EXTENDING THE PAGE SEGMENTATION ALGORITHMS

OF THE OCROPUS DOCUMENTATION LAYOUT ANALYSIS SYSTEM

by

Amy Alison Winder

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Boise State University

August 2010

© 2010
Amy Alison Winder
ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS
of the thesis submitted by
Amy Alison Winder
Thesis Title: Extending the Page Segmentation Algorithms of the OCRopus
Document Layout Analysis System
Date of Final Oral Examination: 28 June 2010
The following individuals read and discussed the thesis submitted by student Amy Alison

Winder, and they evaluated her presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Elisa Barney Smith, Ph.D. Co-Chair, Supervisory Committee
Timothy Andersen, Ph.D. Co-Chair, Supervisory Committee
Amit Jain, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Elisa Barney Smith, Ph.D., Co-
Chair of the Supervisory Committee. The thesis was approved for the Graduate College
by John R. Pelton, Ph.D., Dean of the Graduate College.

Dedicated to my parents, Mary and Robert, and to my children, Samantha and Thomas.

v

ACKNOWLEDGMENTS

The author wishes to express gratitude to Dr. Barney Smith for providing a
structured and supportive environment in which to formulate, develop, and complete
this thesis. Not only did she provide the initial concept for the work, but she was
instrumental in selecting the specific topic and followed through by meeting with me
weekly to guide and support this effort. The author is also grateful for the instruction
Dr. Barney Smith provided in Image Processing, which, paired with computer science,
is an exciting field.

Thanks also go to Dr. Andersen for introducing me to the intriguing world of
Artificial Intelligence and for allowing me to fulfill the requirements of my thesis under
his advisement. The author is grateful for his contributions to the understanding of
page segmentation algorithms and performance metrics.

Additionally, the author appreciates the help of Dr. Jain who has been a reliable
source of information for the author’s entire graduate career at Boise State University.
Not only did he streamline the author’s academic schedule upon arrival, but he
expressed interest and placed value upon the experience and education the author
brought to the university, subsequently strengthening her resolve to obtain a second
Master of Science degree.

Finally, the author would like to thank the undergraduate students from the
university who created and scanned a majority of the document images: Josh Johnson,
Kris Burch, and Will Grover.

Funding for this thesis, the classes the author has taken to fulfill the requirements

v

of this degree, and a stipend was provided by the United States Government under
the Trade Adjustment Assistance Act as petitioned by Micron Technology, Inc., the
author’s former employer. The author is grateful for the guidance provided by Ruby

Rangel, Senior Consultant at the Idaho Department of Commerce and Labor.

vi

AUTOBIOGRAPHICAL SKETCH

The author was born in Princeton, NJ and attended Westtown School in Penn-
sylvania and the University of Rochester in New York where she earned Bachelor of
Science and Master of Science degrees in Optics. Following graduation, she worked
in the Electro-Optics Division of Honeywell in the Boston area of Massachusetts,
supporting the Strategic Defense Initiative. In the Systems Engineering group, she
supported simulation efforts of an infrared sensor and in the Optics group she analyzed
telescope lens designs.

After a brief sojourn to raise her children, the author took an engineering position
at Micron Technology, Inc. in Boise, Idaho. For five years, she worked in the
Advanced Reticle group, supporting the development of new reticles used in the
photo-lithography process of semiconductor manufacturing. Then, she transferred to
the Design department within which she relocated to Japan as a CAD engineer to
support the recently opened DRAM design center. Upon returning to the United
States two years later, she designed layouts, wrote Design Rule Verification tool sets,
and provided general CAD support until deciding to broaden her skill set by pursuing

a Master of Science degree in Computer Science at Boise State University.

vii

ABSTRACT

With the advent of more powerful personal computers, inexpensive memory, and
digital cameras, curators around the world are working towards preserving historical
documents on computers. Since many of the organizations for which they work have
limited funds, there is world-wide interest in a low-cost solution to obtaining these
digital records in a computer-readable form. An open source layout analysis system
called OCRopus is being developed for such a purpose. In its original state, though, it
could not process documents that contained information other than text. Segmenting
the page into regions of text and non-text areas is the first step of analyzing a mixed-
content document, but it did not exist in OCRopus. Therefore, the goal of this
thesis was to add this capability so that OCRopus could process a full spectrum of
documents.

By default, the RAST page segmentation algorithm processed text-only docu-
ments at a target resolution of 300 DPI. In a separate module, the Voronoi algorithm
divided the page into regions, but did not classify them as text or non-text. Addition-
ally, it tended to oversegment non-text regions and was tuned to a resolution of 300
DPI. Therefore, the RAST algorithm was improved to recognize non-text regions and
the Voronoi algorithm was extended to classify text and non-text regions and merge
non-text regions appropriately. Finally, both algorithms were modified to perform at
a range of resolutions.

Testing on a set of documents consisting of different types showed an improvement
of 15-40% for the RAST algorithm, giving it at an average segmentation accuracy

viil

of about 80%. Partially due to the representation of the ground truth, the Voronoi
algorithm did not perform as well as the improved RAST algorithm, averaging around
70% overall. Depending on the layout of the historical documents to be digitized,

though, either algorithm could be sufficiently accurate to be utilized.

1X

TABLE OF CONTENTS

ABS T R ACT .. e e e viii
LIST OF TABLES i ittt e e e xiii
LIST OF FIGURES i i ettt i e e xiv
LIST OF ABBREVIATIONS ittt iiien e xviii
1 Introduction.......... i i 1
1.1 Document Recognition and Analysis 3
1.1.1 Image Acquisition and Processing 3

1.1.2 Document Analysis 4

1.1.3 Page Segmentation Algorithms 5

1.1.4 Page Segmentation Accuracy 7

1.2 Document Analysis Programs. 9
1.3 Thesis Statement 12

2 Methodsoi it it ittt it 13
2.1 Comparison Program Algorithm. 14
2.2 Method to Output in XML Format 16
2.3 Original RAST Algorithm 16
2.4 Voronoi Basis 20

3 Design and Implementation 27

3.1 Comparison Program Implementation 28
3.2 Implementation of XML Output 32
3.3 Mixed-Content RAST Algorithm 33
3.4 Voronoi Page Segmentation with Classification 42

4 Testing and Analysis.ttt 54
4.1 Test Documents 54
4.2 RAST Analysis. 55
4.3 Voronoi Analysis. 62
4.4 Commercial Package. 72

5 Conclusion e e e e 7
REFERENCES. e ettt e e e eae s 82
A Comparison Program i, 85
A1 README File 85
A.2 Code Documentation 87
A.2.1 Main Program Functions. 87

A.2.2 Rect Class Constructor and Functions 93

B XML Outputo e e 95
B.1 get-text-columns of ocr-detect-columns.cc 95
B.2 Functions of ocr-hps-output.cc 97

C RAST Upgradettt ittt 99
C.1 Excerpts of ocr-layout/ocr-layout-rast.cc 99

x1

C.2 Excerpts of ocr-layout/ocr-char-stats.cc . .

C.3 Excerpts of ocr-layout/ocr-layout-manip.cc

D Voronoi Upgradeot iiititininnennnns

D.1 Excerpts of ocr-voronoi/ocr-voronoi-ocropus.cc

D.2 Excerpts of ocr-voronoi/ocr-zone-manip.cc

D.3 Excerpts of ocr-layout/ocr-char-stats.cc . .

xii

LIST OF TABLES

4.1 The performance of the OCR engine of OCRopus on a single column,

text-only document for a series of image resolutions. 58

xiil

2.1

2.2

2.3

24

2.5

2.6

3.1
3.2

3.3

3.4

LIST OF FIGURES

Example of RAST output of OCRopus. Note the multiple colors in

both figures.

Example of RAST output of OCRopus. Note the text coloring of the

x-axis labels and the absence of the y-axis labels.

Example of RAST output of OCRopus. Note the column dividers in

the table and the absence of some entries.

Example of Voronoi output of OCRopus. Note the oversegmentation

of the figures.

Example of Voronoi output of OCRopus. Note the oversegmentation

of the graphs.

Example of Voronoi output of OCRopus. Note the oversegmentation

of the table.

XML file data structure.

Example of Match Score tables - actual value on the left, thresholded

on the right - and G and D-profiles. Taken from page 851 of [24].

This figure illustrates character boxes that were not overlapped by any

text line boxes and had been previously omitted from consideration as

either text or graphics.

This figure illustrates small isolated character boxes that had been

previously omitted from consideration as either text or non-text.

X1v

19

35

36

3.5
3.6

3.7

3.8

3.9

3.10
3.11
3.12

3.13
3.14

Non-text boxes before converting text boxes, merging and closing.

Non-text box after converting text boxes, merging and closing. Note

that it fully encloses the figure.

Histogram of the heights of the bounding boxes of the connected com-
ponents with no smoothing (left), one iteration of smoothing (middle)
and two iterations of smoothing (right). The rightmost peak corre-
sponds to the height of ascenders (i.e. tall letters), the middle peak to

the height of x-height characters (i.e. short letters) and the leftmost

to the height of periods, commas, etc.

Steps of the improved RAST algorithm. The original steps have a

standard font, the modified functions are italicized and new functions

The numbered Vornonoi zones. The histograms in Figures 3.12-3.14

correspond to tan text zone number #8.
The Vornonoi lines.

The "text rectangle” of an unclassified zone.

Section of the histogram of the y0-values of the character boxes of zone
#8 in Figure 3.9. The peaks to the left correspond to letters extending

below the line and the peaks to the right correspond to letters sitting

on the Line.

Section of the smoothed histogram of Figure 3.12.

Histogram of the peaks of the y0-values of the histogram of Figure 3.13.

In this example, for each of the lines, the median number of occurrences

of the main yO-value is twelve.

XV

38

38

40

43

45

46

47

3.15

3.16
3.17
3.18
3.19
3.20

4.1

4.2

4.3

4.4

Zone coloring of non-text relabeling process. a) Initial zone coloring,
b) after the smallest has been relabeled, ¢) after its neighbor has been

relabeled and d) after all of the neighboring non-text zones have been

relabeled. 48
Pictures in two different columns are merged. 50
Merged graphics zone is broken in two and text overlaps removed. 51
Wrap around text zone covers picture. 52
Wrap around text zone is broken into two zones. 52

Steps of the extended Voronoi algorithm. The original steps have a

standard font and the new functions are bold. 53

Performance of original (top) and improved (bottom) RAST algorithms
with the ICDAR Page Segmentation Competition weights (left) and the
weights compensated for segmentation of paragraphs (right). Higher
numbers indicate higher performance., 57
Example of text oversegmentation in the improved RAST algorithm.
Note the line in the middle of the left column that has been defined as
one region. It is slightly longer than the line above and below it. 60
Example of column merging in the improved RAST algorithm. Note
the diminutive height of the merged columns at the bottom of the page. 61
Example of text-image merging in the improved RAST algorithm. Note
the "Ich” word to the left of the upper figure separated from the rest

of the text on the line with =77 63

Xvi

4.5

4.6
4.7
4.8

4.9

4.10

4.11
4.12

4.13

Performance of the Voronoi algorithm (top) and the improved RAST
algorithm (bottom) with the ICDAR Page Segmentation Competition

weights (left) and the weights compensated for segmentation of para-

graphs (right). 64
Ground truth of a single text-only document image. 66
Voronoi text segments of a single text-only document image. 67

Voronoi segmentation of a mixed column document with pictures at
300 DPI. The lowest regions were classified as graphics. The accuracy
of the segmentation was 37%. 69
Voronoi segmentation of a mixed column document with pictures at 600
DPI. Most of the lowest regions were classified as text. The accuracy
of the segmentation was 53%. 70
Document image where the picture is placed too close to the text to
allow for correct Voronoi zoning. Note the purple text section merged
with the rabbit. 71
Fine Reader text segments of a single text-only document image. 74
Performance of ABBYY’s Fine Reader Engine 9.0 (bottom), the ex-
tended Voronoi algorithm (middle) and the improved (top) RAST
algorithm. 75
Example of Fine Reader segmentation. Note the overlapping image

and text bOXeS. o 76

xXvil

LIST OF ABBREVIATIONS

DRAM - Dynamic Random Access Memory

CAD - Computer Aided Design

CCD - Charge-Coupled Device

PDF - Portable Document Format

OCR - Optical Character Recognition

MP — Mega Pixel

DPI - Dots Per Inch

IUPR - Image Understanding Pattern Recognition

ASCII - American Standard Code for Information Interchange
RXYC - Recursive X-Y Cut

RLSA — Run-Length Smearing Algorithm

DAFS — Document Attribute Format Specification

XML - eXtensible Markup Language

PSET - Page Segmentation Evaluation Toolkit

ICDAR - International Conference on Document Analysis and Recognition
HTML — Hyper Text Markup Language

CSS - Cascading Style Sheets

xviil

RAST — Recognition by Adaptive Subdivision of Transformation Space
SAX — Simple API for XML

DOM - Document Object Model

Xix

CHAPTER 1

INTRODUCTION

The ability to create, store, and modify documents on computers has only existed for
two to three decades. The printing press, on the other hand, invented in Germany and
adopted by the rest of the developed world over time, has been in use for nearly six
centuries [1]. Consequently, a multitude of printed documents have been generated in
book, magazine, and newspaper form. While many have been lost over the years,
a significant portion has been preserved. As historical documents, they are not
only fragile, but are inaccessible to most people. In the interest of sharing and
preserving their contents for eternity, there is a movement to digitize and store them

on computers.

At this time, the most common method for digitizing documents is to use an image
scanner [3]. Image scanners, also known as flatbed or desktop scanners, contain a light
source, an image sensor such as a CCD, and a glass top upon which the document
is placed. Standard scanners that scan documents and produce images of them cost
a few hundred dollars; however, it is also possible to purchase large format scanners
capable of scanning large books and converting the images into searchable PDF files,
but they cost on the order of five thousand dollars. In standard scanners, documents

are digitized by OCR software installed onto the computer.

With the advent of inexpensive digital cameras, it is now possible to photograph

the pages of books, the bindings of which may be too brittle to withstand the pressure
of being placed, and temporarily deformed, on a scanner bed. Once these images
have been obtained, it is necessary to process and analyze them so that they can
be converted into text documents that are easily readable and searchable. Since
the institutions that house many of these documents have limited funds, a low-cost

solution to digitization is the only feasible option.

The impetus for this thesis was a non-profit organization in Germany called the
Bavarian Traditional Clothing Culture Center and Archive [2], which was formed
to preserve traditional Bavarian costumes and dances. It has been acquiring the
newspapers and magazines of various clubs in the area, which it plans to house in
a new archive facility. The organization then hopes to digitize these documents so
that researchers can examine them to gain a better understanding of how costumes
and dance have evolved over the years. Many of these documents were written in the

German Fraktur font and contain illustrations, but have standard Manhattan layouts.

At this time, there is an open source document analysis program - OCRopus [4],
also developed in Germany - which is capable of converting images of multiple column
text documents into text files; however, it cannot process documents that include
non-text areas, such as the newspapers mentioned previously. Therefore, non-profit
organizations such as the Bavarian Traditional Clothing Culture Center and Archive
cannot digitize and share their materials with historians. In response to this need and
that of thousands of other libraries and organizations, the goal of this master’s thesis
is to improve the OCRopus program by extending its page segmentation capability

to include mixed-content documents of camera-acquired images.

1.1 Document Recognition and Analysis

1.1.1 Image Acquisition and Processing

The first step in the process of digitizing a document is to capture an image of it.
This can be done by either scanning or photographing it. Mid-priced digital cameras
are capable of taking pictures with resolutions of 3,872 x 2,592 pixels (10 MP) to
4,672 x 3,104 pixels (15 MP). When these images are printed out at a resolution of
300 DPI, they range in size from 12.9” x 8.6” to 15.6” x 10.3”, approximately the
same size as a page of a bound historical document. Typical desktop scanners can
image documents with resolutions of 150 to 1200 DPI. So, today’s common digital

cameras can produce images comparable to those generated by a desktop scanner.

Employing digital cameras for image acquisition, on the other hand, introduces a
host of other issues that need to be resolved before the documents can be analyzed.
First, unless the camera is lined up perfectly with the page, it can capture some areas
outside of it including the table top, the adjacent page, and the edges of the pages
residing between it and the outer cover. The extraneous information contained within
these areas generally needs to be removed prior to analyzing the document so that
only the relevant sections of the document are analyzed. This process is typically
referred to as border removal.

Once the border has been removed, the image’s orientation needs to be checked
for skew and corrected. Other factors that need to be taken into consideration are
the perspective of the page and any distortions that may be present, such as warping
due to stiff spines. Finally, if the lighting under which the photograph was taken was
not optimal or if the pages of the document itself have yellowed with age, the image

may need to be processed so that it is only represented by black-and-white pixels.

This is called binarization. Additionally, if there is speckle noise present on the page,
it will need to be removed as well.

At this time, there is an open source program called PhotoDoc [5] that is capable of
handling all of these issues except for noise removal and distortion caused by warping.
PhotoDoc can be used in conjunction with an OCR engine such as (open source)
Tesseract [6] or OCRopus for image-to-text conversion. In addition to PhotoDoc,
researchers in the Image Understanding Pattern Recognition (IUPR) Research Group
of Kaiserslautern, Germany, in partnership with the Adaptive Technology Resource
Centre of Toronto, are developing a hardware/software solution for document analysis
called Decapod [7]. Decapod is being designed to work in conjunction with OCRopus,
which has skew correction, binarization, and noise-reduction functionality, but not
border removal. The hardware component of Decapod will consist of a camera/tripod
assembly for photographing the documents and it is assumed that border removal will

be added to OCRopus to complete the software component.

1.1.2 Document Analysis

Once the image has been acquired and processed, it needs to be analyzed in terms
of layout. That is, if the page contains information other than text like graphs,
tables, and half-tone images, the program needs to determine which areas are text
and which are not. This way only the text regions are sent to the OCR engine,
preventing unnecessary errors. Dividing a document in this fashion is called page
segmentation. Once the text regions have been identified, the individual lines are
sorted into reading order.

At this point, the OCR engine is called upon to recognize the characters in the

text regions and convert them into ASCII or Unicode characters. The first step

in this process is to segment the lines into words then the words, into characters.
Depending on the algorithm used, certain features like geometrical moments, contour
Fourier descriptors or number of pixels per row are extracted for each character.
These features can then be matched to a character in a database using a K-Nearest
Neighbor algorithm or can be input into a Decision Tree or Neural Network that
returns the most likely character.

Since the motivation behind this thesis is to help provide a means for curators to
digitize documents in a cost-efficient manner, open source document analysis systems
were researched. Besides OCRopus, a program called Gamera [8] was found, but it
is more of a toolkit than a comprehensive document analysis system. It has image
processing and OCR capabilities, but no apparent page segmentation functionality.
Therefore, OCRopus was deemed the system of choice. Like Gamera, page segmen-
tation has not been developed in OCRopus; however, it has some algorithms in place

that can be expanded upon.

1.1.3 Page Segmentation Algorithms

Over the years researchers have developed a number of page segmentation algorithms,
which can be categorized as top-down, bottom-up, or hybrid methods [9]. Top-down
methods involve operating on the document as a whole and subdividing it, whereas
bottom-up methods start with pixel-level operations, which create low-level groups
that are merged into segmented regions. Hybrid methods do not fall into either of
these categories, but may include a little of both.

The Recursive X-Y Cut (RXYC) and Run-Length Smearing Algorithms (RLSA)
fall into the top-down category. RXYC [10] starts by examining the image and con-

structing a block profile where white pixels are represented as zeros and black pixels

are represented as ones. The block profile then consists of vertical and horizontal
projections of the black areas. Zeros extending across the entire document in the
block profile, or valleys, are possible column candidates with the widest being the
best candidate. Once the largest valley is discovered, the document is subdivided
around it and one of the new blocks is examined for the existence of valleys. After
it has been completely subdivided, the other block is addressed in the order of a
depth-first traversal. The blocks are represented in a data structure called an X-Y
tree, where the valleys are the nodes and the blocks the elements. The structure can

also be visualized as a set of nested, rectangular blocks.

Like RXYC, RLSA [11] also operates from the top down; however, it classifies the
regions as well. It examines each of the pixels in a row-by-row and column-by-column
fashion and changes each white pixel to black if it is surrounded by enough black
pixels. Black pixels are not changed. After the pixels have been updated, the gener-
ated row and column bit maps are ANDed together to form a single bit map. This
bit map then undergoes a horizontal smoothing operation to ensure the connection
of words in a text line. The final bit map typically consists of blocks corresponding
to individual text lines and non-text areas. At this point, measurements are taken
of the blocks (i.e., numbers of black and white pixels, dimensions, coordinates) from

which histograms are built and block classifications derived.

In terms of bottom-up approaches, two documented methods include the Doc-
strum and Voronoi algorithms. Docstrum [12] is a contraction of Document Spectrum
and only segments and classifies text. So, it is not a page segmentation algorithm in
the strict sense; however, its methodology is of interest. It starts by extracting the
connected components (groups of adjacent black pixels) of the image that typically

correspond to characters. Next the K-Nearest Neighbors of each component are found

based on the coordinates of their centroids and the angle made by the line connecting
them. So, components placed in close proximity and side-by-side (e.g., along a text
line) are given priority. Once these have been grouped, they are classified as text,
title, abstract, etc., based on histograms of their dimensions.

The Voronoi method [13] also starts by identifying connected components. Af-
terwards, it extracts sample points along the boundaries from which it constructs a
Voronoi point diagram. Since the number of components is on the order of the number
of characters, a large number of edges are created, most of which are superfluous.
These unnecessary edges are deleted based on length (i.e., short ones) and whether
or not they are connected to other lines. In this way, the diagram is converted to an
area Voronoi diagram whose areas represent the page regions.

Comparing the two, the top-down approach requires a priori knowledge of the
document because parameters need to be set for determining which white areas are
valleys in RXYC as well as for setting the smearing threshold and smoothing filters of
RLSA. Additionally, neither one of these algorithms lends itself to segmenting layouts
that include regions with diagonal or curved boundaries (non-Manhattan layouts).
The bottom-up approaches, on the other hand, do not require a priori knowledge of
the layout, but will accumulate errors if any exist. Additionally, the Voronoi method

is capable of segmenting more complex, non-Manhattan layouts.

1.1.4 Page Segmentation Accuracy

To assess the accuracy of various page segmentation algorithms, it is necessary to
compare the output to the true region types or so called ”ground truth” of the page.
Three possible formats that this ground truth can take are: image files with labeled

pixels, Document Attribute Format Specification (DAFS) [14] files, or eXtensible

Markup Language (XML) files. In the first case, pixels are labeled with their region
number or type to which a corresponding unique color is assigned (i.e., green for text,
red for images, etc.). The colors can be assigned using a common graphics program.
An advantage to this format is that regions of any shape can be represented, although
generating the ground truth for non-rectangular regions can be time consuming.
The color coding can be extended to define reading order as well, which is done
by OCRopus where the color gradually changes (e.g., gets ”greener”) as successive

lines are encountered in a column.

In the second case, the image is converted into either an ASCII, Unicode, or binary
file, which contains tags representing the following entities: doc (the document as a
whole), page, column, paragraph, line, word, and glyph (a single character in the
text); however, a more general file format than DAFS is XML in which the regions
are defined by the user. For example, regions can be represented by ”zone” tags
that have a ”classification” attribute specifying its type (i.e., text, graph, image,
etc.), allowing for non-text types. The zones can also have ”dimension” subtags that
include attributes for the coordinates of the corners or vertices that constrain them
to being rectangles or polygons. Realizing that there was need for a tool to generate
ground truth of this type, researchers created TrueViz [15], an open source graphical

application for producing XML ground truth files.

Once the ground truth and a file containing the detected regions have been
generated, they need to be compared and an assessment made as to how well they
match. The same researchers that supplied TrueViz also created a toolkit called
PSET [16, 17], which stands for Page Segmentation Evaluation Toolkit. PSET
contains several algorithms for segmenting document images as well as an algorithm

for measuring the performance of the segmentation; however, PSET generates DAFS

formatted files and measures the segmentation performance in terms of text-line

accuracy. So, it is not suitable for documents that include images.

Using color-coded ground truth files, one could apply the method developed by
Shafait and Breuel [18] for measuring segmentation accuracy whereby counts of the
number of correct, over and under segmentations are taken in addition to several other
measurements. In the case of comparing rectangular zones, though, one could apply
the metric used in the page segmentation competition held by the International Con-
ference on Document Analysis and Recognition (ICDAR) every odd year [19]. This
method involves calculating and tabulating "match scores” for the regions, extracting
parameters from this table, calculating detection and recognition accuracies based
on these parameters, then using this information to calculate performance rates for
each region as well as an overall performance measurement. Since the documents of
interest for this thesis have Manhattan layouts and no program is publicly available

to measure segmentation performance, one was written based on the ICDAR method.

1.2 Document Analysis Programs

As mentioned earlier, OCRopus is an open source layout analysis and OCR program.
It is being developed for large-scale digital library applications and is distributed
under the Apache 2 license. Its design supports multi-lingual and multi-script recog-
nition by using Unicode as well as HTML and CSS standards to represent the
typographic formats of the world’s scripts. OCRopus itself is built in modules that
can be switched to test different algorithms as well as incorporate new ones. The
programming language is C++-, along with a built-in scripting language called Lua.

Its architecture consists of Layout Analysis, Text Line Recognition, and Statistical

10

Language Modeling.

The Layout Analysis module includes five page segmentation algorithms: a triv-
ial morphological segmenter, a single-column projection-based segmenter, a RXYC
segmenter, a Voronoi segmenter, and a Recognition by Adaptive Subdivision of
Transformation Space (RAST) segmenter. The morphological segmenter simply ap-
plies a smearing algorithm to the image to obtain isolated blocks; whereas, the
projection-based segmenter examines the horizontal projection profiles to segment
text lines into characters.

The RXYC and Voronoi segmenters apply the algorithms discussed earlier, but do
not classify or color code the regions by themselves so they cannot be used to convert
images to text. Also, all four of these algorithms only output image files, not XML
files. Of the four, the Voronoi algorithm showed the most promise because it was
able to segment a small collection of complex layouts with the most accuracy (this
topic will be covered in more detail in Chapter 3). Therefore, it was deemed a good
candidate for further improvement.

RAST [4, 20], on the other hand, was the most developed algorithm of the five
and operates by default; however, it is not a page segmentation algorithm, per se.
It was designed for text-only documents [21] and consists of three steps: finding
the columns, finding the text-lines, then determining the reading order. To find
the columns it employs a whitespace rectangle algorithm [22] which was inspired by
RXYC. This algorithm differs from RXYC in that it keeps track of the white spaces
rather than the blocks, and combines them as opposed to subdividing the blocks.

RAST starts by extracting the connected components then determines the largest
possible (maximal) whitespace rectangles (or covers) based on the component bound-

ing boxes. These are then sorted based on how many connected components (e.g.,

11

text lines) touch each major side. In this way, column dividers rather than paragraph
or section dividers take priority. The covers are then merged iteratively as long as the
combined cover obeys a given rule of how many components must be incident upon it.
Once the columns dividers (or gutters) have been found, the connected components
are examined and classified as text lines, graphics, and vertical/horizontal rulings
based on their shapes and the fact that they do not cross any gutters.

