EXTENDING THE PAGE SEGMENTATION ALGORITHMS

OF THE OCROPUS DOCUMENTATION LAYOUT ANALYSIS SYSTEM

by

Amy Alison Winder

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Boise State University

August 2010



© 2010
Amy Alison Winder
ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS
of the thesis submitted by
Amy Alison Winder
Thesis Title:  Extending the Page Segmentation Algorithms of the OCRopus
Document Layout Analysis System
Date of Final Oral Examination: 28 June 2010
The following individuals read and discussed the thesis submitted by student Amy Alison

Winder, and they evaluated her presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Elisa Barney Smith, Ph.D. Co-Chair, Supervisory Committee
Timothy Andersen, Ph.D. Co-Chair, Supervisory Committee
Amit Jain, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Elisa Barney Smith, Ph.D., Co-
Chair of the Supervisory Committee. The thesis was approved for the Graduate College
by John R. Pelton, Ph.D., Dean of the Graduate College.



Dedicated to my parents, Mary and Robert, and to my children, Samantha and Thomas.

v



ACKNOWLEDGMENTS

The author wishes to express gratitude to Dr. Barney Smith for providing a
structured and supportive environment in which to formulate, develop, and complete
this thesis. Not only did she provide the initial concept for the work, but she was
instrumental in selecting the specific topic and followed through by meeting with me
weekly to guide and support this effort. The author is also grateful for the instruction
Dr. Barney Smith provided in Image Processing, which, paired with computer science,
is an exciting field.

Thanks also go to Dr. Andersen for introducing me to the intriguing world of
Artificial Intelligence and for allowing me to fulfill the requirements of my thesis under
his advisement. The author is grateful for his contributions to the understanding of
page segmentation algorithms and performance metrics.

Additionally, the author appreciates the help of Dr. Jain who has been a reliable
source of information for the author’s entire graduate career at Boise State University.
Not only did he streamline the author’s academic schedule upon arrival, but he
expressed interest and placed value upon the experience and education the author
brought to the university, subsequently strengthening her resolve to obtain a second
Master of Science degree.

Finally, the author would like to thank the undergraduate students from the
university who created and scanned a majority of the document images: Josh Johnson,
Kris Burch, and Will Grover.

Funding for this thesis, the classes the author has taken to fulfill the requirements

v



of this degree, and a stipend was provided by the United States Government under
the Trade Adjustment Assistance Act as petitioned by Micron Technology, Inc., the
author’s former employer. The author is grateful for the guidance provided by Ruby

Rangel, Senior Consultant at the Idaho Department of Commerce and Labor.

vi



AUTOBIOGRAPHICAL SKETCH

The author was born in Princeton, NJ and attended Westtown School in Penn-
sylvania and the University of Rochester in New York where she earned Bachelor of
Science and Master of Science degrees in Optics. Following graduation, she worked
in the Electro-Optics Division of Honeywell in the Boston area of Massachusetts,
supporting the Strategic Defense Initiative. In the Systems Engineering group, she
supported simulation efforts of an infrared sensor and in the Optics group she analyzed
telescope lens designs.

After a brief sojourn to raise her children, the author took an engineering position
at Micron Technology, Inc. in Boise, Idaho. For five years, she worked in the
Advanced Reticle group, supporting the development of new reticles used in the
photo-lithography process of semiconductor manufacturing. Then, she transferred to
the Design department within which she relocated to Japan as a CAD engineer to
support the recently opened DRAM design center. Upon returning to the United
States two years later, she designed layouts, wrote Design Rule Verification tool sets,
and provided general CAD support until deciding to broaden her skill set by pursuing

a Master of Science degree in Computer Science at Boise State University.

vii



ABSTRACT

With the advent of more powerful personal computers, inexpensive memory, and
digital cameras, curators around the world are working towards preserving historical
documents on computers. Since many of the organizations for which they work have
limited funds, there is world-wide interest in a low-cost solution to obtaining these
digital records in a computer-readable form. An open source layout analysis system
called OCRopus is being developed for such a purpose. In its original state, though, it
could not process documents that contained information other than text. Segmenting
the page into regions of text and non-text areas is the first step of analyzing a mixed-
content document, but it did not exist in OCRopus. Therefore, the goal of this
thesis was to add this capability so that OCRopus could process a full spectrum of
documents.

By default, the RAST page segmentation algorithm processed text-only docu-
ments at a target resolution of 300 DPI. In a separate module, the Voronoi algorithm
divided the page into regions, but did not classify them as text or non-text. Addition-
ally, it tended to oversegment non-text regions and was tuned to a resolution of 300
DPI. Therefore, the RAST algorithm was improved to recognize non-text regions and
the Voronoi algorithm was extended to classify text and non-text regions and merge
non-text regions appropriately. Finally, both algorithms were modified to perform at
a range of resolutions.

Testing on a set of documents consisting of different types showed an improvement
of 15-40% for the RAST algorithm, giving it at an average segmentation accuracy
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of about 80%. Partially due to the representation of the ground truth, the Voronoi
algorithm did not perform as well as the improved RAST algorithm, averaging around
70% overall. Depending on the layout of the historical documents to be digitized,

though, either algorithm could be sufficiently accurate to be utilized.
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CHAPTER 1

INTRODUCTION

The ability to create, store, and modify documents on computers has only existed for
two to three decades. The printing press, on the other hand, invented in Germany and
adopted by the rest of the developed world over time, has been in use for nearly six
centuries [1]. Consequently, a multitude of printed documents have been generated in
book, magazine, and newspaper form. While many have been lost over the years,
a significant portion has been preserved. As historical documents, they are not
only fragile, but are inaccessible to most people. In the interest of sharing and
preserving their contents for eternity, there is a movement to digitize and store them

on computers.

At this time, the most common method for digitizing documents is to use an image
scanner [3]. Image scanners, also known as flatbed or desktop scanners, contain a light
source, an image sensor such as a CCD, and a glass top upon which the document
is placed. Standard scanners that scan documents and produce images of them cost
a few hundred dollars; however, it is also possible to purchase large format scanners
capable of scanning large books and converting the images into searchable PDF files,
but they cost on the order of five thousand dollars. In standard scanners, documents

are digitized by OCR software installed onto the computer.

With the advent of inexpensive digital cameras, it is now possible to photograph



the pages of books, the bindings of which may be too brittle to withstand the pressure
of being placed, and temporarily deformed, on a scanner bed. Once these images
have been obtained, it is necessary to process and analyze them so that they can
be converted into text documents that are easily readable and searchable. Since
the institutions that house many of these documents have limited funds, a low-cost

solution to digitization is the only feasible option.

The impetus for this thesis was a non-profit organization in Germany called the
Bavarian Traditional Clothing Culture Center and Archive [2], which was formed
to preserve traditional Bavarian costumes and dances. It has been acquiring the
newspapers and magazines of various clubs in the area, which it plans to house in
a new archive facility. The organization then hopes to digitize these documents so
that researchers can examine them to gain a better understanding of how costumes
and dance have evolved over the years. Many of these documents were written in the

German Fraktur font and contain illustrations, but have standard Manhattan layouts.

At this time, there is an open source document analysis program - OCRopus [4],
also developed in Germany - which is capable of converting images of multiple column
text documents into text files; however, it cannot process documents that include
non-text areas, such as the newspapers mentioned previously. Therefore, non-profit
organizations such as the Bavarian Traditional Clothing Culture Center and Archive
cannot digitize and share their materials with historians. In response to this need and
that of thousands of other libraries and organizations, the goal of this master’s thesis
is to improve the OCRopus program by extending its page segmentation capability

to include mixed-content documents of camera-acquired images.



1.1 Document Recognition and Analysis

1.1.1 Image Acquisition and Processing

The first step in the process of digitizing a document is to capture an image of it.
This can be done by either scanning or photographing it. Mid-priced digital cameras
are capable of taking pictures with resolutions of 3,872 x 2,592 pixels (10 MP) to
4,672 x 3,104 pixels (15 MP). When these images are printed out at a resolution of
300 DPI, they range in size from 12.9” x 8.6” to 15.6” x 10.3”, approximately the
same size as a page of a bound historical document. Typical desktop scanners can
image documents with resolutions of 150 to 1200 DPI. So, today’s common digital

cameras can produce images comparable to those generated by a desktop scanner.

Employing digital cameras for image acquisition, on the other hand, introduces a
host of other issues that need to be resolved before the documents can be analyzed.
First, unless the camera is lined up perfectly with the page, it can capture some areas
outside of it including the table top, the adjacent page, and the edges of the pages
residing between it and the outer cover. The extraneous information contained within
these areas generally needs to be removed prior to analyzing the document so that
only the relevant sections of the document are analyzed. This process is typically
referred to as border removal.

Once the border has been removed, the image’s orientation needs to be checked
for skew and corrected. Other factors that need to be taken into consideration are
the perspective of the page and any distortions that may be present, such as warping
due to stiff spines. Finally, if the lighting under which the photograph was taken was
not optimal or if the pages of the document itself have yellowed with age, the image

may need to be processed so that it is only represented by black-and-white pixels.



This is called binarization. Additionally, if there is speckle noise present on the page,
it will need to be removed as well.

At this time, there is an open source program called PhotoDoc [5] that is capable of
handling all of these issues except for noise removal and distortion caused by warping.
PhotoDoc can be used in conjunction with an OCR engine such as (open source)
Tesseract [6] or OCRopus for image-to-text conversion. In addition to PhotoDoc,
researchers in the Image Understanding Pattern Recognition (IUPR) Research Group
of Kaiserslautern, Germany, in partnership with the Adaptive Technology Resource
Centre of Toronto, are developing a hardware/software solution for document analysis
called Decapod [7]. Decapod is being designed to work in conjunction with OCRopus,
which has skew correction, binarization, and noise-reduction functionality, but not
border removal. The hardware component of Decapod will consist of a camera/tripod
assembly for photographing the documents and it is assumed that border removal will

be added to OCRopus to complete the software component.

1.1.2 Document Analysis

Once the image has been acquired and processed, it needs to be analyzed in terms
of layout. That is, if the page contains information other than text like graphs,
tables, and half-tone images, the program needs to determine which areas are text
and which are not. This way only the text regions are sent to the OCR engine,
preventing unnecessary errors. Dividing a document in this fashion is called page
segmentation. Once the text regions have been identified, the individual lines are
sorted into reading order.

At this point, the OCR engine is called upon to recognize the characters in the

text regions and convert them into ASCII or Unicode characters. The first step



in this process is to segment the lines into words then the words, into characters.
Depending on the algorithm used, certain features like geometrical moments, contour
Fourier descriptors or number of pixels per row are extracted for each character.
These features can then be matched to a character in a database using a K-Nearest
Neighbor algorithm or can be input into a Decision Tree or Neural Network that
returns the most likely character.

Since the motivation behind this thesis is to help provide a means for curators to
digitize documents in a cost-efficient manner, open source document analysis systems
were researched. Besides OCRopus, a program called Gamera [8] was found, but it
is more of a toolkit than a comprehensive document analysis system. It has image
processing and OCR capabilities, but no apparent page segmentation functionality.
Therefore, OCRopus was deemed the system of choice. Like Gamera, page segmen-
tation has not been developed in OCRopus; however, it has some algorithms in place

that can be expanded upon.

1.1.3 Page Segmentation Algorithms

Over the years researchers have developed a number of page segmentation algorithms,
which can be categorized as top-down, bottom-up, or hybrid methods [9]. Top-down
methods involve operating on the document as a whole and subdividing it, whereas
bottom-up methods start with pixel-level operations, which create low-level groups
that are merged into segmented regions. Hybrid methods do not fall into either of
these categories, but may include a little of both.

The Recursive X-Y Cut (RXYC) and Run-Length Smearing Algorithms (RLSA)
fall into the top-down category. RXYC [10] starts by examining the image and con-

structing a block profile where white pixels are represented as zeros and black pixels



are represented as ones. The block profile then consists of vertical and horizontal
projections of the black areas. Zeros extending across the entire document in the
block profile, or valleys, are possible column candidates with the widest being the
best candidate. Once the largest valley is discovered, the document is subdivided
around it and one of the new blocks is examined for the existence of valleys. After
it has been completely subdivided, the other block is addressed in the order of a
depth-first traversal. The blocks are represented in a data structure called an X-Y
tree, where the valleys are the nodes and the blocks the elements. The structure can

also be visualized as a set of nested, rectangular blocks.

Like RXYC, RLSA [11] also operates from the top down; however, it classifies the
regions as well. It examines each of the pixels in a row-by-row and column-by-column
fashion and changes each white pixel to black if it is surrounded by enough black
pixels. Black pixels are not changed. After the pixels have been updated, the gener-
ated row and column bit maps are ANDed together to form a single bit map. This
bit map then undergoes a horizontal smoothing operation to ensure the connection
of words in a text line. The final bit map typically consists of blocks corresponding
to individual text lines and non-text areas. At this point, measurements are taken
of the blocks (i.e., numbers of black and white pixels, dimensions, coordinates) from

which histograms are built and block classifications derived.

In terms of bottom-up approaches, two documented methods include the Doc-
strum and Voronoi algorithms. Docstrum [12] is a contraction of Document Spectrum
and only segments and classifies text. So, it is not a page segmentation algorithm in
the strict sense; however, its methodology is of interest. It starts by extracting the
connected components (groups of adjacent black pixels) of the image that typically

correspond to characters. Next the K-Nearest Neighbors of each component are found



based on the coordinates of their centroids and the angle made by the line connecting
them. So, components placed in close proximity and side-by-side (e.g., along a text
line) are given priority. Once these have been grouped, they are classified as text,
title, abstract, etc., based on histograms of their dimensions.

The Voronoi method [13] also starts by identifying connected components. Af-
terwards, it extracts sample points along the boundaries from which it constructs a
Voronoi point diagram. Since the number of components is on the order of the number
of characters, a large number of edges are created, most of which are superfluous.
These unnecessary edges are deleted based on length (i.e., short ones) and whether
or not they are connected to other lines. In this way, the diagram is converted to an
area Voronoi diagram whose areas represent the page regions.

Comparing the two, the top-down approach requires a priori knowledge of the
document because parameters need to be set for determining which white areas are
valleys in RXYC as well as for setting the smearing threshold and smoothing filters of
RLSA. Additionally, neither one of these algorithms lends itself to segmenting layouts
that include regions with diagonal or curved boundaries (non-Manhattan layouts).
The bottom-up approaches, on the other hand, do not require a priori knowledge of
the layout, but will accumulate errors if any exist. Additionally, the Voronoi method

is capable of segmenting more complex, non-Manhattan layouts.

1.1.4 Page Segmentation Accuracy

To assess the accuracy of various page segmentation algorithms, it is necessary to
compare the output to the true region types or so called ”ground truth” of the page.
Three possible formats that this ground truth can take are: image files with labeled

pixels, Document Attribute Format Specification (DAFS) [14] files, or eXtensible



Markup Language (XML) files. In the first case, pixels are labeled with their region
number or type to which a corresponding unique color is assigned (i.e., green for text,
red for images, etc.). The colors can be assigned using a common graphics program.
An advantage to this format is that regions of any shape can be represented, although
generating the ground truth for non-rectangular regions can be time consuming.
The color coding can be extended to define reading order as well, which is done
by OCRopus where the color gradually changes (e.g., gets ”greener”) as successive

lines are encountered in a column.

In the second case, the image is converted into either an ASCII, Unicode, or binary
file, which contains tags representing the following entities: doc (the document as a
whole), page, column, paragraph, line, word, and glyph (a single character in the
text); however, a more general file format than DAFS is XML in which the regions
are defined by the user. For example, regions can be represented by ”zone” tags
that have a ”classification” attribute specifying its type (i.e., text, graph, image,
etc.), allowing for non-text types. The zones can also have ”dimension” subtags that
include attributes for the coordinates of the corners or vertices that constrain them
to being rectangles or polygons. Realizing that there was need for a tool to generate
ground truth of this type, researchers created TrueViz [15], an open source graphical

application for producing XML ground truth files.

