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WEAK COVERING PROPERTIES AND SELECTION PRINCIPLES

L. BABINKOSTOVA, B. A. PANSERA AND M. SCHEEPERS

Abstract. No convenient internal characterization of spaces that are productively Lindelöf is known. Per-
haps the best general result known is Alster’s internal characterization, under the Continuum Hypothesis,
of productively Lindelöf spaces which have a basis of cardinality at most ℵ1. It turns out that topological
spaces having Alster’s property are also productively weakly Lindelöf. The weakly Lindelöf spaces form a
much larger class of spaces than the Lindelöf spaces. In many instances spaces having Alster’s property
satisfy a seemingly stronger version of Alster’s property and consequently are productively X, where X is
a covering property stronger than the Lindelöf property. This paper examines the question: When is it
the case that a space that is productively X is also productively Y, where X and Y are covering properties
related to the Lindelöf property.

1. Introduction

A topological space is said to be Lindelöf if each of its open covers contains a countable subset that covers
the space. Though this class of spaces has been extensively studied there are still several easy to state
problems that have not been resolved. Call a space X productively Lindelöf if X × Y is a Lindelöf space
whenever Y is a Lindelöf space.

In the quest to find an internal characterization of the productively Lindelöf spaces K. Alster identified
the following conditions: Call a family F of Gδ subsets of a space X a Gδ compact cover if there is for each
compact subset K of X a set F ∈ F such that K ⊆ F . A space is said to be an Alster space if each Gδ

compact cover of the space has a countable subset covering the space1. Alster (and independently [7]) proved
that if X is an Alster space then it is productively Lindelöf, and Xℵ0 is Lindelöf.

Problem 1 (K. Alster). Is every productively Lindelöf space an Alster space?

A significant body of partial results has developed around this problem, yet no definitive answer is known
to it.

There are several weakenings of the Lindelöf property that have been investigated because of their natural
occurrence in some mathematical contexts. The corresponding product theory for these is not as extensively
developed as for Lindelöf spaces. Product theoretic questions may be more manageable for the corresponding
weakened analogues of the selective versions of the Lindelöf property.

In another direction, a number of selective versions of the Lindelöf property and weakenings of it have been
investigated because of their relevance to several other mathematical problems. It has been found that some
questions about Lindelöf spaces are “easier” for these more restricted classes. It is natural to inquire whether
the corresponding product-theoretic problem for these narrower classes of spaces is more manageable. Some
such questions have been raised: For example: In [34] and [35] the notion of a productively Menger space is
considered and in [3] the notion of a productively FC-Lindelöf space is introduced.

And thirdly, solving versions of a problem still unresolved for Lindelöf spaces by strengthening the hy-
potheses to selective versions while weakening the conclusions to weak covering properties, may yield some
insights on the original problem. Progress on the internal characterization problem may also yield insights
on an older problem of E. Michael:

Problem 2 (E.A. Michael). If X is a productively Lindelöf space, then is Xℵ0 a Lindelöf space?
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1This definition is not identical to the definition in [7], but is equivalent to it, and is in fact the property (*) defined by

Alster on p. 133 of [2].
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These are the motivations for our paper. The paper is organized as follows. In Section 2 we introduce
some basic notation and terminology. In Section 3 we give a number of examples of when products fail to
have some of the properties we are investigating. Section 4 focuses on the question of characterizing the
productively Lindelöf spaces. We raise the question of when P and Q are covering properties of topological
spaces, is a space that is productively P also productively Q? In Section 5 we incorporate the weak covering
properties into the investigation.

2. Some notation and terminology

A space is said to be weakly Lindelöf if each of its open covers contains a countable subset for which
the union is dense in the space. A space is said to be almost Lindelöf if each of its open covers contains a
countable subset for which the set of closures of elements of the countable set is a cover of the space. Both of
these properties are weaker than the Lindelöf property, and we have the following implications: Lindelöf ⇒
almost Lindelöf ⇒ weakly Lindelöf. For spaces with the T3 separation property almost Lindelöf also implies
Lindelöf. Aside from this there are no other implications among these three properties. We will focus on the
“weakly” properties in this paper, leaving the “almost” properties for another time.

Next we describe selective versions of these covering properties. We use the following notation for three
of several upcoming relevant classes of families of open sets of a given topological space:

O The collection of open covers
D {U : (∀U ∈ U)(U open) and (

⋃U dense in X)}
Let A and B be collections of subsets of an infinite set. Then S1(A,B) denotes the following hypothesis:

For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn : n ∈ N) such that,
for each n, Bn ∈ An and {Bn : n ∈ N} is an element of B.

Thus, S1(O,O) denotes the classical Rothberger property. We shall call spaces with the property S1(O,D)
weakly Rothberger.

The symbol Sfin(A,B) denotes the hypothesis

For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn : n ∈ N) such that,
for each n, Bn ⊆ An is finite, and

⋃{Bn : n ∈ N} is an element of B.
Sfin(O,O) denotes the classical Menger property, while Sfin(O,D) denotes the weakly Menger property.