At this point, the reading order is determined by considering pairs of lines such
that either the line below or the line to the right at the top of the page (e.g., in the
next column) goes next. Once these have been ordered, the pairs are sorted to give
the final reading order. Preliminary tests of the RAST algorithm indicated that it
was capable of processing multiple column documents as long as they did not contain
images; however, when images were included errors were output and the reading order
was negatively impacted (more on this in Chapter 3). For these reasons, the RAST
module was judged as needing improvement.

While the goal of this thesis is to improve the performance of the OCRopus
system, the performance of a commercial program, ABBYY FineReader [23], was
also measured for comparison. As written earlier, the motivation behind this thesis
is to aid curators in their effort to digitize historical documents, specifically Bavarian
documents that were written in the Fraktur font. ABBYY has recently added the
Fraktur font to its OCR engine so it should be able to recognize the characters in
these documents; however, its page segmentation capabilities were unknown. Since
the topic of this thesis is page segmentation, this product was evaluated in this area

only.

12

1.3 Thesis Statement

The goals of this thesis are to:

1. Develop an algorithm based on the OCRopus RAST algorithm that can segment
text-only documents, mixed-text, and non-text documents. Ensure that it can
process layouts similar to to that of the Bavarian documents and can recognize

the regions with an accuracy of least 90% over a range of resolutions.

2. Develop an algorithm based on the Voronoi method that not only segments
a document into text and non-text regions, but ensures that like regions are
merged and all regions are classified. As for performance, impose the same

constraints as in the previous objective.
In order to be able to measure these goals, the following tasks were completed:

1. A program was written that compares detected segments to ground truth and

returns a performance measurement.
2. XML output of segmented regions was implemented in OCRopus.

As a measure of performance before and after the improvement, as well as with
respect to industry standards, eight classes of documents stored at five different

resolutions were segmented by the following programs, then analyzed:
1. OCRopus’ current and improved RAST algorithms
2. OCRopus’ current and improved Voronoi algorithms

3. ABBYY FineReader

13

CHAPTER 2

METHODS

As covered in the first chapter, the OCRopus document analysis system is the most
suitable open source program for digitizing large numbers of historical documents. In
its current state, though, it is incapable of processing complex layouts because its page
segmentation algorithms are not fully developed. In order to assess the performance of
these methods, OCRopus needed to be modified to output the detected page regions.
The format chosen for this representation was XML. Similarly, documents called
ground truth, that represent the true regions of the page, needed to be generated for
comparison. Then, a program needed to be written to compare the detected regions

to the ground truth.

Since overall performance metrics fail to convey how a particular method might
be failing, images of the output were also examined. For example, when creating text
blocks, the RAST algorithm labels them by assigning slightly different colors to them,
which are subsequently used to define the reading order. By modifying these colors,
the author was able to observe the different text blocks as well as the segmentation

of the non-text areas.

As for the Voronoi method, it was less sophisticated than RAST because it did not
classify the regions, so the graphical output could only be examined for segmentation.

In this case, it was not necessary to color the regions differently; lines were simply

14

drawn around them in the original implementation. The accuracy of these regions

could then be examined by analyzing the amount of fracturing and merging.

2.1 Comparison Program Algorithm

A search of open source XML zone comparison programs based on the ICDAR Page
Competetion method [19] did not yield any software, so a program was written to
compare detected regions to ground truth. The algorithm starts by calculating "match
scores” for each of the regions. That is, each of the regions of the ground truth are
compared to each of the detected regions and given a score indicating how well they
match. If the regions match perfectly, they are given a score of one; otherwise, if they
are completely separate, they are given a score of zero. If they overlap partially, the

score is given by

T(G;NR;NI)

Ny L
atchScore(i, j) “T(G.UR)NI))

(2.1)
where

1 lfg]:’l"l

0 otherwise

and
T(s) is a function that counts the elements of set s,
G is the set of all points inside the j%* ground truth region,
g; is the j ground truth region,
R; is the set of all points inside the i detected (or result) region,

r; is the i*" detected region,

15

I is the set of all ON image points.

In the case of rectangles being compared according to Phillips and Chhabra [24],

the equation for the match score is reduced to

area(g; N1;)

MatchScore(i,j) = a (2.2)

maz(area(g;), area(r;))’

Once the match scores have been calculated, properties of the table are extracted,
including the number of one-to-one matches, the number of one-to-many matches,
and the number of many-to-one matches. The latter two quantities are computed
from both perspectives: the ground truth and detected. For example, if the ground
truth contained a text region of four paragraphs, but the segmenter detected these
as four separate regions, it would count as a ground truth one-to-many match and
four detected many-to-one matches. These values are determined for each region then

used to determine the detection rates and recognition accuracies as given by

one — to — one; g-one — to — many; g-many — to — one;
DetectRate; = +
ete a w1 NZ W2 NZ w3 NZ
(2.3)
R tionA one — to — one; n d_one — to — many;
ecognitionAccuracy; = §w w ,
g Y 4 M, 5 M,
d_many — to — one;
“+weg MZ } (24)

where w1, wy, w3, wy, w5 and wg are pre-determined weights,

N; is the number of ground truth elements belonging to the i entity,

16

M; is the number of detected elements belonging to the i** entity.
Using the detection rates and recognition accuracies, the Entity Detection Metric

(EDM) for each region can be calculated as

2 Detect Rate; RecognitionAccuracy;

EDM,; (2.5)

- Detect Rate; + RecognitionAccuracy;
and an overall performance metric or Segmentation Metric (SM) can be given by

_ YN, EDM,

SM; SN,

(2.6)

2.2 Method to Output in XML Format

Since the layout of interest is Manhattan and the ICDAR comparison algorithm was
applied, the output of the segmenters needed to be in XML format. The release of
OCRopus at the onset of this thesis (Alpha) has a module called ”buildhtml”, but it
is not complete. It outputs the preamble, or metadata of the document, but none of
the text. A contributor to the project built a patch for it that can output the text
of a simple document; however, this output does not contain any page segmentation
information. There are no tags for regions. So, it cannot be used for comparison to the
ground truth. Therefore, XML page segmentation output needed to be implemented

by the author in OCRopus.

2.3 Original RAST Algorithm

The RAST module of OCRopus was run on the test documents mentioned earlier.

When run in regular, text-recognition mode, the presence of half-tone images and

17

graphs resulted in unusable output. That is, since it was unable to segment the page
into text and non-text regions, it treated the entire page as text. Therefore, when it
encountered non-text areas, it attempted to recognize characters within them, which
translated into nonsensical text intermingled with a series of error messages.

As for evaluating its page segmentation capability, since XML format was not
originally an option, color-coded images were output and examined instead. In terms
of classification, it has three types: text, graphics (i.e., non-text), and column dividers
or gutters. The column dividers are colored yellow, graphics light green, and text all

other colors.

The most prevalent error found was sections of non-text being classified as both
text and non-text. Figure 2.1 shows a page with two figures. The figure at the top
of the page is a book colored bright green, red, orange, and blue. Similarly, the
figure at the bottom is a rabbit colored bright green and blue. When the program
was adjusted so that only non-text pixels were output, both figures were completely
green, meaning all of the pixels were classified as non-text; however, when both types
of pixels were output, multiple colors emerged in the figures, indicating that some
pixels were considered both text and non-text.

Graphs also tended to contain both text and non-text pixels; however, they did
not overlap as in the case described in the previous paragraph. Figure 2.2 shows the
output of a page taken from a scientific journal. The legends and axis labeling were
classified as text, but the border, data, and data lines were classified as non-text.

Tables, on the other hand, not only contained text and non-text pixels, but column
divider pixels as well. Figure 2.3 shows the output of a page containing a table for
illustration. Note the presence of gutters between each column of the table. This

resulted in oversegmentation of the table so that the correct reading order could not

Suerst kamen zehn Soldaten

g

Whit e R
-_"FHMI
-— T
- T

N \
chetTonls

SUNSHINE
Like Balvamen s Feosl

Left Advorisemant from Anzona Magarine 1913

Luerst kainen zohe Soldoten 9-1-09

¥
MICHT

SOLAR
Water Healer

Right: Day & Night Sales Borchute, circa 1923

Haupitde hwierigheal, e Alioe guerst find. wor, dais
Plasitges cu landhaben; sic kopme swar siemlxh

bogmem senen Kirmer unter lhwem Arme Gsthalicn,

sk alall olic Bk Berumerhingen, aber wemm sii chen
scimen Hals schdfim mesgresircokt hatse, und dem Tgel
s ghrem Schlag min seinem Kopl geben sollie, so
wlfrtche or sacly ml und sah dhe mil cineim s
vertdulsten Awnatmick in's Cicaschi. dali s sich meh
ctrttalten konnte laud o luchen, Wenn sie nun
sgimen bl lovamier gobogen hatte unil chen
woendien amiunghen wollte oo spielen, so find sie 2u
shegm prootien Wondoall, dalh der Igel secli aufjesdl)
Tuatve: wapd ki losrtknoch; muBerdem wir
evwdibislic b v Erhibngy oder cine Forche ponade
ik o Weege, wo siet dien fgel bawolion wollte, und
i il yisgehogenen Soldmen frs ilinse)
autstanden und 2w cine andere Stelle des

v psplilres gingen, sonm Adies bald o der

| ehwrenoping, dall ex wirklich e sehr schweres
Sy s

e Spreler spuclion Alke sugicich. obne ma warici,
Brls sbit o der Beibe waren, dabace séraien e skch
umsmcrfart i zankten wm die fpel, wnd i el
kuwrer Zeelt war dig Kdnggin in der heftigisen Wath,
st mlt dom Fllen und schries ™Sehlagt dam
den Kopf ab!™ oder “Schiug ihr den Kopf abit!
A unyiihr

. cint Ml

y edbe
Sl

uirb bungstich ru (lihlen
s halto s mch
kewmen Srrein mat der
Kénigin gahubl aber sic
walble, dall sio Leincn
Angenbich sicher davor
war, "l wis,” dachie
sbe, "wuinde dam aos
mir wierden'” iie [enne
hige schewen
schrechlich germ s
kipben, os isl das e
Wundor, datl dibe lupt
nosch wikche am | chen
pebbichon sind!™ Sic aah
wich ch winem
Ausgrangs uin wnd
Bserbigie, ob ag aleh

wohl ohing pesshon ru

18

Figure 2.1: Example of RAST output of OCRopus. Note the multiple colors in both

figures.

FHILLFS AND Creitiig FRMPRICA PERFOFUANCE EVALUATHIN OF GRAFSICE RECOGMITICH SYETERS

U B3 anites

oe - T T T
i
aT = LR 'I -
Wiy -
il e 4‘- -]
RSP ek |
L1 e i |
@ -~
a4 -
ald - -
oz | -
o1 L L i L i)
] o6 oy an 0w 1
Acrepilamc Tiavibald
Fig 14 Merirmeance coves o Ma ryamems Ao e mmags Sdnd0 00 o
LS T T T]

nd plobe wen plevres e doblomrmg,

I geveemal, afl Bivee curves in cach of the plols show
a pradusl upward trend. That s o the acoiptance

E SR LRERE L]

o8 T T T T T
At
at b WIS £ o
Wl —
LLN
as b i
el S s = = J
S
oG — -
bl & T
na b -
B L i i
a5 af oF oa o 1
hcepiance |

Vap 30, Performarod curvis of e oyahams o e image 31 57

mescramcal drasngh.

Figure 2.2: Example of RAST output of OCRopus.

S LTS T

el 8 510 aniiies
ol —r | mm— — T
Washs =
e DS
Viaan -
o8 |
o
P
G "
" -
RN — il
RN ; A
S
a1 i L 1 1 i
2F-] /L] ar R e
Accaptan it Thinsbeid

roun o P pyleen by PO D00 GEXT Y i

FTHECTENE S Fawrg

threstheld 18 increased, all three systems produce &
larger combination of misses, Else-abirms, and
partial matches. Himeever, some systems exhibit bes
of an upward tremd compared 1o others. For
cunrmple, in Fige 20, 21, 22, 23, the VTbadio system
has significantly smaller increases in the FliCoed
inier, commpared with the othars o systome, a4 the
acceplance threshold = increased.
I the eathier peport [24] wo noted that polive on e
false-alanns va. misses curves formed a bight chrster
foor the vakase of the accoptance threshold betwesn
0.5 and 085, In the currenl plots, this irnslates inio
the obacrvation that, for these lower values of the
acceptance threshobd, most curies ane essentially
k.
I st of thie cases, all systems produce mone fale-
alarmy than misse=. This may be partly due fo one of
the following roasonec 1) At present, the evaluator
duws ot maich any dashed entity to any solid entity,
S, if a dashed-ling in a test image |s delecied Iy 2
vectorization system o= severnl Bithe straight line
segymetits, the evaluatir pricduces counts of one miss
(dashou-Hne) and several Ffabse-alarmis (linke line
2) When a text i o besd i i
w detocied a8 :ﬂ::fmpm, it is witen
'vwlm'lﬂd into wieveral small s, mics. el o this
cape, the evalustor currenily produces counts of ane
miss (the missing text siring) and several filse
alarma (the Hitle “vectors"L
Tn et casers, all the symirms produce EditCost that
Is close to or groates than the number of grownd-
truth entities. At first Took, this may be taken to
mamn Uhat 1f in easter to croate the deawing (rom
seyaich (using a CAL tool) rather tham to comoed it
using & retor o vockor comversion systemn fallowed
by correction of the mistakes. In practice, oné should
rit moke this sssumption withoul looking at the
individual mistakes made by these systoms and
determining the offort required {0 coreeet the
mistakes, For instonee, in any CAD tool, it is guite

x-axis labels and the absence of the y-axis labels.

19

Note the text coloring of the

20

be found for the OCR engine.

Based on this data, it was determined that the RAST algorithm could be improved
by correcting the segmentation of non-text (e.g., half-tone images) so that text is not
included, as well as properly identifying and segmenting graphs and tables. Since the
goal of this thesis is to enable OCR of text areas, these regions need to be grouped
properly and identified as non-text along with any encountered images. Once this
is done, only text should be fed to the OCR engine. Also, since the images will be
acquired using cameras with different resolutions, RAST needs to be robust enough
to segment low resolution images as well. Therefore, the first goal of this thesis is to
implement these improvements, ensuring that they perform at a range of resolutions

as discussed in Section 3.3.

2.4 Voronoi Basis

The Voronoi module of OCRopus, conceived and implemented by Kise et al. [13],
was also run on the test documents discussed in Section 2.1. It is less sophisticated
than RAST in that it does not classify the regions, so consequently it cannot place
the text in reading order, which means there is no text output. As a segmentation
algorithm, though, it works fairly well. While it does not identify columns, it groups
blocks of text in different columns correctly and usually creates separate segments for
picture captions.

Figure 2.4 shows the Voronoi output from the same page as Figure 2.1. While the
text blocks are segmented properly, the non-text areas (e.g., half-tone images) are
oversegmented. The left side of the figure of the book at the top of the page contains

over fifteen regions alone. Similarly, the figure of the rabbit at the bottom of the page

21

iEusirated by pictting blck sepments in the R-Af plane (see Table | Processiag semlt of dscument in Fig. 1 Colurrs | to 7

Fig. 3). Each table entry i& equal to the sumber of block watnin the fesslls of the eeaprcmats porformed simubseody
o 5 LB tieng g of Rt 1Y Tk, stich with lakeliag, The ban columa b ihe tent clussificntioe el
4 plot can be conselered as o fwe-dimensional bistogran. ar i I e Clam
The text lines of the documant shown in Fig. 2(a) form 2 — -
chustezed population within the range 20 < & < 35 and 2 < N L loz
& B The twn %olid hiack linet in the bowsr sight part of the :'::E ”3'.' :L!I ‘ ;:'". _Iﬁ:
riginal document have high B and law 8 values inthe B-H 1534 T KT Wik s
plang, whereas the graphic am! halflose imapes have high bl el S} i Had D
values of B Mote 1hat the salke used in Fig 3 s lghly :;,_":T. “’J::I IET "_"I :ﬂﬁ
norhmesr 944 ISE 185 1 529
A28 A 152 W
'] Lkt M. |R5@2 - 184 T f II 2 ITI;I";
The mean valee of block height M 1he biock moan (T3 Rk M e 1014
black pluc] run length 8, for the text chester may vary e SBLT I T | 154 T2
different tvpes of documents, depending on charcter siec TEMGE FEIER AT iy 73
and fany. Furihermvore, the text clusizrs standard deviations ::;? : };" ::ﬂ ":,:'I :rll;:
al#f) and #(R_) may also vary depending on whether a |lime iR AR ! 756
dncument is in 3 single fm] of mulliphe fosts @nd chasacies 12588 1M 17 b 121
: ; =y el T ERFE 1729
cizes 1o permit selfeadjustmont of e decishon boasderies M61aT | 186 Ml S P
for text disorimination, sstimates are cakeulated for the mean LIMY6E JOE4 ik 1N Sk MUSIME 5006
walues H_and R of blocks from o tightly defined texi reghon 1S Lo 5-"3 | m amw i
of the RN plane, Additiansl hesristic rules are applied 10 o o
z E h
confirm thet cach such hlock is likely to be 1ext before it is Wi (M U6 i TT{‘r 314
included in Ihe cluster, The members of the clusier are then | ‘E'”: %] ::5' rrid] TR
TA4 i 7 3
wesd to cstimate pow bounds on (3¢ featwres to detect 11*,2 “nﬁ 43; G I.:1_'| :‘,‘é;
additional 1ext blacky [5]. Finally, a variolde, linear, separa- b T T T I Lot O |
ble classification scheme asslgns the Tollowing feur classes te w1 ™ i 3437 11683
ihe: bivcke: e (9] TR 4 4147 1230
4 15300 1088 TR a4 L=k
Chazs }. Text mml 1M TR L TTER T
dars ext: I&61® 1084 77 s LERI¥) S50
R«<C, R and miE w3 e) k66
g I&T?7 ‘ma- . TTR) LrEb IEE
Mol i, - WwER)| M1 TR W4 ITSie Sisa
Chags 2 Horjyoneal sulid back lines: 19512 W T L iy s 104
R>C, R, and L06%6) 191 T RTINS S 11 BT
Hel i/ {22 T 1L T e} L LK) Ml
=2 . IATI? 1089 TR 0 My ok

Ciavs I Crrapaic andd hallome imapes: =
E = 10, and
Hoa € i,
Class f Vertical sold black mes:
E = 1fCyynnd
HaCy H,

Yaluez have becr assigmed w0 the pammeter: based on AR L e o I

several tramong documents, With ©, - 3¢, — Joand O, k4

&, the outlimed method has been tesied on 3 number of fest
documents with satisfactory pecformazes. Figure 2{e) shows epjusnily, | i 1t MEE
the resull of the Blocks which nre conscdered Lext dala |chass 1y irin naid i i |
1} of the onpginal docwmens in Fig 2{a). 1 | = ok

There ane certain limitations 10 the block scgmeniation 1
énd teal discrimination method described so far. On some
docoments, fext lnes are hinked together by ihe bloack i
regmentation algarithm due o small line-io-lipe spacing, and | fihill 1k i Wy |
thus are assigned to class 3. A line of characters exceeding 3 i mall fia L cw
simes B (with €, = ¥, such a5 2 tithe or heading i 2 irchi

Plbi 0. B, OEYELLGF w YUE 1o s N0, & & ROV IMBER el

Figure 2.3: Example of RAST output of OCRopus. Note the column dividers in the
table and the absence of some entries.

22

contains at least four additional regions.

The output of the scientific paper containing graphs is shown in Figure 2.5. Each of
the graphs contains four to twelve regions within the boxed area, as well as individual
regions for each of the axis numbers and labels when only one region should be created
for each graph.

The last example, shown in Figure 2.6, illustrates the output of the document
containing a table. The table is oversegmented along the columns as in the RAST
case; however, the titles are not included in the column regions.

In terms of zone classification, a number of papers have been written on the
subject. The paper documenting the Voronoi method itself [13] states that the zones
were classified as either text or non-text in their study; however, it is not clear how
this was done. From what the author can discern, it may have been when the lines
between the characters were deleted, thus assigning the area containing those lines
the class text.

Two other groups of researchers report classifying segmented regions using neural
networks [26, 27]. First, they extract the connected components, then they segment
the image into regions using either a RXYC or RLSA method. Then, based on the
bounding boxes of the connected components, they use features including the amount
of overlap between boxes, the amount of touching between boxes, the fill ratio of the
boxes (number of black pixels to box area), the dimensions (height, aspect ratio,
and size) of the boxes, the ratio of black to white pixels, the number of horizontal
transitions from black to white pixels, the length of the horizontal run of black pixels,
and the angle subtended from the lower-left corner to the upper-right corner to classify
the regions using a neural network.

A third method [28] uses a simple nearest-neighbor approach with various his-

Fuerst kamen zehn Soldaten

e

S What e Rame aa I:h

Hauplschweenipkeit, die Alice zucest fand, war, den
Fhaminge zu handhaben; sie konnte wwar ziemlich

bqueem seinen Korper unter theem Arme festhalier,
sopalall dic Fible henuterhingen, aber wenmn sic ehen

seinits Hals schin susgesirockt hatle, und dem 1ael
nun ciien Schlag mit seinem Kopl geben wollie, s
richiete ersch anf and sah ihe o cinem so
verdulzten Ausdruck in's Gesicht, dall sie sich nicht
enthilien konibe Bt e Bachen, Wenn gic nun
seineat Bopl bzrunter rebogen hutte wd chen
wiader anfungen wollie 2u spiclen, so fand sic 20
hremn groben Verdil, dul der lpel sich aulgerodh
Frattee il edven Tostkroch; aulierdem war
pewdhalich cme Lrbilming oder eine Furche gerde
i Wege, wosic den lgel hinrolien wailte, uned
i g umpgebopenen Soliden fortwiihrend
audseanden und an cine andere Sielle des
Cirsplatzes gingen, so kam Alwe bald #u der
Lgberzengung. dall ex wirklich cin sehr schweres
Spsch s

e Spicler spichien Alle agbeich, ohiee zu warlen,
s =3¢ an der Rethe waren; dabei strifien sic sich
immerfort und zankien um dee pel, and in sehr
kueer Feit war die Kinigin in dor heftigaten Wuth,
stwmipfic mit den Fiden und schrie: “Schiagt ihm
den Koplab!” oder: "Scliagt ihr den Kopf ab®

1 ure fihr
e bl
pede
Mlinuse

Left Advertisement from Arizona Magazine, 1913
Right: Day & Night Sales Borchure, circe 1523

Zuerst kawen zefin Soldater | 9=1-09

SOLAR
Water Heatler

Al ke W i iyl
el Waier [y s NIGNT |

unbehaglich @ fiklen,
sie hatte Zwar noch
kzinen Steen mmit cher
Kitnigin gehabd, aber sic
valhc, dalt sic keinen
Augenbluk wcher dovor
var, "und was," dachee
sae, twiimle dhana nus
mir werden? dic Leuie
hicr scheinen
schrecklich gern 2u
kapdien; e e dis peddne
Wimeler, duld iberhaup
noch welcle: am Leben
peldschen sind ™ Sie suh
sich nach cinem
Auszange wm wimd
fberleme, ob sic sich
wuhl ohie gasehom 2o

wierden, fortschilechen kbnme, nls she cime
merkwiindige Erscheinung in der Luft woheralun
A schien thr swerst gane rithselhaft, aber naclden
3¢ s1e ein Paar Minuten boobacliel hatte, erkannie
sie, dall cxoein Grmsen war, oned sagte bei sich: "Exs
15t die Grinse-Katze; jetet werds icl Jemand hesben,
mit deen ich sprechen kann "

"W pehi o i sagie dic Katre, sobald Mund
genug do war, wry damit 2u sprechen,

Alice wartete, bis die Augen erchienen, uml micke
iz "Es nditet mches st the 2o reden,” dachie sic,
"bis ihee Ohzen gekommen sind, oder wenigens
wmne" Den michsten Aupanblick erschien der mnee

Kaspf, da serzte Alwe thren Flaminge nicder ud

fing theen Bericht von dom Spiele an, sehr froh, dald
sie bemand cwin Suhdeen hote. Die Katee schicn zu
plauben, dal jeesn penug von ihr sichtbar sei. wind es

23

Figure 2.4: Example of Voronoi output of OCRopus. Note the oversegmentation of

the figures.

PHILLIFE AND CHHABAA: ENMPICAL PERFOAMANCE EVALLUATION OF GRAFPHICE RECOGNITION SYSTEMS.

M IE AT mnliles

aur

o2 il 513 antilies

{._.—-n-—O-'_"’_'_H-'_

g
1---—4--—|—--t——-.-7_§-_:$d_.t
MR O e

Fig. 18, Padocrmance curves of the gyshama lor the Image oiisansd ja
miachanical drawing)

In an earlier report on the graphics recognilion contest
[24, we plotied the counts of the false-alarms ve. the misses
fior the variows settings of the acceptancs threshold. These
eardier plols gave us insights into the internal behavioe of
the systems. Tor cach system, these plots told us how fast
the counts of miszes and false alarms sose as we raised the
acceplance threshald, They did not give us an idea of the
overall post-editing coat for these systems. At the ime, we
had mot Farmuolated the EditCost Index. The EditCoat Tndex P
propased here gives us a very piwerful way of comparing
thie iwverafl post-editing cost for the recognition Tesalts
prioduced by warious systems. 18 captures all the others
pertormance metrcs of Section 7 into one measure. All of
the mettics are tabulated in Tobles 2,3, 4,5, 6, 7, 8, and 9. In
Figs. 18, 19, 20, 21, 22, 13, 24, and 25, we plot the EditCimt
{redex versus the acceplance threshold.
From these tables and plots, we observe the following:

Int general, all three curves in ench of the plots show
gradual upward trend. That is, as the acceptance

deil.of G327 enlilies

Fig. 20, Peetormancs curves of the sysfems for e mage ds31.41
mecharical drang).

Fig. 21.
mechanical draw rg)

Parlormance curves of tha sysiems tor the image ds32.ot (a

threshold 8 increased, all three systems produce a
larger combination of misses, false-alarms, and
pertial matches. Howsever, somse systems eshibib les
of an wpward trend compared fo othees For
example, in Figs. 20, 21, 22, 13, the VPzmdio system
has significintly smaller increases in the EditCosi
Trde, compared with the others fivo systems, as the
acceptance threshold is incyeased.

I the earler report [24], we noted that points on the
false-atarmes vs, misses curves formed a light cluster
for the values of the asccepianee threshald between
1.5 and (L85, In the current plats, this translastes inbo
the nbservalion thal, for these lower valwes of the
goceptance threshold, most curves are essenfially
ilat

In most of the cases, all systems produwoe mon: false-
alarms than misses. This may be partly due toone of
the following reasonss 1} At present, the evalualor
does not match any dashed entity o any sold entily,
So, if a dashed-line in a test image is detected by a
vectorization system as several litfle straight lime
segments, the evaluator produces counts of ane miss
{dashed-line) and several felse-alarms dittle line
sogments). 2) When a fext string in a fest image is
not correctly detected as a text vegion, it is often
“yoctorized” into several senall Hmes, arcs, ele, Inthis
casa, the evaluntor currently produces counts of aie
misé (e missing text string) and several false-
ilarms (the little “vectors™),

In st cieas, all the systems produce EditCost that
= close to or greater than the number of ground-
truth entities, At first ook, this may be taken fo
mean thal it 18 easier to create the drawing from
seratch (esing @ CAD tool) rather than to convert it
using a raster fo veckor conversion system followed
by correction of the mistakes. In practice, one should
not ihake this assumption without looking at the
individual mistakes made by these sysbems and
delermining the efforl requircd to coreect the
mistakes. For instance, in any CAD tool, it is quite

/m/m:nlnmu Do Stin m wovnlty. Diowrtorded cn bawerber B, 2008 ¢ 7513 b 1ESE Xploru. Aestickons ""*"‘-\

Figure 2.5: Example of Voronoi output of OCRopus. Note the oversegmentation of

the graphs.