Once the ground truth and a file containing the detected regions have been
generated, they need to be compared and an assessment made as to how well they
match. The same researchers that supplied TrueViz also created a toolkit called
PSET [16, 17], which stands for Page Segmentation Evaluation Toolkit. PSET
contains several algorithms for segmenting document images as well as an algorithm

for measuring the performance of the segmentation; however, PSET generates DAFS



formatted files and measures the segmentation performance in terms of text-line

accuracy. So, it is not suitable for documents that include images.

Using color-coded ground truth files, one could apply the method developed by
Shafait and Breuel [18] for measuring segmentation accuracy whereby counts of the
number of correct, over and under segmentations are taken in addition to several other
measurements. In the case of comparing rectangular zones, though, one could apply
the metric used in the page segmentation competition held by the International Con-
ference on Document Analysis and Recognition (ICDAR) every odd year [19]. This
method involves calculating and tabulating "match scores” for the regions, extracting
parameters from this table, calculating detection and recognition accuracies based
on these parameters, then using this information to calculate performance rates for
each region as well as an overall performance measurement. Since the documents of
interest for this thesis have Manhattan layouts and no program is publicly available

to measure segmentation performance, one was written based on the ICDAR method.

1.2 Document Analysis Programs

As mentioned earlier, OCRopus is an open source layout analysis and OCR program.
It is being developed for large-scale digital library applications and is distributed
under the Apache 2 license. Its design supports multi-lingual and multi-script recog-
nition by using Unicode as well as HTML and CSS standards to represent the
typographic formats of the world’s scripts. OCRopus itself is built in modules that
can be switched to test different algorithms as well as incorporate new ones. The
programming language is C++-, along with a built-in scripting language called Lua.

Its architecture consists of Layout Analysis, Text Line Recognition, and Statistical



10

Language Modeling.

The Layout Analysis module includes five page segmentation algorithms: a triv-
ial morphological segmenter, a single-column projection-based segmenter, a RXYC
segmenter, a Voronoi segmenter, and a Recognition by Adaptive Subdivision of
Transformation Space (RAST) segmenter. The morphological segmenter simply ap-
plies a smearing algorithm to the image to obtain isolated blocks; whereas, the
projection-based segmenter examines the horizontal projection profiles to segment
text lines into characters.

The RXYC and Voronoi segmenters apply the algorithms discussed earlier, but do
not classify or color code the regions by themselves so they cannot be used to convert
images to text. Also, all four of these algorithms only output image files, not XML
files. Of the four, the Voronoi algorithm showed the most promise because it was
able to segment a small collection of complex layouts with the most accuracy (this
topic will be covered in more detail in Chapter 3). Therefore, it was deemed a good
candidate for further improvement.

RAST [4, 20], on the other hand, was the most developed algorithm of the five
and operates by default; however, it is not a page segmentation algorithm, per se.
It was designed for text-only documents [21] and consists of three steps: finding
the columns, finding the text-lines, then determining the reading order. To find
the columns it employs a whitespace rectangle algorithm [22] which was inspired by
RXYC. This algorithm differs from RXYC in that it keeps track of the white spaces
rather than the blocks, and combines them as opposed to subdividing the blocks.

RAST starts by extracting the connected components then determines the largest
possible (maximal) whitespace rectangles (or covers) based on the component bound-

ing boxes. These are then sorted based on how many connected components (e.g.,



11

text lines) touch each major side. In this way, column dividers rather than paragraph
or section dividers take priority. The covers are then merged iteratively as long as the
combined cover obeys a given rule of how many components must be incident upon it.
Once the columns dividers (or gutters) have been found, the connected components
are examined and classified as text lines, graphics, and vertical/horizontal rulings
based on their shapes and the fact that they do not cross any gutters.

At this point, the reading order is determined by considering pairs of lines such
that either the line below or the line to the right at the top of the page (e.g., in the
next column) goes next. Once these have been ordered, the pairs are sorted to give
the final reading order. Preliminary tests of the RAST algorithm indicated that it
was capable of processing multiple column documents as long as they did not contain
images; however, when images were included errors were output and the reading order
was negatively impacted (more on this in Chapter 3). For these reasons, the RAST
module was judged as needing improvement.

While the goal of this thesis is to improve the performance of the OCRopus
system, the performance of a commercial program, ABBYY FineReader [23], was
also measured for comparison. As written earlier, the motivation behind this thesis
is to aid curators in their effort to digitize historical documents, specifically Bavarian
documents that were written in the Fraktur font. ABBYY has recently added the
Fraktur font to its OCR engine so it should be able to recognize the characters in
these documents; however, its page segmentation capabilities were unknown. Since
the topic of this thesis is page segmentation, this product was evaluated in this area

only.
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1.3 Thesis Statement

The goals of this thesis are to:

1. Develop an algorithm based on the OCRopus RAST algorithm that can segment
text-only documents, mixed-text, and non-text documents. Ensure that it can
process layouts similar to to that of the Bavarian documents and can recognize

the regions with an accuracy of least 90% over a range of resolutions.

2. Develop an algorithm based on the Voronoi method that not only segments
a document into text and non-text regions, but ensures that like regions are
merged and all regions are classified. As for performance, impose the same

constraints as in the previous objective.
In order to be able to measure these goals, the following tasks were completed:

1. A program was written that compares detected segments to ground truth and

returns a performance measurement.
2. XML output of segmented regions was implemented in OCRopus.

As a measure of performance before and after the improvement, as well as with
respect to industry standards, eight classes of documents stored at five different

resolutions were segmented by the following programs, then analyzed:
1. OCRopus’ current and improved RAST algorithms
2. OCRopus’ current and improved Voronoi algorithms

3. ABBYY FineReader
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CHAPTER 2

METHODS

As covered in the first chapter, the OCRopus document analysis system is the most
suitable open source program for digitizing large numbers of historical documents. In
its current state, though, it is incapable of processing complex layouts because its page
segmentation algorithms are not fully developed. In order to assess the performance of
these methods, OCRopus needed to be modified to output the detected page regions.
The format chosen for this representation was XML. Similarly, documents called
ground truth, that represent the true regions of the page, needed to be generated for
comparison. Then, a program needed to be written to compare the detected regions

to the ground truth.

Since overall performance metrics fail to convey how a particular method might
be failing, images of the output were also examined. For example, when creating text
blocks, the RAST algorithm labels them by assigning slightly different colors to them,
which are subsequently used to define the reading order. By modifying these colors,
the author was able to observe the different text blocks as well as the segmentation

of the non-text areas.

As for the Voronoi method, it was less sophisticated than RAST because it did not
classify the regions, so the graphical output could only be examined for segmentation.

In this case, it was not necessary to color the regions differently; lines were simply
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drawn around them in the original implementation. The accuracy of these regions

could then be examined by analyzing the amount of fracturing and merging.

2.1 Comparison Program Algorithm

A search of open source XML zone comparison programs based on the ICDAR Page
Competetion method [19] did not yield any software, so a program was written to
compare detected regions to ground truth. The algorithm starts by calculating "match
scores” for each of the regions. That is, each of the regions of the ground truth are
compared to each of the detected regions and given a score indicating how well they
match. If the regions match perfectly, they are given a score of one; otherwise, if they
are completely separate, they are given a score of zero. If they overlap partially, the

score is given by

T(G;NR;NI)

Ny L
atchScore(i, j) “T(G.UR)NI))

(2.1)
where

1 lfg]:’l"l

0 otherwise

and
T(s) is a function that counts the elements of set s,
G is the set of all points inside the j%* ground truth region,
g; is the j ground truth region,
R; is the set of all points inside the i detected (or result) region,

r; is the i*" detected region,
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I is the set of all ON image points.

In the case of rectangles being compared according to Phillips and Chhabra [24],

the equation for the match score is reduced to

area(g; N1;)

MatchScore(i,j) = a (2.2)

maz(area(g;), area(r;))’

Once the match scores have been calculated, properties of the table are extracted,
including the number of one-to-one matches, the number of one-to-many matches,
and the number of many-to-one matches. The latter two quantities are computed
from both perspectives: the ground truth and detected. For example, if the ground
truth contained a text region of four paragraphs, but the segmenter detected these
as four separate regions, it would count as a ground truth one-to-many match and
four detected many-to-one matches. These values are determined for each region then

used to determine the detection rates and recognition accuracies as given by

one — to — one; g-one — to — many; g-many — to — one;
DetectRate; = +
ete a w1 NZ W2 NZ w3 NZ
(2.3)
R tionA one — to — one; n d_one — to — many;
ecognitionAccuracy; = §w w ,
g Y 4 M, 5 M,
d_many — to — one;
“+weg MZ } (24)

where w1, wy, w3, wy, w5 and wg are pre-determined weights,

N; is the number of ground truth elements belonging to the i entity,
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M; is the number of detected elements belonging to the i** entity.
Using the detection rates and recognition accuracies, the Entity Detection Metric

(EDM) for each region can be calculated as

2 Detect Rate; RecognitionAccuracy;

EDM,; (2.5)

- Detect Rate; + RecognitionAccuracy;
and an overall performance metric or Segmentation Metric (SM) can be given by

_ YN, EDM,

SM; SN,

(2.6)

2.2 Method to Output in XML Format

Since the layout of interest is Manhattan and the ICDAR comparison algorithm was
applied, the output of the segmenters needed to be in XML format. The release of
OCRopus at the onset of this thesis (Alpha) has a module called ”buildhtml”, but it
is not complete. It outputs the preamble, or metadata of the document, but none of
the text. A contributor to the project built a patch for it that can output the text
of a simple document; however, this output does not contain any page segmentation
information. There are no tags for regions. So, it cannot be used for comparison to the
ground truth. Therefore, XML page segmentation output needed to be implemented

by the author in OCRopus.

2.3 Original RAST Algorithm

The RAST module of OCRopus was run on the test documents mentioned earlier.

When run in regular, text-recognition mode, the presence of half-tone images and
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graphs resulted in unusable output. That is, since it was unable to segment the page
into text and non-text regions, it treated the entire page as text. Therefore, when it
encountered non-text areas, it attempted to recognize characters within them, which
translated into nonsensical text intermingled with a series of error messages.

As for evaluating its page segmentation capability, since XML format was not
originally an option, color-coded images were output and examined instead. In terms
of classification, it has three types: text, graphics (i.e., non-text), and column dividers
or gutters. The column dividers are colored yellow, graphics light green, and text all

other colors.

The most prevalent error found was sections of non-text being classified as both
text and non-text. Figure 2.1 shows a page with two figures. The figure at the top
of the page is a book colored bright green, red, orange, and blue. Similarly, the
figure at the bottom is a rabbit colored bright green and blue. When the program
was adjusted so that only non-text pixels were output, both figures were completely
green, meaning all of the pixels were classified as non-text; however, when both types
of pixels were output, multiple colors emerged in the figures, indicating that some
pixels were considered both text and non-text.

Graphs also tended to contain both text and non-text pixels; however, they did
not overlap as in the case described in the previous paragraph. Figure 2.2 shows the
output of a page taken from a scientific journal. The legends and axis labeling were
classified as text, but the border, data, and data lines were classified as non-text.

Tables, on the other hand, not only contained text and non-text pixels, but column
divider pixels as well. Figure 2.3 shows the output of a page containing a table for
illustration. Note the presence of gutters between each column of the table. This

resulted in oversegmentation of the table so that the correct reading order could not
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Figure 2.1: Example of RAST output of OCRopus. Note the multiple colors in both

figures.
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Note the text coloring of the
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be found for the OCR engine.

Based on this data, it was determined that the RAST algorithm could be improved
by correcting the segmentation of non-text (e.g., half-tone images) so that text is not
included, as well as properly identifying and segmenting graphs and tables. Since the
goal of this thesis is to enable OCR of text areas, these regions need to be grouped
properly and identified as non-text along with any encountered images. Once this
is done, only text should be fed to the OCR engine. Also, since the images will be
acquired using cameras with different resolutions, RAST needs to be robust enough
to segment low resolution images as well. Therefore, the first goal of this thesis is to
implement these improvements, ensuring that they perform at a range of resolutions

as discussed in Section 3.3.

2.4 Voronoi Basis

The Voronoi module of OCRopus, conceived and implemented by Kise et al. [13],
was also run on the test documents discussed in Section 2.1. It is less sophisticated
than RAST in that it does not classify the regions, so consequently it cannot place
the text in reading order, which means there is no text output. As a segmentation
algorithm, though, it works fairly well. While it does not identify columns, it groups
blocks of text in different columns correctly and usually creates separate segments for
picture captions.

Figure 2.4 shows the Voronoi output from the same page as Figure 2.1. While the
text blocks are segmented properly, the non-text areas (e.g., half-tone images) are
oversegmented. The left side of the figure of the book at the top of the page contains

over fifteen regions alone. Similarly, the figure of the rabbit at the bottom of the page
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contains at least four additional regions.

The output of the scientific paper containing graphs is shown in Figure 2.5. Each of
the graphs contains four to twelve regions within the boxed area, as well as individual
regions for each of the axis numbers and labels when only one region should be created
for each graph.

The last example, shown in Figure 2.6, illustrates the output of the document
containing a table. The table is oversegmented along the columns as in the RAST
case; however, the titles are not included in the column regions.

In terms of zone classification, a number of papers have been written on the
subject. The paper documenting the Voronoi method itself [13] states that the zones
were classified as either text or non-text in their study; however, it is not clear how
this was done. From what the author can discern, it may have been when the lines
between the characters were deleted, thus assigning the area containing those lines
the class text.

Two other groups of researchers report classifying segmented regions using neural
networks [26, 27]. First, they extract the connected components, then they segment
the image into regions using either a RXYC or RLSA method. Then, based on the
bounding boxes of the connected components, they use features including the amount
of overlap between boxes, the amount of touching between boxes, the fill ratio of the
boxes (number of black pixels to box area), the dimensions (height, aspect ratio,
and size) of the boxes, the ratio of black to white pixels, the number of horizontal
transitions from black to white pixels, the length of the horizontal run of black pixels,
and the angle subtended from the lower-left corner to the upper-right corner to classify
the regions using a neural network.

A third method [28] uses a simple nearest-neighbor approach with various his-
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Figure 2.4: Example of Voronoi output of OCRopus. Note the oversegmentation of

the figures.
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Figure 2.5: Example of Voronoi output of OCRopus. Note the oversegmentation of

the graphs.
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tograms (Tamara texture, relational invariant feature, run-length of black and white
pixels in eight different directions, heights, widths and separations of the bounding
boxes) and other aspects (fill ratio and the total number, mean and variance of black
and white pixel runs) as the features. This method is also accurate, but as in the
previous method, determining the values of all of the features is time consuming, and
thus, since this the focus of this thesis is on page segmentation rather than region
classification, a simpler approach was sought.

Based on the segmentation results shown earlier and the need for region classifica-
tion, the second goal of this thesis is to improve the Voronoi algorithm in OCRopus
so that it does not oversegment half-tone images, graphs, and tables. Once this was
done, it needed to classify these regions as text or non-text for which a robust, yet
non-complex solution was found. Since placing the text regions in reading order is
beyond the scope of this thesis, it was not implemented for this effort. Like RAST,
Voronoi needed to operate successfully at low resolutions as well. The design and

implementation of this algorithm is covered in Section 3.4.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

This chapter covers the algorithm development and implementation details of the
comparison program, XML output in OCRopus, RAST page segmentation, and
Voronoi page segmentation. Based on the method described in Section 2.1, a compar-
ison program was implemented and tested iteratively to ensure the correct analysis
of various types of errors. Since it was to be used as the metric for both algorithms,
it was imperative that it be correct. On the other hand, introducing XML output to

the OCRopus program was straightforward and is explained in Section 3.2.

Once OCRopus could output XML page regions and they could be compared to
the ground truth, the algorithms were developed. Since the RAST algorithm was
more sophisticated than the Voronoi algorithm, it was addressed first. A collection of
different types of documents were processed by it and their segmentations evaluated.
The most frequently occurring errors were addressed first by introducing additional
steps in the algorithm, running more tests, then analyzing the results. This process

was repeated until satisfactory performance levels were achieved at 300 DPIL.