Several additional families A and B of topologically significant objects will be introduced as needed during
the rest of the paper. Our conventions for the rest of the paper are: By “space” we mean a topological
space. Unless other separation axioms are indicated specifically, we assume all spaces to be infinite and T1.
Undefined notation and terminology will be as in [12].

3. Possibilities of failure for products

Towards investigating the product theory as outlined above, we consider if it is possible for certain products
to fail having a covering property. We asked above, for example, if there could be a Rothberger space whose
product with the space of irrational numbers is not weakly Lindelöf. First, we settle that it is at least possible
that the product of two Rothberger spaces can fail to be a weakly Lindelöf space. We give two examples of
how this could be. Both are consistency results.

Theorem 1. It is consistent, relative to the consistency of ZFC, that there are Rothberger spaces X and Y
for which X × Y is not weakly Lindelöf.

Proof. In [15] Hajnal and Juhasz give examples X and Y of Lindelöf spaces for which X × Y is not
weakly Lindelöf2. These examples are constructed in ZFC. Now consider these two ground model examples
in the generic extension obtained by adding κ > ℵ0 Cohen reals. Since X and Y are Lindelöf in the ground
model, Theorem 11 of [31] implies that X and Y are Rothberger in the generic extension. Since X × Y is
not weakly Lindelöf in the ground model, Theorem 1 of [4] implies that X × Y is not weakly Lindelöf in the
generic extension. �

2A nice exposition of this example can be found in [33], Example 3.25.
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Our second example is a little stronger than the one just given. A Souslin line is a complete dense linearly
ordered space X which is not separable but every family of disjoint intervals is countable. SH, the Souslin
Hypothesis, states that there are no Souslin lines. SH is independent of ZFC. Theorem 1 is proven using
forcing. One may ask to what degree axiomatic circumstances determine whether a product fails to have the
covering property of its factor spaces. Shelah [32] proved that in the generic extension obtained by adding a
Cohen real there is a Souslin line. Thus, the following Theorem 2 improves Theorem 1. In the proof of this
theorem we use the following notation. If (L,<) is a linearly ordered set there are three topologies considered
on it: We denote the topological space by L if the topology is generated by sets of the form (a, b) where
a < b are elements of L. When the topology is generated instead by sets of the form [a, b), the topological
space is denoted by the symbol L+. When the topology is generated by sets of the form (a, b], then the
topological space is denoted by the symbol L−.

Theorem 2 (¬SH). There are Rothberger spaces X and Y such that X × Y is not weakly Lindelöf.

Proof. Let L be a Souslin line. We may assume that L has no nonempty open intervals that are separable.
Then L+ as well as L− are Lindelöf spaces ([33], Lemma 3.31). But L+ is a refinement of the standard
topology on L, and so L is Lindelöf.

Claim 1: L+ (and similarly L−) is a Rothberger space3.
Let (Un : n ∈ N) be a sequence of open covers of L+. By Lemma 3.31 in [33] we may assume that each

Un consists of countably many open intervals of form [ank , b
n
k ), k ∈ N.

Consider (U2·n : n ∈ N). The set A := {a2·nk : k ∈ N}⋃{b2·nk : k ∈ N} is countable (lest L has a separable
uncountable interval) nowhere dense in L. Choose for each x ∈ L \ A an open interval Ix ⊆ L \ A with
x ∈ Ix. Note that for each n there is a k with Ix ⊆ (a2·nk , b2·nk ) (since Ix ∩A = ∅).

Choose from each U2·n+1 an element J2·n+1 such that A ⊆ ⋃
n∈N

J2·n+1. Now K := L \ (⋃n∈N
J2·n+1) is

a closed subset of L and so Lindelöf. Moreover {Ix : x ∈ K} is an open cover of K, and so has a countable
subcover, say {Ixn : n ∈ N}. Now choose for each n a kn such that Ixn ⊆ J2·n = [a2·nkn

, b2·nkn
) ∈ U2·n. Then

the sequence (Jn : n ∈ N) is a cover of L+, and for each n, Jn ∈ Un. This completes the proof of the claim.
As L is not separable, [33], Lemma 3.33 shows that L+ × L− is not weakly Lindelöf. �

Our third example is in a different direction: Spaces that are weakly Rothberger in finite powers need not
have a weakly Menger product. Since the topological sum of two Rothberger spaces is Rothberger, and their
product is a closed subspace of the square of their topological sum, the negation of Souslin’s Hypothesis
implies that there is a Rothberger space whose square is not weakly Lindelöf. But if two Rothberger spaces
are weakly Rothberger in their finite powers, must their product be weakly Rothberger?

Theorem 3 (CH). There are weakly Rothberger spaces X and Y such that

(1) Each (finite or infinite) power of X and of Y is weakly Rothberger, and
(2) X × Y is not weakly Menger.

The proof of Theorem 3 is developed through a few propositions. Recall that for topological space (X, T ),
PR(X) denotes the collection of nonempty finite subsets of X. For S ∈ PR(X) and an open set V ⊆ X,
[S, V ] denotes {T ∈ PR(X) : S ⊆ T ⊆ V }. The collection of subsets of the form [S, V ] of PR(X) is a basis
for a topology, denoted PR(T ), on PR(X). Then (PR(X),PR(T )) is the Pixley-Roy space of X If X has a
countable base, then PR(X) is a union of countably many sets, each with the finite intersection property;
this implies that PR(X) has countable cellularity. But countable cellularity is equivalent to: each element of
D has a countable subset which is in D.