24

lstrated by plotting block scgmesis in the K- plane (gee
Fig. 3). Fach table eotry @ equal b the nember of bleck

prents in the cor Aimg runge of & and 7. Thus, ssch
& plot can be comsidered as a two-dimensional Bistogram.
The test lines al the documend shown in Fig. 2(a) form 3
clusterad popalotbon witkin the range 20 < & < 35and 2 = R
= & The twa solid black lines in the lower right part of the
original document have high R and low i values in the R-H
plame, whereas the graphic and halficne images have bigh
values of K. Motg that the scale wsed in Fig. 3 ia highty
nonlinear

The mezn valee of Mok height #_ and the Hock mean
black pinel run length K, for the texd closter may vary Tor
diffcrent types of documents, depending on character size
nnal Fomi, Farthermace, the texl clustes’s standund dovmalivns
ol) and 2(R_) may also vary depending an whetker o
docwment is in a sngle lost or multiple fosts and charncier
sizes. To permit sell-adgustment of the decision boundnrizs
For tet discriminagion, esibmaies are caboulaled for the mean
valaes H_ and B, ol blocks from o tightly defined test region
ol the ®-H plane. Additional hewristic rules arc applicd 1o
cimdirm that each such bk is likely to be 12xi before il s
included in the cluster. The members of the cluster are then
used 1o edlimate new boondt oe the foalumes o descot
additsanal tot blocks 5], Finally, & varable, lingar. scpara-
bz clnssification scheme asgigna the following Four classes 1o
the blncks:

ETear I Text:
R Ly, K, and
Wl A, .

¢ Tasr ¥ Horizortal salid bisck lines:
8=l H# and
LI i

Clasr 3 Ceraphic 2nd kalfione mages:
E= 10, amd
H=C M-

Closs 4 Veriseal solid block lioes:

= 1407, and

He= Oy M,

Values have boen n;als_fc:d tn the paramerems based an
several training documents. With O, = 3.0, = Land O
= %, the catlimed method has been testod an o sumber of 1est
docurncnis with satisfactesy performance. Figune 2ie) shows
the result of the bocks which sre corsidered texi data (class
14 of the arigiral document in Fig. 20a),

There are cerain limitations to the hlock sogmuniation
nnvl dext discrisnination meihed described so far. O some
documents, bext lines are linked iogether by the block
sepaneration algorithm due ta small ine-to-linc spacing, and
thus are nisigned to class 3. A line of characters exceeding 3
times H_ (with ;; = 3}, such as o titk or headiog in 2

Table | Processing cesul of documesd in Fig, 2. Colemms | o 7
worlialn the el of 1he parfiermmd simul iy
with Bibeling The East colum is the 1eat élassificotion reul, — ————

docwmend, s assagned to chiss 3 An jselatod Line of e
prinzed verically, e.p., 2 texl descriplion of a diagram alomg
the vertical axis, may be clossified as o number of small texy
bk, oo else ak a chass 3 block,

Cwﬁ:qm:ly. in arder o further clussify dilferens datas
Lypis within class 3, a secord discriminarion based on shape
Tectors [10] & wsed The method uses messiremeans of
berder-ia-border distance within an arbitrary pattern, Thee
mensurements can be used Lo caboukile meanmg!al [elures
lie The “line-shapeness™ ar “compactness™ nf ohjecrs within
benary imapes. While the caleulztioes are comples asd
Hime-consuming, they are dong andy for class 3, and thus add
anly & small increment o the overall processing lime. This
hieratchical decision procedure, in which “easy™ class

25

—_—
1Ak § RES DEVELDE & WOL 3w B0 & s MOVEMBER For \

Figure 2.6: Example of Voronoi output of OCRopus. Note the oversegmentation of
the table.

.

26

tograms (Tamara texture, relational invariant feature, run-length of black and white
pixels in eight different directions, heights, widths and separations of the bounding
boxes) and other aspects (fill ratio and the total number, mean and variance of black
and white pixel runs) as the features. This method is also accurate, but as in the
previous method, determining the values of all of the features is time consuming, and
thus, since this the focus of this thesis is on page segmentation rather than region
classification, a simpler approach was sought.

Based on the segmentation results shown earlier and the need for region classifica-
tion, the second goal of this thesis is to improve the Voronoi algorithm in OCRopus
so that it does not oversegment half-tone images, graphs, and tables. Once this was
done, it needed to classify these regions as text or non-text for which a robust, yet
non-complex solution was found. Since placing the text regions in reading order is
beyond the scope of this thesis, it was not implemented for this effort. Like RAST,
Voronoi needed to operate successfully at low resolutions as well. The design and

implementation of this algorithm is covered in Section 3.4.

27

CHAPTER 3

DESIGN AND IMPLEMENTATION

This chapter covers the algorithm development and implementation details of the
comparison program, XML output in OCRopus, RAST page segmentation, and
Voronoi page segmentation. Based on the method described in Section 2.1, a compar-
ison program was implemented and tested iteratively to ensure the correct analysis
of various types of errors. Since it was to be used as the metric for both algorithms,
it was imperative that it be correct. On the other hand, introducing XML output to

the OCRopus program was straightforward and is explained in Section 3.2.

Once OCRopus could output XML page regions and they could be compared to
the ground truth, the algorithms were developed. Since the RAST algorithm was
more sophisticated than the Voronoi algorithm, it was addressed first. A collection of
different types of documents were processed by it and their segmentations evaluated.
The most frequently occurring errors were addressed first by introducing additional
steps in the algorithm, running more tests, then analyzing the results. This process

was repeated until satisfactory performance levels were achieved at 300 DPIL.

At this point, the program was examined for resolution dependent parameters.
Upon their discovery, they were replaced by parameters that were extracted from the
document itself (i.e., certain connected components within it) so that the performance

would not change as a function of resolution.

28

As for the Voronoi algorithm, since it did not classify the regions, this functionality
needed to be added first. After this was done, it was possible to address the quality
of the segments themselves in terms of oversegmentation using a selection of different
documents. Since non-text areas suffered from this problem the majority of the
time, the algorithm only needed to treat the non-text regions. Once the regions were

segmented properly, resolution issues were resolved as in the RAST algorithm.

3.1 Comparison Program Implementation

The first step in comparing detected regions to ground truth is parsing the XML files.
There are two ways this can be done in C++: SAX (Simple API for XML) and DOM
(Document Object Model) [25]. The SAX method involves event-based parsing where
either callback functions or an object that implements various methods are created
and, as certain tags are encountered, actions are taken. The DOM method, on the
other hand, creates a tree data structure while parsing the file so that the elements
and their descendants can be accessed repeatedly. Since this method essentially has
built-in parsing functionality, it was chosen for this program.

As written earlier, each XML file contains a list of zones corresponding to the seg-
mented regions of the page. Each of the zones has the following tags: “ZoneCorners,”
“Vertex,” “Classification,” and “CategoryValue.” Figure 3.1 illustrates how a file
with two zones would be structured. The information for the zones is kept in the
leaves of the tree. So, in this case, the “Vertex” leaves contain the coordinates of the
corners of the rectangles and the “CategoryValue” leaf contains the class of the zone
(i.e., “Text” or “Non-text”).

Once the file has been parsed into the XML data structure, each of the zones is

29

Page
Zone #1 Zone #2
ZoneCorners Classification ZoneCorners Classification
Vertex / \ Vertex CategoryValue Vertex / \ Vertex CategoryValue
Vertex Vertex Vertex Vertex

Figure 3.1: XML file data structure.

examined and placed into a custom Rect object that has attributes for the vertices
and classification. It is shown in detail in Appendix A. A two-dimensional array, or
vector, of Rects is then created to house the objects where one dimension corresponds
to the class of the zone and the other to the number of the zone. In this way, the

statistics for each class can be tabulated easily.

Following Rect vector construction, the work of comparing the data files begins.
The first step is to calculate the match scores of each of the regions and place them
into a two-dimensional array where one dimension represents the ground truth regions
and the other the detected regions. Each of the regions is considered in turn and the
amount of overlap between it and each of the other regions is calculated. The overlap
is determined by comparing the vertices of each rectangle then summing the pixels
in the area of overlap, if any. The match score is the amount of overlap divided by

the area of the larger rectangle.

A table of thresholded match scores is also created where regions with match scores
exceeding a user given threshold are assigned a value of one and those that do not are

assigned zero. The tables of match scores can be visualized as listing the ground truth

30

Match Score Table Thresholded Match Score Table

gl |92 |93 | g4 |g5 |96 | g7 g8 g9 |gl0 g1 g2 |03 04[5 [06 a7 [g8 g2 [g0] [|
d1 85 14 di 1]
42 10 d2 1 1]
d3 A 9 1 a y T
a4 95)9 " [@ 1 1 2| ”_g
d5].25(3 [.86 388 = ;] 21 o
d6 10 p ; T
d7 06 | .91 93 = . : Bl
d8 a1 pr ; y

PRI RPEE]
G-profile

Figure 3.2: Example of Match Score tables - actual value on the left, thresholded on
the right - and G and D-profiles. Taken from page 851 of [24].

regions along one direction (i.e., horizontal) and the detected regions along the other
(i.e., vertical). If one were to sum the thresholded match scores for each region in
each direction, Ground Truth and Detected profiles could be constructed for each of

the regions. An illustration of the tables and the G/D-profiles is shown in Figure 3.2.

Now that the groundwork has been laid, counts of the one-to-one, many-to-one,
and one-to-many matches can be calculated. First, the easy one-to-one matches
are counted by adding up the thresholded match scores equal to one that have
corresponding G and D-profiles of one, meaning they are perfect matches. For each
case meeting this criteria, the corresponding G and D-profiles are set to -1 so that

they are not reconsidered.

The next step is to calculate the one-to-one matches where there are multiple
detected regions corresponding to given ground truth regions. Initially the regions
with thresholded match scores and D-profiles of one, but G-profiles greater than one
(indicating multiple matches) are placed into a candidate pool. The candidates for

each ground truth region are then compared and the one with the highest actual

31

match score is selected as the matching one. After this, regions matching the above
criteria, with the exception that the D-profile must be greater than one, are considered
and selected in the same fashion. In both cases, the G and D-profiles are set to -1
upon selection of the match and the profiles of the runners up are decremented by

one.

Following the resolution of many-to-one detected regions, the one-to-many de-
tected regions are resolved in a similar fashion. In this case, the best candidates
with D-profiles equal or exceeding two and G-profiles greater than zero are selected.
Then, the opposite cases are considered, where D-profiles are greater than zero and

G-profiles are equal to or exceed two.

After all of the one-to-one matches are tallied, the program counts the detected
one-to-many and many-to-one, as well as ground truth one-to-many and many-to-one
matches. This is done by pooling all of the ground truth regions with match scores
above the user-given rejection threshold for each of the detected regions. If the
sum of the match scores exceeds the acceptance threshold for the detected region
under consideration, it is deemed a one-to-many detected match. The number of
corresponding ground truth regions is then added to the ground truth many-to-one
match count. The same algorithm applies to calculating ground truth one-to-many

and detected many-to-one matches.

After all of this information has been extracted from the match score tables, the
performance of the segmenter can be determined. The detection rate and recognition
accuracies for each class are calculated by the formulas given in Section 2.1 and the

overall segmentation metric is calculated using Equation 2.6.

32

3.2 Implementation of XML Output

Since the classification of OCRopus’ segments is rendered by coloring the pixels and
outputting them to a PNG image file, but the comparison program requires XML
files, a module was added to OCRopus to create and output the regions in XML

format.

Starting with the default RAST module of OCRopus, the columns of text and
graphics boxes correspond to the " Text” and ”Non-text” regions of the page. There-
fore, the easiest way to output the segmentation data to an XML file is to export these
rectangles. After the column separators, or gutters, are found, the horizontal and
vertical rulings, along with the graphics, are extracted from the connected components
of the image. At this point, the text lines are found using this data and parameters
gleaned from the statistics of the connected components (i.e., the estimated height
and width of a text line). Then, the text lines are sorted into reading order and the

columns are found.

After fixing a couple bugs in the original implementation and making some minors
edits to the ”get-text-columns” function in ocropus/ocr-layout/
ocr-detect-columns. cc, the text blocks could be defined properly (i.e., where all are
included, but non-text areas are excluded). Then, the non-text regions are passed to
the hps_dump_regions function of the new ocropus/ocr-layout/ocr-hps-output.cc
file. This function prints a page tag to the given output file then enters a loop where
the text regions are printed to the file. This is accomplished by reading each rectangle
in the text array and printing its coordinates and class with the appropriate tags. A
similar exercise involving the non-text array finishes the file. The code details can be

found in Appendix B.

33

3.3 Mixed-Content RAST Algorithm

Once OCRopus was capable of producing output in the correct format, the page
segmentation algorithm itself was addressed. While RAST was designed for text-only
documents, it does partially support text/non-text segmentation. It divides pixels
into groups of text, non-text, gutters, and rulings; however, some of the pixels can
be classified as both text and non-text. It starts by binarizing the page, extracting
the connected components, then determining the bounding boxes of each of them. At
this point, it calculates some statistics for the boxes, including height and width, and
uses them to determine whether or not each of the boxes contains a character. Those

that do contain characters are called character boxes and are saved into an array.

Next, the original algorithm computes the whitespace covers (i.e., white rectangles,
a.k.a., gutters) of the page using statistics dervived from the character boxes. Then,
the non-text pixels, which are classified as either graphics or horizontal /vertical
rulings, are extracted from the large components. All of these items, with the
exception of the horizontal rulings, are placed into an array representing text-line

obstacles.

Now, the basic RAST algorithm determines the text lines of the page, which
for each line is the collection of contiguous character boxes on that particular line.
First, the character boxes that lie within gutters are excluded, then the remaining
character boxes are sorted by x-value. Each of these are then considered in terms of
"matchability.” Character boxes are deemed matches if they obey certain constraints,
including text-line length, gap distance, and number of characters. Once the text lines
have been found, they are sorted into reading order and then grouped into text blocks

as described in Section 3.2.

34

Then, the author added new functionality to the RAST algorithm. Since one of
the observed deficiencies of the algorithm was the dual labeling of pixels as shown
in Figure 2.1, the first improvement was made to the text-line extraction function.
Where it filters out character boxes that lie within gutters, it now also filters out
character boxes that are additionally labeled non-text. So, the ”character boxes”
that actually contain connected components that are not characters can no longer be

used to build text lines.

It was also discovered that character boxes not overlapped by the bounding boxes
of any text lines, as shown in Figure 3.3, were dropped from consideration completely.
So, the new algorithm now captures, closes (i.e., dilates, merges, then erodes [29]),
then adds them to the non-text array of boxes. The amount of dilation is one fourth of
the height of an average text-line box so that only ” character boxes” in close proximity
to each other are merged. Another problem was that gray areas of images were not
being classified as non-text. So, isolated pixels and very small bounding boxes, such
as those shown in Figure 3.4, are now saved, closed (using the same amount of dilation

as the non-character boxes), and added to the non-text array as well.

Figures that contained writing, such as book covers, were being partially classified
as text and partially as non-text; however, when considered as a whole, they should
have been classified as one non-text region. So, routines were added to manipulate
the text and non-text boxes to merge the non-text regions. Also, some sections of
non-text areas were classified as text even though they did not contain text as shown
previously in Figure 2.1. By examining both types of bounding boxes for several
different figures, the author found that these text boxes tended to overlap non-text
boxes and/or other text boxes. By identifying these overlaps, erroneous text boxes

can be converted and merged into non-text regions.

35

'\"l'".-":\I ...:; 2‘ #

Figure 3.3: This figure illustrates character boxes that were not overlapped by any
text line boxes and had been previously omitted from consideration as either text or
graphics.

36

Figure 3.4: This figure illustrates small isolated character boxes that had been
previously omitted from consideration as either text or non-text.

37

The new process outlined above starts by merging text boxes that overlap other
text boxes then relabeling their union as non-text. Then, small non-text boxes (i.e.,
below a threshold of 10% of the square of the height of an average text line) are

filtered out, since they most likely correspond to noise in the document image.

At this point, the improved algorithm iterates through a series of three steps until
the array of non-text boxes is stable. First, text lines that overlap non-text boxes are
reclassified as non-text. Second, non-text boxes that overlap other non-text boxes
are merged, and third, non-text boxes are closed so that isolated boxes are merged.
Since the second and third steps can cause non-text boxes to overlap text boxes,
the first step is run again. Similarly, since the first step can cause newly created
non-text boxes, to overlap other non-text boxes the second and third steps need to
be repeated. Therefore, the algorithm iterates through all three steps until no more

boxes are reclassified or merged.

Figure 3.5 illustrates the picture of the book previously shown in Figure 2.1. The
boxes outlined in blue indicate the non-text boxes prior to manipulation. Note the
large number of boxes including a nested set in the upper-left corner. There are also
many overlapping boxes on the right side of the figure, although they are difficult to
see against the black area of the figure. Figure 3.6 shows the same figure after the
text and non-text boxes have been manipulated as discussed earlier. Now there is

only one non-text box, which covers the entire figure.

With the algorithm performing better on images captured at 300 DPI, the next
step in the process was to evaluate it at higher and lower resolutions. Examining the
program for hard-coded parameters, the author found that the minimum length of a
text-line, fed to the text line extraction function, was set at thirty pixels. Since the

dimensions of the character bounding boxes were calculated previously, the parameter

38

ogf« FrEmn iRt il eme mw
f “’iﬂlar @ Rsrr a3 & Lloudy Eﬁw
e Aveeme 0

s

ERTEEE, G

Liks Snlvation is Frea!

—————
Dy snd Bight® Solar Meater
=

L@ft Adv&ﬂ:sé&a@m from Arizona Maga?‘m@ 1813
Right: Day & Night Sales Borchure, circa 1923

Figure 3.5: Non-text boxes before converting text boxes, merging and closing.

P

Fig . 1
2 “%‘i‘ml 6 3%&' a3 & %M} 5?9@ g
i %%s émm: ' E

;

i -%éa'l“f""w s

s Ak A ot § 5
i T

%ﬂHSEIHE

Like ﬁul\mﬂmt iw Freal

ST i e o o

Y Disy and Illzwz ‘”%!ar Mastar

—

Ve o i o et -
R Fe e B e
e

salerm molar Heator {a

Mé%w&ww« vou glwnly af
e PLAY a K 1GHT

s 6 S B b i

,@ﬁ Adveﬂrsem@fﬁ from Arizona Maga?m@@ 1813
Right: Day & Night Sales Borchure, circa 1923

Figure 3.6: Non-text box after converting text boxes, merging and closing. Note that
it fully encloses the figure.

39

was reset to a multiple of the width of this box.

Further testing using this new definition, however, revealed that the box width
itself was not reliable. It was calculated by examining the histogram of the widths
of the boxes and assigning the value of the first peak. Visual examination of the
histograms of several images, though, indicated that the value of the first peak was
much smaller than the width of a typical character. This even occurred in images
not containing pictures, since the bounding boxes of periods, commas, apostrophes,
and noise elements make up a significant portion of the histogram. Therefore, it
is necessary to take the value of the next peak instead, which in the case of width
corresponds to the right-most peak. In the case of height, it also corresponds to
the right-most peak, but it is the third, not the second peak, because the second
corresponds to the height of x-height characters (i.e., a, e, 0, u, etc.), unless all of the

text is capitalized.

Finding the correct peaks is not a simple matter. The histogram contains many
local maxima that the program can mistakenly interpret as the peak of choice.
Therefore, it needs to be smoothed until spurious local maxima disappear; however,
it cannot be smoothed too much or the peaks themselves merge into one. So, the
next step is to iteratively smooth the histogram until the expected number of peaks
results. Then, the value of the right-most peak is obtained and assigned the box’s
height or width depending on the type of histogram. Figure 3.7 illustrates iterative

smoothing until only three peaks remain.

The steps of the improved RAST algorithm are shown in Figure 3.8. There
are seven original steps shown in standard font, four modified functions, which are
italicized, and six new functions, which are bold. Also, the modified and new code is

shown in Appendix C.

40

3]
[

|50| 1l 1+ = Q|0 |50| 1l ‘\':ﬁ\ o TN [N Y N [[|SD| 1 1w

S T S T S T Y | Y [Y [Y [T |

(=100
| T . T |

T I T I T I T T I T I T I T

(=18] V=]

- w

=k ..

Figure 3.7: Histogram of the heights of the bounding boxes of the connected compo-
nents with no smoothing (left), one iteration of smoothing (middle) and two iterations
of smoothing (right). The rightmost peak corresponds to the height of ascenders (i.e.
tall letters), the middle peak to the height of x-height characters (i.e. short letters)
and the leftmost to the height of periods, commas, etc.

10.
11.
12.

13.

14.

15.

16.

17.

41

. Binarize image.

Extract Connected Components (CC).

Calculate bounding boxes of CC’s.

Get character bozes and calculate statistics using iterative smoothing.
Compute whitespace covers.

Find gutters.

Classify large CC’s as either rulings or graphics.

Extract text lines ignoring graphics pizels.

. Capture, merge and reclassify rejected character boxes as graphics.

Capture, merge and reclassify very small CC’s as graphics.
Merge overlapping text lines then reclassify as graphics.
Filter out very small graphics.

Merge text and graphics.

(a) Merge and reclassify text lines that overlap graphics.
(b) Merge overlapping graphics.

(c) Close graphics rectangles.
Sort text lines into reading order.

Add gutters that do not overlap graphics and vertical rulings to vertical separa-
tors.

Group text lines into text regions (columns).
Group text and graphics regions in XML format.

Figure 3.8: Steps of the improved RAST algorithm. The original steps have a
standard font, the modified functions are italicized and new functions are bold.

42

3.4 Voronoi Page Segmentation with Classification

As written earlier, Voronoi page segmentation was not fully implemented in OCRopus.
That is, users could segment document images into Voronoi zones, but they were not
classified as text or non-text so could not be appropriately routed to the OCR engine.
Frequent oversegmentation of zones has also been demonstrated. Additionally, since
XML output is required to measure the accuracy of the page segmentation, the

segmentation needed to be converted to this format as well.

Addressing all three concerns, the algorithm was extended in three steps: clas-
sification of the zones, merging of non-text zones, and clean up of any overlapping
non-text regions (note that the term ”zones” corresponds to geometries created by the
basic Voronoi algorithm and "regions” corresponds to page segments). The original
algorithm starts by binarizing the image, finding the Voronoi zones, numbering them,
and creating an image of the numbered zones as depicted in Figure 3.9. At this point,
the original Voronoi algorithm ends and the new algorithm developed by the author
begins. The first step of the new algorithm is to save the interior zone boundary lines

into another image as shown in Figure 3.10.

The new algorithm continues by extracting the connected components of the
original image and identifying the character boxes as in RAST. The non-overlapping
character boxes are saved into an array to be used for text classification; whereas, the
overlapping character boxes are considered later as non-text entities. For each zone,
the character boxes located in the extreme upper, lower, left-most and right-most
portions of the zone are found and used to create the smallest rectangular region as
depicted in Figure 3.11, called the "text block.” Then, the zones that contain ”text

blocks” are passed to a function that determines whether or not the blocks really

43

A g

Figure 3.9: The numbered Vornonoi zones. The histograms in Figures 3.12-3.14
correspond to tan text zone number #8.

Figure 3.10: The Vornonoi lines.

44

45

ndles at the Haltl %\ £

Figure 3.11: The "text rectangle” of an unclassified zone.

contain text, and based on this information, classify the zone as text or non-text.

The classification algorithm begins by creating a histogram of the locations of
the lower-left corners (y0-values) of the character boxes so that it can determine the
average location (or y-value) of each text line. A section of the histogram obtained
from zone #8 of Figure 3.9 is shown in Figure 3.12. Notice that there exist shorter
peaks to the left of each major peak. These correspond to the y0-values of descenders
(i.e., letters that extend below the line like g, j, y). Since these values do not represent
the location of the line, they need to be discarded, but in order to do this, the threshold
under which they exist needs to be determined. This is done in a four-step process

developed by the author.

First, the histogram is smoothed once, as shown in Figure 3.13, and the values of
the peaks are found. Note that these values correspond to the number of occurrences
of each y0O-value, not the yO-values themselves. The histogram of these numbers
(Figure 3.14) contains two prominent peaks: the one on the right represents the
number of occurrences of the y0-values of letters sitting on the line and the one on
the left represents the number of occurrences of the y0O-values of letters extending

below the line. Since the former is the desired parameter, the value of the right-most

46

1 1 1 1 1 1 1 |155U 1 1 1 1

Figure 3.12: Section of the histogram of the y0-values of the character boxes of zone
#8 in Figure 3.9. The peaks to the left correspond to letters extending below the line
and the peaks to the right correspond to letters sitting on the line.

=]

J I | I |15q0 |

I | I | I | I |15g5 | I | I | I i S| |15$0 | I | I

LN =J i
1

Figure 3.13: Section of the smoothed histogram of Figure 3.12.

peak is selected, which is twelve in this case. Half of this value is then used as the
threshold for finding the peaks of the original histogram.

Once the y-values of the text lines have been found, the character boxes lying
within a certain distance of each line (i.e., the width of an average character box) are
found. For each line, the widths of the associated character boxes are summed and
the x-values over which they extend is calculated. Densities for each line are then
determined as the sum of the widths of the character boxes divided by their x-extent.

If 80% of the lines have densities exceeding 50%, the zone is classified as text.

After the zones have been classified, the non-text ones are merged. The pixels of

47

|E||CI I I [Y [T B |10| ¥

Figure 3.14: Histogram of the peaks of the y0-values of the histogram of Figure 3.13.
In this example, for each of the lines, the median number of occurrences of the main
y0-value is twelve.

each zone are placed into an array and their perimeters and found by dilating the
Voronoi lines and ANDing them with the zone pixels. These pixels are then placed
into another array. At this point, one of the non-text zones is selected and its non-text
neighbors are merged with it recursively.

Part (a) of Figure 3.15 shows an oversegmented non-text region where the selected
zone is colored red. To find its neighbors, the extreme upper, lower, left-most, and
right-most perimeter pixels are identified and the pixels in the directions of the border
are explored. For example, when the top pixel is under consideration, the pixels
directly above it are explored. Since the width of the Voronoi lines are five pixels,
the first five or so will correspond to the line; however, at some point after this, the
exploration will encounter a pixel in a different zone. Based on this information, the
identity of the neighbor is found, after which its label is updated to match the first
zone’s.

The remainder of Figure 3.15 depicts the relabeling of zone neighbors. This trans-

formation occurs recursively until all of the non-text neighbors have been evaluated.

48

| “ 7.0
{ ﬁ ‘
. .