At this point, the program was examined for resolution dependent parameters.
Upon their discovery, they were replaced by parameters that were extracted from the
document itself (i.e., certain connected components within it) so that the performance

would not change as a function of resolution.
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As for the Voronoi algorithm, since it did not classify the regions, this functionality
needed to be added first. After this was done, it was possible to address the quality
of the segments themselves in terms of oversegmentation using a selection of different
documents. Since non-text areas suffered from this problem the majority of the
time, the algorithm only needed to treat the non-text regions. Once the regions were

segmented properly, resolution issues were resolved as in the RAST algorithm.

3.1 Comparison Program Implementation

The first step in comparing detected regions to ground truth is parsing the XML files.
There are two ways this can be done in C++: SAX (Simple API for XML) and DOM
(Document Object Model) [25]. The SAX method involves event-based parsing where
either callback functions or an object that implements various methods are created
and, as certain tags are encountered, actions are taken. The DOM method, on the
other hand, creates a tree data structure while parsing the file so that the elements
and their descendants can be accessed repeatedly. Since this method essentially has
built-in parsing functionality, it was chosen for this program.

As written earlier, each XML file contains a list of zones corresponding to the seg-
mented regions of the page. Each of the zones has the following tags: “ZoneCorners,”
“Vertex,” “Classification,” and “CategoryValue.” Figure 3.1 illustrates how a file
with two zones would be structured. The information for the zones is kept in the
leaves of the tree. So, in this case, the “Vertex” leaves contain the coordinates of the
corners of the rectangles and the “CategoryValue” leaf contains the class of the zone
(i.e., “Text” or “Non-text”).

Once the file has been parsed into the XML data structure, each of the zones is
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Page
Zone #1 Zone #2
ZoneCorners Classification ZoneCorners Classification
Vertex / \ Vertex CategoryValue Vertex / \ Vertex CategoryValue
Vertex Vertex Vertex Vertex

Figure 3.1: XML file data structure.

examined and placed into a custom Rect object that has attributes for the vertices
and classification. It is shown in detail in Appendix A. A two-dimensional array, or
vector, of Rects is then created to house the objects where one dimension corresponds
to the class of the zone and the other to the number of the zone. In this way, the

statistics for each class can be tabulated easily.

Following Rect vector construction, the work of comparing the data files begins.
The first step is to calculate the match scores of each of the regions and place them
into a two-dimensional array where one dimension represents the ground truth regions
and the other the detected regions. Each of the regions is considered in turn and the
amount of overlap between it and each of the other regions is calculated. The overlap
is determined by comparing the vertices of each rectangle then summing the pixels
in the area of overlap, if any. The match score is the amount of overlap divided by

the area of the larger rectangle.

A table of thresholded match scores is also created where regions with match scores
exceeding a user given threshold are assigned a value of one and those that do not are

assigned zero. The tables of match scores can be visualized as listing the ground truth
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Match Score Table Thresholded Match Score Table
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Figure 3.2: Example of Match Score tables - actual value on the left, thresholded on
the right - and G and D-profiles. Taken from page 851 of [24].

regions along one direction (i.e., horizontal) and the detected regions along the other
(i.e., vertical). If one were to sum the thresholded match scores for each region in
each direction, Ground Truth and Detected profiles could be constructed for each of

the regions. An illustration of the tables and the G/D-profiles is shown in Figure 3.2.

Now that the groundwork has been laid, counts of the one-to-one, many-to-one,
and one-to-many matches can be calculated. First, the easy one-to-one matches
are counted by adding up the thresholded match scores equal to one that have
corresponding G and D-profiles of one, meaning they are perfect matches. For each
case meeting this criteria, the corresponding G and D-profiles are set to -1 so that

they are not reconsidered.

The next step is to calculate the one-to-one matches where there are multiple
detected regions corresponding to given ground truth regions. Initially the regions
with thresholded match scores and D-profiles of one, but G-profiles greater than one
(indicating multiple matches) are placed into a candidate pool. The candidates for

each ground truth region are then compared and the one with the highest actual
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match score is selected as the matching one. After this, regions matching the above
criteria, with the exception that the D-profile must be greater than one, are considered
and selected in the same fashion. In both cases, the G and D-profiles are set to -1
upon selection of the match and the profiles of the runners up are decremented by

one.

Following the resolution of many-to-one detected regions, the one-to-many de-
tected regions are resolved in a similar fashion. In this case, the best candidates
with D-profiles equal or exceeding two and G-profiles greater than zero are selected.
Then, the opposite cases are considered, where D-profiles are greater than zero and

G-profiles are equal to or exceed two.

After all of the one-to-one matches are tallied, the program counts the detected
one-to-many and many-to-one, as well as ground truth one-to-many and many-to-one
matches. This is done by pooling all of the ground truth regions with match scores
above the user-given rejection threshold for each of the detected regions. If the
sum of the match scores exceeds the acceptance threshold for the detected region
under consideration, it is deemed a one-to-many detected match. The number of
corresponding ground truth regions is then added to the ground truth many-to-one
match count. The same algorithm applies to calculating ground truth one-to-many

and detected many-to-one matches.

After all of this information has been extracted from the match score tables, the
performance of the segmenter can be determined. The detection rate and recognition
accuracies for each class are calculated by the formulas given in Section 2.1 and the

overall segmentation metric is calculated using Equation 2.6.



32

3.2 Implementation of XML Output

Since the classification of OCRopus’ segments is rendered by coloring the pixels and
outputting them to a PNG image file, but the comparison program requires XML
files, a module was added to OCRopus to create and output the regions in XML

format.

Starting with the default RAST module of OCRopus, the columns of text and
graphics boxes correspond to the " Text” and ”Non-text” regions of the page. There-
fore, the easiest way to output the segmentation data to an XML file is to export these
rectangles. After the column separators, or gutters, are found, the horizontal and
vertical rulings, along with the graphics, are extracted from the connected components
of the image. At this point, the text lines are found using this data and parameters
gleaned from the statistics of the connected components (i.e., the estimated height
and width of a text line). Then, the text lines are sorted into reading order and the

columns are found.

After fixing a couple bugs in the original implementation and making some minors
edits to the ”get-text-columns” function in ocropus/ocr-layout/
ocr-detect-columns. cc, the text blocks could be defined properly (i.e., where all are
included, but non-text areas are excluded). Then, the non-text regions are passed to
the hps_dump_regions function of the new ocropus/ocr-layout/ocr-hps-output.cc
file. This function prints a page tag to the given output file then enters a loop where
the text regions are printed to the file. This is accomplished by reading each rectangle
in the text array and printing its coordinates and class with the appropriate tags. A
similar exercise involving the non-text array finishes the file. The code details can be

found in Appendix B.
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3.3 Mixed-Content RAST Algorithm

Once OCRopus was capable of producing output in the correct format, the page
segmentation algorithm itself was addressed. While RAST was designed for text-only
documents, it does partially support text/non-text segmentation. It divides pixels
into groups of text, non-text, gutters, and rulings; however, some of the pixels can
be classified as both text and non-text. It starts by binarizing the page, extracting
the connected components, then determining the bounding boxes of each of them. At
this point, it calculates some statistics for the boxes, including height and width, and
uses them to determine whether or not each of the boxes contains a character. Those

that do contain characters are called character boxes and are saved into an array.

Next, the original algorithm computes the whitespace covers (i.e., white rectangles,
a.k.a., gutters) of the page using statistics dervived from the character boxes. Then,
the non-text pixels, which are classified as either graphics or horizontal /vertical
rulings, are extracted from the large components. All of these items, with the
exception of the horizontal rulings, are placed into an array representing text-line

obstacles.

Now, the basic RAST algorithm determines the text lines of the page, which
for each line is the collection of contiguous character boxes on that particular line.
First, the character boxes that lie within gutters are excluded, then the remaining
character boxes are sorted by x-value. Each of these are then considered in terms of
"matchability.” Character boxes are deemed matches if they obey certain constraints,
including text-line length, gap distance, and number of characters. Once the text lines
have been found, they are sorted into reading order and then grouped into text blocks

as described in Section 3.2.
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Then, the author added new functionality to the RAST algorithm. Since one of
the observed deficiencies of the algorithm was the dual labeling of pixels as shown
in Figure 2.1, the first improvement was made to the text-line extraction function.
Where it filters out character boxes that lie within gutters, it now also filters out
character boxes that are additionally labeled non-text. So, the ”character boxes”
that actually contain connected components that are not characters can no longer be

used to build text lines.

It was also discovered that character boxes not overlapped by the bounding boxes
of any text lines, as shown in Figure 3.3, were dropped from consideration completely.
So, the new algorithm now captures, closes (i.e., dilates, merges, then erodes [29]),
then adds them to the non-text array of boxes. The amount of dilation is one fourth of
the height of an average text-line box so that only ” character boxes” in close proximity
to each other are merged. Another problem was that gray areas of images were not
being classified as non-text. So, isolated pixels and very small bounding boxes, such
as those shown in Figure 3.4, are now saved, closed (using the same amount of dilation

as the non-character boxes), and added to the non-text array as well.

Figures that contained writing, such as book covers, were being partially classified
as text and partially as non-text; however, when considered as a whole, they should
have been classified as one non-text region. So, routines were added to manipulate
the text and non-text boxes to merge the non-text regions. Also, some sections of
non-text areas were classified as text even though they did not contain text as shown
previously in Figure 2.1. By examining both types of bounding boxes for several
different figures, the author found that these text boxes tended to overlap non-text
boxes and/or other text boxes. By identifying these overlaps, erroneous text boxes

can be converted and merged into non-text regions.
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Figure 3.3: This figure illustrates character boxes that were not overlapped by any
text line boxes and had been previously omitted from consideration as either text or
graphics.
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Figure 3.4: This figure illustrates small isolated character boxes that had been
previously omitted from consideration as either text or non-text.
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The new process outlined above starts by merging text boxes that overlap other
text boxes then relabeling their union as non-text. Then, small non-text boxes (i.e.,
below a threshold of 10% of the square of the height of an average text line) are

filtered out, since they most likely correspond to noise in the document image.

At this point, the improved algorithm iterates through a series of three steps until
the array of non-text boxes is stable. First, text lines that overlap non-text boxes are
reclassified as non-text. Second, non-text boxes that overlap other non-text boxes
are merged, and third, non-text boxes are closed so that isolated boxes are merged.
Since the second and third steps can cause non-text boxes to overlap text boxes,
the first step is run again. Similarly, since the first step can cause newly created
non-text boxes, to overlap other non-text boxes the second and third steps need to
be repeated. Therefore, the algorithm iterates through all three steps until no more

boxes are reclassified or merged.

Figure 3.5 illustrates the picture of the book previously shown in Figure 2.1. The
boxes outlined in blue indicate the non-text boxes prior to manipulation. Note the
large number of boxes including a nested set in the upper-left corner. There are also
many overlapping boxes on the right side of the figure, although they are difficult to
see against the black area of the figure. Figure 3.6 shows the same figure after the
text and non-text boxes have been manipulated as discussed earlier. Now there is

only one non-text box, which covers the entire figure.

With the algorithm performing better on images captured at 300 DPI, the next
step in the process was to evaluate it at higher and lower resolutions. Examining the
program for hard-coded parameters, the author found that the minimum length of a
text-line, fed to the text line extraction function, was set at thirty pixels. Since the

dimensions of the character bounding boxes were calculated previously, the parameter
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was reset to a multiple of the width of this box.

Further testing using this new definition, however, revealed that the box width
itself was not reliable. It was calculated by examining the histogram of the widths
of the boxes and assigning the value of the first peak. Visual examination of the
histograms of several images, though, indicated that the value of the first peak was
much smaller than the width of a typical character. This even occurred in images
not containing pictures, since the bounding boxes of periods, commas, apostrophes,
and noise elements make up a significant portion of the histogram. Therefore, it
is necessary to take the value of the next peak instead, which in the case of width
corresponds to the right-most peak. In the case of height, it also corresponds to
the right-most peak, but it is the third, not the second peak, because the second
corresponds to the height of x-height characters (i.e., a, e, 0, u, etc.), unless all of the

text is capitalized.

Finding the correct peaks is not a simple matter. The histogram contains many
local maxima that the program can mistakenly interpret as the peak of choice.
Therefore, it needs to be smoothed until spurious local maxima disappear; however,
it cannot be smoothed too much or the peaks themselves merge into one. So, the
next step is to iteratively smooth the histogram until the expected number of peaks
results. Then, the value of the right-most peak is obtained and assigned the box’s
height or width depending on the type of histogram. Figure 3.7 illustrates iterative

smoothing until only three peaks remain.

The steps of the improved RAST algorithm are shown in Figure 3.8. There
are seven original steps shown in standard font, four modified functions, which are
italicized, and six new functions, which are bold. Also, the modified and new code is

shown in Appendix C.
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Figure 3.7: Histogram of the heights of the bounding boxes of the connected compo-
nents with no smoothing (left), one iteration of smoothing (middle) and two iterations
of smoothing (right). The rightmost peak corresponds to the height of ascenders (i.e.
tall letters), the middle peak to the height of x-height characters (i.e. short letters)
and the leftmost to the height of periods, commas, etc.
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. Binarize image.

Extract Connected Components (CC).

Calculate bounding boxes of CC’s.

Get character bozes and calculate statistics using iterative smoothing.
Compute whitespace covers.

Find gutters.

Classify large CC’s as either rulings or graphics.

Extract text lines ignoring graphics pizels.

. Capture, merge and reclassify rejected character boxes as graphics.

Capture, merge and reclassify very small CC’s as graphics.
Merge overlapping text lines then reclassify as graphics.
Filter out very small graphics.

Merge text and graphics.

(a) Merge and reclassify text lines that overlap graphics.
(b) Merge overlapping graphics.

(c) Close graphics rectangles.
Sort text lines into reading order.

Add gutters that do not overlap graphics and vertical rulings to vertical separa-
tors.

Group text lines into text regions (columns).
Group text and graphics regions in XML format.

Figure 3.8: Steps of the improved RAST algorithm. The original steps have a
standard font, the modified functions are italicized and new functions are bold.
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3.4 Voronoi Page Segmentation with Classification

As written earlier, Voronoi page segmentation was not fully implemented in OCRopus.
That is, users could segment document images into Voronoi zones, but they were not
classified as text or non-text so could not be appropriately routed to the OCR engine.
Frequent oversegmentation of zones has also been demonstrated. Additionally, since
XML output is required to measure the accuracy of the page segmentation, the

segmentation needed to be converted to this format as well.

Addressing all three concerns, the algorithm was extended in three steps: clas-
sification of the zones, merging of non-text zones, and clean up of any overlapping
non-text regions (note that the term ”zones” corresponds to geometries created by the
basic Voronoi algorithm and "regions” corresponds to page segments). The original
algorithm starts by binarizing the image, finding the Voronoi zones, numbering them,
and creating an image of the numbered zones as depicted in Figure 3.9. At this point,
the original Voronoi algorithm ends and the new algorithm developed by the author
begins. The first step of the new algorithm is to save the interior zone boundary lines

into another image as shown in Figure 3.10.

The new algorithm continues by extracting the connected components of the
original image and identifying the character boxes as in RAST. The non-overlapping
character boxes are saved into an array to be used for text classification; whereas, the
overlapping character boxes are considered later as non-text entities. For each zone,
the character boxes located in the extreme upper, lower, left-most and right-most
portions of the zone are found and used to create the smallest rectangular region as
depicted in Figure 3.11, called the "text block.” Then, the zones that contain ”text

blocks” are passed to a function that determines whether or not the blocks really
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Figure 3.9: The numbered Vornonoi zones. The histograms in Figures 3.12-3.14
correspond to tan text zone number #8.



Figure 3.10: The Vornonoi lines.
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Figure 3.11: The "text rectangle” of an unclassified zone.

contain text, and based on this information, classify the zone as text or non-text.

The classification algorithm begins by creating a histogram of the locations of
the lower-left corners (y0-values) of the character boxes so that it can determine the
average location (or y-value) of each text line. A section of the histogram obtained
from zone #8 of Figure 3.9 is shown in Figure 3.12. Notice that there exist shorter
peaks to the left of each major peak. These correspond to the y0-values of descenders
(i.e., letters that extend below the line like g, j, y). Since these values do not represent
the location of the line, they need to be discarded, but in order to do this, the threshold
under which they exist needs to be determined. This is done in a four-step process

developed by the author.