For topological spaces X and Y , the space X ⊕ Y denotes the topological sum of X and Y .

Proposition 4. Let X and Y spaces. Then PR(X)× PR(Y ) is homeomorphic to PR(X ⊕ Y ).

Proof. The function Φ : PR(X)× PR(Y ) → PR(X ⊕ Y ) defined by Φ((F,G)) = F ∪G is one-to-one and
onto, continuous and open, and thus a homeomorphism. �

At this point it is convenient to introduce another family of open covers: A family F of subsets of an
infinite set S is said to be an ω-cover4 of S if S is not a member of F , yet for each finite subset F of S there

3Towards proving this we refine the argument from page 19 of [28].
4Note that we are deviating from standard usage of the term ω-cover: We do not require that the cover be an open cover of

a space.
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is a member U of F such that F ⊆ U . Let X be a topological space.

Ω := {U ∈ O : U is an ω-cover of X}.

Proposition 5. [29] (CH) There are separable metric spaces X and Y each with the property S1(Ω,Ω), but
their topological sum Z = X ⊕ Y does not have Sfin(O,O).

Proof. In [29] CH is used to construct subsets X and Y of ωZ such that each has the property S1(Ω,Ω),
but (X ∪ Y )⊕ (X ∪ Y ) =ω Z.

As was noted in Theorem 3.9 of [18], a topological space has the Menger property in all finite powers if, and
ony if, it has the property Sfin(Ω,Ω). Since Sfin(O,O) is preserved by continuous images, closed subsets,
and countable unions, since Sfin(Ω,Ω) is equivalent to Sfin(O,O) in all finite powers, and since Sfin(Ω,Ω) is
preserved by closed subsets, finite powers, and continuous images, and since ωZ (which is homeomorphic to
the set of irrational numbers) does not have Sfin(O,O), it follows that (X ∪ Y )2 does not have Sfin(O,O).
Thus neither X ∪Y nor X×Y has Sfin(O,O). It follows that X⊕Y does not have the Menger property. �

Theorem 6 (Daniels, [11] Theorem 5B). If Z is a metrizable space with the property S1(Ω,Ω), then PR(Z)
is weakly Rothberger in each (finite or infinite) power.

Thus Theorem 6 implies that each of PR(X) and PR(Y ) is weakly Rothberger in all powers. Next apply
the following theorem to X ⊕ Y :

Theorem 7 (Daniels, [11] Theorem 2A). If for a space Z, PR(Z) is weakly Menger, then each finite power
of Z is Menger.

Thus Theorem 7 states that if PR(X) has property Sfin(O,D), then X has property Sfin(Ω,Ω): For
metrizable spaces the converse is implied by Theorem 6.

It follows that PR(X ⊕ Y ) is not weakly Menger. But then Proposition 4 implies that PR(X)× PR(Y ) is
not weakly Menger. This completes the proof of Theorem 3. �

As far as ZFC results are concerned, there is also the following result by Todorčevic. First we introduce
another family of open covers: A family F of subsets of an infinite set S is said to be a γ-cover of S if for
each x ∈ S the set {F ∈ F : x /∈ F} is finite and F is infinite. Then for a topological space X we define

Γ := {U ∈ O : U is an γ-cover of X}.

Following Gerlits and Nagy, call a space which satisfies S1(Ω,Γ) is a γ-space [13].

Theorem 8 (Todorčević, [36], Theorem 8). There are T3 γ-spaces X and Y such that X×Y is not Lindelöf.

And finally for this section:

Theorem 9. It is consistent, relative to the consistency of ZFC, that there is a T3-Rothberger space whose
square is not Lindelöf.

Proof. Let S denote the Sorgenfrey line, the topological space obtained from refining the standard
topology on the real line by also declaring each interval of the form [a, b) open. It is well known that S is
a T3 Lindelöf space while S× S is not Lindelöf, but still T3. By Theorem 11 of [31], if κ is an uncountable
cardinal and if C(κ) denotes the Cohen forcing notion for adding κ Cohen reals, then in the generic extension
the ground model Sorgenfrey line is a Rothberger space. But proper forcing preserves not being Lindelöf,
and S in the generic extension by C(κ), the square of the ground model copy of S is not Lindelöf. Since T3

is preserved, it follows that the square of a (almost) Rothberger space need not be (almost) Lindelöf. �
As an aside to the proof of Theorem 9: In Lemma 17 of [5] it was shown that S does not have the property

Sfin(O,O), and since S is T3, this means that S is not almost Menger. As noted in the proof of Theorem
9, in the generic extension by uncountably many Cohen reals, the ground model version of S is Rothberger
and thus Menger. Thus, proper forcing does not preserve being not Menger.