Figure 3.15: Zone coloring of non-text relabeling process. a) Initial zone coloring, b)
after the smallest has been relabeled, ¢) after its neighbor has been relabeled and d)
after all of the neighboring non-text zones have been relabeled.

At this point, the next non-text zone that has not been evaluated is considered and

its neighbors converted to its zone number, and so on.

Following the merging of non-text zones, the algorithm enters the clean-up phase.
This is most easily done in rectangle space rather than pixel space since it involves
merging overlapping rectangles. So, the upper, lower, left-most, and right-most pixels

of each zone are found and used to define the inner rectangles.

The first step of the clean-up addresses all of the text rectangles that are com-
pletely covered by non-text rectangles. This is done by iterating through the rect-
angles and checking for complete overlaps. Completely covered text rectangles are
simply deleted. The next step is to check for the opposite: resolve all non-text rect-
angles that are completely covered by text rectangles. In this case, the encompassing

text rectangles are relabeled as non-text and the covered non-text rectangles are

deleted.
The remaining steps address figures that have been merged across column bound-

aries as well as text that wraps around figures. The first case, illustrated in Fig-

ures 3.16 and 3.17, consists of breaking the non-text rectangle into two and removing

49

the text overlaps (i.e., in the upper-right and lower-left quadrants of the original
non-text rectangle). Figures 3.18 and 3.19 show the second case where the oversized
text rectangle is broken up into smaller rectangles to avoid overlapping the figure.

Once the algorithm was completed, it was tested at resolutions other than 300
DPI. At 200 DPI, the performance was slightly lower, but not appreciably and could
be attributed to the loss of detail in the file; however, at 600 DPI, the performance
dropped dramatically and was traced to the hard-coded parameter used to define
noise pixels in the document. That parameter was changed to a fraction (1/326,774,
which was determined based on the hard-coded value for 300 DPI) of the number of
pixels on the page after which the segmentation performance improved.

The steps of the extended Voronoi algorithm are shown in Figure 3.20. There are
two original steps displayed in standard font and six new functions displayed as bold.

Appendix D contains the code.

e Ende des Tiatens pepanmen war, wao Alice
chen noch sehen konnte, wie o Bilehe) imgeschicie
sovenedite anfanen Bawn au Depen.

ning 11l s Dk gebracty
st der Kampl variiber und dic beden lgel
"Aber s kommit nigac drutan, |
He Beven anl divser Seite des

eds v dlen T

sangcn sl e steckie alsa
Bieen Flarmdngs anler den Amm, decs o niche

dem sie Alize Hebewall umide,
cuznen fio iR

SO AU BT st Tie Hereopin, "Alles Rar
Reine Moral, wenn man sie vor Pocen kaon " Dghe
Hringte sic seh dickier an Alise henm,

A licw mochte s durch
tthis kam: @

nieht pern, dad sae ihr s
il dic Herzagh Fich
vitt, uned wweilens, well st gerade prol
ke Eonn and Al Seholiern e sti wind 2
A Cii unangenetn spitees Kinn, D sie soer nich
pern unhidlich soia wallte, 50 e sie ey, ws gl
di Lo i

WiE

Tas Bl wl et R
e Lnterhaliung s

eS0T U Cian

A elr b Leang
SWorsaghe denn.” Tuse
fochorch, cali leder vor scime

A, & ul, dae bedvutet ungefal dasselle,

oiroh, ste aet 5o zuter Taves xu

1 bui wivly, e owdire vielleichl nr
ram s bies peimac bl habe, als i
s der kdiehe wralen. "Wenn iah

sopn P sagte sie firsich (doch mi
will i

tin schr
ae ketnnen Plefer

14

ner sile e gulde

poil, | sprnch sae weiter, sebr plicklich,

Regel criunder < habien, "und hasip. der

sapte die Hersmeiv, une indom sie ibr spizes

leiines Fonn in Alices Schulier einbobrme, fligte 519
ninzw "und dic Moral davon st - Soovie] Kop
jgl Sinng "

rln|1f-r:n TS - OO BT E, Ol ~ie
it wachl -, vl Gestenzecke) und dergleichen,
s Foider suckersid maehe (el widnsehile mor, die

e Lewle wililen das. dann wileden vie nicht sa

SRR R [BRIL | | R

e et uitardesser die Herragin gang verpessen
md schrake Femtich zusemmen, wls s
i It am ihrern e Ecte. " Tha Jenket un
Liche, uiwd vergibdariiber oo

s ceren

Figure 3.16: Pictures in two different columns are merged.

Wi mern sieshe MorsT von STTe o Tide 1T Bic i
Alice bel gich,

Do wunederst dich wahescheinkick, warum ich
ote die
it i

meinen Avan disht wen deines Hals e
ferreain nacn ciner Pawse: il Wa
weiwa, deh raoe der Launs deines Plaminoes
1k Sull ich e sersochen
'Tr kinmle beifien,” eravicderts
i gich ke swens danach s
u versueher.

eh) vk
unl b

ch, o
15 Baporiment

sugle die o, "1 leminges und
beide, Lnd die Muosal o s Giliich
indd Gileich weselll sich zerm))

Ll

50

Foerst kamen zelin Soldaten

Tl o] BT e O-1-0F)

rctern Eode des Tiarens pemnren war, wa Alice
ovn noch sehen konnte, wie el imgesehicir
A Dite s anf zonen Bawr au Mepen,

Mamingo oot

L ds sie den e D kpebrauy

wiiher und dic boaden |gel

atie wan der Karmp

gIEN

‘da albe Beeen ol dizser Seite des

angch 5inel," Sie steckiv also
Biees Flarzing anler den A damcr o nichs

SWrunles Foagniel,
Geesehichte dor Dlsehen Schildk

tuchbe bt sich, o wdne viellsichl nor

Cer, e e s i pemachl habse; als sie

e rcaem B sagte sie flr sieh (doch micht in schr
| Lngs Al ich gae Keinen Ble e
neaner &ichs dulden. Supp mieckt seh gl
s - arm Tl

e MRl ler, der die Loune

dJiacklicl,
Rogel crtunder su bahen, "oed basie. Jder
el mactn L und Kamillenthes, der se
it achi - eed Gestenzucker wid dergleichen,
s Fonider cockers 35 macha leh wiinschle nur. die

: titsrdesser die ”L‘.'Zﬂfin ZH [PR ST]
clivale femlich zusamme

cooonen

D ddenbst un
Liche, une vergild deriiber 70

chien Tt kanm div dhesen Auganl:lck nick

o Moeral davan ist ak

s win e

ST s, KimdT st fiv Hereogrin, "Alles b
cinte Moal, wenm man sico moe Pocden kann * Dghe
Hednate sic sieh dichler an &
Al mowhie es durchizus nicht peee, dafi s theao
b kam: 1l dic Herzogin selu i ich
vt wned wweitens, waell gie gernde groll aonee s
ik S and Aiee's Sehuliern e stiitzen, und o
spitees BKinn. Da sienoer meh
wallte, s enewg s

ce e,

R ETARTH Y e S
prern imhiflich scin

sl il

e syl

Dhas Sviel il et Rosser i Cnge]

A Uliterhabtong torsafihres
Aot os " sacte diecl leesoging, "und die Moal
forvomn iar = e Eoebe o Gesimgee ha'l man dic
e ln i Lanpe?”

k
"AL, setr el das bedegmet o
aaple Jie Dlera
deines K i Alice's Schulier einbobe, fligtc sic
hitze "und dic Weeal davon is - Soviel Kopto, so
1! Sinne”

T g,
cfalirdasselhe "
wil bl sie b spitzos

WIS DerTl sl SAnrsl vom ey el sl
Alice hel sich.

Do wunclerst dich wabiescheinbick, warum weh

Lo baems, deh e dor | g deines
Ticl | s verenhen ™
'Cr kinnte heilion,” srvedere Alice weish

i aich ke sweps danach sebile.
(TR |
sehr wabe sugle die T i, "Fleminges und

enl heiflen beide, L de Muosal dieon st Cileich

as ERpeniment

Figure 3.17: Merged graphics zone is broken in two and text overlaps removed.

und Gleich weselll sieh o)

51

Figure 3.18: Wrap around text zone covers picture.

Alternatvely, T vour
Yuity portbolio is mac
bp ol vidual stocks,
st Thay realize there is

n CoonoIC sector or
worwhere you feel inex-

perie
nnoe find any mdi-

ed or where you

heidual stocks that appeal
o vou, T thats the case,
ronsider filling the gap
with 11 Fs.

For instainze. lers say
vou find thar yeu have
to exposure to the
energy sector, whi
bour benchmark ndex
has an 11% expeosure.
You want e include
[CRETEY 1L your po

QU POr=
relative

folio may suffe
r-diversified portfolio
ETTs cun also Gl gaps in your
bend portfolho. Asume you have a
&Y

ixed-

ome portblic of ind
Thath not well diver-
te bonds represen
1ek-gradel
. Compared witl
e broad bond market, your porcielio

lcorparate honds.
kifed. as cotpe
lonly 2 i

% GnACTweighl 1 [Teasirics, agencie:
d

hnd mortgage-hacked bonds

ing cut entirely on Tr
-Protested Securities [T128),
While o

sury

't as many ETH
i ach bond oy ay
h the equiry caregors
frou can find several diversitied FTT
[0 help vou complete vout porolio.

are

o v 16 the case,
ronsider il the gap
bvith 11 Fs.

Alternanvely, 1T vour
squity poriolic is made
bp of individual stocks,
st Ty realize chere is

hn CCODOINE Sectar or
poe where vou fitel §

perienced or whi

vou
sannoc find any mdi-

eiclua

t-appeal

For instance, lers say
feow find that yon have
1o exposure to o the
energy sector, while
bour benchmark ndex
bas an 11% expeosure.
You want to include
[CTLETEY 1T YouT pord

folio may suffer rel

o & better-diversiGed portiolio
ETFs can also (01 gaps in your

bond pertfolio. Asume you have

fixed-income pordblio of indndual
corparate honds. Th
kified, as eorporare bonds represen
lonly 20% of the 1ent-grade
LS, bond marken. Compared with

S not well diver:

e

the broad bond market, your parciolio

5
hnd morigege-hacked bonds— and

derereaghit 10 [Teastries, ageiie:

5 missing oul entirely on Treasury
rtlation-Protestad Securtes [TIES).

While there aren’t as many ETE
vailuble inoeach bond rat
huerg ave in the equity categories
ou can find several diversified FTF

ToTy Ay

o help you complete vour portiolio.

Figure 3.19: Wrap around text zone is broken into two zones.

52

93

1. Binarize image.

2. Create Voronoi area diagram then number each zone.

3. Extract Connected Components (CC).

4. Calculate bounding boxes of CC’s.

5. Get character boxes and calculate statistics using iterative smoothing.
6. Place non-overlapping character boxes into an array.

7. Zones are labeled to be text or non-text and rectangular zones are
created.

(a) Find the most frequently occurring y-values (text line locations).
(b) Sort the boxes into text lines.
(c) Calculate the density of the boxes for each text line.

(d) If the density of 80% of the lines is at least 50% label as text.

8. Dilate the line pixels then AND them with the zone pixels to find the
perimeter pixels. Place these and the zone pixels into two separate
arrays.

9. Iterate through the non-text zones merging neighboring zones. For
each non-text zone, use its perimeter pixels to explore outward and
find its neighbors. Then relabel them with the original zone’s label.
The labeling method is recursive whereby after relabeling the given
zone it finds its neighbors and relabels all of them and so on.

10. Clean up the segmentation.
(a) Text zones which are completely overlapped by non-text zones
are deleted.

(b) Non-text zones which are completely overlapped by text zones
are deleted and the text zones are reclassified as non-text.

(c) Non-text zones which have merged across column dividers are
broken so that they do not overlap neighboring text.

(d) Text zones which partially overlap figures (wrap around text) are
segmented.

Figure 3.20: Steps of the extended Voronoi algorithm. The original steps have a
standard font and the new functions are bold.

o4

CHAPTER 4

TESTING AND ANALYSIS

This chapter covers the testing and analysis of the implementations of the improved
RAST and Voronoi algorithms. 450 text documents were created comprising eight
different types (i.e., single column, double column, etc.) and a range of resolutions.
Then, their associated ground truth XML files were generated. These documents
were used to test and analyze the algorithms such that the comparison program gave
an overall metric and TrueViz provided a means to visualize the results. Using these
tools, the algorithms were analyzed in terms of types of errors, both across and specific

to particular classes, as well as a function of resolution.

4.1 Test Documents

The performance of the algorithms and commercial software was evaluated on a
collection of 450 document images. Since the Bavarian documents of interest are
located in Germany and have not yet been imaged, the document images evaluated for
this thesis were acquired locally. The collection contains 300 hand-made documents
written in the Times New Roman 12 point font saved at five different resolutions (50,
100, 200, 300, and 600 DPI) and three file formats (Tagged Image File Format (TIFF),
Portable Network Graphics (PNG), and Joint Photographic Experts Group (JPEG)).

The documents contain the following layouts: single column text only (10x5), double

55

column text only (10x5), single column text with half-tone images (10x5), double
column text with half-tone images (10x5), and a mixture of single and double columns
with half-tone images (10x5). The rest of the data set includes 50 pages taken from
magazines (10x5) and 100 pages of technical journals that contain graphs, figures,
tables and a title/abstract combination (20x5).

While the RAST and Voronoi algorithms were being developed, they were tested
on a subset of the collection. Ground truth XML files were generated for each of the
documents from the TIFF files so they could be compared using the comparison tool.
Testing started from the first class and progressed to the most complex at a resolution
of 300 DPI, using the PNG file format. Once the algorithms demonstrated acceptable
performance levels at 300 DPI, they were analyzed at the remaining resolutions. If
the performance dropped off, the algorithm was examined for resolution-dependent
parameters and modified to be resolution independent as discussed in Section 3.3.
Following the testing of the improved RAST and Voronoi algorithms, ABBYY’s
FineReader OCR package was evaluated to see how well a commercial program could

analyze these types of layouts.

4.2 RAST Analysis

In order to assess the amount of improvement in the performance of the new RAST
algorithm, the test images were first run through the original algorithm with the
updated get-text-columns function (see Section 3.2). This output was then compared
to the ground truth using the comparison program and two different sets of weights.
The average accuracy for each class is plotted as a function of resolution in Figure 4.1

where 100% signifies perfect segmentation.

o6

The graphs on the left illustrate the performance levels using the same weights
as those used in the ICDAR 2007 Page Segmentation Competition [19] (1.0, 0.75,
0.75, 1.0, 0.75, and 0.75 for w; through wg, respectively) for Equations 2.3 and 2.4;
whereas, the graphs on the right depict the performance levels using the following
weights: 1.0, 1.12, 1.0, 1.0, 1.0 and 1.12 for w; through wg, respectively. For this
algorithm, the results using the two different sets of weights are fairly similar.

Examining these plots, the single, double, and mixed column text-only pages were
segmented fairly accurately, from 80-100%, by the original RAST algorithm; however,
the performance level of the documents containing half-tone images peaked between
30-60% at 100 DPI, then dropped at higher resolutions. There are two issues to
address here: 1) is 100 DPI a feasible resolution with which to image a document,
and 2) why does the performance drop after 100 DPI? Addressing the first issue, 100
DPI is a low resolution at which most detail in a document is lost, in which case it
may not even be possible to recognize the characters.

In order to assess the lowest resolution at which the OCRopus OCR engine could
produce reliable output, the author scanned a single column, text-only document at
eight resolutions and ran them through the OCR engine. Table 4.1 shows that at
100 DPI, the OCR engine could not recognize any of the characters. Therefore, the
segmentation algorithms were not expected to perform at or below 100 DPI.

Regarding the second issue, while improving the RAST algorithm, the author
found that the parameter used to specify the minimum length of the text lines was
hard coded. As mentioned in Section 3.2, it was replaced by a multiple of the average
character box height gleaned from the box width histograms.

The performance of the improved RAST algorithm is also shown in Figure 4.1,

which displays not only better performance at 100 DPI, but better performance at

o7

(1d0) uonynjosay

oL oos 0os oot ooE ooz 00T 4]

TET=Mm="m “‘gT=“m="m=m=Tm

wyHi08|y 1svd sndoyHo panoaduwy

(1da) uorynjosay

0oL oos oS oot oogE ooz ooT

(=]

=fm=Tm

LT=M=TMm OT=Mm="m

wiyio8|y 1SvY sndoydo [euiSlio

(1da) uonynjosay
0oL oog oos ooF DOE ooz CoT
- %0
w\ ~ %01
\\ - 9%0Z
5a0E
w. L/ %oy B
2 — 7 /4l z
3 %08
: —~71 /4 H
H] S~ %09 =
8] 8
Sa0dL
- %08
06
b + - M 00T
3[04y FUZESEN 0 T="m=Tm ‘grpo="m="m=m=Tm
S{RUINOT [EUYIBL i
cesmg o e pon o IYHI08] Y 1SYY sndoyd0 panoidu
SRUMIt A SUNIOT 3| QRO mbe
SBIMI|g Y ULN|0D B[BUIG s
SULIRJ) P —— {1da) uo1ynjosay
SULENEOD [GNO0 il
uwin|e) 3B —g— 9 oos oov ooE oo 00T
%60
%0T
A
- %0E
g i
W 0t w.
m %009 m
= =
2 %09 m
= = \ %04
v |\\\.\\l|,”._1ﬂ\$\\ %08
%06
< - i %001

0T="m=T G0 = Im=Sm=Em =1

wiyiio8|y 1SvY sndoydQ [eutslio

bottom) RAST algorithms

(

Figure 4.1: Performance of original (top) and improved

with the ICDAR Page Segmentation Competition weights (left) and the weights

compensated for segmentation of paragraphs (right). Higher numbers indicate higher

performance.

o8

Resolution (DPI) | OCR results
300 missed 1 line
266 missed 2 lines
240 missed 3 lines
200 missed 2 lines
150 missed 18 lines
96 no output
72 no output
50 no output

Table 4.1: The performance of the OCR engine of OCRopus on a single column,
text-only document for a series of image resolutions.

higher resolutions as well. The single, double, and mixed column documents with half-
tone images show the most improvement from 30-60% to 80-90%. The segmentation
of the technical documents improved on the order of 25% from approximately 40% to
60-70%. They did not improve as much because they contain graphs and tables that
are discontinuous and difficult to capture completely as non-text.

The axes labels of the graphs tend to be misclassified or completely dropped, and
the text in the tables tends to be classified as text. Since they actually are text,
one might argue that they should be classified as such anyway; however, mechanisms
would be needed to be added to handle their reading order for the OCR engine. So,
they were treated as non-text in this thesis. The magazine class improved the least
amount from 50% to 65% due to text/non-text merging, which will be explained
shortly.

Taking a closer look at the single and double column documents with half-tone
images, which are similar in format to the magazine documents, three types of errors
emerge. The first one is the oversegmentation of text regions. This typically happened
in areas where one text line was either much shorter or slightly longer than its

neighboring text lines. Figure 4.2 shows an example. Note the line in the middle

99

of the left column that has been defined as one region. It is slightly longer than
the line above and below it, so it was not assigned to the same text column in the

" get-text-columns” function.

The second type of error was the merging of text regions as depicted in Figure 4.3.
In this case, as in all of the cases, they were short columns. The reason why short
columns were merged is because the function to find white spaces, some of which are
later turned into column separators, examines their aspect ratios and rejects those
below a certain threshold. So, short columns are not separated by gutters. This could

be fixed by reducing the expected aspect ratio.

The last type of error involved merging text and non-text regions. This occurred
in three different cases: when text wrapped around the figure in a non-linear fashion,
when the column was very narrow, and when non-text was incorrectly detected in
text regions. In the first case, RAST was not designed to handle non-Manhattan
geometries and XML output does not support it either, so this type of layout is
beyond the scope of this thesis. Therefore, that type of error was not addressed. In
the second case, RAST did not recognize the text as columns because they were too
narrow to be defined as text lines. This is a limitation of the algorithm because the

dimensions of text lines must pass certain threshold tests.

The last case occurred somewhat randomly in that the algorithm classified some
pixels within text regions as non-text rather than text. In one of these instances,
the pixels were associated with the first letter of the paragraph that was much larger
than the other letters and gray rather than black. The other instance is shown in
Figure 4.4 where one of the words of a text line was not included because too many

BE

small characters (i.e., -:"") separated it from the rest of the line. The word is ”Ich”

and is located to the left of the upper figure. It was classified as non-text and merged

Luersi kamen xehn Soldaten

Abrce i Wandurland CTimes Mew Roman [0p 2
vollme wnics)

avbyenrieten mchts, salen abe

I leier Sl an: e

i, Frinden, dics hiite “ierein

F{ng i ke

LABM RN e

[Fimt, der Engstlich Liefer in

f Ve Ednigin! die
lvsoalcick
15eh v

i Creseht, EBs entatanad ein &
e, und Alee Rlickte

Areral ke 2eRn Seidaeen 9-1-0

lweae sie, "wenn alle Lene ﬂ- choaal dem G
s mifinen seodalt s
blich ulso stehen, wo sie
lzr Zug act ihr anpekommen
dtehien umd sahen s an, vnd dig L
fronie! W isl st Sie hate don Cocur-Haben
apel der statt zler Anrwan nu; e und

-:'ct"n'

it

elet T nachle.

'\L wlikopf!" sagne die Kinipm, dey Kapl
wzeduldi - fewurfond: ol 7o Alice pewamll
b sie fort: " Wie Twilft du, Kind 7

Wlein Mo ist suer Mo A lienen!
agrle Alive sehr BEich, aber & Sae her sy

Ml s e st ja o om Pack Kanren. el hrauche

crig hin i K imimn = i ”'l’l'hdF

laren webn Soldalen, mit
1 hewa e, sie hatten alle
o wiestall wie die Garlner,
chig uml Maeh, und an dén vier ¥
doe Thande ol 1§ hanach e
v v B lole. s

Br oyt I Wamanlen

“fny

el Lty e
FLous wWRTen e
il b leinen Kanmeen
v Haned i ad

5

woana M Bamen die GEare

Unn Splvgtion i Feesl

T T L F I Srwilitow

R -

w Pa-.r- T i.'!ﬁud; I\q. :

SUNSHINE

and L3 a4 H'u' I‘i::--r

eacrgm Judar fleater O
B s he !

e i s s and

zinnen, uril
i e erkammte Alice das weilie
[Foaninebor: es nnteriielsich in clws Rignt:

eft” Adverisament irom Anzecd Magazine

Day & Mohl Sates Borchure, sirco 1023

flzer und

s W
alter bei Alle

st s

Uand
lolpte dor Cozur
[l der diz

the Krane aul

nem mthen
AT
il wulete! i clivse

basliartiyon Lupe
A dor
[ereenskiniy und die

e el rechl ansie siel mehit Mach oo™
1 lepen milisse, wic die deei Gittner: aber sie
sigh sichl erinvar ,jt! v apner solchen

Sl I | I vrh |l 'ul absen,

tent”

U uh Jie Kamigin tort,
ek de deey Girtner weigte, dic wim den
b legren: denn asriilich, gy sic aof dem
susiclie bigren une das Muoster aul iher Ricksuein
ehoe war wie (Tr dus panme Pack. 20 koonste se
1i<,|ll wissory nh 23 G e oder Sidglalon obey
Hemen vo Mol oder deed von ihree ergengn
AN waren,

Woher sl wch i wissen?™ sazte Adice dem siv
ich seihst Gler dwen Muth wamicre, "= istmehs

R et o hnen 2u
divse die

"Und wer sum
mkem s

N puraaered e Wt nml

pachdem sie sic o Avgrenblick wi cin wilcles
s lanrr] B, A saean ey bolillen: " Thren

1! ihren Kopt ! " gk A lice sehr

\Illl l||1\.1 beatimmt, und die Edmim weae <001 De

sl seine Haed ol ilnen Aomomed sy

Bedenice mcine | o 15t Ul can

"D Kimigin wandre saéh drpedich van ihm

il

60

Figure 4.2: Example of text oversegmentation in the improved RAST algorithm. Note
the line in the middle of the left column that has been defined as one region. It is
slightly longer than the line above and below it.

Fuerst hamen zelin Soldaten

Awcian, Swei fing o leiser Stimoe ;e
Wshrhieis s prestehen, Franlein, dics hate el ein
pather Foserstrioach sein sallen, und wir hiban aus
Rl einen weilen pepflionet, wel wean die
ook cs pewahr wiirde, wimien wir Alle pekd

(5.0

eisieher wir, s

e Aipsalliel
e Corlen =mir
kg™ und o

wchand’s Cevichi. Da ontatand cin Cerdnsck wan

e Sehien, wnd Alwce Wlickie meucieriy hin,

el i

et Remen zehn soldaen, it Keulen hewsTiet,
ten alle dhieselbe Gestalt sne die Géiner,
ceirechis ud Mach, und am der vier Token diz
Hamcde undd Flike; danach kamen 2ehn Terren vom
lole, spe winren fiber oo dber mit Digmanten
odeckt und pingen paarseise, wic die Seldaton
foch divser kymen dic kanighchen Kinder, os
viren threr rehng el die lichen K leine: Lasen

natig gesprunigen |laind in Hand paarsecise, sic
t Herzon aeschmuochl, Daaol kumen
nuisl Kémpe und Kényrinnen, ued unter
Rannve Alive Jus weeilte Kaninchen: o
T sivh i elwas ciliger und autzeren
Worise, Lcielte bel Allermn, wis posand w
g voriel, whne sie o bemerken. Daraw
et Lot der die kimiyhehe Krone ao?
s rochen Sammetkisser g, omed raletar in

W

n.omiisaen S wessen, Seosehen Sie riolein.

Lueist karen zefm Solduien 9-T-(M

Vi Blch alse slehen, wao e war, unel waricle. A s
Mer Zup Dei ahe angeiemmen war, Ehchen Alle
stehen und sahen sic as, und dis Raniein Hapele
AT T iar e hatre den Cocur Boben
brofrangt Ao statt aller Anreart nor Eiehabe und
ralzlife irachle.
"schafskop™ sape die Kininm, den Kapl’
ngedulilig aoriie riend; pno 2y Alce gewand
Tulu s (o "Wie bedit clo, Kind
“fein Boame i4 Aee, Boaer Magesedin e dienen!”
agle Adwe seln hoflicle aber sie dechie by sch:
"Ach wis, o st 3o gin Pack Karton, ey bravehd
siich nichl ver thnen e Mirchlen!!
"Und waer sind diese dret! L die Komgin (ol
prccr sie aut die dici Gdrne ~cigls. e ainden
Ravsematrauch Tigen: denn natielich, dy sz acf dom
aesichine lagen und das klnster aut dhrer Rick-ote
Haanlbe war wie e das zanze Puch, so Koonle sy
nchE wicsen, ol cs GErmer ader =oldgten odos

g2

(EHIN

Levien vonn 1 lole oder diei v ihren sieenen
indern wares
"Wither qudl e

alag wisaem™” Alice, indza g
ik selhst dber ibren ulh womlesie, "R s michs
reines Amtes.”
Jie B anisin e urperoth vor ok, cad
tachilemn s
I'kacr ANZCETETT
Copd ahlihrer Kopt -0 "'Uneinn!™ aaets Alics sl
id bastummi. umnd die Konigm s :
wte seine Hand auf thren Arm uid sagte
Fheclenkoe: maine Licke, e 351 nur 2in

b iind ! Dies [0

i wanslle sie

1 irserlich von il

A wnlites ichl msch ol sic sich nieke Nacloaul's
Tesmichi

. wic die diei Garloer: aber iz
ot sl nicht erinnere, je von cincr solchen
Srite boi Fesrriigan pebin cu haben, "Un

oot twenn alla Leote Toch aul dein Sesichie
Pt e, secdalf st st niesr schen kdmen X

b und siple eu dens Buben: ek e om ™ Der
Fuhe thar es. sehr serglie, nit eings Tulie,
"Slehl aud” & die Kiirdzm mir dareharingende
stimme, und die drer Garner apranzen sopleich aul
wnd fimeen an sich s vemzigen vor dem K, dey
wrichzn Kindern, und

Jadirm "Lt i seied™ el leriealie 1 o,
"The macht mich sehwindbip ™ Und dann, sich nach
- "Wy

duin Boscostianch windiehensl, ubrsoe

61

Figure 4.3: Example of column merging in the improved RAST algorithm. Note the

diminutive height of the merged columns at the bottom of the page.