First, the histogram is smoothed once, as shown in Figure 3.13, and the values of
the peaks are found. Note that these values correspond to the number of occurrences
of each y0O-value, not the yO-values themselves. The histogram of these numbers
(Figure 3.14) contains two prominent peaks: the one on the right represents the
number of occurrences of the y0-values of letters sitting on the line and the one on
the left represents the number of occurrences of the y0O-values of letters extending

below the line. Since the former is the desired parameter, the value of the right-most
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Figure 3.12: Section of the histogram of the y0-values of the character boxes of zone
#8 in Figure 3.9. The peaks to the left correspond to letters extending below the line
and the peaks to the right correspond to letters sitting on the line.
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Figure 3.13: Section of the smoothed histogram of Figure 3.12.

peak is selected, which is twelve in this case. Half of this value is then used as the
threshold for finding the peaks of the original histogram.

Once the y-values of the text lines have been found, the character boxes lying
within a certain distance of each line (i.e., the width of an average character box) are
found. For each line, the widths of the associated character boxes are summed and
the x-values over which they extend is calculated. Densities for each line are then
determined as the sum of the widths of the character boxes divided by their x-extent.

If 80% of the lines have densities exceeding 50%, the zone is classified as text.

After the zones have been classified, the non-text ones are merged. The pixels of
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Figure 3.14: Histogram of the peaks of the y0-values of the histogram of Figure 3.13.
In this example, for each of the lines, the median number of occurrences of the main
y0-value is twelve.

each zone are placed into an array and their perimeters and found by dilating the
Voronoi lines and ANDing them with the zone pixels. These pixels are then placed
into another array. At this point, one of the non-text zones is selected and its non-text
neighbors are merged with it recursively.

Part (a) of Figure 3.15 shows an oversegmented non-text region where the selected
zone is colored red. To find its neighbors, the extreme upper, lower, left-most, and
right-most perimeter pixels are identified and the pixels in the directions of the border
are explored. For example, when the top pixel is under consideration, the pixels
directly above it are explored. Since the width of the Voronoi lines are five pixels,
the first five or so will correspond to the line; however, at some point after this, the
exploration will encounter a pixel in a different zone. Based on this information, the
identity of the neighbor is found, after which its label is updated to match the first
zone’s.

The remainder of Figure 3.15 depicts the relabeling of zone neighbors. This trans-

formation occurs recursively until all of the non-text neighbors have been evaluated.
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Figure 3.15: Zone coloring of non-text relabeling process. a) Initial zone coloring, b)
after the smallest has been relabeled, ¢) after its neighbor has been relabeled and d)
after all of the neighboring non-text zones have been relabeled.

At this point, the next non-text zone that has not been evaluated is considered and

its neighbors converted to its zone number, and so on.

Following the merging of non-text zones, the algorithm enters the clean-up phase.
This is most easily done in rectangle space rather than pixel space since it involves
merging overlapping rectangles. So, the upper, lower, left-most, and right-most pixels

of each zone are found and used to define the inner rectangles.

The first step of the clean-up addresses all of the text rectangles that are com-
pletely covered by non-text rectangles. This is done by iterating through the rect-
angles and checking for complete overlaps. Completely covered text rectangles are
simply deleted. The next step is to check for the opposite: resolve all non-text rect-
angles that are completely covered by text rectangles. In this case, the encompassing

text rectangles are relabeled as non-text and the covered non-text rectangles are

deleted.
The remaining steps address figures that have been merged across column bound-

aries as well as text that wraps around figures. The first case, illustrated in Fig-

ures 3.16 and 3.17, consists of breaking the non-text rectangle into two and removing
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the text overlaps (i.e., in the upper-right and lower-left quadrants of the original
non-text rectangle). Figures 3.18 and 3.19 show the second case where the oversized
text rectangle is broken up into smaller rectangles to avoid overlapping the figure.

Once the algorithm was completed, it was tested at resolutions other than 300
DPI. At 200 DPI, the performance was slightly lower, but not appreciably and could
be attributed to the loss of detail in the file; however, at 600 DPI, the performance
dropped dramatically and was traced to the hard-coded parameter used to define
noise pixels in the document. That parameter was changed to a fraction (1/326,774,
which was determined based on the hard-coded value for 300 DPI) of the number of
pixels on the page after which the segmentation performance improved.

The steps of the extended Voronoi algorithm are shown in Figure 3.20. There are
two original steps displayed in standard font and six new functions displayed as bold.

Appendix D contains the code.
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Figure 3.18: Wrap around text zone covers picture.
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Figure 3.19: Wrap around text zone is broken into two zones.
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1. Binarize image.

2. Create Voronoi area diagram then number each zone.

3. Extract Connected Components (CC).

4. Calculate bounding boxes of CC’s.

5. Get character boxes and calculate statistics using iterative smoothing.
6. Place non-overlapping character boxes into an array.

7. Zones are labeled to be text or non-text and rectangular zones are
created.

(a) Find the most frequently occurring y-values (text line locations).
(b) Sort the boxes into text lines.
(c) Calculate the density of the boxes for each text line.

(d) If the density of 80% of the lines is at least 50% label as text.

8. Dilate the line pixels then AND them with the zone pixels to find the
perimeter pixels. Place these and the zone pixels into two separate
arrays.

9. Iterate through the non-text zones merging neighboring zones. For
each non-text zone, use its perimeter pixels to explore outward and
find its neighbors. Then relabel them with the original zone’s label.
The labeling method is recursive whereby after relabeling the given
zone it finds its neighbors and relabels all of them and so on.

10. Clean up the segmentation.
(a) Text zones which are completely overlapped by non-text zones
are deleted.

(b) Non-text zones which are completely overlapped by text zones
are deleted and the text zones are reclassified as non-text.

(c) Non-text zones which have merged across column dividers are
broken so that they do not overlap neighboring text.

(d) Text zones which partially overlap figures (wrap around text) are
segmented.

Figure 3.20: Steps of the extended Voronoi algorithm. The original steps have a
standard font and the new functions are bold.
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CHAPTER 4

TESTING AND ANALYSIS

This chapter covers the testing and analysis of the implementations of the improved
RAST and Voronoi algorithms. 450 text documents were created comprising eight
different types (i.e., single column, double column, etc.) and a range of resolutions.
Then, their associated ground truth XML files were generated. These documents
were used to test and analyze the algorithms such that the comparison program gave
an overall metric and TrueViz provided a means to visualize the results. Using these
tools, the algorithms were analyzed in terms of types of errors, both across and specific

to particular classes, as well as a function of resolution.

4.1 Test Documents

The performance of the algorithms and commercial software was evaluated on a
collection of 450 document images. Since the Bavarian documents of interest are
located in Germany and have not yet been imaged, the document images evaluated for
this thesis were acquired locally. The collection contains 300 hand-made documents
written in the Times New Roman 12 point font saved at five different resolutions (50,
100, 200, 300, and 600 DPI) and three file formats (Tagged Image File Format (TIFF),
Portable Network Graphics (PNG), and Joint Photographic Experts Group (JPEG)).

The documents contain the following layouts: single column text only (10x5), double
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column text only (10x5), single column text with half-tone images (10x5), double
column text with half-tone images (10x5), and a mixture of single and double columns
with half-tone images (10x5). The rest of the data set includes 50 pages taken from
magazines (10x5) and 100 pages of technical journals that contain graphs, figures,
tables and a title/abstract combination (20x5).

While the RAST and Voronoi algorithms were being developed, they were tested
on a subset of the collection. Ground truth XML files were generated for each of the
documents from the TIFF files so they could be compared using the comparison tool.
Testing started from the first class and progressed to the most complex at a resolution
of 300 DPI, using the PNG file format. Once the algorithms demonstrated acceptable
performance levels at 300 DPI, they were analyzed at the remaining resolutions. If
the performance dropped off, the algorithm was examined for resolution-dependent
parameters and modified to be resolution independent as discussed in Section 3.3.
Following the testing of the improved RAST and Voronoi algorithms, ABBYY’s
FineReader OCR package was evaluated to see how well a commercial program could

analyze these types of layouts.

4.2 RAST Analysis

In order to assess the amount of improvement in the performance of the new RAST
algorithm, the test images were first run through the original algorithm with the
updated get-text-columns function (see Section 3.2). This output was then compared
to the ground truth using the comparison program and two different sets of weights.
The average accuracy for each class is plotted as a function of resolution in Figure 4.1

where 100% signifies perfect segmentation.
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The graphs on the left illustrate the performance levels using the same weights
as those used in the ICDAR 2007 Page Segmentation Competition [19] (1.0, 0.75,
0.75, 1.0, 0.75, and 0.75 for w; through wg, respectively) for Equations 2.3 and 2.4;
whereas, the graphs on the right depict the performance levels using the following
weights: 1.0, 1.12, 1.0, 1.0, 1.0 and 1.12 for w; through wg, respectively. For this
algorithm, the results using the two different sets of weights are fairly similar.

Examining these plots, the single, double, and mixed column text-only pages were
segmented fairly accurately, from 80-100%, by the original RAST algorithm; however,
the performance level of the documents containing half-tone images peaked between
30-60% at 100 DPI, then dropped at higher resolutions. There are two issues to
address here: 1) is 100 DPI a feasible resolution with which to image a document,
and 2) why does the performance drop after 100 DPI? Addressing the first issue, 100
DPI is a low resolution at which most detail in a document is lost, in which case it
may not even be possible to recognize the characters.

In order to assess the lowest resolution at which the OCRopus OCR engine could
produce reliable output, the author scanned a single column, text-only document at
eight resolutions and ran them through the OCR engine. Table 4.1 shows that at
100 DPI, the OCR engine could not recognize any of the characters. Therefore, the
segmentation algorithms were not expected to perform at or below 100 DPI.

Regarding the second issue, while improving the RAST algorithm, the author
found that the parameter used to specify the minimum length of the text lines was
hard coded. As mentioned in Section 3.2, it was replaced by a multiple of the average
character box height gleaned from the box width histograms.

The performance of the improved RAST algorithm is also shown in Figure 4.1,

which displays not only better performance at 100 DPI, but better performance at
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Figure 4.1: Performance of original (top) and improved

with the ICDAR Page Segmentation Competition weights (left) and the weights

compensated for segmentation of paragraphs (right). Higher numbers indicate higher

performance.
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Resolution (DPI) | OCR results
300 missed 1 line
266 missed 2 lines
240 missed 3 lines
200 missed 2 lines
150 missed 18 lines
96 no output
72 no output
50 no output

Table 4.1: The performance of the OCR engine of OCRopus on a single column,
text-only document for a series of image resolutions.

higher resolutions as well. The single, double, and mixed column documents with half-
tone images show the most improvement from 30-60% to 80-90%. The segmentation
of the technical documents improved on the order of 25% from approximately 40% to
60-70%. They did not improve as much because they contain graphs and tables that
are discontinuous and difficult to capture completely as non-text.

The axes labels of the graphs tend to be misclassified or completely dropped, and
the text in the tables tends to be classified as text. Since they actually are text,
one might argue that they should be classified as such anyway; however, mechanisms
would be needed to be added to handle their reading order for the OCR engine. So,
they were treated as non-text in this thesis. The magazine class improved the least
amount from 50% to 65% due to text/non-text merging, which will be explained
shortly.

Taking a closer look at the single and double column documents with half-tone
images, which are similar in format to the magazine documents, three types of errors
emerge. The first one is the oversegmentation of text regions. This typically happened
in areas where one text line was either much shorter or slightly longer than its

neighboring text lines. Figure 4.2 shows an example. Note the line in the middle
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of the left column that has been defined as one region. It is slightly longer than
the line above and below it, so it was not assigned to the same text column in the

" get-text-columns” function.

The second type of error was the merging of text regions as depicted in Figure 4.3.
In this case, as in all of the cases, they were short columns. The reason why short
columns were merged is because the function to find white spaces, some of which are
later turned into column separators, examines their aspect ratios and rejects those
below a certain threshold. So, short columns are not separated by gutters. This could

be fixed by reducing the expected aspect ratio.

The last type of error involved merging text and non-text regions. This occurred
in three different cases: when text wrapped around the figure in a non-linear fashion,
when the column was very narrow, and when non-text was incorrectly detected in
text regions. In the first case, RAST was not designed to handle non-Manhattan
geometries and XML output does not support it either, so this type of layout is
beyond the scope of this thesis. Therefore, that type of error was not addressed. In
the second case, RAST did not recognize the text as columns because they were too
narrow to be defined as text lines. This is a limitation of the algorithm because the

dimensions of text lines must pass certain threshold tests.

The last case occurred somewhat randomly in that the algorithm classified some
pixels within text regions as non-text rather than text. In one of these instances,
the pixels were associated with the first letter of the paragraph that was much larger
than the other letters and gray rather than black. The other instance is shown in
Figure 4.4 where one of the words of a text line was not included because too many

BE

small characters (i.e., -:"") separated it from the rest of the line. The word is ”Ich”

and is located to the left of the upper figure. It was classified as non-text and merged
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Figure 4.2: Example of text oversegmentation in the improved RAST algorithm. Note
the line in the middle of the left column that has been defined as one region. It is
slightly longer than the line above and below it.
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Figure 4.3: Example of column merging in the improved RAST algorithm. Note the

diminutive height of the merged columns at the bottom of the page.
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with the neighboring text-lines, which were subsequently merged with the figure.
Since this example does not represent realistic punctuation this type of error was

ignored.

In conclusion, while the expansion of the RAST algorithm improved its perfor-
mance significantly, it still has some limitations. The root of the problem stems
from the fact that parameters are needed to set length requirements of text lines and
gutters. If the layout of a document does not conform to these criteria, it is not

segmented correctly.

4.3 Voronoi Analysis

Since the basic Voronoi algorithm did not include zone classification, no measurements
could be taken to assess the accuracy of the original segmentation; however, the
images shown in Section 2.4 indicate that the figures were oversegmented. The set
of documents described in Section 4.1 was run through the extended algorithm and
compared to the ground truth for a range of resolutions. Figure 4.5 illustrates the
performance of the algorithm alongside that of RAST using the two sets of weights
mentioned in Section 4.2.

In this case, the results are markedly different for the two weight sets. For the
balanced weights used in the ICDAR Page Segmentation Competition, the overall
performance is lower than that of the other set. It is also much tighter in terms of
variation between classes. This is because the second set of weights was tuned to
avoid penalizing oversegmented text; however, it was not as effective in documents

that contained half-tone images.

Figures 4.6 and 4.7 illustrate how the segments were defined in the ground truth
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Figure 4.4: Example of text-image merging in the improved RAST algorithm. Note
the "Ich” word to the left of the upper figure separated from the rest of the text on

the line with -:””
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and by the Vornonoi segmenter for one of the document images. Note that the entire
document is one region in the ground truth, but the Voronoi algorithm assigns each
space-separated paragraph its own region. The performance measurement returned
by the comparison program for the RAST and Voronoi algorithms for this document
were 100%/100% and 55%/81%, respectively, for the ICDAR and custom weights,

demonstrating a higher level of performance with the custom weights.

Even though the Voronoi algorithm classified the regions correctly, it took a
performance hit for segmenting these regions. Since the paragraphs are separated
by spaces, though, they should have been separated in the ground truth as well, but
the author did not know this at the time it was created. Therefore, this drop in
performance can be attributed to the format of the ground truth rather than the

Voronoi algorithm.

Compared to the RAST algorithm, in terms of overall metrics, Voronoi did not
perform as well. With respect to resolution, the Voronoi algorithm performed essen-
tially the same at 200 and 300 DPI with a small drop at 600 DPI. Also, while the
two column text-only documents segmented at close to 100% accuracy, the Voronoi
algorithm did not segment the single column and mixed column documents as well,
ranging from 80% to 90%. While the weights of the comparison program were chosen
to minimize the performance degradation for this reason, it did not compensate fully

for all of the classes of documents.