Also note that the ground model Sorgenfrey line remains a separable space in the generic extension, and
thus a weakly Rothberger space in a strong sense: TWO has a winning strategy in the game Gω

1 (O,D).
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4. Productively Lindelöf spaces

For a topological property Q that is inherited by closed sets we shall say that a space X is productively Q
if for any space Y which has property Q, also X × Y has property Q. Note that if a space X is productively
Q, then each finite power of X is also productively Q.

Much work has been done on characterizing the members of the class of productively Lindelöf spaces. We
expand the basic problem of characterizing the class of productively Lindelöf spaces to also characterizing
the classes of spaces that are productive for covering properties that are relatives of the Lindelöf property.
Some basic problems emerge: Assume that we have topological properties Q and R where Q implies R. When
is it the case that:

(1) If a space is productively R, then it is productively Q?
(2) If a space is productively Q, then it is productively R?
(3) If the product of X with every space of property Q has property R, then is X productively R?

Compact spaces are productively Lindelöf but need not be Rothberger spaces, and thus need not be
productively Rothberger. Thus, spaces that are productive for one class of Lindelöf spaces need not be
productive for another.

Alster’s Theorems and a property of Alster.

In [2] Alster proves the following interesting theorem:

Theorem 10 (Alster). Consider the following statements about a space X:

(1) X is an Alster space.
(2) X is productively Lindelöf.

Then (1) implies (2). If X is a space of weight at most ℵ1, and if CH holds, then also (2) implies (1).

Alster [2], Lemma 1, also proved that the Alster spaces give an affirmative answer to Problem 2.

Theorem 11 (Alster). If X is an Alster space, then Xℵ0 is a Lindelöf space.

The following classes of covers are central to Alster’s analysis of the productively Lindelöf spaces:

GK : The family consisting of sets U where X is not in U , each element of U is a Gδ set, and
for each compact set C ⊂ X there is a U ∈ U such that C ⊆ U .

G: The family of all covers U of the space X for which each element of U is a Gδ-set.

In [7] Theorem 4.5 it is proved that the product of finitely many Alster spaces is again an Alster space.
On account of this fact it is useful to also consider the following class of covers of spaces:

GΩ: This is the set of covers U ∈ G for which X is not in U , but for each finite set F ⊂ X
there is a U ∈ U such that F ⊆ U .

Observe that GK is a subset of GΩ.
The connection of Alster’s condition to selection principles will now be determined through a sequence of

Lemmas, culminating in Theorem 15:

Lemma 12. For a topological space X the following are equivalent:

(1) X is an Alster space.
(2) X satisfies the selection principle S1(GK ,G).
(3) X satisfies the selection principle S1(GK ,GΩ).

Proof. (1)⇒(2): Suppose that X is an Alster space and let (Un : n ∈ N) be a sequence of elements of
GK . Define

U = {
⋂

n∈N

Un : (∀n)(Un ∈ Un)}.

Then U is a member of GK . Since X is Alster, choose a countable subset (Vn : n ∈ N) of U which is a cover
of X. For each n write

Vn =
⋂

k∈N

Un
k

where for each k, Un
k is an element of Uk. Finally for each n set Wn = Un

n , an element of Un. Then
{Wn : n ∈ N} is a cover of X and thus a member of G.
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Proof of (2)⇒(1): Let a member U of GK be given. For each n, set Un = U . Then apply S1(GK ,G) to this
sequence and select for each n a Un ∈ Un such that {Un : n ∈ N} is a cover of X.

Proof of (2)⇒(3):
Claim 1: X satisfies the selection principle S1(GK ,G) if and only if X2 satisfies the selection principle

S1(GK ,G) (hence every finite power of X satisfies S1(GK ,G)).
Proof. Follows since the finite power of Alster space is an Alster space.
Claim 2: Each finite power of X satisfies the selection principle S1(GK ,G) if and only if X satisfies the

selection principle S1(GK ,GΩ).
Proof. Let (Un : n ∈ N) be a sequence of elements of GK . Then (Wn : n ∈ N), where Wn = {(Un)

κ :
U ∈ Un}, is a sequence of elements of GK of Xκ. Then we can select by hypothesis (Un)

k ∈ Wn such that
{(Un)

k : n ∈ N} is a cover of Xk. Consider now a finite subset F = {x1, · · · , xk} of X. We consider F like
a point of Xk, say z = (x1, · · · , xk). So there is an element (Un)

k such that z ∈ (Un)
k. Then there is an

element Un ∈ Un such that F ⊂ Un. It follows that {Un : n ∈ N} witnesses that X satisfies S1(GK ,GΩ). The
converse is obvious. This completes the proof.

Proof of (3)⇒(2): Obvious. �
A space X is has the Hurewicz property if for each sequence (Un : n ∈ N) of open covers of X there is

a sequence (Vn : n ∈ N) such that for each n, Vn is a finite subset of Un and for each x ∈ X, for all but
finitely many n, x belongs to

⋃Vn. The Alster property implies the following strengthening of the Hurewicz
property:

Lemma 13. If X is a space that has property S1(GK ,G), then there is for each sequence (Un : n ∈ N) of
elements of GK a sequence (Vn : n ∈ N) such that for each n we have Vn ⊆ Un, |Vn| ≤ n, and for each
x ∈ X, for all but finitely many n, x ∈ ⋃Vn.