62

with the neighboring text-lines, which were subsequently merged with the figure.
Since this example does not represent realistic punctuation this type of error was

ignored.

In conclusion, while the expansion of the RAST algorithm improved its perfor-
mance significantly, it still has some limitations. The root of the problem stems
from the fact that parameters are needed to set length requirements of text lines and
gutters. If the layout of a document does not conform to these criteria, it is not

segmented correctly.

4.3 Voronoi Analysis

Since the basic Voronoi algorithm did not include zone classification, no measurements
could be taken to assess the accuracy of the original segmentation; however, the
images shown in Section 2.4 indicate that the figures were oversegmented. The set
of documents described in Section 4.1 was run through the extended algorithm and
compared to the ground truth for a range of resolutions. Figure 4.5 illustrates the
performance of the algorithm alongside that of RAST using the two sets of weights
mentioned in Section 4.2.

In this case, the results are markedly different for the two weight sets. For the
balanced weights used in the ICDAR Page Segmentation Competition, the overall
performance is lower than that of the other set. It is also much tighter in terms of
variation between classes. This is because the second set of weights was tuned to
avoid penalizing oversegmented text; however, it was not as effective in documents

that contained half-tone images.

Figures 4.6 and 4.7 illustrate how the segments were defined in the ground truth

Auersl Kamen 2elin Soldacen

il i

e s demn Duben: ™ reh sie um! " Der
I : sorgtiltie, il sbman Tulbe,
St aul?™ sehric ke Kanigin mm dueldsi
smme, und coe dret Giirmer sprangen sogleich aud]
! limsrem an sich 24 verneigen vor dem ki, del
ke, den ki ||('|1|,|1K|.||.|J.L,|:r und
ederrianm.'l ab dis s " ciferts die Kdnigin,

sncler

imem

Fum ode

Zuarsi Ketene zeha Soddaren 9-1-09

mugte Abe T it die Heraogin!""Sll

3 pellicl ither cime
Robulier. s-ILlllL -ﬂnh dunn aut d|c Zehen. i
Awind dichitan Ahiee's Ohr une wivperte: "5 el

latsen,

e

et el

T macht noch schwmedlie ™ Uind dann, sic
fom Bosenstriauch umsdrelvensd. Subr sic foer;

- "Euer Majesldt e die
emiithipem 'l'one und
Ul haben vereackr -2 *leh
Kémgin, diz unterdessen

e amtersueht hane, " lue Kople ab! gnd der

2 sich forr wihoend deei von den

chblichen um dic unglfickliclien

izraner oy enthauples, welehe an Alice lefan und
woum Schotr latan,

e sodl picln setidiot wenden! saple Alice, und

fmie steckie ih S 1T e n o hn Biamentapl

Al

il e Kapds pelallen?” schne dic Kénipn sie
e e Kopss cind fart, e Boer Majesiat Betehl !
chren die Solilaten als Aavsorl" D i) pal?”
selivic die Kémigin, "Kann du Coguet
picten e Sollaten waren still und sabwen Alice
woodie Frage awzenschemlich am sic garcite
"avhrie Alics " ann kosen i briiliee
bl Alice schlob sich denn Zuge an.
ez s N scachelen wenle,

ww s Fanmnchen, s il fingsthich jI]'_\|
atelil sk,

[|rH|..| “Eihe stand, Dhe dl\.. the N o wealur!
(e dehen uer - und dorthin, wm sic 2u suchen, und Frapte das K sich aicht !
T s hlassen 512 5100 rubia wieder den Andern aale Al Sohede ist.

leh sagre:] :
Jhrfige gegeben -, 7 fing das Kaning

Agre L

Plinren waren sic m Chednong, nng
e,
Alice dichle bt -

chesulige Plamingos, und dic Seldal
unbi

iz Bogen au bilden.

uchiv horbae, “Crh still)” tlistere das Katiwhen in
ghy erschreckiem Tyene, "D Kéngin wisd dich
piren! Sie kam namlich erveas spat und die Kimie-

"Tfachl, Jul she ge cure Mitee kommt! " dannerts
L himigin, und Alke fingen an e allzn Richinngs
Hurchetander 2o laufen, wobel sic Bine
Andem stelperten; jedach il ein bis sae

das Spiel g

ich, cin so merkwindises
_roquet-leld hube sie iy dwem Lzben nicht
keschen; 5 war voller Crhithunzen und Fusclwen.
Tie Kogreln waren lebemlipz Tl imd dic Sch

e wiil an T Hardon upe Fillen siehen, wn

henan Allice

el elie

BT

63

Figure 4.4: Example of text-image merging in the improved RAST algorithm. Note
the "Ich” word to the left of the upper figure separated from the rest of the text on

the line with -:””

64

(1da) uonjosay

ool oo9

oos

oot oone ooz

TWT="m=Tm pr= m=m=Cm=Tm

wypio3|y 1SvYH sndoydHo panosduw)

(1da) uoiynjosay
00L 009 00S oot oog 00z 0ot 0
rd i
/
? /7
g = 7 /L]
£ —~7 /)
] Eh— o
o e 0T="m=" 0= M=M=

sewinor @iz —— L YL Om_ﬂ 1SVH w:ﬁomuo —uU_?OhQ wi

53U IR SUR|OD PENI =l

(1da) uoignjosay

005 00t 00E 00T

=Tm

ZTT=M=%m ‘gT=Sm=tm=tm

wiypao8]y rouosop sndoydo

SIMI YIMA SULINGEY JGNOQ—b—

- 0

%0T
%0Z
%0E
%0t
%05
%09
%04

~ %08

%06
%00T

@OURILI0L B

SRIMINE WU UL D LS e
SUREINOD PRNIIY —
FULNEOT 2{QNOQ el

L2 [FUIE e 3

005

(1da) worynjosay

oot 00E

00t

oot o

BOUBWIOL B

0'T="m="

‘Sro="m="m="m =Tm

wyiio8)y 1ouotop sndoydo

VUBW IO

Figure 4.5: Performance of the Voronoi algorithm (top) and the improved RAST

algorithm (bottom) with the ICDAR Page Segmentation Competition weights (left)

and the weights compensated for segmentation of paragraphs (right).

65

and by the Vornonoi segmenter for one of the document images. Note that the entire
document is one region in the ground truth, but the Voronoi algorithm assigns each
space-separated paragraph its own region. The performance measurement returned
by the comparison program for the RAST and Voronoi algorithms for this document
were 100%/100% and 55%/81%, respectively, for the ICDAR and custom weights,

demonstrating a higher level of performance with the custom weights.

Even though the Voronoi algorithm classified the regions correctly, it took a
performance hit for segmenting these regions. Since the paragraphs are separated
by spaces, though, they should have been separated in the ground truth as well, but
the author did not know this at the time it was created. Therefore, this drop in
performance can be attributed to the format of the ground truth rather than the

Voronoi algorithm.

Compared to the RAST algorithm, in terms of overall metrics, Voronoi did not
perform as well. With respect to resolution, the Voronoi algorithm performed essen-
tially the same at 200 and 300 DPI with a small drop at 600 DPI. Also, while the
two column text-only documents segmented at close to 100% accuracy, the Voronoi
algorithm did not segment the single column and mixed column documents as well,
ranging from 80% to 90%. While the weights of the comparison program were chosen
to minimize the performance degradation for this reason, it did not compensate fully

for all of the classes of documents.

Examining the results of the document classes that included half-tone images,
all of them had similar performance measurements with the exception of the mixed
columns class. In this case, the lower segmentation accuracy was either minor or could
be attributed to non-Manhattan layouts. Figures 4.8 and 4.9 show the segmentation

of a non-Manhattan layout (i.e., it does not have a Manhattan geometry) at 300 and

Zuerst kamen zehn Soldaten Auerst kamen sefn Scoddaten 9-1-09

Alice in Wondertand {Times Mew Romen || pt | column)

Fiinf und Steben antwortoten nichts, sahen aber Zwel an, Zwei lng mil leiser Slimme an: "Die
Wahrheit #u gestehen, Priulein, dies hitee hier e rothier Bosenstrauch scin sollen, und war haben
aus Versehan cinen weilicn gepflanzt, md wenn dic Ednigin e gewihe witrde, wiirden wir Alle
sekipil werd v, mlissen Sie wissen. So, sehan Sie Friubein, versuchen wir, so gut os geht. che sie
komemt-; " In dem Angenblick rict Fiint, der ingstheh tieler in den Garten hmein gesehen hate:
"Die Konigin! die Kanggn!™ und @iz drer Géinner warfen sich sogloch flach auf's Gesleht Es
erlstandd gin Geriusch von vielen Schritten, und Alice blickle neugieriy hin, die Kdnigin 2

sehien

Fuersl kamen dehn Solduten, mit Keolan bewartner, sie hatien alle dieselbe Gestalt wie die
Girtner, rechieckio und flach, und an den vier Ecken dic Hinde und Fife; danach kamen zehn
Herren vam Hofe: sie waren Gber und fiber sl Digmanten bedeckt und gingen paarweise, wie die
Soeldaten. Mach digsen kamen die kdniglichen Kinder, ¢s waren threr cehm, und die lieben Kleinen
kamen lustig pesprungen Hand in Hand paarweisg, sie waren gang mit Hemen geschmickt,
Drariul Kimaen die Gisee, meist Kénige und Réniginnen, und unter thnen erkanmie Alice das
wiesifle Kaninehen: es unterhiclt sich in etwis eiliger unmd auleeregler Weise, Beliehe bel Alleny,
was pesarl winde und wing varbei, ohipe sie zu bemerken: Darsuf folate der Coeur-Bube, der dis
kanigliche Krone aul einem rothen Sammetkissen trug, und zuletel 1 diesemn grobartigen Luge
kamen der [Herrenskdnig und die Herzenskdngin

Alice wulite nicht rechl, ob sie sich nicht flach anfs Gesicht logen miisse, wie die drei Giirtner;
aber sie ootz sich nicht erinnem, je von einer solehen Sitle bei Feaiipen pehiiel o baben,
"Und auferdem, wozo gibe o iiberhoipt Aufrige." dachie sie; "wenn alle Leste Oach sul dem
Gesichie liegen mialien, <o dall s gie nicht sehen kénnten?" Sie blich also stehen, wosie war,
und wartete A ls der Zup bei thr apgekommen war, hHeben Alle stehen und sahen sie an, und dic
Konigin fragle strenge: "Wer 131 das?™ Sle hatee den Cocur-Biben gefragt der gtalt aller Antwort
nur lichele und Kratzfitfe machic. "SchalskopT" sagle die Kimigin, den Kapf ungeduldig
surickwerfend, wiad zu Alice gewandt fuhr gie fort: "Wia heilft du, Kind?""Mein Name ist Alicee
Euer Majestit #u dienen)” sagte Alice sehr hiiflich; sher sie duchie bei sich: "Ach was, es st ja
nur ein Pack Karten, lch brasche mich nicht vor thnen zu flirchren!™ Und wer sind diese drei?”
fubr die Kénian forl, indem sje sl die dien Gitner zetgre, die um den Bosenstrauch lagen; denm
noldrlich, da sie auf dem Gesichie lagon imd dus Muster aul'ihrer Rilckseite dasselhe war wie fiir
ilng panze Pack, 20 konnte sie nivhl wissen, b es Cirtner oder Soldaten odor Herren vom Hole
oder drei von ihren eigenan Kindern waren,"Waoher sell ich dis wissen'!” sagle Alics, indem sie
sich sellist Gher ihrea Math wunderte, "Es st nicht meines: Amites,"Die Kénigin wurde purpurroth
wior Wth, undd nachdem s siz amen Augenblick wie ein waldes Thier angestont halte, fing s an
zu britllen: "hren Kopfah! fhren Kopf -, ""Unsinn!” sagte Alice sehr lawt und bestimmi, und die
Kénigin war still Der Konig lepte seine Hand auf thren Anm und sagte milde: "Tedenke, meine
Liche, ¢s 51 nur ¢in Kind!"Die Kanigin wandie sich frgeclich von thin abyund sagee zu dem
RBulien: "Tireli” sie um!"

Dier Bube fhat ez, sehe sorghiing, st emem Fulic.”Stehe aull”™ sehree die Kémigin mit
crchdrmgendar Stimme, und die drei Garlner sprangen sogleich auf und fingen an sich 2o
vermeizen vor dem Kinig, der Kbaizin, den kiniglichen Kindern, g Jedermann."Lalit das sein |
eifierie die Kinigin, "The macht mich schwindlie" Lnd dannp, sich nach dom Rosensireh
umdrehend, b sie o "Was habt ihe hier gethan?""Cuer Majestit zu dienen,” sagte Zwei in
sebir demithipem Tone und sich aul sin Kue niederlassend, "wir haben versucht - ™chsehe!”

suirfe die Kiniein, dis unterdessen dic Hosen intersucht hatte, "Thre Kipfe abl" und der Zug

Figure 4.6: Ground truth of a single text-only document image.

66

TE aldaic Pilerst Famien —ekm Soldaten] FET=00

[Adice in Wenderland { Times Mow Roman [T pl T celumn]

Fintund Hiehen antworteton nichis, sahen gber Zwel an. Zwen Ting gl Teiser Slinime an: T2
Wahrheit #u gestehen, Priulen, dies hite hier ein rother Rosenstrauch sein sollen, und wir habern)
ws Versehen einen weilien gepflanzt, und wenn dic Konign s gewahr wiinde, wiirden wir Alle
kckipll werden, milssen Sie wissen. 8o, sehen Sie Frinlein, versuchen wir, so put o5 geht. ehe sic)
hoamnit -, " In dem Augenblick ref Finf, der angstlich tiefer in den Clarten himein gesehan hatta:
"Dris Konigin! die Kamgm!™ und die drei Girner warfean sich segleich fizch auf's Gesicht, Es
batstand ein Gerdusch vorvielen Schritten, und Alice blickic nevsterng hin, die Kdmsin £
bahen

uerst kamen zehn Seldoten, mil Keulen bewarter sie hatten alle dieselbe Gestall wic die
Diriner, rechleckg und ffach, und an den vier Ecken dic Hinde and Fiilie; danpch kamen zehn
terren vom Hofc, si¢owarcn fiber und fiber il Diamanten bedeckt und gingen paarweise, wiz dic
olidaten, Mach digzen kamen diz kénighichien Kinder, es waren ihrereebm, wid die liehen Klginign
carnen lustig pesprungen Hand m[lawd paarseeise, sie waren ganz mit Herren geschmiickt.

araul kamen die Gise, meist Konige und Kenigmnen, und unter thnen erhannbe Alice das

weille Kaninchen; es unterhielt sich in clwas eiliger und aulzeregler Weise, Hehelte bei Allem,
vz peagit worde und wing vorbel, ohne sie 7u hemerken. Daraaf folgte der Cocur-Bube, der die
canigliche Krome aul eingm rothen Sammctikizsen trug. und zulelzl in diesen grobartigen Zuge
amen der Herzenskdnig und dic Hereenskdnigmn

Adice wullte nicht rechi, ob sie sich nicht flagh auf’s Gesicht Tegen misse, wai die dret Ghriner;
phier wie konnte gich niche erinnern, je von ciner selchen Sille ba Testbren pehiin, u haben,
Mlind sulerdem, wozu gibe os dherhaupt Aulrige" dachie sie, "wenn alle Leute flach sul'dem
KSesichle Hegen mitlten, o dalt sie i nicht schen kdonten?" Sic blick also siehen, wo sie war,
und wartete.Als der Zup bol thr angekommén war, blighen Alle seehen und sahen sie an, und die
Ranipin Mgl strenge "Wer is) dag?" Sie hatte den Coeur-Buben gefragt der stetl aller Antwon
i lichelre und Kratzfiibe machte. "Schalskopll" sspte die Kanigin, den Kopt ungeduldig
Furiickwerfend; wad zu Alice gewande fuhr sie fort: "Wie-hoillt du, Kind?""Muem Numde st Aliee,
Eucr Majeslie s diznen!” sagle Alice sehr hiifhich; sber sie dachie beusich: "Ach was, es jstja
e ein Pack Karten, leh brauche mach wicht vor thngn 2 fitrehten ! Lind wer sind dicse drei?™
fubir die Kinizmn forl, indem sie aafdie e Girtner zeigre, die win den Rosensirauch lagen; denn
natirlich, da sie auf dem Gesiehte bagen und das Musier aul iheer Rickeeite dazselbe war wie fir
a5 panze Pock, so konnte sie nich) wissen, ob es Ganoe ader Soldaten oder Herren vom Hofe
ledier drei von thren eigenen Kindern waren," Woher soll ivh das wissen'™ sagie Alice, indem sie
ich seflist diber ihren Muth wunderle, "Es 151 nicht meines Amtes."Die Kénigin wurds purpurrolh
vor Wlly, ind machillem sie sie 2inen Augenblick wie eln wildes Thier imgestarl halte, fing sie ail
i beinllen: "hren Kopfab! thren Kopf-: ""Unsinn!" sagte Alice sehr laut und bestimmi. und die
ko tmigin war still. Dor Konig legie seine Hand auf thren A und sagte mmlde: "Dedenke, meine
Liche, e st e ¢in Kind!" Die Kénigin wandic sch firgeclich von ihimeab wnd sagte zo dem
Buben: *|Ireh’ sie gm!™

[Per Bubs that s, schr sorgfitg, mit emem Fule"Steht aulT™ schrie die Kdaigim nut
lurchedringender Stimme, und dic drei Gartner sprangen sogleich auf und fingen an sich 2y
borneizen vor dem Kinie, der Kéalgin, den kéniglichen Kindern, und Jedermann, "Lallt das aein”
iferte die Konigin, "Thr macht nmch schwimdlig ™ Und dann, sich nach dem Rosensirauch
mdreten, Tuhe sie Tort “Was halbt the hier gethan " Tuer Majestit zudienen,” sagte Zwel in
ket demiehigem Tone und sich aulein Ko niederlassend, "wir haben versuche - ™Ich aehig!”

basle die Koniwin, die unterdessen die Rosen undersucht hatte, "Thre Kipfe ab!" und der Zug

Figure 4.7: Voronoi text segments of a single text-only document image.

67

68

600 DPI, respectively. The difference between the two lies in the bottom region. The
higher resolution document contains several text regions; whereas the lower does not
contain any. It only contains two non-text regions in this area. Since the extension
of the Voronoi algorithm did not address non-Manhattan layouts, the results of this

particular document image can be ignored.

For the remaining document classes containing half-tone images, three types
of errors dominate: one can be attributed to the data, another to Kise’s Voronoi
algorithm, and the third to the text classification algorithm. Starting with the first,
a number of the documents contain half-tone images in very close proximity to text,
such as that shown in Figure 4.10. For documents scanned at a resolution of 300
DPI, Kise’s Voronoi algorithm failed to separate the images from text when they
were separated by 23 or fewer pixels. The height of a tall letter at this resolution is
28 pixels, so if the image were positioned within this distance, it might not be placed
into its own region. After the Voronoi regions were defined, it was impossible for the
extension of the algorithm to further segment and classify them correctly.

The second concern is similar to the first in that its root cause can be traced to
Kise’s Voronoi algorithm. As mentioned in Section 3.4, the most frequently occurring
zoning error is the oversegmentation of text. This can be seen in titles, headers,
footers and occasionally in parts of outlying sentences in paragraphs. The title shown
in Figure 3.7 illustrates the phenomenon. Since this problem relates more to reading
order than region classification, it was not addressed in this thesis.

The third issue identified was that some text, namely italicized and bold text,
tended to be classified as images rather than text. This was due to the fact that the
bounding boxes of the characters overlapped so were omitted from the zones and not

considered as text. Therefore, by default they were classified non-text. While this

69

St Ramen ze ZdeET K ek Saldaren B

versucTie, aul einen Baan co Megen. Karasplatoes Tomlpepamsen s, ™ g slockie ala shre
Al sie den Flanminge gafangen ued durtichpelnachl Fleminga uoter den Avm clamil er niche wacder Torthglz
batte, war dor Kampt voriiber und dae beiden lsel bl i ok, amomin thrern Froeunde weiwr oo
mirencs g schen, "Aber cs konwnr meht draof an, kohiwatsen

Kachie Adice, "da alle Bopenaut dicser soite des

Neunfes apitel,
Die Geschichie der falschen Schildkriite.
rrovh ich oin, dich wacdar zu schen, du lizkes aloes Herz?” Eagte dic FICrzogit. indcn
cic Alice hebevall windaoe, uid beide susarmmen Toelspaae rlen.

"D ksl alie e michi derken, wie

Kamillenthew, Jer s
batter macht -2 und Gesteazue ker und derpleichen, was
Kirkler cuckersith machi, Toh wimschie mor, dic erioiieon
Lewts wiibiten ¢as, dann winden ste michil so spdarsam
{amit seim -t ")

AT war sehr froh, sie het so @ Launs 2o finden. und
fachtc bei sich, es wire vielleichl nw der PlelTer, der sic
ke biise momnse bt libe, als sie sich zuerst in der K che
v el Herengin bin" sagre sie iz sich (doch
chl an selic belTnwngseollerm Tane), “will ich gar
Foeinen PRt in meings Klcle dulden. Suppe schmecke
kel sl obne =2 am Ende ist ey immer Phzfeer, der die
ettt hetz mashe" sprach sie weile:, sehr plucklich,

B v Repsd erfunden =o haban, "und Essiz, des sis
Bawerliplisch michl - und

Auecnblick michr sazen, was die Moral davien is1, aber o
12 FaTle UNTEriesen <0 HerzZogi ganez ve:gesaei ul wird mir gheich cinfallen,”
aehrak frmiich 2usiminen, wls sic deren Stirome dicht Adice 1 Wonderland {Times Mew Hann 10

i ihrery Oes higte, “0u denkat an el meine [iche,
mel vargilit daviiber 2 sprechen. lch k
i umed Sachen anvtwartetan nichis sahen aher T an. Mack, imd an den vize beken die HEnde und FEFe: danachy
Fowe ting ot Teiser Slimme un: "Lie Wahtheit 2u 4
restchon, Friulein, dics Bale lisc ein nother i l:"
tosenstranch sz sellen. und wir haben ans
Wersehen einen weilen gepflanz, ved wenn
die Kéamgin @ pewahr wiicde, wiimden wir
Al ekt werden, miflssen Sie wissen.
5o, sehen Sie Triulein, versuchen wir, so
Pt s gehl, ahe s kommit -2 In dem
Acagranbbick rel ind der @zesllch veter
ilen Crarken hincin geschen haoke: "Die
arirm! die Kénipint® und dice dri

sartner warlen sich sozleich Mack wul's
aeedchl Fis entstand cin QGierfiusch von
viclen Sehotren, und Ales blickis

reepierip hin, dic Kimigin zo sohen.

wulirlicsmn

kamen webn Herren vom Hofe, sicowaran §ilber and e
it Lriamanien hedecht und ginpen pearweisc, wie die

Suldalen. Much dicsen kamen dic kimighahen

Kinder, ¢ waren 1hror zzhin, wnd die lieben
El2einen Skarsen lustig gesprunzen Hand m
Lland pagnweise sig wwen pane il Flenen
gaschmibickn, Darauf kamen dic Giste, meist
Kitmge und Kiniginnen, und unter ihnen
erkeannie i Alice Jas werlic Kaninshaon; o,
umterhicit sich in erwas ciliger und autiecroprer
Woeise, Eichel e bea Al weas pesaprl weurde il
ging vorbat, ohns sic subemeiken, Duraul lolaw
der Coeur-Thahe, der die Rinighiche krone auf

cinem rathen Sammetkissen trug, und znlerzt in

I diesem zrolarioen Zuoe kamen der [ermeenskinie und die

Frcest kamen zobn Saldaten. mil Keolen bewatine, sic Herzonskiimigin,

wrten alls dicsclbe Gestalt wie dic Gértner, rechieckic und

Figure 4.8: Voronoi segmentation of a mixed column document with pictures at 300

DPI. The lowest regions were classified as graphics. The accuracy of the segmentation
was 37%.

eersuchle, aulemnen Thaum «u Miggen.
A5 st den Flamingo scfangen und zurickpebrachi
talle, i der Kampl seritber umed cdic beiden 1gel
tirzends o sehen. "Ale es komet oicht drawl an,!
Fehie Adiee, "da glle Bowen guf dicser Seite des

70

Vaacrst famen zefn Soldaicd DI

araaplitres forfeegngen sind,™ e steekre also 1hren
Flaminpe aimtae den Asen, diemiter nichl saeder Tor T
mnd gmg zurick, vm mit duem Freunds weiter 2u
bchwalson

-

i Cieschichie der Tl

Fic Adice hehevoll nmralice, und heide Fusammen Lospacierie

Nenntes Kapitel,

“Lh s i g nichn denken, wie frohich oine dich wieder zv schen. du Biebes abtes Hoiz!