Examining the results of the document classes that included half-tone images,
all of them had similar performance measurements with the exception of the mixed
columns class. In this case, the lower segmentation accuracy was either minor or could
be attributed to non-Manhattan layouts. Figures 4.8 and 4.9 show the segmentation

of a non-Manhattan layout (i.e., it does not have a Manhattan geometry) at 300 and
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Figure 4.7: Voronoi text segments of a single text-only document image.
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600 DPI, respectively. The difference between the two lies in the bottom region. The
higher resolution document contains several text regions; whereas the lower does not
contain any. It only contains two non-text regions in this area. Since the extension
of the Voronoi algorithm did not address non-Manhattan layouts, the results of this

particular document image can be ignored.

For the remaining document classes containing half-tone images, three types
of errors dominate: one can be attributed to the data, another to Kise’s Voronoi
algorithm, and the third to the text classification algorithm. Starting with the first,
a number of the documents contain half-tone images in very close proximity to text,
such as that shown in Figure 4.10. For documents scanned at a resolution of 300
DPI, Kise’s Voronoi algorithm failed to separate the images from text when they
were separated by 23 or fewer pixels. The height of a tall letter at this resolution is
28 pixels, so if the image were positioned within this distance, it might not be placed
into its own region. After the Voronoi regions were defined, it was impossible for the
extension of the algorithm to further segment and classify them correctly.

The second concern is similar to the first in that its root cause can be traced to
Kise’s Voronoi algorithm. As mentioned in Section 3.4, the most frequently occurring
zoning error is the oversegmentation of text. This can be seen in titles, headers,
footers and occasionally in parts of outlying sentences in paragraphs. The title shown
in Figure 3.7 illustrates the phenomenon. Since this problem relates more to reading
order than region classification, it was not addressed in this thesis.

The third issue identified was that some text, namely italicized and bold text,
tended to be classified as images rather than text. This was due to the fact that the
bounding boxes of the characters overlapped so were omitted from the zones and not

considered as text. Therefore, by default they were classified non-text. While this
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Figure 4.8: Voronoi segmentation of a mixed column document with pictures at 300

DPI. The lowest regions were classified as graphics. The accuracy of the segmentation
was 37%.
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Figure 4.9: Voronoi segmentation of a mixed column document with pictures at

600 DPI. Most of the lowest regions were classified as text.

segmentation was 53%.

The accuracy of the
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was a problem sometimes, unless the entire block was italicized, it did not have a
substantial impact on the performance. To fix this problem, it might be possible to

add an overlap tolerance to the algorithm so that these letters are not dropped.

4.4 Commercial Package

Following the completion of the page segmentation algorithms, a commercial OCR
program was evaluated for comparison. ABBYY’s Fine Reader Engine 9.0 is a
comprehensive layout analysis package, which not only includes image processing and
layout analysis commands, but table, barcode, text-type recognition (i.e., direction,
italics, underlining, etc.), and synthesis (i.e., hyperlinks, bullets, background, and
text color, etc.) commands. Additionally, it can recognize 186 languages and can
produce output in nine different formats.

The set of test documents described in Section 4.1 were analyzed by Fine Reader
and output in XML format. Since the tags of this format did not match that
of the ground truth, a program was written to convert these files to a matchable
format. These were then compared to the ground truth using the program described
in Section 3.1.

Figure 4.12 shows the performance of Fine Reader alongside the improved RAST
and Voronoi algorithms. Comparing the two different weight classes, the performance
is only slightly higher for the customized weights. Therefore, customizing the weights
benefitted the Voronoi algorithm the most. This is because it segmented the text more
than the other two algorithms as shown in Figures 4.6, 4.7, and 4.11, and placing
higher weights on the one-to-many ground truth-to-detected region parameters results

in a larger performance gain for highly segmented detected regions. As noted in
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Section 4.3, though, the text of the ground truth was undersegmented as a whole.

For both cases, the performance of all classes is between 70% and 85% for all
resolutions, including 100 DPI. Neither RAST nor Voronoi were able to segment as
accurately at 100 DPI. At 50 DPI, the performance drops 5-10% for Fine Reader;
whereas, for the other two algorithms, it essentially drops to zero. Not only does
Fine Reader have a flatter response as a function of resolution, but it also has a
tighter response in that all of the classes were segmented with approximately the
same accuracy.

There were a couple of anomalies, though. At 50 and 100 DPI for the single column
and double column classes, the performance dropped to zero. This was because the
regions were classified as pictures rather than text. Also, the single column class only
performed at approximately 50% throughout the range of resolutions due to the same
reason: the Voronoi algorithm had a lower performance than RAST; the paragraphs
were broken into individual regions, but were only represented by one region in the
ground truth.

Examining the output, the predominant error appeared to be overlapping regions,
which depending on how you define the ground truth, could not even be considered
an error. Figure 4.13 shows one such example. Note the overlapping text and image

regions. So, rather than break up the regions, Fine Reader simply overlaps them.
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Figure 4.13: Example of Fine Reader segmentation. Note the overlapping image and

text boxes.
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CHAPTER 5

CONCLUSION

In the interest of digitizing historical documents at a low cost, open source layout
analysis programs were researched in the literature and on the Internet. A package
under development called OCRopus, which contains a hardware solution for obtaining
the images (i.e., a digital camera assembly) and a software solution for processing
them, was deemed the most advanced available. In its current state, while the
image processing capabilities were well developed, the page segmentation functionality
was limited to text-only documents and was optimized for a resolution of 300 DPI.
Therefore, the goal of this thesis was to improve its page segmentation performance,
so that camera acquired images of historical documents with layouts similar to the

Bavarian manuscripts of interest could be analyzed and converted to text.

After modifying the program to generate output in XML format, as well as writing
a program to compare detected regions to ground truth, two page segmentation
algorithms in OCRopus were evaluated. The first one was the default algorithm called
RAST, which was designed for text-only documents. When tested on documents that
contained non-text areas as well, it tended to classify regions within them as both
text and non-text. Entities such as graphs and tables, on the other hand, tended to
be divided up into both types of regions. The end result was that OCRopus output a

series of errors along with whatever text it was able to recognize, thus rendering the
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output illegible.

The second algorithm, based on the Voronoi method, was less mature than RAST
in that it segmented the page into regions, but did not classify them. Therefore,
this algorithm did not support OCR so could not even process text-only documents.
In terms of segmentation ability, it worked fairly well, but tended to oversegment

non-text areas as well as text typed in large fonts.

The RAST algorithm was modified in a number of different ways to improve its
performance. First of all, it was discovered that the minimum length parameter used
to define the text lines was not resolution independent so was changed to a multiple
of the average character box width; however, the calculation of the average box width
itself was found to be inaccurate, so an algorithm was developed to find its true value.
This parameter was extracted from a peak of the histogram of the bounding boxes
of the presumed characters. By smoothing the histogram iteratively until it assumed
the targeted shape, the correct value could be extracted. Using this value, RAST was
able to create text lines more accurately.

After the column dividers were found, the algorithm was expanded to merge and
classify the regions correctly. The first two functions served the purpose of keeping
track of pixels that had been lost previously to ensure that they are now classified as
non-text. The next major function reclassifies text lines that overlap other text lines
as non-text because text lines do not overlap. Then, the algorithm loops through
a series of three functions that merge text lines that overlap non-text, non-text
rectangles that overlap other non-text rectangles, and non-text rectangles in close
proximity to each other until no new non-text rectangles are created. In this way,

non-text areas such as figures are more accurately classified.

As for the Voronoi method, it did not have any classification algorithm, so one was
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developed and implemented. It utilizes the same character box extraction method as
RAST, then employs a smoothing algorithm to find the locations of text lines. After
this is done, it examines the density of the boxes along the text lines. If enough lines
have densities above a certain threshold, the region is considered text.

Following the classification of the regions, the oversegmentation of non-text regions
was addressed. This was done in a recursive manner where a non-text region was
selected and its neighboring non-text regions were relabeled with its zone number.
After all of the non-text regions have been examined, the rectangles they form are
considered. If any overlap, they are merged so that segmented regions do not overlap.

With this added functionality, the RAST and Voronoi algorithms are now capable
of processing mixed-content layouts, making the digitization of standard format his-
torical documents by low-budget organizations feasible. Once the improvements were
implemented, they were tested on a set of test images. For the RAST algorithm, the
performance of the hand-made documents with half-tone images improved an average
of 40%, the technical document class 25%, and the magazine class 15% resulting in
final overall accuracies of 90%, 65%, and 55%, respectively. While only the first
six classes met the goal of the thesis, the other two consisted of more sophisticated
content than would typically be included in an historic document, so is not considered
as relevant.

The primary errors were caused by the oversegmentation of text areas due to
unusually long or short text lines, the merging of short columns due to the constraints
used for the definition of column dividers, and the merging of text and non-text regions
due to non-Manhattan layouts, very narrow columns, and stylized text being classified
as non-text.

The performance of the Voronoi algorithm was similar to RAST for the text-only
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documents, but was lower for the documents containing half-tone images, graphs, and
tables. The double column text-only class fared the best at 95% and the double and
mixed column text-only classes at 85%. The rest of the classes, with the exception
of the mixed columns with half-tone images, performed between 50% and 65%. Due
to some anomalies in the files, the mixed column class was only segmented with an

accuracy of 40%.

So, the Voronoi implementation only met the stated goal of the thesis for one of
the classes; however, two other classes came close. As for the remainder, the factors
impacting the performance of these documents included the layouts of the documents
themselves, so that, in some cases, figures were so close to text that the kernel of
the Voronoi algorithm merged them. Also, the algorithm tended to oversegment
large text, breaking it up into separate zones. Additionally, italicized and bold text
was classified as non-text. Since these errors stemmed from either the non-standard
spacing of hand-made documents or the sophisticated layout of modern documents,
it is likely that this method would perform better on the historical documents of
interest.

Finally, the commercial package, Fine Reader, developed by ABBYY, was evalu-
ated using the same set of test documents. With the exception of the single column
class, Fine Reader performed more consistently for all classes and all resolutions than
the OCRopus algorithms, with an accuracy of 70% to 85%. As for the single column
class, its performance was lower because Fine Reader segmented the paragraphs;
whereas, it was not segmented in the ground truth. While Fine Reader demonstrated
a more consistent level of performance for all classes, it did not meet the 90% goal of

the thesis either.

While the RAST and Voronoi algorithms performed well, there remain areas in
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which they could be improved. Namely, the robustness of RAST could be increased
so that it can process text lines of varying widths as well as short and/or narrow
columns. The processing of stylized text and, for Voronoi, italicized and bolded
text, could also be fixed. Also, the Voronoi algorithm could be enhanced by merging
segmented titles and classifying italicized text properly. Finally, since the documents
of interest were not available for this thesis, a true measurement of the performance
of these algorithms could be obtained if images of the manuscripts were captured and
processed.

In conclusion, the improved RAST algorithm compares well to a widely used
commercial program in the case of documents that contain half-tone images rather
than graphs and tables. The Voronoi algorithm did not perform as well as Fine Reader
(by approximately 20%), but if the documents contain ample space between the
figures and text, and there is no italicized or bolded text, it might perform adequately.
Therefore, depending on the type of layout being digitized, either algorithm could

potentially be employed.
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APPENDIX A

COMPARISON PROGRAM

A.1 README File

Zone Comparison Program

The file structure is:

runZoneComp executable

ZoneComp.cpp main program source file

Rect.cpp class source file

Rect.hpp class header file
Description:

This program reads two xml files which list the page segmentation
zones of a document where the zones are categorized as "Text" or
"Non-text". One of the input documents is the "ground truth" which
means it contains the true and accurate zone information of the
document; whereas the other file contains the zones as detected by
a page segmentation program. ZoneComp then compares the two and
returns a metric of how well they match which is a measurement of
how well the page segmenter performed.

The metric is described in the following papers:

A. Antonacopoulos, B. Gatos and D. Bridson, "ICDAR2007 Page
Segmentation Competition," Proceedings of the 9th International
Conference on Document Analysis and Recognition, Curitiba, Brazil,
September 2007, IEEE Computer Society Press, pp. 1279-183.

I. Phillips and A. Chhabra, "Empirical Performance Evaluation of
Graphics Recognition Systems," IEEE Transaction on Pattern Analysis

and Machine Intelligence, Vol. 21, No. 9, pp. 849-870, Sept. 1999.

Note that if either XML file contains a document type tag like
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<IDOCTYPE Page SYSTEM "Trueviz.dtd"> at the top of the page it needs

to be removed first.

To build the program type
>make

The usage is
>runZoneComp
<-g name of ground truth xml file>
<-d name of detected xml file>
<[-r rejection threshold]>
<[-a acceptance threshold]>
<[-v for verbosel>

Sample program output in default mode is:
Reporting results for the 1lcolpic300_2.xml
Segmentation Metric = 1.00

Sample program output in verbose mode is:
Reporting results for the 1colpic300_2.xml

The number of one-to-one matches for the text region is 2.
The number of one-to-one matches for the non-text region is 1.

The number of d_one-to-many matches for the
The number of d_one-to-many matches for the
The number of g_many-to-one matches for the
The number of g_many-to-one matches for the
The number of g_one-to-many matches for the
The number of g_one-to-many matches for the
The number of d_many-to-one matches for the
The number of d_many-to-one matches for the

The text detection rate = 1.00

The text recognition accuracy = 1.00

The text region metric = 1.00

The non-text detection rate = 1.00

The non-text recognition accuracy = 1.00
The non-text region metric = 1.00

Segmentation Metric = 1.00

text region is 0.
non-text region is
text region is 0.
non-text region is
text region is O.
non-text region is
text region is 0.
non-text region is
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A.2 Code Documentation

A.2.1 Main Program Functions

This function prints the command line usage of the program:
void printUsage(const char* progName)

progName is the name of this program

This function initializes the XML platform:

void initializeXMLplatform()

This function checks the status of an input file
and returns the pointer its XML parser:
XercesDOMParser* checkFile(const char* fileName)
fileName is the name of the XML file to check

This function parses the xml documents:
void parseDoc(DOMNodeList* zoneList,
vector vector Rect zone, int numZones)
zonelList is the list of zones
zone is the list of rectangles

numZones is the number of zones

This function calculates the match scores of the documents:
void calculate_Match_Scores (vector vector Rect gtZone,

vector vector Rect dtZone,
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vector vector vector float match_score,

vector vector vector int match_score_thres)
gtZone is the ground truth list of zones
dtZone is the etected list of zones
match_score the 2D vector (array) which holds the match scores
match_score_thres is the 2D vector (array)

which holds the thresholded match scores

This function calculates the G-Profile and the D-Profile:
void calculate_G_And_D_Profiles(

vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)

match_score the 2D vector (array) which holds the match scores

match_score_thres the 2D vector (array) which holds
the thresholded match scores

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function prints the G-Profile and the D-Profile:
void print_G_And_D_Profiles(
vector vector int G_profile,

vector vector int D _profile)

G_profile the array which holds the Ground Truth profile



D_profile the array which holds the Detected profile

This function computes the straight forward one-to-one matches:
void compute_one2one_Matches_Easy(

vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D_profile)

match_score is the 2D vector (array) which holds the match scores

match_score_thres the 2D wvector (array) which holds
the thresholded match scores

G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the
many-to-one detected conflicts for the first two cases
void compute_one2one_Matches_Resolving_
D_many2one_Conflicts_part1(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds

the thresholded match scores



G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving
the many-to-one detected conflicts for the third case:
void compute_one2one_Matches_Resolving_
D_many2one_Conflicts_part2(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D wvector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile)

This function computes the one-to-one matches by resolving the one-to-many
detected conflicts where the D-Profile is greater than or equal to two
void compute_one2one_Matches_Resolving_
D_one2many_Conflicts_part1(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,

vector vector int D_profile)
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match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D wvector (array) which holds

the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the one-to-many
detected conflicts where the G-Profile is greater than or equal to two:
void compute_one2one_Matches_Resolving_
D_one2many_Conflicts_part2(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D _profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the partial Detected one-to-many matches and
the partial Ground truth many-to-one matches:
void compute_D_one2many_Matches(
vector vector vector float match_score,

vector vector vector int match_score_thres,



vector vector int G_profile,

vector vector int D_profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds

the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function computes the partial Ground truth one-to-many matches
and the partial Detected many-to-one matches
void compute_G_one2many_ Matches(
vector vector vector float match_score,
vector vector vector int match_score_thres,
vector vector int G_profile,
vector vector int D_profile)
match_score the 2D vector (array) which holds the match scores
match_score_thres the 2D vector (array) which holds
the thresholded match scores
G_profile the array which holds the Ground Truth profile