Proof. Let a sequence (Un : n ∈ N) of elements of GK be given. For each n define Wn to be the set
W = {⋂k∈N

Uk : (∀k)(Uk ∈ Uk)}. Applying S1(GK ,G) to the sequence (Wn : n ∈ N) we find for each n a
Wn ∈ Wn such that for each x ∈ X there is an n with x ∈ Wn.

For each n write Wn =
⋂{Un

k : k ∈ N} where for each n and k we have Un
k ∈ Uk. Then, for each k, set

Vk = {U1
k , · · · , Uk

k },
a finite subset of Uk. Note that if x ∈ X is an element of Wn, then for each k ≥ n we have x ∈ ⋃Vk. �

For each n, let Tn be the n-th triangular number5. Using the technique in the proof of the previous
Lemma, we find

Lemma 14. If X is a space that has property S1(GK ,G), then there is for each sequence (Un : n ∈ N) of
elements of GK a sequence (Un : n ∈ N) such that for each n we have Un ∈ Un, and for each x ∈ X, for all
but finitely many n,

x ∈
⋃

Tn<j≤Tn+1

Uj .

Proof. Let a sequence (Un : n ∈ N) of elements of GK be given. For each n define

Vn = {
⋂

Tn<i≤Tn+1

Ui : (∀i)(Tn < i ≤ Tn+1)(Ui ∈ Ui)}.

Now apply the conclusion of the previous lemma to the sequence (Vn : n ∈ N) to find for each n a set
Wn ⊆ Vn of cardinality n such that for each x, for all but finitely many n, x ∈ ⋃Wn. Each element of Wn

is of the form U j
Tn+1 ∩ · · · ∩ U j

Tn+1
where 1 ≤ j ≤ n and each U j

i is an element of Ui.

Now for each m choose Vm ∈ Um as follows: Find the largest n with Tn < m and then identify j with
1 ≤ j ≤ n+ 1 with m = Tn + j, and put Vm = U j

Tn+j . �

Ggp: This is the set of covers U ∈ G for which there is a (disjoint) partition U =
⋃

n∈N
Un

such that each Un is finite, and for each x ∈ X for all but finitely many n, x is in
⋃Un.

Theorem 15. For a topological space X the following are equivalent:

(1) X is an Alster space.

5Tn = 1 + 2 + · · ·+ n.
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(2) X satisfies the selection principle S1(GK ,G).
(3) X satisfies the selection principle S1(GK ,GΩ).
(4) X satisfies the selection principle S1(GK ,Ggp).
(5) X satisfies the selection principle S1(GK ,Ggp

Ω ).
(6) X satisfies the selection principle Sfin(GK ,G).
(7) X satisfies the selection principle Sfin(GK ,Ggp).
(8) X satisfies the selection principle Sfin(GK ,Ggp

Ω ).

Corollary 16. If X is an Alster space then X has a Hurewicz space in all finite powers.

Strengthening Alster’s property: S1(GK ,GΓ).

Of several standard ways in which to strengthen the Alster property, consider the following one. Define

GΓ: This is the set of covers U ∈ G which are infinite, and each infinite subset of U is a cover
of X.

Then S1(GK ,GΓ) is a formal strengthening of the Alster property. It is not clear if this formal strengthening
is in fact a real strengthening. Several known examples of productively Lindelöf spaces are so because they
have this stronger version of Alster’s property. We review some of these:

A: An easy consequence of one of Alster’s results gives:

Theorem 17 (CH). Assume that X is a space of weight at most ℵ1, and that each compact subset of X is
a Gδ set. If X has the property S1(GK ,G), then X has the property S1(GK ,GΓ).

Proof. It follows immediately from Alster’s Theorem, Theorem 10, that if X is a space of weight at most
ℵ1 in which each compact set is Gδ and if X is productively Lindelöf, then CH implies that X is σ-compact
(as the set of compact subsets of X is a cover of X by Gδ sets of the required kind). Thus, under CH,
every productively Lindelöf space of weight at most ℵ1 for which each compact subspace is a Gδ set has the
property S1(GK ,GΓ). �

B: A topological space is said to be a P-space if each intersection of countably many open sets is open.
Galvin (see [13]) pointed out that any Lindelöf P-space is a γ-space. Thus, as the topology of a P-space is
the Gδ topology, we find:

Lemma 18 (Galvin). Each Lindelöf P-space has the property S1(GK ,GΓ).

In [19] Proposition 2.1 the authors show that the product of a Lindelöf P-space with any Lindelöf space is
a Lindelöf space. This result now follows from (1) ⇒ (2) of Theorem 10, and Lemma 18. A classical theorem
of Noble [24] states that the product of countably many Lindelöf P-spaces is still Lindelöf. This result now
follows from Theorem 11 and Lemma 18. Additionally it is also known that:

Theorem 19 (Misra, [23]). A Lindelöf P-space is a productively P space.

C: A space is scattered if each nonempty subspace has an isolated point.

