.56 3.26 6.03 1.21 6.42 . . . . 
Level 6 2007 18.80% 103 1669 6.02 21.25 6.88 9.33 5.38 20.44 . . . . 
Mountain View 3 2007 73.70% 101 6152 1.03 12.73 1.66 4.61 1.36 20.7 . . . . 
Powerline 3 2007 95.90% 96 1001 1.03 9.84 5.29 6.96 1.09 27.98 0.71 . . . 
Powerline 4 2007 86.70% 89 1117 3.14 11.63 5.85 9.32 1.57 15.18 . . 1.38 . 
South Cinder 1 2007 0% 132 523 0.39 5.14 0.57 2.67 0.7 3.65 . . . . 
South Cinder 4 2007 0% 104 166 4.55 16.12 5.34 7.14 3.26 8.61 . . . . 
Tadpole 2 2007 17.90% 111 9180 18.02 20.24 10.21 8.45 19.13 16.14 . . . . 
Trailerview 4 2007 32.10% 99 110 9.7 14.84 10.43 12.43 10.92 5.71 1.34 0.717 . . 
Valley 1 2007 26.40% 99 1803 13.03 15.74 7.58 6.25 10.93 28.78 . . . . 
View 1 2007 0% 99 2571 4.43 7.15 7.39 12.75 1.92 4.83 . . . . 
Backyard 4 2006 0% 101 122 3.02 4.24 5.2 2.97 43.09 41.09 . . . . 
Bennett 4 2006 0% 111 9130 2.36 23.03 10.56 23.77 8.17 62.36 . 3.69 . . 
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Canyon 4 2006 0% 121 280 7.48 19.84 4.44 7.02 40.62 11.51 1.67 1.46 . . 
Curlew 2 2006 87.20% 110 1237 39.23 21 25.24 9.13 31.43 13.04 . . . . 
Delta 1 2006 36.90% 107 9890 7.37 21.45 4.28 8.69 22.81 16.52 1.61 1.1 . . 
Delta 3 2006 36.90% 100 9750 11.74 26.64 17.24 13.98 16.16 5.62 . . . . 
Dirtmound 2 2006 73.50% 117 959 17.89 8.25 4.75 2.7 11.3 5.11 1.79 1.61 . 0.47 
Dorsey East 6 2006 0% 111 4367 0.46 3.98 3.06 7.31 8.58 12.05 1.36 1.81 . . 
East Cinder 1 2006 0% 105 47 7.49 14.72 8.44 13.54 6.64 2.97 . . . . 
Grandview 1 2006 73.50% 99 52 6.11 25.59 6.5 11.5 10.51 18.41 1.47 2.67 . . 
Grandview 3 2006 73.50% 104 96 9.74 24.5 16.32 21.23 13.68 17.3 2.21 2.81 1.75 . 
Missile 3 2006 63.50% 104 12744 3.26 21.01 6.37 7.26 28.9 25.2 1.44 1.01 . 0.71 
Missile 5 2006 31.80% 122 12870 5.61 9.35 7.95 14.5 11.65 16.55 1.05 1.89 . . 
Powerline 4 2006 79.50% 100 1066 2.1 2.16 12.25 10.39 27.59 4.64 . . . . 
Powerline 5 2006 54.80% 97 797 10.96 11.26 5.18 6.33 18.19 22.12 . . . . 
Shadscale West 2 2006 0% 107 5258 16.02 19.18 12.39 15.97 4.88 11.85 1.22 0.85 0.46 . 
South Cinder 2 2006 56.60% 108 415 13.78 14.9 8.16 11.16 33.77 15.36 2.38 3.59 . . 
South Cinder 8 2006 0% 111 94 5.61 13.36 16.81 17.75 27.87 26.01 1.23 1.7 . 0.36 
Sub East 1 2006 0% 99 412 5.83 7.9 6.08 4.99 9.97 5.87 . . . . 
Tadpole 1 2006 0% 108 9509 3.84 29.36 5.62 24.74 18.16 20.35 6.52 . . . 
Trailer 1 2006 43.30% 100 68 3.4 23.66 9.91 26.96 5.26 20.81 1.37 1.48 . . 
Trailerview 4 2006 32.10% 125 79 7.09 10.4 3.98 6.37 15.59 1.38 0.97 0.71 . 0.37 
Valley 2 2006 1.50% 110 1845 16.43 8.19 10.57 7.98 20.25 8.59 1.57 1.86 . . 

Average   33.40% 105.28 2959.906 7.4892 13.934 7.1293 9.5559 13.173 16.946 1.1154 1.0689 1.1967 0.4775
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