D_profile the array which holds the Detected profile

This function calculates the detection rates:
void calculate_Performance(vector vector Rect gtZone,
vector vector Rect dtZone)

gtZone the ground truth list of zones
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dtZone the detected list of zones

A.2.2 Rect Class Constructor and Functions

This constructor creates a zero area rectangle at (0,0) coordinates:

Rect::Rect()

This constructor creates a rectangle with the given coordinates:
Rect::Rect(int xmin, int xmax, int ymin, int ymax)
xmin the coordinate of the minimum x value
xmazx the coordinate of the maximum x value
ymin the coordinate of the minimum y value

ymazx the coordinate of the maximum y value

This method prints the coordinates of a rectangle:

void Rect::print()

This method returns the x-value of the left side (minimum x) of a rectangle:

int Rect::getLeft()

This method returns the x-value of the right side (maximum x) of a rectangle:

int Rect::getRight()

This method returns the y-value of the top (minimum y) of a rectangle:
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int Rect::getTop()

This method returns the y-value of the bottom (maximum y) of a rectangle:

int Rect::getBottom()

This method sets the coordinates of a rectangle:
void Rect::setCoords(int xmin, int xmax, int ymin, int ymax)
xmin the coordinate of the minimum x value
xmazx the coordinate of the maximum x value
ymin the coordinate of the minimum y value

ymazx the coordinate of the maximum y value

This method sets the type or class of a rectangle:
void Rect::setType(int inType)

inType the class of the rectangle (i.e. Text or Non-text)

This method returns the type or class of a rectangle:

int Rect::getType()

This method calculates and returns the match score of two rectangles:
float Rect::getMatchScore(Rect otherRect)

otherRect the rectangle to compare to
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APPENDIX B

XML OUTPUT

B.1 get-text-columns of ocr-detect-columns.cc

void get_text_columns(rectarray &textcolumns,
rectarray &textlines,
rectarray &gutters,
rectarray &graphics){ <--- graphics array now passed

if('textlines.length()) return;

if(!gutters.length()){
rectangle column = rectangle(textlines[0]);
rectangle tempcolumn = column;
for(int i=1; i<textlines.length(); i++){
tempcolumn.include (textlines[i]);
bool crosses_graphics = false; new graphics code
for(int j=0; j<graphics.length(); j++){ |
if (tempcolumn.fraction_covered_by(graphics[j])>0) |
crosses_graphics = true;
} |
if (crosses_graphics){
textcolumns.push(column) ;
column = rectangle(textlines[i]);
tempcolumn = column; v
} elsef{
column.include(textlines[i]);

}
textcolumns.push(column) ;
return;
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rectangle column = rectangle(textlines[0]);
rectangle tempcolumn =
rectangle(textlines[0] .dilated_by(-10,-2,-10,-2));
for(int i=1; i<textlines.length(); i++){
tempcolumn.include(textlines[i].dilated_by(-10,-2,-10,-2));
bool intersects_gutter = false;
bool gutter_penetrating from_below = false;
bool gutter_penetrating from_above = false;
for(int j=0; j<gutters.length(); j++){
point top = point(gutters[j].xcenter(),gutters[j]l.y1) ;
point bottom = point(gutters[j].xcenter(),gutters[j].y0) ;
if (tempcolumn.overlaps (gutters[j]1)){
intersects_gutter = true;
if (textlines[i].contains(top))
gutter_penetrating_ from_below
if (textlines[i].contains(bottom))
gutter_penetrating_from_above = true;
break;

true;

}
bool crosses_graphics = false; more new graphics code
for(int j=0; j<graphics.length(); j++){
if (tempcolumn.fraction_covered_by(graphics[j])>0) |
crosses_graphics = true; v
}
if (((intersects_gutter) || (crosses_graphics))
&& 'gutter_penetrating_ from_below){
textcolumns.push(column) ;
column = rectangle(textlines[i]);
if (!gutter_penetrating_from_above)
tempcolumn=rectangle(textlines[i].dilated_by(-10,-2,-10,-2));
else
tempcolumn=rectangle();
} else{
column.include(textlines[i]);

3

textcolumns.push(column); <——===—== Push command added.
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B.2 Functions of ocr-hps-output.cc

void hps_dump_preamble (FILE *output) {
fprintf (output, "<!DOCTYPE html\n");
fprintf (output, "  PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\n");
fprintf (output,
" http://www.w3.org/TR/xhtml1/DTD/xhtmlil-transitional.dtd\">\n");

void hps_dump_head (FILE *output) {

fprintf (output, "<head>\n");
fprintf (output,

"<meta name=\"ocr-capabilities\" content=\"ocr_line ocr_page\" />\n");
fprintf (output, "<meta name=\"ocr-langs\" content=\"en\" />\n");
fprintf (output, "<meta name=\"ocr-scripts\" content=\"Latn\" />\n");
fprintf (output, "<meta name=\"ocr-microformats\" content=\"\" />\n");
fprintf (output,

"<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />");
fprintf (output, "<title>OCR Output</title>\n");
fprintf (output, "</head>\n");

void hps_dump_regions(FILE *output, rectarray &textArray,
rectarray &graphArray, int imageHeight)
{
fprintf (output, "<Page>\n");

for(int i=0; i<textArray.length(); i++)

{
int x0 = textArray[i].x0;
int yO = imageHeight - textArray[i].y1l;
int x1 = textArrayl[i].x1;
int y1 = imageHeight - textArray[i].yO;

fprintf (output, "<Zone>\n");

fprintf (output, "<ZoneCorners>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);
fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);
fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);



fprintf (output, "</Vertex>\n");

fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);
fprintf (output, "</Vertex>\n");

fprintf (output, "</ZoneCorners>\n");

fprintf (output, "<Classification>\n");

fprintf (output, "<Category Value=\"Text\">\n");
fprintf (output, "</Category>\n");

fprintf (output, "</Classification>\n");

fprintf (output, "</Zone>\n");

}
for(int i=0; i<graphArray.length(); i++)
{
int x0 = graphArray[i] .x0;
int yO = imageHeight - graphArrayl[i].y1;
int x1 = graphArray[i].x1;
int y1 = imageHeight - graphArrayl[i].yO0;
fprintf (output, "<Zone>\n");
fprintf (output, "<ZoneCorners>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);
fprintf (output, "</Vertex>\n");
fprintf (output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);
fprintf (output, "</Vertex>\n");
fprintf (output, "</ZoneCorners>\n");
fprintf (output, "<Classification>\n");
fprintf (output, "<Category Value=\"Non-text\">\n");
fprintf (output, "</Category>\n");
fprintf (output, "</Classification>\n");
fprintf (output, "</Zone>\n");
}

fprintf (output, "</Page>\n");
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APPENDIX C

RAST UPGRADE

C.1 Excerpts of ocr-layout/ocr-layout-rast.cc

void SegmentPageByRAST: :segmentInternal (intarray &visualization,
intarray &image,
bytearray &in_not_inverted,
bool need_visualization,
rectarray &extra_obstacles) {

const int zero = 0;
0x00f£f££00;

const int yellow
bytearray in;
copy(in, in_not_inverted);
make_page_binary_and_black(in);

// Do connected component analysis
intarray charimage;
copy(charimage,in) ;
label_components(charimage,false);

// Clean non-text and noisy boxes and get character statistics
rectarray bboxes;
bounding_boxes(bboxes,charimage) ;
if (bboxes.length()==0){
makelike (image,in);
fill(image,0x00ffffff);
return ;

autodel<CharStats> charstats(make_CharStats());
charstats->getCharBoxes (bboxes) ;
charstats—->calcCharStats();
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rectarray cboxes;
for(int i=0; i<charstats->char_boxes.length(); i++) {
cboxes.push(charstats->char_boxes[i]);

}

// Compute Whitespace Cover

autodel<WhitespaceCover> whitespaces(
make_WhitespaceCover(0,0,in.dim(0) ,in.dim(1)));

rectarray whitespaceboxes;

whitespaces->compute(whitespaceboxes,charstats->char_boxes);

// Find whitespace column separators (gutters)
autodel<ColSeparators> whitespace_obstacles(make_ColSeparators());
rectarray gutters, column_candidates;
whitespace_obstacles—>

findGutters(column_candidates, whitespaceboxes, *charstats);
whitespace_obstacles->filterOverlaps(gutters, column_candidates);

// Separate horizontal/vertical rulings from graphics

rectarray graphics;

rectarray hor_rulings;

rectarray vert_rulings;

autodel<ExtractRulings> rulings(make_ExtractRulings()) ;

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,
extra_obstacles,charstats->boxHeight) ;

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,
charstats->large_boxes,charstats->boxHeight) ;

// Add whitespace gutters and the user-supplied obstacles

// to a list of obstacles

rectarray textline_obstacles;

for(int i=0;i<gutters.length() ;i++)
textline_obstacles.push(gutters[i]);

for(int i=0;i<extra_obstacles.length();i++)
textline_obstacles.push(extra_obstacles[i]);

for(int i=0;i<vert_rulings.length();i++)
textline_obstacles.push(vert_rulings[il);

// Extract textlines
narray<TextLine> textlines;

autodel<CTextlineRAST> ctextline(make_CTextlineRAST());
ctextline->min_q = 2.0;
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ctextline->min_count = 2;

ctextline->min_length= (int) 2+*charstats->boxWidth;
ctextline->max_results = max_results;

ctextline->min_gap = 3*charstats->boxWidth;
ctextline->extract(textlines,textline_obstacles,graphics,charstats);

// Capture the connected components that were rejected as characters.
rectarray rejected_cboxes;
for (int i=0; i<cboxes.length(); i++) {
bool overlap = false;
for (int j=0; j<textlines.length(); j++) {
rectangle textline_box = textlines[j].bbox;
if (cboxes[i].fraction_covered_by(textline_box)>0)
overlap = true;
}
if (loverlap) {
rejected_cboxes.push(cboxes[i]);

}

// Merge the rejects then place them into the graphics array.
rectarray char_graphics;
int textlineHeight = charstats->boxHeight;
int dilation = 0.25%textlineHeight;
bool merged = closeRects(rejected_cboxes, char_graphics, dilation, dilation);
while (merged) {
rectarray mBoxes;
merged = closeRects(char_graphics, mBoxes, dilation, dilation);
if (merged) { char_graphics = mBoxes; }
}
for (int i=0; i<char_graphics.length(); i++) {
graphics.push(char_graphics[i]);
X

// 0f the small connected components, select those which do not
// overlap any textlines for further processing.
rectarray small_graphics;
for (int i=0; i<charstats->small_boxes.length(); i++) {

bool overlap = false;

for (int j=0; j<textlines.length(); j++) {

if (textlines[j].bbox.fraction_covered_by(charstats->small_boxes[i])>0)
overlap = true;
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if (!overlap)
small_graphics.push(charstats->small_boxes[i]);

// Now select the very small graphics rectangles.
int min_area = 0.1*textlineHeight*textlineHeight;
for (int i=0; i<graphics.length(); i++) {
if (graphics[i].area()<min_area) {
bool overlap = false;
for (int j=0; j<textlines.length(); j++) {
if (textlines[j].bbox.fraction_covered_by(graphics[i])>0)
overlap = true;
X
if (loverlap)
small_graphics.push(graphics[i]);

// Merge all of the small graphics components which correspond
// to isolated pixels or gray areas in images then add them to
// the graphics array.
rectarray small_boxes;
dilation = 0.2b5*textlineHeight;
merged = closeRects(small_graphics, small_boxes, dilation, dilation);
while (merged) {
rectarray mGraphics;
merged = closeRects(small_boxes, mGraphics, dilation, dilation);
if (merged) { small_boxes = mGraphics; }
}
for (int i=0; i<small_boxes.length(); i++) {
rectangle box = small_boxes[i];
if ((box.width() < textlineHeight) && (box.height() > 10 * textlineHeight))
continue;
graphics.push(box) ;

// Merge overlapping text line boxes and insert them into the graphics array.
bool mergedArrays = true;
while (mergedArrays) {

narray<TextLine> onlyTextlines;

mergedArrays = mergeText(textlines, onlyTextlines, graphics);

if (mergedArrays) { textlines = onlyTextlines; }
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// Clean up the graphics array by removing any little rectangles
// that might have been created while processing the gray areas.
min_area = textlineHeight*textlineHeight;
rectarray filtered_graphics2;
for (int i=0; i<graphics.length(); i++) {
if (graphics[i].area()>min_area)
filtered_graphics2.push(graphics[il);
X
graphics = filtered_graphics2;

// Move textlines that overlap graphics to the graphics array,
// merge overlapping graphics boxes into megagraphics boxes
// then merge nearby graphics boxes.
// Continue doing this until no textlines overlap graphics
bool updated = true;
dilation = 1.4*textlineHeight;

// 1.6 merges graph axis titles, but also figures

// whereas 1.4 doesn’t merge figures.
while (updated) {

narray<TextLine> onlyTextlines;

updated = mergeTextAndGraphics/(

textlines, onlyTextlines, graphics, dilation);
if (updated) { textlines = onlyTextlines; }

// Sort textlines in reading order

autodel<ReadingOrderByTopologicalSort>

reading_order (make_ReadingOrderByTopologicalSort());

reading_order->sortTextlines(
textlines,gutters,hor_rulings,vert_rulings,*charstats);

rectarray textcolumns;

rectarray paragraphs;

rectarray textline_boxes;

for(int i=0, l=textlines.length(); i<l; i++)
textline_boxes.push(textlines[i] .bbox);

// Group textlines into text columns

// Since vertical rulings have the same role as whitespace gutters,

// add them to vertical separators list as long as they are true gutters.
rectarray vert_separators;

for(int i=0,l=vert_rulings.length(); i<1l; i++){
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vert_separators.push(vert_rulings[i]);
}
for(int i=0,l=gutters.length(); i<1l; i++){
bool overlap = false;
for(int j=0; j<graphics.length(); j++) {
if (gutters[i].fraction_covered_by(graphics[j])>0)
overlap = true;
}
if (loverlap)
vert_separators.push(gutters[i]);

get_text_columns (textcolumns, textline_boxes, vert_separators, graphics);

FILE *output = stdout;

//hps_dump_preamble (output) ;

//hps_dump_head (output) ;

hps_dump_regions(output, textcolumns, graphics, in_not_inverted.dim(1));

C.2 Excerpts of ocr-layout/ocr-char-stats.cc

/

¥ ¥ X X X ¥ X

*

Obrief This function finds the major peaks of a histogram which

have two consecutive lower and higher points to each side.