Theorem 20 (Gewand [14], Theorem 2.2). If X is a scattered Lindelöf space, then in the Gδ topology X is
a Lindelöf P-space.

Corollary 21. A scattered Lindelöf space satisfies S1(GK ,GΓ).

It follows that Lindelöf scattered spaces are productively Lindelöf, and that the countable power of such
a space is Lindelöf.

D: A space is σ-compact if it is the union of countably many compact subsets.

Theorem 22. Each σ-compact space has the property S1(GK ,GΓ).

Proof. Let X be σ-compact and write X =
⋃

n∈N
Kn where for each n we have Kn ⊆ Kn+1 and Kn

is compact. Let a sequence (Un : n ∈ N) of elements of GK be given. For each n, choose Un ∈ Un with
Kn ⊆ Un. Then each Un is a Gδ subset of X, and for each x ∈ X, for all but finitely many n, x ∈ Un. �

This implies the well-known fact that σ-compact spaces are productively Lindelöf. Via Theorem 11 we
also find that the countable power of a σ-compact space is Lindelöf.

We now explore the productive properties of spaces with this stronger version of the Alster property.
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Theorem 23. If X is a topological space with property S1(GK ,GΓ), then X is:

(1) productively Lindelöf.
(2) productively Menger.
(3) productively Hurewicz.

Proof. We show that X is productively Hurewicz. The proof that X is productively Menger is similar.
Let Y be a Hurewicz space, and let (Un : n ∈ N) be a sequence of open covers of X × Y . We may assume

that each Un is closed under finite unions. For each compact subset K of X, and for each n, find a Gδ set
φn(K) ⊃ K such that for each y ∈ Y there is an open set U ∈ Un with φn(K)× {y} ⊆ U .

This defines, for each n, a set Gn = {φn(K) : K ⊂ X compact} ∈ GK . Applying S1(GK ,GΓ) to (Gn : n ∈
N), we find for each n a compact set Kn ⊂ X such that {φn(Kn) : n ∈ N} is a member of GΓ.

Now for each n define

Hn = {V ⊂ Y : V open and there is a U ∈ Un with φn(Kn)× V ⊆ U}.
Apply the fact that Y is a Hurewicz space to the sequence (Hn : n ∈ N): For each n choose a finite set

Jn ⊆ Hn such that for each y ∈ Y , for all but finitely many n, y ∈ ∪Jn.
Finally, for each n choose for each H ∈ Jn a UH ∈ Un with φn(Kn) × H ⊆ UH , and put Vn = {UH :

H ∈ Jn}. Then we have for each n that Vn is a finite subset of Un, and for each (x, y) ∈ X × Y , for all but
finitely many n, (x, y) is a member of

⋃Vn. �
There are many ZFC examples of Lindelöf P-spaces. For example in [30] it is shown that for each un-

countable cardinal number κ there is a T3 1
2
Lindelöf P -group of cardinality κ on which TWO has a winning

strategy in the game Gω
1 (Ω,Γ). Since the topology is the Gδ topology, this means that in these examples

TWO has a winning strategy in the game Gω
1 (GK ,GΓ).

Now we need two more classes of open covers: A family F of subsets of an infinite set S is said to be a
large cover of S if for each x ∈ S the set {F ∈ F : x ∈ F} is infinite.

A family F is a groupable cover if, and only if, there is a partition F =
⋃

n<∞ Fn where the Fn’s are
finite and disjoint from each other, such that each point in the space belongs to all but finitely many of the
sets

⋃Fn.
We associate the following symbols with classes of open covers that are large or groupable:

Λ := {U ∈ O : U is an large-cover of X}.
Ogp := {U ∈ O : U is groupable in X}.

A space X is called a Gerlits-Nagy space if it satisfies the selection principle S1(Ω,Ogp) [20]. Each γ-space
is a Gerlits -Nagy space, and each Gerlits-Nagy space is a Rothberger space.

Theorem 24. If X is a Rothberger space with property S1(GK ,GΓ), then X is:

(1) productively Rothberger.
(2) productively Gerlits-Nagy.

Proof. (of (1)) Let a Rothberger space Y be given, and let (Un : n ∈ N) be a sequence of open covers of
X × Y . As X is Rothberger, each of its compact subsets is Rothberger. Write N =

⋃
n∈N

Sn where the Sn’s
are infinite and pairwise disjoint.

Fix n, and for each compact subset C of X, and for each y ∈ Y , choose a finite sequence Ui1 , · · · , Uik

where

(1) i1 < · · · < ik are elements of Sn and
(2) Uij is an element of Uij , 1 ≤ j ≤ k, and
(3) C × {y} ⊆ Ui1 ∪ · · · ∪ Uik .

This is possible as compact subsets of X are Rothberger spaces.
Thus, for fixed n, for each compact subset C of X we find that C × Y is Rothberger, thus Lindelöf,

and we can find a Gδ subset φn(C) of X such that C ⊆ φn(C), and for each y ∈ Y there is a sequence
i1 < · · · < ik of elements of Sn such that φn(C) × {y} is a subset of Ui1 ∪ · · · ∪ Uik as above. But then
Gn = {φn(C) : C ⊂ X compact} is a member of GK for X.