Ischen Schildkrdde,

" faete dic TTerzogin ndemi

1.

e war s Trevi, s1e hier soprofer Taune 7y finden, ung
ety el sech, e wiire viellgicht nur der PR, do sic
w0 biae 2emacht habe, als sie sich aueml in ler Kilche
b, "Wenn ich Hereogin hin” sagre sic flr sich (doch
It 1 sehr heffnungsvollem Tone), "will ich gar
emen Pleiles i meiner Kiche dulden. Suppe sehmecks
et il hmwe =2 am Faode ise es eamgr Prelter, dei die
lwme nefiip macht,” sprach s weitee. selic plocklich,
Aine nouc Ropel erlunden @ Baben, "and Essig, dor sig
st rlip Msch macht -, und

B hatle wnterdessen die Theransn gans vorgessen und
sehinik [rmbich wusammen. als sic deren Stanome dickt
an threm Dare hine, "Du denksl an elwas, memne Lizhe,
unied vyl dariiber zu gprechan, el kann dir issen

FamnTlesthew, dor sil
pacler macht -2 wnd Ciestenzucker und derglechen, was
Foinder muckersil macht, el winschee nue. die prolksn
ceute weiifiten das, dunn wiimden sie michd s sparsam
L1 s -2 "

ugenllick nicht sagen. was dic Moral davon sl aber e
sived mir pleich gimfullen.”
Aliee i Wonderland O imes Mew Raman 10pL

MTach. val an den vier Eoken dic HEcde und File, danach
bamen mehm Herren vem Hofe, sie warcn dber und e
mil Danranien bedeckl und singen puaraeise. wie dic
Saldaten. MNach diesen karren div kimiehichen
Fander, ws waren threr cchn. uned dic lichen
K lfeinen #kamaen luarig gespronsen Haond in

FiaZumd Sishen anlworicten michis, sshen gber Paccs an,

Zwed ling mil letor Stimme an; "I Waliwcheil fu iy
westehen, Frinlegm, digs hdtle e ein rother o
Ramensiraneh som sallen. und win Taben ans : '{
Versehon singn weilien pepllanet wnd wenn \.:s.‘:r -

die K e ke wiirds, wiirden wi A, WER

Wl vekinft worden, missen Sic wissen,
S, sehen Sie Trivlein, versuchon wir, 1o
gnl s grent, che gic komnu ;" [n dem
Az Eoeel Pl der dingeilich beler
pnden iarten linein gesehen hatte "
ko dimngree ! dic Rdnizan!™ und die drei
Cérhier warlen sich sweleich Mich aufy

L 5 I T 8 030 Rl 10
pesehmlckl. Doraual ke die Gilisle, meict
ﬁﬂrlj.:'l: Tt FANTZINNCT. TN unleT e
erkannedsd Alive dus weille Kaninchen; es
unterhielt sich i clwas cilimer und o fperepaer
Wense, lichelie ool Allom, wes eesast wulde und
et vasbel, vhioe sie cu bemerken. Daraul” Delple

Eieachl T entstamd 2in Gieranseh vian
welen mehritien, uad Ahes blickte

o i, e kit

b

el

der Cireur-Bube, der die konieliche kreoe anl
einerrt rathen Samnmetkissoen touw, umd sulete i
P

Y oroiurbiean

Sucrsl kaman sebin Soldisten, it Kaeulen huu.-;lfl'nm: i

Herzenskdmigzn,

2 AR mt

th
EHARHE

hailen alfe dicselhe Gostale wie die (GGArtner. rechieckio und

Figure 4.9: Voronoi segmentation of a mixed column document with pictures at

600 DPI. Most of the lowest regions were classified as text.

segmentation was 53%.

The accuracy of the

71

Luerst Kamen zehn Soldaten I, Auvrst Kammen 2efin Sededitten | 9-1-09

u#mimmml!mrﬂu’hm “Ehrol’ wi ! Ther
Db 1l o, s s g,

bl maf)" e dio, Kitigin i dun: Mmlgu'ltt T | mehingtlin Tono. Fi
.ﬂ?&n?m.d:ﬁhlmw wm:hmﬂ%mm;-.mm
[T mﬂuﬂ WWMI' e Mk it Adice's CHir e wasperie, TS il
r.ﬂutgm,ﬂu ek b o aunTods

‘mu-lmﬂrmmm&m Lind, mmu
o Dimenskeaveit el hiemd ik aic o " Wi
hlhtillhlﬂ'mr" 'MW##TW&."‘
-mﬂluﬂmmmw Tomo und kichanl
i Ko ploderiossend, e vorsuchi < e
wchel” nm dhr mmﬁ:mmm

el i Site Sl ekl
.'.. "'H.'h I'mlc grar mehl daf e Sclale o

e i, Adies
il L | HETRIC IR, anfnehen in
schrecktem Tong: "Eie Kbnigmn wipd dich
hiren! Sie ke nimilich efwas spat wsd G Kdnigin
magke -1 "
“hichi, daB fean Gore Plilze Kommt! denne
ey Kolinnigin, wred Alle fingen wn mallen Richiknpen
dlurcheinbnder 2 lufen: wobe) s Eineriiber di
Andermn stolperien; jedocly noch em bs zwel
Pt frdemwinren sican Chlang, bod das Sniel fing
i
Afice: doichie biod sith. edn s merh v lnd| zes
Croguet-Feld Tl sic in jhoem Leben night
petchenies win valles Bz ond Fircien,
ikl und die Schlbgel
irved albe-Sobdduteny midhtes) sels
mwmibeezen und- @l Handen-und Filen stehen wmn
e Bogzn =ul hilidien.

1 Kaninchen, das thr

Figure 4.10: Document image where the picture is placed too close to the text to allow
for correct Voronoi zoning. Note the purple text section merged with the rabbit.

72

was a problem sometimes, unless the entire block was italicized, it did not have a
substantial impact on the performance. To fix this problem, it might be possible to

add an overlap tolerance to the algorithm so that these letters are not dropped.

4.4 Commercial Package

Following the completion of the page segmentation algorithms, a commercial OCR
program was evaluated for comparison. ABBYY’s Fine Reader Engine 9.0 is a
comprehensive layout analysis package, which not only includes image processing and
layout analysis commands, but table, barcode, text-type recognition (i.e., direction,
italics, underlining, etc.), and synthesis (i.e., hyperlinks, bullets, background, and
text color, etc.) commands. Additionally, it can recognize 186 languages and can
produce output in nine different formats.

The set of test documents described in Section 4.1 were analyzed by Fine Reader
and output in XML format. Since the tags of this format did not match that
of the ground truth, a program was written to convert these files to a matchable
format. These were then compared to the ground truth using the program described
in Section 3.1.

Figure 4.12 shows the performance of Fine Reader alongside the improved RAST
and Voronoi algorithms. Comparing the two different weight classes, the performance
is only slightly higher for the customized weights. Therefore, customizing the weights
benefitted the Voronoi algorithm the most. This is because it segmented the text more
than the other two algorithms as shown in Figures 4.6, 4.7, and 4.11, and placing
higher weights on the one-to-many ground truth-to-detected region parameters results

in a larger performance gain for highly segmented detected regions. As noted in

73

Section 4.3, though, the text of the ground truth was undersegmented as a whole.

For both cases, the performance of all classes is between 70% and 85% for all
resolutions, including 100 DPI. Neither RAST nor Voronoi were able to segment as
accurately at 100 DPI. At 50 DPI, the performance drops 5-10% for Fine Reader;
whereas, for the other two algorithms, it essentially drops to zero. Not only does
Fine Reader have a flatter response as a function of resolution, but it also has a
tighter response in that all of the classes were segmented with approximately the
same accuracy.

There were a couple of anomalies, though. At 50 and 100 DPI for the single column
and double column classes, the performance dropped to zero. This was because the
regions were classified as pictures rather than text. Also, the single column class only
performed at approximately 50% throughout the range of resolutions due to the same
reason: the Voronoi algorithm had a lower performance than RAST; the paragraphs
were broken into individual regions, but were only represented by one region in the
ground truth.

Examining the output, the predominant error appeared to be overlapping regions,
which depending on how you define the ground truth, could not even be considered
an error. Figure 4.13 shows one such example. Note the overlapping text and image

regions. So, rather than break up the regions, Fine Reader simply overlaps them.

[Zauerst kamen zehn Soldaten | Vucrst kamen zehn Soldaten 9-1-09 |

Alee in Wonderland {Times New Raman 11 gt 1 column)

Finf und Sichen antworlelen nichis, sahen aber Zwel an, Zwel (g mit leiser Stimme an: "L
Wahrheit zu gesiehen, Triulein, dies hite hier ein rother Rasenstrauch sein sollen, und wir haben
baus Verselien eimen weillen gepflanzt, und wenn die Kénigin es gevwahr wiirde, wirden wir Alle
ek N werden, milssen Sio wissen. 5o, schen Sie Friulein, versuchen @i so gut s geht, ehe sie
feommt ;" In dem Augenblick fief Fiinl, der dmestlich telfer in den Garten hinein pesehen hatte:
"Dz Kaniginl die Komgn!" und die drei Gininer warten sich soglewch flach auf's Gesicht. Es
entstond cin Gerdusch von vielen Schitten, und Alice blickte newgierig hin, die Kénigin zu
lrchen.

uerst kamen zohn Soeldaten, ol Keolen bewufTnel, sie hatten alle dieselbe Gesalt wic dic
Crdrtner, rechiéekis und Dach, wod an den vier BEelen die Hinde und Fiifie; danach kamen zehn
Herren vom 1lefe, sie waren Ober dmd dlver mit Diamanten bedeckt und gingen paaraccise, wie die
Soldieten. Mach diesen lkamen die koniglichen Kinder. gs waren ihrer aehos uod i lieben Kleinen
liarnen luatig gesprungen Hand m Hand posrwese, sie waren ganzg mit | lerzen geschmiicke
[rarauf kamen dic Giste, meis! Konige ond Kdémginnen, und unter ihnen erkannte Alice dag
weille Kaninchen; es unterhiell sich in #twas eiliger und aufaeregter Weise. Behelte ber Allem,
was gesast wurde und ging vorbei, ohpe sie 7y hemerken, Darauf folgte der Cocur-Bube, der die
konigliche Krone aul einem rothen Sammetkisson trug, und zuletzl in diesem grofartigen Zuge
karen der Herzenskinip und die Herzenskénigin,

Alice wuthe nicht recht, ob sie sich niche flach aefs Gesiche legen milsse, wie die drel Giinoer;
aber sie konnte sich nichi erinnern, je von ciner solchen Sitte ban Festetigen gehdn zu haben.
"Wnd nuberdenm, worn gibe es dberhaupt Aufziize,” dachle sie, "wenn alle Leufe fach anf dem
Ciesichie Hegen niilBren, so dall sic sie nicht sehen kbnnten?™ Sie bligh also srehen, wo sicowar,
urel wartete Als der Zug bei thr angekommim war, hlhigbhen Alle stehen und sahen sie an, und die
Kanigm frage strenge: "Wer sl das?™ Sie hatte den Cocur-Buben gefrugl der stutl aller Antwort
nur Jchelte und KrglefiBe machte. "Schafelkaopf” sagte dic Kénigin, den Kopl ungeduldig
surickwerlend; und 2u Alice gewandt fuhr sie fort: "Wie heill du, Kind?""Mein Name isf Alice,
Euver Majestit wu dienen!” sapte Alice sebr haflich; aber sie dachte bel sich: "Ach was, es ist jn
nur ein Pack Karten, leh bravche mich nichl vor ihoen 2o frchien! ' Und wet sind diese drei?”
fishr dhie K Gnigin fort, indem sie auf dic drei Gértner zeigte, die um den Rosenstraoch lagen; denn
atlirlich, da sie auf deny Gesiehiv Tagen und dag Muster auf ihrer Riickseite dasselbe war wie {iir
das ganze Pack, so konnte sie nichl wissen, ob es Glirtner oder Soldaten oder Herrén vorn Hole
ader drei von ibren cigenen Eindarm waren."Wabher soll ich das wissen?" sagle Alice, indem sie
sich sulbst fiber ihren Muth wunderte, "Es 15t nicht meines Amtes,"Die Kdmgin wurde purpurroth
vior With, und nochdem sie sie einen Augenblick wie ein wildas Thisr angestant hatte, fing sie un
au britllen: “lhren Kopfabl ihren Kopl - ""Unsinn!" sagte Alice sebi laut wed bestimmt, und die
Kiinlgin war still. Der Konig legte seme [Tand auf ithren Amme und sagle milde: "Bedenke, meine
[Lighe, o5 ist nor ein Kind ! "Die Eonign wandte sich drzerlich von thm ab und sagte #u dem

Huben: "Dreh’ sie am!”

Ler Bube that es, sehr sorefillig, miteinem Fulle "Stehrauf” schrie die Kanigin mir
durchdringender Stinnte, und die drai Gértner sprangen soglech aul und lingen an sich zu
vernetgen vor dem Kinig, der Kénigin, den kdmglichen Kindern, und Jedermann."Lafit das sein!”
eiferia die Kémigin. "Thr machl niich sehwandlig," Und dann, sich nach dem Rosenstrauch
umdrehend, fubr sie fort "Was habr ihre hicr gethan?""Buer Mijestit 2o dieten,” sagte Zwei in
sehr demiithizem Tone und sich auf cin Knie niederlassen, “wir baben vorsucht -, ""1ch schel”
capte die Bdnigin, die unterdessen die Rusen untersucht hate. "Thre Kople ab!" und der Zug

Figure 4.11: Fine Reader text segments of a single text-only document image.

75

(1d@) uoiynjosay

0oL oog cos GOt OOoE ooz oot

IT=Mm="m ‘pI=“m="m=m="m

wypi08|y 1ouociop sndoydo

(1da) woiynjosay

0oL oos oos oot ooE 00T ooT

%001

- %0

%0T
%0E

%0F

%08
%09

- 0L

ITT="m="m ‘pT=m="m=Sm="m

lspeay aul4 AAGAV

%06
%00T

(1da) wonnjosay
o002 oog oo 00t oos 00z 00T o
M :
e :
:
g R
S0 AUITRIEN ZT=Mm="m ‘pr="m="m="m="
HELINOT [82{UY IR e
OO v g wypio8|y 1syy sndoydo panroiduw
S2UNITig [AMA SUMLNEOT 3| GAOL e
SN S YN UWIN| 0T S{BUSS ————
ST P (1da) woiynjosay
Suwn|o) 3|gnod ——
LN 3{FUKS e 109 oos oot 00g 00T ooT (+]
: 1|l| %0
\\\ %0T
7 %0T
7 // ol
%0t
w ¢ o { / y i w
m \ - %09 m
- %0L
%08
%06
%00T
0T="m="m ‘grog="m=“m=m=m
Japeay aulj AAQEY

Figure 4.12: Performance of ABBYY’s Fine Reader Engine 9.0 (bottom), the ex-
tended Voronoi algorithm (middle) and the improved (top) RAST algorithm.

BR L AMPL L NPV e e i e e e ST e

[Campus, alumni moved to action by Haiti’s plight|

Wilkim daw o ihe Jan =

rarthnaises that cdesas
pter Hair, monthers ot

Anwd=tall' — srehi

raisr tunds e eae reliet

el Thazens of thess Rad

Crass denatlan bexcs

[Trustee accepts award for corporate work in Haiti]

Chul pansy he eledrs, Jihm
Stunton '7T I bk, el
i LES. See ape for Loy

il Zavellence w Lk
Fivve T pets o LLanidi™s so
plalbantiieapic work dnthe countes.

o 200 for Tl pust-

s e Lk firen's

itz o Lee b Hae vy, i

Bt aticg] Pt luers woaldd soon G

« T3l ZORMcer. (roieasnn
el peibagy s Hali
Mess. Jivizion |l
aaslatant, colloatod ks s ds D00 tar 1z
Ar-arican Fad Cross in the nama of the Whitrman
commu T

Wero 50U 0t ACIeEE
RIS,

= Jack Lazar 13 a-d Adam Delgads 12

cataly s o Hait Bel of nitiobive (LRI Lo
enpouraye Fudaent groups 313 Zlube to uss thar
rezources 1w he ghien

@G TaneED ar tho
crisis. The HEI has
remad more than 5
Far the reilet 2o s
Far anc sp

and the nezd Far
Iy ac-ben e anid
u wiz =R

organizers no)
1 N raings

Wi il

i uineital seree i
Lugh aclio:

HRE T U5

s syelem

— wricl heelpr i devasizied

cauniry,

senipny oty hewemed sooe alor The

Tmo 12 carthouake thal live Torpers nt s
a1

treeed s b ingrnlners il At bad T

w bern i toome tham S0 o sl

riar Tzeieth - 117" Reek 12,
. Such o move lied Imitiasive vigil held F}

L. and Pedre Calvao 10 Faht candies =t the Hait
kb, 12 pn the skeps of Memarial Bailding,

will =nazle tm2r
¥z e e e aisn s

=1 pib.orgy cuireachy
wnlbrmntarhs

v Ewienthiiake grod

= Hayley Sampaon 11 ¢ il dnFons af
Tl Dy donsibiun Lo aoioss cumpus,
25170

baskatoall teams donated gate
& from are ~ight inthe Bad Cmss,

* The Black Slockat Urtionehostad Lo cancas,
one o7 then doring 8 "Hope Fos st weesed
NSRRI, qrossin g BRI

= Fhi Falta Theds Tty costed o betl of Dy
oaneds phiambropy evest for Hait relisf, (Demils
DN AMGEEENE 1l Availanle & srass e |

ieein bcsanes., e el Ui Ceslaresai oo lome al

Pl Priney

uesiug eact Trilosy
(15 Dleitias wireless wisralion, crocial ioa
oLty of fewer Cian 10500 Tl i
e (o 10 million e=iden s The Wl
treed oyt oz B 21 weondd report thal
Msare pecpbe trapped uid ee collagscd bokld
s v e o bl Qe whervakizalz o

1

iler] cesone w
A

oo e

=it

ribial sl

Ll

Ssan] Slandere SIn o g risis

Lk oo Haimg s keeping our

sk

Trilesy

sevhelped lneal gorsr mmens,

police ancl tire departments wich caninnisy
li
EORTTTH

DR T N s

s

thed and
il esialisaed o tent rive

plorerns, Incollabrration with

shled maltile phone o b0}
teat atrer vennest o medical lelp oo lood I
Ledske ozl

rruatioga] Red

alan workesd v the Ame

araedi reliar sftorts and o

ikl

Uroge osend el weessiaiss wici heal de

relatedd Infae marnn

Iringw Inreruaticoal Partwers, baged i
Hedlesnne, Wiash,, i e Lacgest LS e
gertered camp sperading i [Lacd a:

ILait
ginie]l

b oz Lhe pat

I enane than s

FALLIL ¥ sciilansbips o Ll rodsongr
I Ibee Taessest corpovate sahi

e colnlry”

The wamngrany also he

|apr
Lol tn it e Sndesl, Por l-an-1 rise

SOMTIATILT

W rET

shar: Sl ot ihs weaer 2o s,

bekelbal oneels aml spensered colfuml Jesti

vals i the corporare pase-es of g
Veyelal foan's fonmclarion, sehich focirses o
wonhand eeuealicn

Slznlon, wrho has a masner's deseers o

w4 [roim Harved | r-tonim el

L el e Gerpres] wareless commynicslisn:

in the Uimireed States, inen:l ng

comipar
Wil

w Cllilar Communicatinns, Western

e (oo | Al

“tean College Theralsols

crlncATinm 85700 fndation Tl s Slcress,

76

Figure 4.13: Example of Fine Reader segmentation. Note the overlapping image and

text boxes.

77

CHAPTER 5

CONCLUSION

In the interest of digitizing historical documents at a low cost, open source layout
analysis programs were researched in the literature and on the Internet. A package
under development called OCRopus, which contains a hardware solution for obtaining
the images (i.e., a digital camera assembly) and a software solution for processing
them, was deemed the most advanced available. In its current state, while the
image processing capabilities were well developed, the page segmentation functionality
was limited to text-only documents and was optimized for a resolution of 300 DPI.
Therefore, the goal of this thesis was to improve its page segmentation performance,
so that camera acquired images of historical documents with layouts similar to the

Bavarian manuscripts of interest could be analyzed and converted to text.

After modifying the program to generate output in XML format, as well as writing
a program to compare detected regions to ground truth, two page segmentation
algorithms in OCRopus were evaluated. The first one was the default algorithm called
RAST, which was designed for text-only documents. When tested on documents that
contained non-text areas as well, it tended to classify regions within them as both
text and non-text. Entities such as graphs and tables, on the other hand, tended to
be divided up into both types of regions. The end result was that OCRopus output a

series of errors along with whatever text it was able to recognize, thus rendering the

78

output illegible.

The second algorithm, based on the Voronoi method, was less mature than RAST
in that it segmented the page into regions, but did not classify them. Therefore,
this algorithm did not support OCR so could not even process text-only documents.
In terms of segmentation ability, it worked fairly well, but tended to oversegment

non-text areas as well as text typed in large fonts.

The RAST algorithm was modified in a number of different ways to improve its
performance. First of all, it was discovered that the minimum length parameter used
to define the text lines was not resolution independent so was changed to a multiple
of the average character box width; however, the calculation of the average box width
itself was found to be inaccurate, so an algorithm was developed to find its true value.
This parameter was extracted from a peak of the histogram of the bounding boxes
of the presumed characters. By smoothing the histogram iteratively until it assumed
the targeted shape, the correct value could be extracted. Using this value, RAST was
able to create text lines more accurately.

After the column dividers were found, the algorithm was expanded to merge and
classify the regions correctly. The first two functions served the purpose of keeping
track of pixels that had been lost previously to ensure that they are now classified as
non-text. The next major function reclassifies text lines that overlap other text lines
as non-text because text lines do not overlap. Then, the algorithm loops through
a series of three functions that merge text lines that overlap non-text, non-text
rectangles that overlap other non-text rectangles, and non-text rectangles in close
proximity to each other until no new non-text rectangles are created. In this way,

non-text areas such as figures are more accurately classified.

As for the Voronoi method, it did not have any classification algorithm, so one was

79

developed and implemented. It utilizes the same character box extraction method as
RAST, then employs a smoothing algorithm to find the locations of text lines. After
this is done, it examines the density of the boxes along the text lines. If enough lines
have densities above a certain threshold, the region is considered text.

Following the classification of the regions, the oversegmentation of non-text regions
was addressed. This was done in a recursive manner where a non-text region was
selected and its neighboring non-text regions were relabeled with its zone number.
After all of the non-text regions have been examined, the rectangles they form are
considered. If any overlap, they are merged so that segmented regions do not overlap.

With this added functionality, the RAST and Voronoi algorithms are now capable
of processing mixed-content layouts, making the digitization of standard format his-
torical documents by low-budget organizations feasible. Once the improvements were
implemented, they were tested on a set of test images. For the RAST algorithm, the
performance of the hand-made documents with half-tone images improved an average
of 40%, the technical document class 25%, and the magazine class 15% resulting in
final overall accuracies of 90%, 65%, and 55%, respectively. While only the first
six classes met the goal of the thesis, the other two consisted of more sophisticated
content than would typically be included in an historic document, so is not considered
as relevant.

The primary errors were caused by the oversegmentation of text areas due to
unusually long or short text lines, the merging of short columns due to the constraints
used for the definition of column dividers, and the merging of text and non-text regions
due to non-Manhattan layouts, very narrow columns, and stylized text being classified
as non-text.

The performance of the Voronoi algorithm was similar to RAST for the text-only

80

documents, but was lower for the documents containing half-tone images, graphs, and
tables. The double column text-only class fared the best at 95% and the double and
mixed column text-only classes at 85%. The rest of the classes, with the exception
of the mixed columns with half-tone images, performed between 50% and 65%. Due
to some anomalies in the files, the mixed column class was only segmented with an

accuracy of 40%.

So, the Voronoi implementation only met the stated goal of the thesis for one of
the classes; however, two other classes came close. As for the remainder, the factors
impacting the performance of these documents included the layouts of the documents
themselves, so that, in some cases, figures were so close to text that the kernel of
the Voronoi algorithm merged them. Also, the algorithm tended to oversegment
large text, breaking it up into separate zones. Additionally, italicized and bold text
was classified as non-text. Since these errors stemmed from either the non-standard
spacing of hand-made documents or the sophisticated layout of modern documents,
it is likely that this method would perform better on the historical documents of
interest.

Finally, the commercial package, Fine Reader, developed by ABBYY, was evalu-
ated using the same set of test documents. With the exception of the single column
class, Fine Reader performed more consistently for all classes and all resolutions than
the OCRopus algorithms, with an accuracy of 70% to 85%. As for the single column
class, its performance was lower because Fine Reader segmented the paragraphs;
whereas, it was not segmented in the ground truth. While Fine Reader demonstrated
a more consistent level of performance for all classes, it did not meet the 90% goal of

the thesis either.

While the RAST and Voronoi algorithms performed well, there remain areas in

81

which they could be improved. Namely, the robustness of RAST could be increased
so that it can process text lines of varying widths as well as short and/or narrow
columns. The processing of stylized text and, for Voronoi, italicized and bolded
text, could also be fixed. Also, the Voronoi algorithm could be enhanced by merging
segmented titles and classifying italicized text properly. Finally, since the documents
of interest were not available for this thesis, a true measurement of the performance
of these algorithms could be obtained if images of the manuscripts were captured and
processed.

In conclusion, the improved RAST algorithm compares well to a widely used
commercial program in the case of documents that contain half-tone images rather
than graphs and tables. The Voronoi algorithm did not perform as well as Fine Reader
(by approximately 20%), but if the documents contain ample space between the
figures and text, and there is no italicized or bolded text, it might perform adequately.
Therefore, depending on the type of layout being digitized, either algorithm could

potentially be employed.

1]

2]

3]
[4]

[10]

82

REFERENCES

“Printing Press.” Wikipedia,
http://en.wikipedia.org/wiki/Printing press

“Bavarian Traditional Clothing Culture Center and Archive.”
http://trachtenverband-bayern.de/hdbtt/

“Image Scanner.” Wikipedia, http://en.wikipedia.org/wiki/Image scanner

Breuel, T.M. “The OCRopus Open Source OCR System.” Proceedings of SPIE
- The International Society for Optical Engineering, vol. 6815, 2008, pg. 68150F
(15 pages). The code is hosted by Google at
http://code.google.com/p/ocropus and documentation can be found at
http://ocrocourse.iupr.com/.

Silva, G.P. and Lins, R.D. “PhotoDoc: A Toolbox for Processing Document
Images Acquired Using Portable Digital Cameras.” Camera-Based Document
Analysis and Recognition (CBDAR2007), 2007, pp 107-113.

“Tesseract.” Ray Smith, http://code.google.com/p/tesseract-ocr/

“Decapod.” Image Understanding Pattern Recognition (IUPR) Research Group
at the DFK, http://code.google.com/p/ocropus

Droettboom, M., Fujinaga, I., MacMillan, K., Chouhury, G.S., DiLauro, T.,
Patton, M., Anderson, T. “Using the Gamera Framework for the Recognition
of Cultural Heritage Materials.” Journal Conference of Digital Libraries
(JDCL’02), July 13-17, 2002. For more information check
http://gamera.informatik.hsnr.de/

Shi, Z. and Govindaraju, V. “Dynamic Local Connectivity and Its Application
to Page Segmentation.” Proceedings of the 1st ACM workshop on Hardcopy
Document Processing (HDP-04), November 12, 2004, pp. 47-52.

Nagy, G., Seth S. and Viswanathan, M. “A Prototype Document Image
Analysis System for Technical Journals.” Computer, vol. 25(7), July 1992, pp.
10-22.

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

83

Wong, K.Y., Casey, R.G. and Wahl, R.M. “Document Analysis System.” IBM
Journal of Research and Development, vol 26(6), November 1982, pp. 647-656.

O’Gorman, L. “The Document Spectrum for Page Layout Analysis.” IEFFE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15(11),
November 1993, pp. 1162-1173.

Kise, K., Sato, A. and Iwata, M. “Segmentation of Page Images Using the Area
Voronoi Diagram.” Computer Vision and Image Understanding, vol. 70(3),
June 1998, pp. 370-382.

“Document Attribute Format Specification (DAFS).”
http://cool.conservation -us.org/bytopic/imaging/std/dafsdrft.html

Lee, C.H. and Kanungo, T. “The Architecture of TrueViz: A
GroundTRUth/Metadata Editing and VIsualiZing ToolKit.” Pattern
Recognition, vol. 36(2003), pp. 811-825. The software itself is available at
http://www.kanungo.com/software/software.html#trueviz

Mao, S. and Kanungo, T.,“PSET: A Page Segmentation Evaluation Toolkit.”
Proceedings of Document Analysis Systems, Rio de Janeiro, Brazil, 2000.