Oparam locations the array in which to place the peak locations
@param a the histogram

Oparam minsize the locatin on the histogram to start examining
@param maxsize the locatin on the histogram to stop examining
Oparam sigma the amount of smoothing to apply

static void major_peaks(intarray &locations, floatarray &a,
int minsize, int maxsize, float sigma)

{

locations.clear();
floatarray v;
copy(v, a);
if (sigma>0)
gaussld(v, sigma);
int start = max(2, minsize);
int stop = min(v.length()-3, maxsize);
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float maxValue = 0;
for (int i=start; i<stop; i++) {
if (v[il < 1) { v[i]l = 0; }
if (((vlil>v[i-1]1) && (v[i-11>v[i-21)) &&
((wlil>v[i+1]) && (v[i+1]>v[i+2])) &&
(v[i] > 0.05 * maxValue))

locations.push(i);
if (locations.length() == 1)
maxValue = v[i];

3
b
3
VES
* Q@brief This function determines the value of the rightmost peak of
* a histogram by iteratively smoothing it until no more than
* the given number of peaks remain.
* Q@param hist the histogram
* Q@param peakNumber the desired number of peaks
*/

static int get_hist_peak(floatarray &hist, int peakNumber)
{

int start = 2;

int stop = hist.lengthQ);

int numPeaks = O;

int smooth = 0;

int peak = 0;

bool needsSmoothing = true;

while ((needsSmoothing) && (smooth < 15)) {
intarray modes;
major_peaks(modes, hist, start, stop, smooth);

if ((numPeaks = modes.length()) == peakNumber)

{ // return the value of the peak of choice

peak = modes (peakNumber-1);

needsSmoothing = false;

}

else if (numPeaks == 0)

{ // no peaks were found so more smoothing is needed
needsSmoothing = true;

}
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else if (numPeaks < peakNumber)

{ // too few peaks were found, take the rightmost
peak = modes(numPeaks-1) ;

needsSmoothing = false;

}

smooth++;

}

if (smooth == 15) { peak = 0; }

return peak;

}

C.3 Excerpts of ocr-layout/ocr-layout-manip.cc

VAL

* @brief This function merges text lines then puts them into the graphics array.
* Q@param textArray the input text line array

* Q@param newTextArray the output text line array

* Q@param graphicsArray the graphics array

* Q@return true if text lines were moved to the graphics array

*/
bool mergeText (narray<TextLine> &textArray,
narray<TextLine> &newTextArray,
rectarray &graphicsArray)
{
int i, j, numBoxes = textArray.length();
int mergeStatus[numBoxes];
bool arraysMerged=false;
for(i=0; i<numBoxes; i++) { mergeStatus([i] = 0; }
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
rectangle t1Bbox_i = textArray[i] .bbox;
rectangle t1lBbox_j = textArray[j].bbox;
if (t1Bbox_i.fraction_covered_by(t1Bbox_j)>0) {
float t1lBbox_i_height = t1Bbox_i.height();
float tlBbox_j_height = t1Bbox_j.height();
float diff = abs(tlBbox_i_height - tlBbox_j_height);
float sum = tlBbox_i_height + tlBbox_j_height;
float ratio;
if (t1Bbox_i_height < t1Bbox_j_height)
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ratio = tlBbox_i_height / t1Bbox_j_height;

else

ratio = tlBbox_j_height / t1Bbox_i_height;
if (ratio < 0.7)
{ // we’ve got a large and small rectangle
rectangle combinedRect = t1Bbox_i.inclusion(t1Bbox_j);
graphicsArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
} else
{ // we probably have two text lines, check the overlap
if (diff/sum > 0.15) {
rectangle combinedRect = t1lBbox_i.inclusion(t1Bbox_j) ;
graphicsArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;

j+ts

}
for(i=0; i<numBoxes; i++)

if (mergeStatus[i]==0) { newTextArray.push(textArray[i]); }
return arraysMerged;

/**
* @brief This function merges overlapping rectangles.
* Q@param currentArray the input array
* @param newArray the output array
* Qreturn true if rectangles were merged
*/
bool mergeRects(rectarray &currentArray, rectarray &newArray)
{
int i, j, numBoxes = currentArray.length();
int mergeStatus[numBoxes];
bool lastMerged=false, arraysMerged=false;
if (numBoxes==0) { return false; }
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for(i=0; i<numBoxes; i++) { mergeStatus([i] = 0; }
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
if (currentArray[i].fraction_covered_by(currentArray[j])>0) {
rectangle combinedRect =
currentArray[i].inclusion(currentArray[j]l);
newArray.push(combinedRect) ;
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
if (j == numBoxes-1) { lastMerged = true; }

}
j+ts
}
}
if (mergeStatus[i]==0) { newArray.push(currentArray[i]l); }

}

if (!lastMerged) { newArray.push(currentArray[i]); }
return arraysMerged;

@brief This function closes rectangles by dilating, merging then eroding them.
Oparam currentArray the input array

@param newArray the output array

Oparam x_dilation the horizontal dilation

Oparam y_dilation the vertical dilation

Q@return true if rectangles were merged

bool closeRects(rectarray &currentArray,

rectarray &newArray,
int x_dilation,
int y_dilation)

int i, j, numBoxes = currentArray.length();
rectarray dilatedArray;

int mergeStatus[numBoxes];

bool lastMerged=false, arraysMerged=false;

if (numBoxes==0) { return false; }
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for(i=0; i<numBoxes; i++)

{
dilatedArray.push(currentArray[i] .dilated_by(
x_dilation, y_dilation, x_dilation, y_dilation));
mergeStatus[i] = 0;
}
for(i=0; i<numBoxes-1; i++) {
j=i+1;
if (mergeStatus[i]==0) {
while ((j<numBoxes) && (mergeStatus[jl==0)) {
if (dilatedArray[i].fraction_covered_by(dilatedArray[j]1)>0) {
rectangle combinedRect =
dilatedArray[i] .inclusion(dilatedArray[j]);
newArray.push(combinedRect.dilated_by(
-x_dilation, -y_dilation, -x_dilation, -y_dilation));
mergeStatus[i] = 1;
mergeStatus[j] = 1;
arraysMerged = true;
if (j == numBoxes-1) { lastMerged = true; }
}
j+ts
}
}
if (mergeStatus[i]==0) { newArray.push(currentArray([i]); }
}
if (!lastMerged) { newArray.push(currentArray([i]); }

return arraysMerged;

@brief This function closes rectangles by dilating, merging then eroding them.
Oparam textArray the input text line array

@param newTextArray the output text line array

Oparam dilation the graphics dilation

Q@return true if rectangles were added to the new array

bool mergeTextAndGraphics(narray<TextLine> &currentTextArray,

narray<TextLine> &newTextArray,
rectarray &graphicsArray,
int dilation)

bool update = false;
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// Move textlines that overlap graphics to the graphics array
bool overlap;
for(int i=0; i<currentTextArray.length(); i++) {
overlap = false;
rectangle tlBbox = currentTextArray[i] .bbox;
for(int j=0; j<graphicsArray.length(); j++) {
if (t1Bbox.fraction_covered_by(graphicsArray[j]1)>0)
overlap = true;
3
if (overlap) {
graphicsArray.push(t1Bbox) ;
update = true;
3
else
newTextArray.push(currentTextArray[i]);

// Merge overlapping graphics boxes into megagraphics boxes
bool mergedArrays = true;
while (mergedArrays) {
rectarray mGraphics;
mergedArrays = mergeRects(graphicsArray, mGraphics);
if (mergedArrays) {
graphicsArray = mGraphics;
update = true;

// Merge nearby graphics boxes
mergedArrays = true;
while (mergedArrays) {
rectarray mGraphics;
mergedArrays = closeRects(graphicsArray, mGraphics, dilation, dilation);
if (mergedArrays) {
graphicsArray = mGraphics;
update = true;

}

return update;
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APPENDIX D

VORONOI UPGRADE

D.1 Excerpts of ocr-voronoi/ocr-voronoi-ocropus.cc

// Color the Voronoi zones and lines
intarray voronoi_zones, voronoi_lines;
makelike(voronoi_zones, voronoi_diagram_image) ;
makelike(voronoi_lines, voronoi_diagram_image) ;
for (int i=0; i<voronoi_diagram_image.length1d(); i++){
if (voronoi_diagram_image.at1d(i)==0x00ffffff ||
voronoi_diagram_image.at1d(i)==0) {
// black or white pixels
voronoi_zones.atld(i) = 1;
voronoi_lines.at1d(i) = 0;

}

else {
// blue pixels corresponding to the lines
voronoi_zones.atld(i) = 0;
voronoi_lines.at1ld(i) = 1;

}

// Define the regions by extracting the connected components
// created above and color each differently

// The first zone is the lines.

int numZones = label_components(voronoi_zones,false);

// Now get the bounding boxes of the connected components
bytearray in;

copy(in, in_not_binary);

make_page_binary_and_black(in);

intarray charimage;
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copy(charimage,in) ;
label_components(charimage,false);

rectarray bboxes;
bounding_boxes (bboxes, charimage) ;

autodel<CharStats> charstats(make_CharStats());
charstats->getCharBoxes (bboxes) ;
charstats->calcCharStats();

int numCharBoxes = charstats->char_boxes.length();

rectarray cBoxes;

for (int i=0; i<numCharBoxes; i++)
cBoxes.push(charstats->char_boxes[i]);

int overlap[numCharBoxes] ;
for (int i=0; i<numCharBoxes; i++)
overlap[i] = 0;

for (int i=0; i<numCharBoxes; i++) {
for (int j=i+1; j<numCharBoxes; j++) {
if (cBoxes[i].overlaps(cBoxes[jl)) {
overlap[i] = 1;
overlap[j]l = 1;

// Find the extreme points of the character boxes in each zone.
vector<int> wrap_around;
int xminText[numZones], xmaxText[numZones],
yminText [numZones], ymaxText[numZones];
for (int z=0; z<numZones; z++) {
xminText [z] = pageWidth;
xmaxText[z] = 0;
yminText [z] = pageHeight;
ymaxText [z] = O;
wrap_around.push_back(0) ;

// Can only create one zone character box array at a time
// because of memory limitations.
rectarray printZone;
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rectangle textRect[numZones];
bool textZone[numZones];
for (int z=1; z<numZones; z++) {
rectarray zoneBoxes;
for (int j=0; j<numCharBoxes; j++) {
if (overlap[j]l == 0) {
rectangle box = cBoxes[j];
int xmin = box.x0;
int ymin = box.yO0;

if (z == voronoi_zones(xmin, ymin)) {
zoneBoxes . push (box) ;
int xmax = box.x1;

int ymax = box.yl;

if (xmin < xminText[z]) { xminText[z] = xmin; }
if (xmax > xmaxText[z]) { xmaxText[z] = xmax; }
if (ymin < yminText[z]) { yminText[z] = ymin; }
if (ymax > ymaxText[z]) { ymaxText[z] = ymax; }

}
if (zoneBoxes.length() > 0) {

if (xminText[z] < xmaxText[z])

textRect [z]

rectangle (xminText[z], yminText[z],
xmaxText [z], ymaxText[z]);
else
textRect [z] = rectangle();

textZone[z] = is_text_block(zoneBoxes, wrap_around, z);
}
else
textZone[z] = false;

// Create an array of the pixels of each zone.

vector<vector<Pixel> > vZone;

for (int z=0; z<numZones; z++)
vZone.push_back( vector<Pixel>() );

for (int x=0,w=pageWidth;x<w;x++){
for (int y=0,h=pageHeight;y<h;y++){
Pixel pixel;
pixel.x = x;
pixel.y = y;



vZone [voronoi_zones(x,y)] .push_back(pixel);

// Dilate the lines dividing the zones to get the perimeters.

intarray dilated_lines;
makelike(dilated_lines, voronoi_lines);
for (int x=0,w=pageWidth;x<w;x++)
for (int y=0,h=pageHeight;y<h;y++)
dilated_lines(x,y) = 0;

for (int x=1,w=pageWidth-1;x<w;x++){
for (int y=1,h=pageHeight-1;y<h;y++){
if (voronoi_lines(x,y) > 0){
dilated_lines(x,y+1) = 1;

dilated_lines(x+1,y+1) = 1;
dilated_lines(x+1,y) = 1;
dilated_lines(x+1,y-1) = 1;
dilated_lines(x,y-1) = 1;
dilated_lines(x-1,y-1) = 1;
dilated_lines(x-1,y) = 1;
dilated_lines(x-1,y+1) = 1;

// Create an array of the zone perimeters.

vector<vector<Pixel> > vPeri;

for (int z=0; z<numZones; z++)
vPeri.push_back( vector<Pixel>() );

for (int z=1; z<numZones; z++) {

for (int p=0; p<vZonel[z].size(); p++) {

int x = vZone[z] [p] .x;
int y = vZonelz] [p].y;
if (dilated_lines(x,y) == 1)

vPeri [z] .push_back(vZone[z] [p]);

// Find the extreme points of each zone.

Pixel xminZone[numZones], xmaxZone[numZones],
yminZone [numZones], ymaxZone [numZones] ;

114
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for (int z=0; z<numZones; z++) {
xminZone[z] .x = pageWidth;
xmaxZone[z] .x = 0;
yminZone[z] .y = pageHeight;
ymaxZone[z].y = 0;

}
for (int z=1; z<numZones; z++) {
for (int p=0; p<vPeril[z].size(); p++) {
int x = vPerilz] [p].x;
int y = vPeril[z][p].y;

if (x < xminZone[z].x) { xminZone([z].x = x; xminZone[z].y = y; }
if (x > xmaxZone[z].x) { xmaxZonel[z].x = x; xmaxZone[z].y = y; }
if (y < yminZone[z].y) { yminZone[z].y = y; yminZone[z].x = x; }
if (y > ymaxZonel[z].y) { ymaxZonel[z].y = y; ymaxZone[z].x = x; }

// Create an array to label zones text or not.

vector<int> converted;

vector<int> imageMap;

for (int z=0; z<numZones; z++){
converted.push_back(0);
imageMap.push_back(z) ;

// Put the image-like zones into an array according to size.
vector<int> zoneBySize;
int firstIndex = 1; // start with one since zero is the lines
bool firstAdded = false;
while (!firstAdded) {
if ('textZone[firstIndex]) {
zoneBySize.push_back(firstIndex) ;
firstAdded = true;
}
else
firstIndex++;

for (int z=firstIndex+1l; z<numZones; z++)
{
if (!textZonel[z])
{
int j = 0;
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int numPixels = vZonel[z].size();
bool foundPlace = false;
while ((!foundPlace) && (j < zoneBySize.size()))
if (numPixels < vZone[zoneBySize[jl].size())
foundPlace = true;
else
jtts
if (j == 0)
zoneBySize.insert (zoneBySize.begin(), 2z);
else if (j == zoneBySize.size())
zoneBySize.push_back(z) ;
else
zoneBySize.insert (zoneBySize.begin()+j, z);

// Create a vector of graphics
vector<int> graphics; // the int value will correspond to the zone number

// Consider the smallest zone on the list. If it’s really small and
// is considered image-like, call it an image,

// find its neighbors, convert them to my zone, and so on.

for (int zi=0; zi<zoneBySize.size(); zi++)

{
int currentNum = zoneBySizel[zil;
if (('textZone[currentNum]) && (converted[currentNum] == 0))
{

bool contain = false;
for (int g=0; g<graphics.size(); g++)
if (graphics[g] == currentNum) { contain = true; }
if (!contain) { graphics.push_back(currentNum); }
converted[currentNum] = 1;

int zoneCount [numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones (voronoi_zones, vPeri, currentNum,
zoneCount, pageWidth, pageHeight) ;

for (int z=1; z<numZones; z++) {
if ((zoneCount[z] > 0) && (!'textZonel[z]) && (converted[z] == 0))
{

convertZone(voronoi_zones, vZone, vPeri, converted, imageMap,
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numZones, z, currentNum,
pageWidth, pageHeight, textZone, graphics);

// Now start cleaning up the rectangular zones.
// Create an array of text segments.
int textSeglndex = O;
int textMap[numZones] ;
rectarray textSegmentsO;
for (int z=1; z<numZones; z++) {
if (converted[z] == 0) {
textSegmentsO.push(textRect [z]);
textMap [textSegIndex++] = z;

// Create an array of image segments.
// One at a time like the text zones because of memory limitations.
int numImages = graphics.size();
int xminImage [numImages], xmaxImage [numImages],
yminImage [numImages], ymaxImage [numImages];
for (int i=0; i<numImages; i++) {
xminImage[i] = pageWidth;
xmaxImage[i] = 0;
yminImage[i] = pageHeight;
ymaxImage[i] = O;

}
rectarray imageSegmentsO;
for (int i=0; i<numImages; i++) {
int imgZone = graphics[i];
for (int x=0,w=pageWidth;x<w;x++){
for (int y=0,h=pageHeight;y<h;y++){
if (voronoi_zones(x,y) == imgZone) {
if (voronoi_diagram_image(x,y) == 0) {
if (x < xminImage[i]) { xminImage[i] = x;
if (x > xmaxImage[i]) { xmaxImagel[i] = x;
if (y < yminImage[i]) { yminImage[i] = y;
if (y > ymaxImagelil) { ymaxImagel[i] =

R s

|
<
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}
imageSegmentsO.push(rectangle (xminImage[i], yminImagel[i],
xmaxImage[i], ymaxImage[i]));