Apply S1(GK ,GΓ) to the sequence (Gn : n ∈ N) and select for each n a Gn ∈ Gn such that for each x ∈ X,
for all but finitely many n, x ∈ Gn.
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For fixed n, choose for each y ∈ Y an open set Un
y ⊂ Y such that y ∈ Un

y and there is a sequence i1 <
· · · < ik of elements of Sn such that Gn×Un

y is a subset of Ui1 ∪· · ·∪Uik as above. Then Hn = {Un
y : y ∈ Y }

is an open cover of Y .
Next apply the fact that Y is Rothberger to the sequence (Hn : n ∈ N), and choose for each n an Hn ∈ Hn

such that for each y ∈ Y there are infinitely many n with y ∈ Hn.
Then for each n choose in1 < · · · < inkn

∈ Sn such that Gn ×Hn ⊆ Uin1
∪ · · · ∪ Uinkn

.

It follows that there is a sequence of Un ∈ Un such that {Un : n ∈ N} is an open cover of X × Y .
The proof of (2) is similar, and left to the reader. �
It follows that Lindelöf P-spaces, Lindelöf scattered spaces, as well as σ-compact Rothberger spaces are not

only productively Lindelöf, but also productively Menger, productively Hurewicz, productively Rothberger
and productively Gerlits-Nagy.

Regarding the hypothesis of Theorem 24 thatX should be Rothberger: Note that the hypothesis S1(GK ,G)
implies S1(OK ,O), which implies Sfin(O,O). In Example 2 of [6] it was shown that CH implies the existence
of a subspace X of RN which is not countable dimensional and yet satisfies S1(OK ,Γ). Such an X cannot be a
Rothberger space, since metrizable Rothberger spaces are zero dimensional. One may consider weakening the
hypothesis that X is Rothberger to the hypothesis that each compact subset of X is Rothberger. However,
this is not a weakening of the hypotheses, since:

Lemma 25. If X is a space such that each compact subspace is Rothberger, and S1(OK ,O) holds of X then
X is a Rothberger space.

Similarly, one can show:

Lemma 26. If X is a space such that each compact subspace is Rothberger, and S1(OK ,Ogp) holds of X
then X is a Gerlits-Nagy space.

We leave the proof of these lemmas to the reader. We do not know if a similar statement is true about
γ-spaces:

Problem 3. Is it true that if each compact subset of X is a Rothberger space and X has the property
S1(OK ,Γ), then X has the property S1(Ω,Γ)?

What we can prove is:

Lemma 27. If X is a space such that each compact subspace is finite, and S1(OK ,Γ) holds of X then X is
a S1(Ω,Γ)-space.

We now record the few results we have on productively γ spaces.

Lemma 28. [18] Every open ω-cover of X × Y is refined by one whose elements are of the form U × V
where U ⊆ X and V ⊆ Y are open.

Theorem 29. If X is a space satisfying S1(GK ,GΓ) and if each compact subset of X is finite, then X is
S1(Ω,Γ)-productive.

Proof. We know that X is productively Lindelöf. Let a γ-space Y be given, and let (Un : n ∈ N) be a
sequence of open ω-covers of X × Y .

Claim X × Y is Lindelöf in each finite power.
For γ-spaces it is well known that each finite power of a γ-space is a γ-space. Similarly for P-spaces, each
finite power of a P-space is a P-space. Moreover, (X × Y )n is homeomorphic to Xn × Y n. Note that since
X × Y is a Lindelöf space in each finite power, we may assume, by the Proposition on p. 156 of [13], that
each Un is a countable set. For each n we may also assume by Lemma 28 that the elements of Un are of the
form U × V where U is open in X and V is open in Y . Thus, each Un is of the form {Un

k × V n
k : k ∈ N}.

Fix n and fix a finite subset F of X. For each finite set G ⊂ Y choose a Un
k(F,G)×V n

k(F,G) ∈ Un containing

F ×G. The intersection Wn(F ) =
⋂{Un

k(F,G) : G ⊂ Y finite} is a countable intersection as Un is countable,

and thus is an element of GK for X. Likewise, W (F ) = ∩n∈NW
n(F ) is and element of GK for X, and for

each finite G ⊂ Y and each n, W (F )× V n
k(F,G) contains F ×G.

Note that {W (F ) : F ⊂ X finite} is an ω-cover of X. Since X is a Lindelöf space satisfying S1(GK ,GΓ),
choose a countable set {Fn : n ∈ N} of finite subsets of X with {W (Fn) : n ∈ N} an element of GΓ.
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Fix n: Then {W (Fn)× V n
k : k ∈ N and W (Fn) ⊆ Un

k } is an ω-cover of W (Fn)× Y , and also Zn = {V n
k :

k ∈ N and W (Fn) ⊆ Un
k } is an ω-cover for Y .