Mao, S. and Kanungo, T., “Software Architecture of PSET: A Page
Segmentation Evaluation Toolkit.” International Journal on Document
Analysis and Recognition (IJDAR), vol. 4(3), 2002, pp. 205-217.

Shafait, F., Keysers, D. and Breuel, T.M. “Performance Evaluation and
Benchmarking of Six -Page Segmentation Algorithms.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 30(6), June 2008, pp. 941-954.

Antonacopoulos, A., Gatos, B. and Bridson, D. “ICDAR2007 Page
Segmentation Competition.” Proceedings of the 9th International Conference
on Document Analysis and Recognition (ICDAR2007), Curtiba, Brazil,
September 2007, IEEE Computer Society Press, pp. 1279-1283.

Breuel, T.M. “A Practical, Globally Optimal Algorithm for Geometric
Matching under Uncertainty.” Electronic Notes in Theoretical Computer
Science, vol. 46, 2001, pp. 1-15.

Email exchange with Dr. Breuel, March 4, 2010.

Breuel, T.M. “Two Geometric Algorithms for Layout Analysis.” Document
Analysis Systems, August 2002, pp. 188-199.

“ABBYY Fine Reader”. http://www.frakturschrift.com/

[24]

[27]

28]

[29]

84

Phillips, .T. and Chhabra, A.K. “Empirical Performance Evaluation of
Graphics Recognition Systems.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21(9), September 1999, pp. 849-870.

Solter, N.A. and Kleper, S.J. Professional C++, Wiley Publishing, Inc., 2005,
pp 717-721.

Andersen, T. and Zhang, W. “Features for Neural Net Based Region
Identification of Newspaper Documents.” Proceedings of the Seventh
International Conference on Document Analysis and Recognition (ICDAR’03),

August 2003, pp 403-407.

Alginahi, Y., Fekri, D. and Sid-Ahmed, M.A. “A Neural-Based Page
Segmentation System.” Journal of Circuits, Systems and Computers, vol. 14(1),
2005, pp 109-122.

Keysers, D., Shafait, F. and Breuel, T.M. “Document Image Zone Classification
- a simple high-performance approach.” Second International Conference on
Computer Vision Theory and Applications, Barcelona, Spain, March 2007, pp.
4451.

Gonzales, R.C. and Woods, R.E. Digital Image Processing, Pearson Prentice
Hall, 2008, pp. 635-639.

APPENDIX A

COMPARISON PROGRAM

A.1 README File

Zone Comparison Program

The file structure is:

runZoneComp executable

ZoneComp.cpp main program source file

Rect.cpp class source file

Rect.hpp class header file
Description:

This program reads two xml files which list the page segmentation
zones of a document where the zones are categorized as "Text" or
"Non-text". One of the input documents is the "ground truth" which
means it contains the true and accurate zone information of the
document; whereas the other file contains the zones as detected by
a page segmentation program. ZoneComp then compares the two and
returns a metric of how well they match which is a measurement of
how well the page segmenter performed.

The metric is described in the following papers:

A. Antonacopoulos, B. Gatos and D. Bridson, "ICDAR2007 Page
Segmentation Competition," Proceedings of the 9th International
Conference on Document Analysis and Recognition, Curitiba, Brazil,
September 2007, IEEE Computer Society Press, pp. 1279-183.

I. Phillips and A. Chhabra, "Empirical Performance Evaluation of
Graphics Recognition Systems," IEEE Transaction on Pattern Analysis

and Machine Intelligence, Vol. 21, No. 9, pp. 849-870, Sept. 1999.

Note that if either XML file contains a document type tag like

85

<IDOCTYPE Page SYSTEM "Trueviz.dtd"> at the top of the page it needs

to be removed first.

To build the program type
>make

The usage is
>runZoneComp
<-g name of ground truth xml file>
<-d name of detected xml file>
<[-r rejection threshold]>
<[-a acceptance threshold]>
<[-v for verbosel>

Sample program output in default mode is:
Reporting results for the 1lcolpic300_2.xml
Segmentation Metric = 1.00

Sample program output in verbose mode is:
Reporting results for the 1colpic300_2.xml

The number of one-to-one matches for the text region is 2.
The number of one-to-one matches for the non-text region is 1.

The number of d_one-to-many matches for the
The number of d_one-to-many matches for the
The number of g_many-to-one matches for the
The number of g_many-to-one matches for the
The number of g_one-to-many matches for the
The number of g_one-to-many matches for the
The number of d_many-to-one matches for the
The number of d_many-to-one matches for the

The text detection rate = 1.00

The text recognition accuracy = 1.00

The text region metric = 1.00

The non-text detection rate = 1.00

The non-text recognition accuracy = 1.00
The non-text region metric = 1.00

Segmentation Metric = 1.00

text region is 0.
non-text region is
text region is 0.
non-text region is
text region is O.
non-text region is
text region is 0.
non-text region is

86

87

A.2 Code Documentation

A.2.1 Main Program Functions

This function prints the command line usage of the program:
void printUsage(const char* progName)

progName is the name of this program

This function initializes the XML platform:

void initializeXMLplatform()

This function checks the status of an input file
and returns the pointer its XML parser:
XercesDOMParser* checkFile(const char* fileName)
fileName is the name of the XML file to check

This function parses the xml documents:
void parseDoc(DOMNodeList* zoneList,
vector vector Rect zone, int numZones)
zonelList is the list of zones
zone is the list of rectangles

numZones is the number of zones

This function calculates the match scores of the documents:
void calculate_Match_Scores (vector vector Rect gtZone,

vector vector Rect dtZone,

88

vector vector vector float match_score,

vector vector vector int match_score_thres)
gtZone is the ground truth list of zones
dtZone is the etected list of zones
match_score the 2D vector (array) which holds the match scores
match_score_thres is the 2D vector (array)

which holds the thresholded match scores

This function calculates the G-Profile and the D-Profile:
void calculate_G_And_D_Profiles(

vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)

match_score the 2D vector (array) which holds the match scores

match_score_thres the 2D vector (array) which holds
the thresholded match scores

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function prints the G-Profile and the D-Profile:
void print_G_And_D_Profiles(
vector vector int G_profile,

vector vector int D _profile)

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the straight forward one-to-one matches:
void compute_one2one_Matches_Easy(

vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D_profile)

match_score is the 2D vector (array) which holds the match scores

match_score_thres the 2D wvector (array) which holds
the thresholded match scores

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the
many-to-one detected conflicts for the first two cases
void compute_one2one_Matches_Resolving_
D_many2one_Conflicts_part1(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds

the thresholded match scores

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving
the many-to-one detected conflicts for the third case:
void compute_one2one_Matches_Resolving_
D_many2one_Conflicts_part2(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D wvector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile)

This function computes the one-to-one matches by resolving the one-to-many
detected conflicts where the D-Profile is greater than or equal to two
void compute_one2one_Matches_Resolving_
D_one2many_Conflicts_part1(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,

vector vector int D_profile)

90

91

match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D wvector (array) which holds

the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the one-to-many
detected conflicts where the G-Profile is greater than or equal to two:
void compute_one2one_Matches_Resolving_
D_one2many_Conflicts_part2(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the partial Detected one-to-many matches and
the partial Ground truth many-to-one matches:
void compute_D_one2many_Matches(
vector vector vector float match_score,

vector vector vector int match_score_thres,

vector vector int G_profile,

vector vector int D_profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds

the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the partial Ground truth one-to-many matches
and the partial Detected many-to-one matches
void compute_G_one2many_ Matches(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D_profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function calculates the detection rates:
void calculate_Performance(vector vector Rect gtZone,
vector vector Rect dtZone)

gtZone the ground truth list of zones

92

93

dtZone the detected list of zones

A.2.2 Rect Class Constructor and Functions

This constructor creates a zero area rectangle at (0,0) coordinates:

Rect::Rect()

This constructor creates a rectangle with the given coordinates:
Rect::Rect(int xmin, int xmax, int ymin, int ymax)
xmin the coordinate of the minimum x value
xmazx the coordinate of the maximum x value
ymin the coordinate of the minimum y value

ymazx the coordinate of the maximum y value

This method prints the coordinates of a rectangle:

void Rect::print()

This method returns the x-value of the left side (minimum x) of a rectangle:

int Rect::getLeft()

This method returns the x-value of the right side (maximum x) of a rectangle:

int Rect::getRight()

This method returns the y-value of the top (minimum y) of a rectangle:

94

int Rect::getTop()

This method returns the y-value of the bottom (maximum y) of a rectangle:

int Rect::getBottom()

This method sets the coordinates of a rectangle:
void Rect::setCoords(int xmin, int xmax, int ymin, int ymax)
xmin the coordinate of the minimum x value
xmazx the coordinate of the maximum x value
ymin the coordinate of the minimum y value

ymazx the coordinate of the maximum y value

This method sets the type or class of a rectangle:
void Rect::setType(int inType)

inType the class of the rectangle (i.e. Text or Non-text)

This method returns the type or class of a rectangle:

int Rect::getType()

This method calculates and returns the match score of two rectangles:
float Rect::getMatchScore(Rect otherRect)

otherRect the rectangle to compare to

95

APPENDIX B

XML OUTPUT

B.1 get-text-columns of ocr-detect-columns.cc

void get_text_columns(rectarray &textcolumns,
rectarray &textlines,
rectarray &gutters,
rectarray &graphics){ <--- graphics array now passed

if('textlines.length()) return;

if(!gutters.length()){
rectangle column = rectangle(textlines[0]);
rectangle tempcolumn = column;
for(int i=1; i<textlines.length(); i++){
tempcolumn.include (textlines[i]);
bool crosses_graphics = false; new graphics code
for(int j=0; j<graphics.length(); j++){ |
if (tempcolumn.fraction_covered_by(graphics[j])>0) |
crosses_graphics = true;
} |
if (crosses_graphics){
textcolumns.push(column) ;
column = rectangle(textlines[i]);
tempcolumn = column; v
} elsef{
column.include(textlines[i]);

}
textcolumns.push(column) ;
return;

96

rectangle column = rectangle(textlines[0]);
rectangle tempcolumn =
rectangle(textlines[0] .dilated_by(-10,-2,-10,-2));
for(int i=1; i<textlines.length(); i++){
tempcolumn.include(textlines[i].dilated_by(-10,-2,-10,-2));
bool intersects_gutter = false;
bool gutter_penetrating from_below = false;
bool gutter_penetrating from_above = false;
for(int j=0; j<gutters.length(); j++){
point top = point(gutters[j].xcenter(),gutters[j]l.y1) ;
point bottom = point(gutters[j].xcenter(),gutters[j].y0) ;
if (tempcolumn.overlaps (gutters[j]1)){
intersects_gutter = true;
if (textlines[i].contains(top))
gutter_penetrating_ from_below
if (textlines[i].contains(bottom))
gutter_penetrating_from_above = true;
break;

true;

}
bool crosses_graphics = false; more new graphics code
for(int j=0; j<graphics.length(); j++){
if (tempcolumn.fraction_covered_by(graphics[j])>0) |
crosses_graphics = true; v
}
if (((intersects_gutter) || (crosses_graphics))
&& 'gutter_penetrating_ from_below){
textcolumns.push(column) ;
column = rectangle(textlines[i]);
if (!gutter_penetrating_from_above)
tempcolumn=rectangle(textlines[i].dilated_by(-10,-2,-10,-2));
else
tempcolumn=rectangle();
} else{
column.include(textlines[i]);

3

textcolumns.push(column); <——===—== Push command added.

97

B.2 Functions of ocr-hps-output.cc

void hps_dump_preamble (FILE *output) {
fprintf (output, "<!DOCTYPE html\n");
fprintf (output, " PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\n");
fprintf (output,
" http://www.w3.org/TR/xhtml1/DTD/xhtmlil-transitional.dtd\">\n");

void hps_dump_head (FILE *output) {

fprintf (output, "<head>\n");
fprintf (output,

"<meta name=\"ocr-capabilities\" content=\"ocr_line ocr_page\" />\n");
fprintf (output, "<meta name=\"ocr-langs\" content=\"en\" />\n");
fprintf (output, "<meta name=\"ocr-scripts\" content=\"Latn\" />\n");
fprintf (output, "<meta name=\"ocr-microformats\" content=\"\" />\n");
fprintf (output,

"<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />");
fprintf (output, "<title>OCR Output</title>\n");
fprintf (output, "</head>\n");

void hps_dump_regions(FILE *output, rectarray &textArray,
rectarray &graphArray, int imageHeight)
{
fprintf (output, "<Page>\n");

for(int i=0; i<textArray.length(); i++)

{
int x0 = textArray[i].x0;
int yO = imageHeight - textArray[i].y1l;
int x1 = textArrayl[i].x1;
int y1 = imageHeight - textArray[i].yO;

fprintf (output, "<Zone>\n");

fprintf (output, "<ZoneCorners>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);
fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);
fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);

fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);
fprintf (output, "</Vertex>\n");

fprintf (output, "</ZoneCorners>\n");

fprintf (output, "<Classification>\n");

fprintf (output, "<Category Value=\"Text\">\n");
fprintf (output, "</Category>\n");

fprintf (output, "</Classification>\n");

fprintf (output, "</Zone>\n");

}
for(int i=0; i<graphArray.length(); i++)
{
int x0 = graphArray[i] .x0;
int yO = imageHeight - graphArrayl[i].y1;
int x1 = graphArray[i].x1;
int y1 = imageHeight - graphArrayl[i].yO0;
fprintf (output, "<Zone>\n");
fprintf (output, "<ZoneCorners>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);
fprintf (output, "</Vertex>\n");
fprintf (output, "</ZoneCorners>\n");
fprintf (output, "<Classification>\n");
fprintf (output, "<Category Value=\"Non-text\">\n");
fprintf (output, "</Category>\n");
fprintf (output, "</Classification>\n");
fprintf (output, "</Zone>\n");
}

fprintf (output, "</Page>\n");

98

APPENDIX C

RAST UPGRADE

C.1 Excerpts of ocr-layout/ocr-layout-rast.cc

void SegmentPageByRAST: :segmentInternal (intarray &visualization,
intarray &image,
bytearray &in_not_inverted,
bool need_visualization,
rectarray &extra_obstacles) {

const int zero = 0;
0x00f£f££00;

const int yellow
bytearray in;
copy(in, in_not_inverted);
make_page_binary_and_black(in);

// Do connected component analysis
intarray charimage;
copy(charimage,in) ;
label_components(charimage,false);

// Clean non-text and noisy boxes and get character statistics
rectarray bboxes;
bounding_boxes(bboxes,charimage) ;
if (bboxes.length()==0){
makelike (image,in);
fill(image,0x00ffffff);
return ;

autodel<CharStats> charstats(make_CharStats());
charstats->getCharBoxes (bboxes) ;
charstats—->calcCharStats();

99

100

rectarray cboxes;
for(int i=0; i<charstats->char_boxes.length(); i++) {
cboxes.push(charstats->char_boxes[i]);

}

// Compute Whitespace Cover

autodel<WhitespaceCover> whitespaces(
make_WhitespaceCover(0,0,in.dim(0) ,in.dim(1)));

rectarray whitespaceboxes;

whitespaces->compute(whitespaceboxes,charstats->char_boxes);

// Find whitespace column separators (gutters)
autodel<ColSeparators> whitespace_obstacles(make_ColSeparators());
rectarray gutters, column_candidates;
whitespace_obstacles—>

findGutters(column_candidates, whitespaceboxes, *charstats);
whitespace_obstacles->filterOverlaps(gutters, column_candidates);

// Separate horizontal/vertical rulings from graphics

rectarray graphics;

rectarray hor_rulings;

rectarray vert_rulings;

autodel<ExtractRulings> rulings(make_ExtractRulings()) ;

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,
extra_obstacles,charstats->boxHeight) ;

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,
charstats->large_boxes,charstats->boxHeight) ;

// Add whitespace gutters and the user-supplied obstacles

// to a list of obstacles

rectarray textline_obstacles;

for(int i=0;i<gutters.length() ;i++)
textline_obstacles.push(gutters[i]);

for(int i=0;i<extra_obstacles.length();i++)
textline_obstacles.push(extra_obstacles[i]);

for(int i=0;i<vert_rulings.length();i++)
textline_obstacles.push(vert_rulings[il);

// Extract textlines
narray<TextLine> textlines;

autodel<CTextlineRAST> ctextline(make_CTextlineRAST());
ctextline->min_q = 2.0;

101

ctextline->min_count = 2;

ctextline->min_length= (int) 2+*charstats->boxWidth;
ctextline->max_results = max_results;

ctextline->min_gap = 3*charstats->boxWidth;
ctextline->extract(textlines,textline_obstacles,graphics,charstats);

// Capture the connected components that were rejected as characters.
rectarray rejected_cboxes;
for (int i=0; i<cboxes.length(); i++) {
bool overlap = false;
for (int j=0; j<textlines.length(); j++) {
rectangle textline_box = textlines[j].bbox;
if (cboxes[i].fraction_covered_by(textline_box)>0)
overlap = true;
}
if (loverlap) {
rejected_cboxes.push(cboxes[i]);

}

// Merge the rejects then place them into the graphics array.
rectarray char_graphics;
int textlineHeight = charstats->boxHeight;
int dilation = 0.25%textlineHeight;
bool merged = closeRects(rejected_cboxes, char_graphics, dilation, dilation);
while (merged) {
rectarray mBoxes;
merged = closeRects(char_graphics, mBoxes, dilation, dilation);
if (merged) { char_graphics = mBoxes; }
}
for (int i=0; i<char_graphics.length(); i++) {
graphics.push(char_graphics[i]);
X

// 0f the small connected components, select those which do not
// overlap any textlines for further processing.
rectarray small_graphics;
for (int i=0; i<charstats->small_boxes.length(); i++) {

bool overlap = false;

for (int j=0; j<textlines.length(); j++) {

if (textlines[j].bbox.fraction_covered_by(charstats->small_boxes[i])>0)
overlap = true;

102

if (!overlap)
small_graphics.push(charstats->small_boxes[i]);

// Now select the very small graphics rectangles.
int min_area = 0.1*textlineHeight*textlineHeight;
for (int i=0; i<graphics.length(); i++) {
if (graphics[i].area()<min_area) {
bool overlap = false;
for (int j=0; j<textlines.length(); j++) {
if (textlines[j].bbox.fraction_covered_by(graphics[i])>0)
overlap = true;
X
if (loverlap)
small_graphics.push(graphics[i]);

// Merge all of the small graphics components which correspond
// to isolated pixels or gray areas in images then add them to
// the graphics array.
rectarray small_boxes;
dilation = 0.2b5*textlineHeight;
merged = closeRects(small_graphics, small_boxes, dilation, dilation);
while (merged) {
rectarray mGraphics;
merged = closeRects(small_boxes, mGraphics, dilation, dilation);
if (merged) { small_boxes = mGraphics; }
}
for (int i=0; i<small_boxes.length(); i++) {
rectangle box = small_boxes[i];
if ((box.width() < textlineHeight) && (box.height() > 10 * textlineHeight))
continue;
graphics.push(box) ;

// Merge overlapping text line boxes and insert them into the graphics array.
bool mergedArrays = true;
while (mergedArrays) {

narray<TextLine> onlyTextlines;

mergedArrays = mergeText(textlines, onlyTextlines, graphics);

if (mergedArrays) { textlines = onlyTextlines; }

103

// Clean up the graphics array by removing any little rectangles
// that might have been created while processing the gray areas.
min_area = textlineHeight*textlineHeight;
rectarray filtered_graphics2;
for (int i=0; i<graphics.length(); i++) {
if (graphics[i].area()>min_area)
filtered_graphics2.push(graphics[il);
X
graphics = filtered_graphics2;

// Move textlines that overlap graphics to the graphics array,
// merge overlapping graphics boxes into megagraphics boxes
// then merge nearby graphics boxes.
// Continue doing this until no textlines overlap graphics
bool updated = true;
dilation = 1.4*textlineHeight;

// 1.6 merges graph axis titles, but also figures

// whereas 1.4 doesn’t merge figures.
while (updated) {

narray<TextLine> onlyTextlines;

updated = mergeTextAndGraphics/(

textlines, onlyTextlines, graphics, dilation);
if (updated) { textlines = onlyTextlines; }

// Sort textlines in reading order

autodel<ReadingOrderByTopologicalSort>

reading_order (make_ReadingOrderByTopologicalSort());

reading_order->sortTextlines(
textlines,gutters,hor_rulings,vert_rulings,*charstats);

rectarray textcolumns;

rectarray paragraphs;

rectarray textline_boxes;

for(int i=0, l=textlines.length(); i<l; i++)
textline_boxes.push(textlines[i] .bbox);

// Group textlines into text columns

// Since vertical rulings have the same role as whitespace gutters,

// add them to vertical separators list as long as they are true gutters.
rectarray vert_separators;

for(int i=0,l=vert_rulings.length(); i<1l; i++){

104

vert_separators.push(vert_rulings[i]);
}
for(int i=0,l=gutters.length(); i<1l; i++){
bool overlap = false;
for(int j=0; j<graphics.length(); j++) {
if (gutters[i].fraction_covered_by(graphics[j])>0)
overlap = true;
}
if (loverlap)
vert_separators.push(gutters[i]);

get_text_columns (textcolumns, textline_boxes, vert_separators, graphics);

FILE *output = stdout;

//hps_dump_preamble (output) ;

//hps_dump_head (output) ;

hps_dump_regions(output, textcolumns, graphics, in_not_inverted.dim(1));

C.2 Excerpts of ocr-layout/ocr-char-stats.cc

/

¥ ¥ X X X ¥ X

*

Obrief This function finds the major peaks of a histogram which

have two consecutive lower and higher points to each side.

Oparam locations the array in which to place the peak locations
@param a the histogram

Oparam minsize the locatin on the histogram to start examining
@param maxsize the locatin on the histogram to stop examining
Oparam sigma the amount of smoothing to apply

static void major_peaks(intarray &locations, floatarray &a,
int minsize, int maxsize, float sigma)

{

locations.clear();
floatarray v;
copy(v, a);
if (sigma>0)
gaussld(v, sigma);
int start = max(2, minsize);
int stop = min(v.length()-3, maxsize);

105

float maxValue = 0;
for (int i=start; i<stop; i++) {
if (v[il < 1) { v[i]l = 0; }
if (((vlil>v[i-1]1) && (v[i-11>v[i-21)) &&
((wlil>v[i+1]) && (v[i+1]>v[i+2])) &&
(v[i] > 0.05 * maxValue))

locations.push(i);
if (locations.length() == 1)
maxValue = v[i];

3
b
3
VES
* Q@brief This function determines the value of the rightmost peak of
* a histogram by iteratively smoothing it until no more than
* the given number of peaks remain.
* Q@param hist the histogram
* Q@param peakNumber the desired number of peaks
*/

static int get_hist_peak(floatarray &hist, int peakNumber)
{

int start = 2;

int stop = hist.lengthQ);

int numPeaks = O;

int smooth = 0;

int peak = 0;

bool needsSmoothing = true;

while ((needsSmoothing) && (smooth < 15)) {
intarray modes;
major_peaks(modes, hist, start, stop, smooth);

if ((numPeaks = modes.length()) == peakNumber)

{ // return the value of the peak of choice

peak = modes (peakNumber-1);

needsSmoothing = false;

}

else if (numPeaks == 0)

{ // no peaks were found so more smoothing is needed
needsSmoothing = true;

}

106

else if (numPeaks < peakNumber)

{ // too few peaks were found, take the rightmost
peak = modes(numPeaks-1) ;

needsSmoothing = false;

}

smooth++;

}

if (smooth == 15) { peak = 0; }

return peak;

}

C.3 Excerpts of ocr-layout/ocr-layout-manip.cc

VAL

* @brief This function merges text lines then puts them into the graphics array.
* Q@param textArray the input text line array

* Q@param newTextArray the output text line array

* Q@param graphicsArray the graphics array

* Q@return true if text lines were moved to the graphics array

*/
bool mergeText (narray<TextLine> &textArray,
narray<TextLine> &newTextArray,
rectarray &graphicsArray)
{
int i, j, numBoxes = textArray.length();
int mergeStatus[numBoxes];
bool arraysMerged=false;
for(i=0; i<numBoxes; i++) { mergeStatus([i] = 0; }
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
rectangle t1Bbox_i = textArray[i] .bbox;
rectangle t1lBbox_j = textArray[j].bbox;
if (t1Bbox_i.fraction_covered_by(t1Bbox_j)>0) {
float t1lBbox_i_height = t1Bbox_i.height();
float tlBbox_j_height = t1Bbox_j.height();
float diff = abs(tlBbox_i_height - tlBbox_j_height);
float sum = tlBbox_i_height + tlBbox_j_height;
float ratio;
if (t1Bbox_i_height < t1Bbox_j_height)

107

ratio = tlBbox_i_height / t1Bbox_j_height;

else

ratio = tlBbox_j_height / t1Bbox_i_height;
if (ratio < 0.7)
{ // we’ve got a large and small rectangle
rectangle combinedRect = t1Bbox_i.inclusion(t1Bbox_j);
graphicsArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
} else
{ // we probably have two text lines, check the overlap
if (diff/sum > 0.15) {
rectangle combinedRect = t1lBbox_i.inclusion(t1Bbox_j) ;
graphicsArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;

j+ts

}
for(i=0; i<numBoxes; i++)

if (mergeStatus[i]==0) { newTextArray.push(textArray[i]); }
return arraysMerged;

/**
* @brief This function merges overlapping rectangles.
* Q@param currentArray the input array
* @param newArray the output array
* Qreturn true if rectangles were merged
*/
bool mergeRects(rectarray ¤tArray, rectarray &newArray)
{
int i, j, numBoxes = currentArray.length();
int mergeStatus[numBoxes];
bool lastMerged=false, arraysMerged=false;
if (numBoxes==0) { return false; }

~

* X X ¥ X *

*/

108

for(i=0; i<numBoxes; i++) { mergeStatus([i] = 0; }
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
if (currentArray[i].fraction_covered_by(currentArray[j])>0) {
rectangle combinedRect =
currentArray[i].inclusion(currentArray[j]l);
newArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
if (j == numBoxes-1) { lastMerged = true; }

}
j+ts
}
}
if (mergeStatus[i]==0) { newArray.push(currentArray[i]l); }

}

if (!lastMerged) { newArray.push(currentArray[i]); }
return arraysMerged;

@brief This function closes rectangles by dilating, merging then eroding them.
Oparam currentArray the input array

@param newArray the output array

Oparam x_dilation the horizontal dilation

Oparam y_dilation the vertical dilation

Q@return true if rectangles were merged

bool closeRects(rectarray ¤tArray,

rectarray &newArray,
int x_dilation,
int y_dilation)

int i, j, numBoxes = currentArray.length();
rectarray dilatedArray;

int mergeStatus[numBoxes];

bool lastMerged=false, arraysMerged=false;

if (numBoxes==0) { return false; }

VETS

* X ¥ X ¥

*/

109

for(i=0; i<numBoxes; i++)

{
dilatedArray.push(currentArray[i] .dilated_by(
x_dilation, y_dilation, x_dilation, y_dilation));
mergeStatus[i] = 0;
}
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
if (dilatedArray[i].fraction_covered_by(dilatedArray[j]1)>0) {
rectangle combinedRect =
dilatedArray[i] .inclusion(dilatedArray[j]);
newArray.push(combinedRect.dilated_by(
-x_dilation, -y_dilation, -x_dilation, -y_dilation));
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
if (j == numBoxes-1) { lastMerged = true; }
}
j+ts
}
}
if (mergeStatus[i]==0) { newArray.push(currentArray([i]); }
}
if (!lastMerged) { newArray.push(currentArray([i]); }

return arraysMerged;