// Identify text segments that are completely covered by image segments
// and delete them.
int notTextO[textSegmentsO.length()];
for (int t=0; t<textSegmentsO.length(); t++)
notTextO[t] = 0;

for (int i=0; i<imageSegmentsO.length(); i++) {
for (int t=0; t<textSegmentsO.length(); t++) {
if (imageSegmentsO[i].includes(textSegmentsO[t]))
notTextO[t] = 1;

}
rectarray textSegmentsl;
for (int t=0; t<textSegmentsO.length(); t++) {
if (notTextO[t] == 0)
textSegmentsl.push(textSegmentsO[t]);

// Identify image segments that are completely covered by text zones,
// delete them and convert the text segment to an image.
int notImageO[imageSegments0O.length()];
for (int i=0; i<imageSegmentsO.length(); i++)
notImageO[i] = 0;

int notTextl[textSegmentsl.length()];
for (int t=0; t<textSegmentsl.length(); t++)
notText1[t] = 0;

rectarray tempTextZone;
for (int t=0; t<textSegmentsl.length(); t++) {
int z = voronoi_zones(textSegmentsi[t].x0, textSegmentsl[t].y0);
xminText [z] = pageWidth;
xmaxText[z] = 0;
yminText [z] = pageHeight;
ymaxText [z] = 0;
for (int p=0; p<vZonel[z].size(); p++) {
Pixel pixel = vZonel[z] [p];
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int x = pixel.x;

int y = pixel.y;

if (voronoi_diagram_image(x,y) == 0) {
if (x < xminText[z]) { xminText[z] = x;
if (x > xmaxText[z]) { xmaxText([z] =
if (y < yminText[z]) { yminText[z] = y;
if (y > ymaxText[z]) { ymaxText[z] = y;

|
kel

W

}
tempTextZone.push(rectangle(xminText [z], yminText[z],
xmaxText [z], ymaxText[z]));
for (int i=0; i<imageSegmentsO.length(); i++) {
if (tempTextZone[t].includes(imageSegments0[i])) {
notImageO[i] = 1;
notTextl1[t] = 1;

rectarray imageSegmentsl;
for (int i=0; i<imageSegmentsO.length(); i++)
if (notImageO[i] == 0)
imageSegments1.push(imageSegmentsO[i]);

for (int t=0; t<textSegmentsl.length(); t++) {
if (notText1[t] == 1) {
imageSegments1.push(tempTextZone[t]);

}
rectarray textSegments2;
for (int t=0; t<textSegmentsl.length(); t++)
if (notText1[t] == 0)
textSegments2.push(textSegmentsi[t]);

// Break image segments that cross column dividers and

// text segments that wrap around images.

rectarray newTextSegs, newlmageSegs;

int brokenTextSegs[textSegments2.length()],
brokenImageSegs [imageSegmentsl.length()];

for (int t=0; t<textSegments2.length(); t++)
brokenTextSegs[t] = 0;

for (int i=0; i<imageSegmentsl.length(); i++)
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brokenImageSegs[i] = 0;

for (int t=0; t<textSegments2.length(); t++) {
for (int i=0; i<imageSegmentsl.length(); i++) {
if (textSegments2[t].overlaps(imageSegments1[i])) {
if (wrap_around[textMap[t]] == 0) {
breakImage (imageSegmentsl, textSegments2, newImageSegs, i, t);
brokenImageSegs[i] = 1;
} else {

breakText (textSegments2, imageSegmentsl, newTextSegs, t, i);
brokenTextSegs[t] = 1;

int textOverlaps[newTextSegs.length()];
for (int i=0; i<newTextSegs.length(); i++)
textOverlaps[i] = 0;

for (int i=0; i<newTextSegs.length(); i++) {
for (int j=0; j<newTextSegs.length(); j++) {
if ((4 !'= j) && (newTextSegs[i].overlaps(newTextSegs[jl1))) {
if (newTextSegs[i].area() > newTextSegs[j].area())
textOverlaps[i] = 1;
else
textOverlaps[j] = 1;

int imageOverlaps[newImageSegs.length()];
for (int i=0; i<newImageSegs.length(); i++)
imageOverlaps[i] = 0;

for (int i=0; i<newImageSegs.length(); i++) {
for (int j=0; j<newImageSegs.length(); j++) {
if ((1 != j) && (newImageSegs[i].overlaps(newImageSegs[j]1))) {
if (newImageSegs[i].area() > newImageSegs[j].area())
imageOverlaps[i] = 1;
else
imageOverlaps[j] = 1;



rectarray finalTextSegments;
for (int t=0; t<textSegments2.length(); t++)
if (brokenTextSegs([t] == 0)
finalTextSegments.push(textSegments2[t]);
for (int t=0; t<newTextSegs.length(); t++)
if (textOverlaps[t] == 0)
finalTextSegments.push(newTextSegs[t]);

rectarray finallmageSegments;
for (int i=0; i<imageSegmentsl.length(); i++)
if (brokenImageSegs[i] == 0)
finalImageSegments.push(imageSegments1[i]);
for (int i=0; i<newImageSegs.length(); i++)
if (imageOverlaps[i] == 0)
finalImageSegments.push(newImageSegs[i]);

D.2 Excerpts of ocr-voronoi/ocr-zone-manip.cc
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void getBorderingZones(intarray &voronoi_zones, vector<vector<Pixel> >& vPeri,
int z, int* zoneCount, int pageWidth, int pageHeight)

{
// Now tally the number of zones along the border.

// For each pixel, venture in all four directions until the line is crossed.

for (int p=0; p<vPeril[z].size(); p++)

{
int zoneEast=0, zoneWest=0, zoneNorth=0, zoneSouth=0;
int stepEast=0, stepWest=0, stepNorth=0, stepSouth=0;

int eastX = vPeril[z] [p].x+1;
int eastY = vPeril[z] [p].y;
while ((eastX < pageWidth) &&

((zoneEast = voronoi_zones(eastX, eastY)) == 0) &&

(stepEast < 20)) {
stepEast++; eastX++;

int westX = vPeril[z][p].x-1;
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int westY = vPerilz] [p].y;
while ((westX >= 0) &&
((zoneWest = voronoi_zones(westX, westY)) == 0) &&
(stepWest < 20)) {
stepWest++; westX--;

}
int southX = vPeril[z] [p].x;
int southY = vPeri(z] [p].y-1;

while ((southY >= 0) &&
((zoneSouth = voronoi_zones(southX, southY)) == 0) &&
(stepSouth < 20)) A
stepSouth++; southY--;

int northX = vPeril[z] [p].x;
int northY = vPeri[z] [p].y+1;
while ((northY < pageHeight) &&
((zoneNorth = voronoi_zones(northX, northY)) == 0) &&
(stepNorth < 20)) {
stepNorth++; northY++;

// If the line was crossed in any of the directions

// add that zone to the count.

if ((stepEast > 0) && (stepEast < 20))
zoneCount [zoneEast] ++;

else if ((stepWest > 0) && (stepWest < 20))
zoneCount [zoneWest] ++;

else if ((stepSouth > 0) &% (stepSouth < 20))
zoneCount [zoneSouth] ++;

else if ((stepNorth > 0) && (stepNorth < 20))
zoneCount [zoneNorth] ++;

void convertZone(intarray &voronoi_zones, vector<vector<Pixel> >& vZone,
vector<vector<Pixel> >& vPeri, vector<int>& converted,
vector<int>& mapped, int numZones, int thisZoneNum,
int newZoneNum, int pageWidth, int pageHeight,
bool* textZone, vector<int>& graphics)
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for (int p=0; p<vZone[thisZoneNum].size(); p++) {
int pixelX = vZone[thisZoneNum] [p].x;
int pixelY = vZone[thisZoneNum] [p].y;
voronoi_zones(pixelX,pixelY) = newZoneNum;

}

converted[thisZoneNum] = 1;

mapped [thisZoneNum] = newZoneNum;

int zoneCount [numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones(voronoi_zones, vPeri, thisZoneNum,
zoneCount, pageWidth, pageHeight) ;

for (int z=1; z<numZones; z++)

{
if ((zoneCount[z] > 0) && (!textZonel[z]) && (converted[z] ==0))
{
convertZone (voronoi_zones, vZone, vPeri, converted,
mapped, numZones, z, newZoneNum,
pageWidth, pageHeight, textZone, graphics);
}
}

void breakImage(rectarray &arrayToBreak, rectarray &breakerArray,
rectarray &newArray, int arrayToBreak_index,
int breakerArray_index)
{
rectangle rectToBreak = arrayToBreak[arrayToBreak_index];
rectangle breakerRect = breakerArray[breakerArray_index] ;
rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.xl + overlap.x0)/2 > (rectToBreak.xl + rectToBreak.x0)/2) {
if ((overlap.yl + overlap.y0)/2 > (rectToBreak.yl + rectToBreak.y0)/2) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.x0-1, rectToBreak.y1));
newArray.push(rectangle(overlap.x0, rectToBreak.yO0,
rectToBreak.x1, overlap.y0-1));
}
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
overlap.x0-1, rectToBreak.yl1));
newArray.push(rectangle(overlap.x0, overlap.yl+l,
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rectToBreak.x1, rectToBreak.y1));

}
}
else {
if ((overlap.yl + overlap.y0)/2 > (rectToBreak.yl + rectToBreak.y0)/2) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.xl, overlap.y0-1));
newArray.push(rectangle(overlap.xl+1l, rectToBreak.yO,
rectToBreak.x1, rectToBreak.yl));
}
else {
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
overlap.xl, rectToBreak.yl));
newArray.push(rectangle(overlap.xl+1l, rectToBreak.yO,
rectToBreak.x1, rectToBreak.yl));
}
}

void breakText(rectarray &arrayToBreak, rectarray &breakerArray,
rectarray &newArray, int arrayToBreak_index, int breakerArray_index)
{
rectangle rectToBreak = arrayToBreak[arrayToBreak_index];
rectangle breakerRect = breakerArray[breakerArray_index];
rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.xl + overlap.x0)/2 > (rectToBreak.xl + rectToBreak.x0)/2) {
if (breakerRect.includes(rectToBreak.xl, rectToBreak.y1)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(rectToBreak.x0, overlap.yoO,
overlap.x0-1, rectToBreak.y1));
3
else if (breakerRect.includes(rectToBreak.xl, rectToBreak.y0)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
overlap.x0-1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
3
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.xl, overlap.y0-1));
newArray.push(rectangle(rectToBreak.x0, overlap.y0,
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overlap.x0-1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.y1));

}
}
else {
if (breakerRect.includes(rectToBreak.x0, rectToBreak.y1)) {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yO,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(overlap.x1+1, overlap.yoO,
rectToBreak.x1, rectToBreak.yl));
}
else if (breakerRect.includes(rectToBreak.x0, rectToBreak.y0)) {
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
newArray.push(rectangle(overlap.xl+1, rectToBreak.yO,
rectToBreak.x1, overlap.yl));
}
else {
newArray.push(rectangle(rectToBreak.x0, rectToBreak.yo0,
rectToBreak.x1, overlap.y0-1));
newArray.push(rectangle(overlap.xl+1l, overlap.yo0,
rectToBreak.x1, overlap.yl));
newArray.push(rectangle(rectToBreak.x0, overlap.yl+l,
rectToBreak.x1, rectToBreak.yl));
}
}

D.3 Excerpts of ocr-layout /ocr-char-stats.cc

bool is_text_block(rectarray &bboxes, vector<int>& wrap_around, int zone_num)
{
int i;

int biggest_x = 0;

int width_sum = O0;

int height_sum = O;

floatarray yoO;

floatarray hist;

// Collect the yO values of the bounding boxes.
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for (i=0; i<bboxes.length(); i++) {
y0.push(bboxes[i] .y0);
width_sum += bboxes[i] .x1 - bboxes[i].xO0;
height_sum += bboxes[i].yl - bboxes[i].yO0;
if (bboxes[i].x1 > biggest_x)
biggest_x = bboxes[i].x1;
}
int avg_width = width_sum / bboxes.length();
int avg_height = height_sum / bboxes.length();

// Create the y0 histogram.
calc_hist(hist, y0);
gaussld(hist, 1.0);

// Get its peaks.
floatarray peak;
for (i=2; i<hist.length()-2; i++)

{
if ((hist[i] > 1) &&
((hist[i] > hist[i-11) && (hist[i] >= hist[i+1]1))) {
float temp = hist[i];
peak.push(temp) ;
}
}

if ((hist[i] > 1) && (hist[i] > hist[i-11)) {
float temp = hist[i];
peak.push (temp) ;

X
// 1If there are no peaks this is not a text block so return.
if (peak.length() == 0) { return false; }

// Now create the peak histogram.
floatarray peak_hist;
calc_hist(peak_hist, peak);

// The average number of occurences dictating the peaks is ...
int max_peak = 0;
int avg_num_occurences = 2;
for (i=peak_hist.length()-1; i>=0; i--) {
if (peak_hist[i] > max_peak) {
max_peak = peak_hist[i];
if (1 > 2)
avg_num_occurences = i;



127

// Now find the y-values given the peak threshold.
intarray line;
for (i=2; i<hist.length()-2; i++) {
if ((hist[i] > (0.5 * avg_num_occurences)) &&
((hist[i] > hist[i-1]) && (hist[i] >= hist[i+1]1))){
line.push(i);

}

if ((hist[i] > (0.5 * avg_num_occurences)) &&
(hist[i] > hist[i-1])) {
line.push(i);

int num_lines = line.length();
// If no lines were found it’s not a text block so return false.
if (num_lines == 0) { return false; }

// Now get the average separation and if it’s too high return false.
int sum_line_seps = 0;
for (i=1; i<num_lines; i++)
sum_line_seps += line[i] - line[i-1];
int avg_line_sep = sum_line_seps / num_lines;
if ((avg_line_sep / avg_height) > 5) { return false; }

// Calculate the compacted widths (summation of box widths)
// and the x-range of the boxes.
int compacted_line_length[num_lines];
int xmin[num_lines], xmax[num_lines];
for (i=0; i<num_lines; i++) {
compacted_line_length[i] = 0;
xmin[i] = biggest_x;
xmax[i] = 0;

for (i=0; i<bboxes.length(); i++) {
int j = 0;
bool line_found = false;
while ((!'line_found) && (j < num_lines)) {
if ((bboxes[i].y0 > (line[j] - avg_width)) &&
(bboxes[i] .y0 < (line[j] + avg_width))) {
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line_found = true;
compacted_line_length[j] += bboxes[i].x1 - bboxes[i].xO0;
if (bboxes[i].x0 < xmin[jl)
xmin[j] = bboxes[i].x0;
if (bboxes[i].x1 > xmax[jl)
xmax[j] = bboxes[i].x1;

else
j++

// Using these numbers calculate the density.
float density[num_lines];
int line_length[num_lines];
int longest_line = 0;
for (i=0; i<num_lines; i++){
if ((line_length[i] = xmax[i] - xmin[i]) > longest_line)
longest_line = line_length[i];
if (line_length[i] > 0)
density[i] = (float)compacted_line_length[i] / (float)line_length[i];
else
density[i] = 0;

// Adjust the number of lines if some have zero length
// and tally how many are full length.
int zero_length_lines = O;
int full_length[num_lines];
for (i=0; i<num_lines; i++) {
if (compacted_line_length[i] == 0)
zero_length_lines++;
if (line_length[i] > 0.8 * longest_line)
full_length[i] = 1;
else
full_length[il

0;
}

int actual_num_lines = num_lines - zero_length_lines;

// Count the number of good lines.
int num_good_lines = 0;
for (i=0; i<num_lines; i++)
if (demsity[i]l > 0.5) { num_good_lines++; }
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// If three in a row are not full length assume
// it’s a wrap around text block.
for (i=2; i<num_lines; i++)
if ((full_length[i] == 0) && (full_length[i-1] == 0)
&% (full_length[i-2] == 0)) {
wrap_around [zone_num] = 1;
i = num_lines;

// Return true or false depending on what fraction of the lines are good.
switch (actual_num_lines) {
case 2 : if (num_good_lines >= 1)
else

{ return true; }
{ return false; }
case 3 : if (num_good_lines >= 2) { return true; }
else { return false; }
case 4 : if (num_good_lines >= 3) { return true; }
else { return false; }
default : if (num_good_lines >= (0.8 * actual_num_lines))
return true;
else

return false;