@brief This function closes rectangles by dilating, merging then eroding them.
Oparam textArray the input text line array

@param newTextArray the output text line array

Oparam dilation the graphics dilation

Q@return true if rectangles were added to the new array

bool mergeTextAndGraphics(narray<TextLine> ¤tTextArray,

narray<TextLine> &newTextArray,
rectarray &graphicsArray,
int dilation)

bool update = false;

110

// Move textlines that overlap graphics to the graphics array
bool overlap;
for(int i=0; i<currentTextArray.length(); i++) {
overlap = false;
rectangle tlBbox = currentTextArray[i] .bbox;
for(int j=0; j<graphicsArray.length(); j++) {
if (t1Bbox.fraction_covered_by(graphicsArray[j]1)>0)
overlap = true;
3
if (overlap) {
graphicsArray.push(t1Bbox) ;
update = true;
3
else
newTextArray.push(currentTextArray[i]);

// Merge overlapping graphics boxes into megagraphics boxes
bool mergedArrays = true;
while (mergedArrays) {
rectarray mGraphics;
mergedArrays = mergeRects(graphicsArray, mGraphics);
if (mergedArrays) {
graphicsArray = mGraphics;
update = true;

// Merge nearby graphics boxes
mergedArrays = true;
while (mergedArrays) {
rectarray mGraphics;
mergedArrays = closeRects(graphicsArray, mGraphics, dilation, dilation);
if (mergedArrays) {
graphicsArray = mGraphics;
update = true;

}

return update;

111

APPENDIX D

VORONOI UPGRADE

D.1 Excerpts of ocr-voronoi/ocr-voronoi-ocropus.cc

// Color the Voronoi zones and lines
intarray voronoi_zones, voronoi_lines;
makelike(voronoi_zones, voronoi_diagram_image) ;
makelike(voronoi_lines, voronoi_diagram_image) ;
for (int i=0; i<voronoi_diagram_image.length1d(); i++){
if (voronoi_diagram_image.at1d(i)==0x00ffffff ||
voronoi_diagram_image.at1d(i)==0) {
// black or white pixels
voronoi_zones.atld(i) = 1;
voronoi_lines.at1d(i) = 0;

}

else {
// blue pixels corresponding to the lines
voronoi_zones.atld(i) = 0;
voronoi_lines.at1ld(i) = 1;

}

// Define the regions by extracting the connected components
// created above and color each differently

// The first zone is the lines.

int numZones = label_components(voronoi_zones,false);

// Now get the bounding boxes of the connected components
bytearray in;

copy(in, in_not_binary);

make_page_binary_and_black(in);

intarray charimage;

112

copy(charimage,in) ;
label_components(charimage,false);

rectarray bboxes;
bounding_boxes (bboxes, charimage) ;

autodel<CharStats> charstats(make_CharStats());
charstats->getCharBoxes (bboxes) ;
charstats->calcCharStats();

int numCharBoxes = charstats->char_boxes.length();

rectarray cBoxes;

for (int i=0; i<numCharBoxes; i++)
cBoxes.push(charstats->char_boxes[i]);

int overlap[numCharBoxes] ;
for (int i=0; i<numCharBoxes; i++)
overlap[i] = 0;

for (int i=0; i<numCharBoxes; i++) {
for (int j=i+1; j<numCharBoxes; j++) {
if (cBoxes[i].overlaps(cBoxes[jl)) {
overlap[i] = 1;
overlap[j]l = 1;

// Find the extreme points of the character boxes in each zone.
vector<int> wrap_around;
int xminText[numZones], xmaxText[numZones],
yminText [numZones], ymaxText[numZones];
for (int z=0; z<numZones; z++) {
xminText [z] = pageWidth;
xmaxText[z] = 0;
yminText [z] = pageHeight;
ymaxText [z] = O;
wrap_around.push_back(0) ;

// Can only create one zone character box array at a time
// because of memory limitations.
rectarray printZone;

113

rectangle textRect[numZones];
bool textZone[numZones];
for (int z=1; z<numZones; z++) {
rectarray zoneBoxes;
for (int j=0; j<numCharBoxes; j++) {
if (overlap[j]l == 0) {
rectangle box = cBoxes[j];
int xmin = box.x0;
int ymin = box.yO0;

if (z == voronoi_zones(xmin, ymin)) {
zoneBoxes . push (box) ;
int xmax = box.x1;

int ymax = box.yl;

if (xmin < xminText[z]) { xminText[z] = xmin; }
if (xmax > xmaxText[z]) { xmaxText[z] = xmax; }
if (ymin < yminText[z]) { yminText[z] = ymin; }
if (ymax > ymaxText[z]) { ymaxText[z] = ymax; }

}
if (zoneBoxes.length() > 0) {

if (xminText[z] < xmaxText[z])

textRect [z]

rectangle (xminText[z], yminText[z],
xmaxText [z], ymaxText[z]);
else
textRect [z] = rectangle();

textZone[z] = is_text_block(zoneBoxes, wrap_around, z);
}
else
textZone[z] = false;

// Create an array of the pixels of each zone.

vector<vector<Pixel> > vZone;

for (int z=0; z<numZones; z++)
vZone.push_back(vector<Pixel>());

for (int x=0,w=pageWidth;x<w;x++){
for (int y=0,h=pageHeight;y<h;y++){
Pixel pixel;
pixel.x = x;
pixel.y = y;

vZone [voronoi_zones(x,y)] .push_back(pixel);

// Dilate the lines dividing the zones to get the perimeters.

intarray dilated_lines;
makelike(dilated_lines, voronoi_lines);
for (int x=0,w=pageWidth;x<w;x++)
for (int y=0,h=pageHeight;y<h;y++)
dilated_lines(x,y) = 0;

for (int x=1,w=pageWidth-1;x<w;x++){
for (int y=1,h=pageHeight-1;y<h;y++){
if (voronoi_lines(x,y) > 0){
dilated_lines(x,y+1) = 1;

dilated_lines(x+1,y+1) = 1;
dilated_lines(x+1,y) = 1;
dilated_lines(x+1,y-1) = 1;
dilated_lines(x,y-1) = 1;
dilated_lines(x-1,y-1) = 1;
dilated_lines(x-1,y) = 1;
dilated_lines(x-1,y+1) = 1;

// Create an array of the zone perimeters.

vector<vector<Pixel> > vPeri;

for (int z=0; z<numZones; z++)
vPeri.push_back(vector<Pixel>());

for (int z=1; z<numZones; z++) {

for (int p=0; p<vZonel[z].size(); p++) {

int x = vZone[z] [p] .x;
int y = vZonelz] [p].y;
if (dilated_lines(x,y) == 1)

vPeri [z] .push_back(vZone[z] [p]);

// Find the extreme points of each zone.

Pixel xminZone[numZones], xmaxZone[numZones],
yminZone [numZones], ymaxZone [numZones] ;

114

115

for (int z=0; z<numZones; z++) {
xminZone[z] .x = pageWidth;
xmaxZone[z] .x = 0;
yminZone[z] .y = pageHeight;
ymaxZone[z].y = 0;

}
for (int z=1; z<numZones; z++) {
for (int p=0; p<vPeril[z].size(); p++) {
int x = vPerilz] [p].x;
int y = vPeril[z][p].y;

if (x < xminZone[z].x) { xminZone([z].x = x; xminZone[z].y = y; }
if (x > xmaxZone[z].x) { xmaxZonel[z].x = x; xmaxZone[z].y = y; }
if (y < yminZone[z].y) { yminZone[z].y = y; yminZone[z].x = x; }
if (y > ymaxZonel[z].y) { ymaxZonel[z].y = y; ymaxZone[z].x = x; }

// Create an array to label zones text or not.

vector<int> converted;

vector<int> imageMap;

for (int z=0; z<numZones; z++){
converted.push_back(0);
imageMap.push_back(z) ;

// Put the image-like zones into an array according to size.
vector<int> zoneBySize;
int firstIndex = 1; // start with one since zero is the lines
bool firstAdded = false;
while (!firstAdded) {
if ('textZone[firstIndex]) {
zoneBySize.push_back(firstIndex) ;
firstAdded = true;
}
else
firstIndex++;

for (int z=firstIndex+1l; z<numZones; z++)
{
if (!textZonel[z])
{
int j = 0;

116

int numPixels = vZonel[z].size();
bool foundPlace = false;
while ((!foundPlace) && (j < zoneBySize.size()))
if (numPixels < vZone[zoneBySize[jl].size())
foundPlace = true;
else
jtts
if (j == 0)
zoneBySize.insert (zoneBySize.begin(), 2z);
else if (j == zoneBySize.size())
zoneBySize.push_back(z) ;
else
zoneBySize.insert (zoneBySize.begin()+j, z);

// Create a vector of graphics
vector<int> graphics; // the int value will correspond to the zone number

// Consider the smallest zone on the list. If it’s really small and
// is considered image-like, call it an image,

// find its neighbors, convert them to my zone, and so on.

for (int zi=0; zi<zoneBySize.size(); zi++)

{
int currentNum = zoneBySizel[zil;
if (('textZone[currentNum]) && (converted[currentNum] == 0))
{

bool contain = false;
for (int g=0; g<graphics.size(); g++)
if (graphics[g] == currentNum) { contain = true; }
if (!contain) { graphics.push_back(currentNum); }
converted[currentNum] = 1;

int zoneCount [numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones (voronoi_zones, vPeri, currentNum,
zoneCount, pageWidth, pageHeight) ;

for (int z=1; z<numZones; z++) {
if ((zoneCount[z] > 0) && (!'textZonel[z]) && (converted[z] == 0))
{

convertZone(voronoi_zones, vZone, vPeri, converted, imageMap,

117

numZones, z, currentNum,
pageWidth, pageHeight, textZone, graphics);

// Now start cleaning up the rectangular zones.
// Create an array of text segments.
int textSeglndex = O;
int textMap[numZones] ;
rectarray textSegmentsO;
for (int z=1; z<numZones; z++) {
if (converted[z] == 0) {
textSegmentsO.push(textRect [z]);
textMap [textSegIndex++] = z;

// Create an array of image segments.
// One at a time like the text zones because of memory limitations.
int numImages = graphics.size();
int xminImage [numImages], xmaxImage [numImages],
yminImage [numImages], ymaxImage [numImages];
for (int i=0; i<numImages; i++) {
xminImage[i] = pageWidth;
xmaxImage[i] = 0;
yminImage[i] = pageHeight;
ymaxImage[i] = O;

}
rectarray imageSegmentsO;
for (int i=0; i<numImages; i++) {
int imgZone = graphics[i];
for (int x=0,w=pageWidth;x<w;x++){
for (int y=0,h=pageHeight;y<h;y++){
if (voronoi_zones(x,y) == imgZone) {
if (voronoi_diagram_image(x,y) == 0) {
if (x < xminImage[i]) { xminImage[i] = x;
if (x > xmaxImage[i]) { xmaxImagel[i] = x;
if (y < yminImage[i]) { yminImage[i] = y;
if (y > ymaxImagelil) { ymaxImagel[i] =

R s

|
<

118

}
imageSegmentsO.push(rectangle (xminImage[i], yminImagel[i],
xmaxImage[i], ymaxImage[i]));

// Identify text segments that are completely covered by image segments
// and delete them.
int notTextO[textSegmentsO.length()];
for (int t=0; t<textSegmentsO.length(); t++)
notTextO[t] = 0;

for (int i=0; i<imageSegmentsO.length(); i++) {
for (int t=0; t<textSegmentsO.length(); t++) {
if (imageSegmentsO[i].includes(textSegmentsO[t]))
notTextO[t] = 1;

}
rectarray textSegmentsl;
for (int t=0; t<textSegmentsO.length(); t++) {
if (notTextO[t] == 0)
textSegmentsl.push(textSegmentsO[t]);

// Identify image segments that are completely covered by text zones,
// delete them and convert the text segment to an image.
int notImageO[imageSegments0O.length()];
for (int i=0; i<imageSegmentsO.length(); i++)
notImageO[i] = 0;

int notTextl[textSegmentsl.length()];
for (int t=0; t<textSegmentsl.length(); t++)
notText1[t] = 0;

rectarray tempTextZone;
for (int t=0; t<textSegmentsl.length(); t++) {
int z = voronoi_zones(textSegmentsi[t].x0, textSegmentsl[t].y0);
xminText [z] = pageWidth;
xmaxText[z] = 0;
yminText [z] = pageHeight;
ymaxText [z] = 0;
for (int p=0; p<vZonel[z].size(); p++) {
Pixel pixel = vZonel[z] [p];

119

int x = pixel.x;

int y = pixel.y;

if (voronoi_diagram_image(x,y) == 0) {
if (x < xminText[z]) { xminText[z] = x;
if (x > xmaxText[z]) { xmaxText([z] =
if (y < yminText[z]) { yminText[z] = y;
if (y > ymaxText[z]) { ymaxText[z] = y;

|
kel

W

}
tempTextZone.push(rectangle(xminText [z], yminText[z],
xmaxText [z], ymaxText[z]));
for (int i=0; i<imageSegmentsO.length(); i++) {
if (tempTextZone[t].includes(imageSegments0[i])) {
notImageO[i] = 1;
notTextl1[t] = 1;

rectarray imageSegmentsl;
for (int i=0; i<imageSegmentsO.length(); i++)
if (notImageO[i] == 0)
imageSegments1.push(imageSegmentsO[i]);

for (int t=0; t<textSegmentsl.length(); t++) {
if (notText1[t] == 1) {
imageSegments1.push(tempTextZone[t]);

}
rectarray textSegments2;
for (int t=0; t<textSegmentsl.length(); t++)
if (notText1[t] == 0)
textSegments2.push(textSegmentsi[t]);

// Break image segments that cross column dividers and

// text segments that wrap around images.

rectarray newTextSegs, newlmageSegs;

int brokenTextSegs[textSegments2.length()],
brokenImageSegs [imageSegmentsl.length()];

for (int t=0; t<textSegments2.length(); t++)
brokenTextSegs[t] = 0;

for (int i=0; i<imageSegmentsl.length(); i++)

120

brokenImageSegs[i] = 0;

for (int t=0; t<textSegments2.length(); t++) {
for (int i=0; i<imageSegmentsl.length(); i++) {
if (textSegments2[t].overlaps(imageSegments1[i])) {
if (wrap_around[textMap[t]] == 0) {
breakImage (imageSegmentsl, textSegments2, newImageSegs, i, t);
brokenImageSegs[i] = 1;
} else {

breakText (textSegments2, imageSegmentsl, newTextSegs, t, i);
brokenTextSegs[t] = 1;

int textOverlaps[newTextSegs.length()];
for (int i=0; i<newTextSegs.length(); i++)
textOverlaps[i] = 0;

for (int i=0; i<newTextSegs.length(); i++) {
for (int j=0; j<newTextSegs.length(); j++) {
if ((4 !'= j) && (newTextSegs[i].overlaps(newTextSegs[jl1))) {
if (newTextSegs[i].area() > newTextSegs[j].area())
textOverlaps[i] = 1;
else
textOverlaps[j] = 1;

int imageOverlaps[newImageSegs.length()];
for (int i=0; i<newImageSegs.length(); i++)
imageOverlaps[i] = 0;

for (int i=0; i<newImageSegs.length(); i++) {
for (int j=0; j<newImageSegs.length(); j++) {
if ((1 != j) && (newImageSegs[i].overlaps(newImageSegs[j]1))) {
if (newImageSegs[i].area() > newImageSegs[j].area())
imageOverlaps[i] = 1;
else
imageOverlaps[j] = 1;

rectarray finalTextSegments;
for (int t=0; t<textSegments2.length(); t++)
if (brokenTextSegs([t] == 0)
finalTextSegments.push(textSegments2[t]);
for (int t=0; t<newTextSegs.length(); t++)
if (textOverlaps[t] == 0)
finalTextSegments.push(newTextSegs[t]);

rectarray finallmageSegments;
for (int i=0; i<imageSegmentsl.length(); i++)
if (brokenImageSegs[i] == 0)
finalImageSegments.push(imageSegments1[i]);
for (int i=0; i<newImageSegs.length(); i++)
if (imageOverlaps[i] == 0)
finalImageSegments.push(newImageSegs[i]);

D.2 Excerpts of ocr-voronoi/ocr-zone-manip.cc

121

void getBorderingZones(intarray &voronoi_zones, vector<vector<Pixel> >& vPeri,
int z, int* zoneCount, int pageWidth, int pageHeight)

{
// Now tally the number of zones along the border.

// For each pixel, venture in all four directions until the line is crossed.

for (int p=0; p<vPeril[z].size(); p++)

{
int zoneEast=0, zoneWest=0, zoneNorth=0, zoneSouth=0;
int stepEast=0, stepWest=0, stepNorth=0, stepSouth=0;

int eastX = vPeril[z] [p].x+1;
int eastY = vPeril[z] [p].y;
while ((eastX < pageWidth) &&

((zoneEast = voronoi_zones(eastX, eastY)) == 0) &&

(stepEast < 20)) {
stepEast++; eastX++;

int westX = vPeril[z][p].x-1;

122

int westY = vPerilz] [p].y;
while ((westX >= 0) &&
((zoneWest = voronoi_zones(westX, westY)) == 0) &&
(stepWest < 20)) {
stepWest++; westX--;

}
int southX = vPeril[z] [p].x;
int southY = vPeri(z] [p].y-1;

while ((southY >= 0) &&
((zoneSouth = voronoi_zones(southX, southY)) == 0) &&
(stepSouth < 20)) A
stepSouth++; southY--;

int northX = vPeril[z] [p].x;
int northY = vPeri[z] [p].y+1;
while ((northY < pageHeight) &&
((zoneNorth = voronoi_zones(northX, northY)) == 0) &&
(stepNorth < 20)) {
stepNorth++; northY++;

// If the line was crossed in any of the directions

// add that zone to the count.

if ((stepEast > 0) && (stepEast < 20))
zoneCount [zoneEast] ++;

else if ((stepWest > 0) && (stepWest < 20))
zoneCount [zoneWest] ++;

else if ((stepSouth > 0) &% (stepSouth < 20))
zoneCount [zoneSouth] ++;

else if ((stepNorth > 0) && (stepNorth < 20))
zoneCount [zoneNorth] ++;

void convertZone(intarray &voronoi_zones, vector<vector<Pixel> >& vZone,
vector<vector<Pixel> >& vPeri, vector<int>& converted,
vector<int>& mapped, int numZones, int thisZoneNum,
int newZoneNum, int pageWidth, int pageHeight,
bool* textZone, vector<int>& graphics)

123

for (int p=0; p<vZone[thisZoneNum].size(); p++) {
int pixelX = vZone[thisZoneNum] [p].x;
int pixelY = vZone[thisZoneNum] [p].y;
voronoi_zones(pixelX,pixelY) = newZoneNum;

}

converted[thisZoneNum] = 1;

mapped [thisZoneNum] = newZoneNum;

int zoneCount [numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones(voronoi_zones, vPeri, thisZoneNum,
zoneCount, pageWidth, pageHeight) ;

for (int z=1; z<numZones; z++)

{
if ((zoneCount[z] > 0) && (!textZonel[z]) && (converted[z] ==0))
{
convertZone (voronoi_zones, vZone, vPeri, converted,
mapped, numZones, z, newZoneNum,
pageWidth, pageHeight, textZone, graphics);
}
}

void breakImage(rectarray &arrayToBreak, rectarray &breakerArray,
rectarray &newArray, int arrayToBreak_index,
int breakerArray_index)
{
rectangle rectToBreak = arrayToBreak[arrayToBreak_index];
rectangle breakerRect = breakerArray[breakerArray_index] ;
rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.xl + overlap.x0)/2 > (rectToBreak.xl + rectToBreak.x0)/2) {
if ((overlap.yl + overlap.y0)/2 > (rectToBreak.yl + rectToBreak.y0)/2) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.x0-1, rectToBreak.y1));
newArray.push(rectangle(overlap.x0, rectToBreak.yO0,
rectToBreak.x1, overlap.y0-1));
}
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
overlap.x0-1, rectToBreak.yl1));
newArray.push(rectangle(overlap.x0, overlap.yl+l,

124

rectToBreak.x1, rectToBreak.y1));

}
}
else {
if ((overlap.yl + overlap.y0)/2 > (rectToBreak.yl + rectToBreak.y0)/2) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.xl, overlap.y0-1));
newArray.push(rectangle(overlap.xl+1l, rectToBreak.yO,
rectToBreak.x1, rectToBreak.yl));
}
else {
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
overlap.xl, rectToBreak.yl));
newArray.push(rectangle(overlap.xl+1l, rectToBreak.yO,
rectToBreak.x1, rectToBreak.yl));
}
}

void breakText(rectarray &arrayToBreak, rectarray &breakerArray,
rectarray &newArray, int arrayToBreak_index, int breakerArray_index)
{
rectangle rectToBreak = arrayToBreak[arrayToBreak_index];
rectangle breakerRect = breakerArray[breakerArray_index];
rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.xl + overlap.x0)/2 > (rectToBreak.xl + rectToBreak.x0)/2) {
if (breakerRect.includes(rectToBreak.xl, rectToBreak.y1)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(rectToBreak.x0, overlap.yoO,
overlap.x0-1, rectToBreak.y1));
3
else if (breakerRect.includes(rectToBreak.xl, rectToBreak.y0)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.x0-1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
3
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.xl, overlap.y0-1));
newArray.push(rectangle(rectToBreak.x0, overlap.y0,

125

overlap.x0-1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.y1));

}
}
else {
if (breakerRect.includes(rectToBreak.x0, rectToBreak.y1)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(overlap.x1+1, overlap.yoO,
rectToBreak.x1, rectToBreak.yl));
}
else if (breakerRect.includes(rectToBreak.x0, rectToBreak.y0)) {
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
newArray.push(rectangle(overlap.xl+1, rectToBreak.yO,
rectToBreak.x1, overlap.yl));
}
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(overlap.xl+1l, overlap.yo0,
rectToBreak.x1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
}
}

D.3 Excerpts of ocr-layout /ocr-char-stats.cc

bool is_text_block(rectarray &bboxes, vector<int>& wrap_around, int zone_num)
{
int i;

int biggest_x = 0;

int width_sum = O0;

int height_sum = O;

floatarray yoO;

floatarray hist;

// Collect the yO values of the bounding boxes.

126

for (i=0; i<bboxes.length(); i++) {
y0.push(bboxes[i] .y0);
width_sum += bboxes[i] .x1 - bboxes[i].xO0;
height_sum += bboxes[i].yl - bboxes[i].yO0;
if (bboxes[i].x1 > biggest_x)
biggest_x = bboxes[i].x1;
}
int avg_width = width_sum / bboxes.length();
int avg_height = height_sum / bboxes.length();

// Create the y0 histogram.
calc_hist(hist, y0);
gaussld(hist, 1.0);

// Get its peaks.
floatarray peak;
for (i=2; i<hist.length()-2; i++)

{
if ((hist[i] > 1) &&
((hist[i] > hist[i-11) && (hist[i] >= hist[i+1]1))) {
float temp = hist[i];
peak.push(temp) ;
}
}

if ((hist[i] > 1) && (hist[i] > hist[i-11)) {
float temp = hist[i];
peak.push (temp) ;

X
// 1If there are no peaks this is not a text block so return.
if (peak.length() == 0) { return false; }

// Now create the peak histogram.
floatarray peak_hist;
calc_hist(peak_hist, peak);

// The average number of occurences dictating the peaks is ...
int max_peak = 0;
int avg_num_occurences = 2;
for (i=peak_hist.length()-1; i>=0; i--) {
if (peak_hist[i] > max_peak) {
max_peak = peak_hist[i];
if (1 > 2)
avg_num_occurences = i;

127

// Now find the y-values given the peak threshold.
intarray line;
for (i=2; i<hist.length()-2; i++) {
if ((hist[i] > (0.5 * avg_num_occurences)) &&
((hist[i] > hist[i-1]) && (hist[i] >= hist[i+1]1))){
line.push(i);

}

if ((hist[i] > (0.5 * avg_num_occurences)) &&
(hist[i] > hist[i-1])) {
line.push(i);

int num_lines = line.length();
// If no lines were found it’s not a text block so return false.
if (num_lines == 0) { return false; }

// Now get the average separation and if it’s too high return false.
int sum_line_seps = 0;
for (i=1; i<num_lines; i++)
sum_line_seps += line[i] - line[i-1];
int avg_line_sep = sum_line_seps / num_lines;
if ((avg_line_sep / avg_height) > 5) { return false; }

// Calculate the compacted widths (summation of box widths)
// and the x-range of the boxes.
int compacted_line_length[num_lines];
int xmin[num_lines], xmax[num_lines];
for (i=0; i<num_lines; i++) {
compacted_line_length[i] = 0;
xmin[i] = biggest_x;
xmax[i] = 0;

for (i=0; i<bboxes.length(); i++) {
int j = 0;
bool line_found = false;
while ((!'line_found) && (j < num_lines)) {
if ((bboxes[i].y0 > (line[j] - avg_width)) &&
(bboxes[i] .y0 < (line[j] + avg_width))) {

128

line_found = true;
compacted_line_length[j] += bboxes[i].x1 - bboxes[i].xO0;
if (bboxes[i].x0 < xmin[jl)
xmin[j] = bboxes[i].x0;
if (bboxes[i].x1 > xmax[jl)
xmax[j] = bboxes[i].x1;

else
j++

// Using these numbers calculate the density.
float density[num_lines];
int line_length[num_lines];
int longest_line = 0;
for (i=0; i<num_lines; i++){
if ((line_length[i] = xmax[i] - xmin[i]) > longest_line)
longest_line = line_length[i];
if (line_length[i] > 0)
density[i] = (float)compacted_line_length[i] / (float)line_length[i];
else
density[i] = 0;

// Adjust the number of lines if some have zero length
// and tally how many are full length.
int zero_length_lines = O;
int full_length[num_lines];
for (i=0; i<num_lines; i++) {
if (compacted_line_length[i] == 0)
zero_length_lines++;
if (line_length[i] > 0.8 * longest_line)
full_length[i] = 1;
else
full_length[il

0;
}

int actual_num_lines = num_lines - zero_length_lines;

// Count the number of good lines.
int num_good_lines = 0;
for (i=0; i<num_lines; i++)
if (demsity[i]l > 0.5) { num_good_lines++; }

129

// If three in a row are not full length assume
// it’s a wrap around text block.
for (i=2; i<num_lines; i++)
if ((full_length[i] == 0) && (full_length[i-1] == 0)
&% (full_length[i-2] == 0)) {
wrap_around [zone_num] = 1;
i = num_lines;

// Return true or false depending on what fraction of the lines are good.
switch (actual_num_lines) {
case 2 : if (num_good_lines >= 1)
else

{ return true; }
{ return false; }
case 3 : if (num_good_lines >= 2) { return true; }
else { return false; }
case 4 : if (num_good_lines >= 3) { return true; }
else { return false; }
default : if (num_good_lines >= (0.8 * actual_num_lines))
return true;
else

return false;