Since Y is a γ-set, choose for each n a kn such that {V n
kn

: n ∈ N} is a γ-cover of Y . Then {W (Fn)×V n
kn

:
n ∈ N} is a γ-cover for X × Y , and so {Un

kn
× V n

kn
: n ∈ N} is a γ-cover of X × Y . �

Since in a T2 Lindelöf P-space compact subsets are finite, it follows that T2 Lindelöf P-spaces as well
as T2 Lindelöf scattered spaces are productively γ-spaces. As T2 compact Rothberger spaces are scattered
Lindelöf spaces, these are productively γ-spaces.

Corollary 30. σ-compact Rothberger spaces are productively γ.

Proof. Since X is σ-compact we write X =
⋃

n∈N
Xn where each Xn is a compact Rothberger space.

Since the union of finitely many compact Rothberger spaces is a compact Rothberger space, we may assume
that for each n we have Xn ⊆ Xn+1. A compact Rothberger space is a scattered Lindelöf space. Then for
Y a γ-space, for each n Xn × Y is a γ-space. This gives a union of an increasing sequence of γ-spaces, and
so by Jordan’s theorem ([17], Corollary 14) is again a γ-space. �

By Corollary 15 of [30] there is for each infinite cardinal κ a σ -compact T0 topological group of cardinality
κ such that TWO has a winning strategy in the game Gω

1 (Ω,Γ). By Corollary 17 of [30] there is for each
infinite cardinal number κ a T0 topological group (G, ∗) of cardinality κ which is a σ -compact Rothberger
space in all finite powers.

Alster also showed that

Theorem 31 (Alster, [2], Theorem 4). Assume CH. If X is of weight at most ℵ1 and has property S1(GK ,G),
and if each compact subset of X is at most countable, then in the Gδ topology X is Lindelöf.

It follows that in addition to be productively Lindelöf such spaces are also productively Menger-, Hurewicz-
, Rothberger-, Gerlits-Nagy- and γ.

5. Productivity of weak covering properties.

Spaces that are productively weakly Lindelöf do not currently have as well developed a theory. A number
of ways of generalizing the notion of an Alster space or its strengthenings as considered in the previous
section suggest themselves, but we have had limited success in exploiting these to identify classes of spaces
that are for example productively weakly Lindelöf spaces. In this section we report some of these results,
and pose a number of questions whose answers may help identify criteria under which a space with a weak
covering property is productively so.

The following two elementary properties of the notion of dense set will be used several times.

Lemma 32. Let X be a topological space. If Y ⊂ X is dense in X, and D ⊂ Y is dense in Y , then D is
dense in X.

Lemma 33. If D ⊂ X is dense in X and E ⊂ Y is dense in Y , then D × E is dense in X × Y .

The power of these two lemmas lie in the following:

Theorem 34. Let X be a topological with dense subset D.

(1) If D is productively weakly Lindelöf, so is X.
(2) If D is productively weakly Menger, so is X.
(3) If D is productively weakly Hurewicz, so is X.
(4) If D is productively weakly Rothberger, so is X.
(5) If D is productively weakly Gerlits-Nagy, so is X.

Proof. We show the argument for productively weakly Rothberger, leaving the rest to the reader. Thus,
let Y be a weakly Rothberger space and let D be productively weakly Rothberger. Let (Un : n ∈ N) be a
sequence of open covers of X × Y . Then the relativizations to D× Y is a sequence of open covers of D× Y ,
since D is dense in X. Applying the fact that D × Y is weakly Rothberger we find in each Un an element
Un such that

⋃
n∈N

Un is dense in D × Y , and so by Lemma 32 is dense in X × Y . �
Also the following fact is useful:

Theorem 35. Let (X, τ) be a topological and let τ ′ be a finer topology on X (i.e., τ ⊂ τ ′).
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(1) If (X, τ ′) is productively weakly Lindelöf, so is (X, τ).
(2) If (X, τ ′) is productively weakly Menger, so is (X, τ).
(3) If (X, τ ′) is productively weakly Hurewicz, so is (X, τ).
(4) If (X, τ ′) is productively weakly Rothberger, so is (X, τ).*
(5) If (X, τ ′) is productively weakly Gerlits-Nagy, so is (X, τ).*

In what follows we find conditions under which a space is productively weakly T, where T is one of the
weak covering properties we are considering.

Weakly compact spaces.

The space (X, τ) is weakly compact if there is for each open cover of the space a finite subset with
union dense in the space. Since the closure of a finite union of sets is the union of the finitely many sets
individual closures, the weakly compact spaces coincide with the almost compact spaces, and in the context
of T2-spaces, coincide with the H-closed spaces.

Analogous to Tychonoff’s theorem for compact spaces, one has:

Theorem 36 (Scarborough and Stone [27] Theorem 2.4). The product of weakly compact spaces is weakly
compact.

The argument in Proposition 1.9 of [9] shows

Theorem 37. If X is a weakly compact space then X is productively weakly Lindelöf.

This can be extended to the following:

Theorem 38. Let X be a weakly compact space.

(1) X is productively weakly Menger.
(2) X is productively weakly Hurewicz.

Since compact spaces are weakly compact, these results also imply that compact spaces are productively
weakly Lindelöf, productively weakly Menger, and productively weakly Hurewicz.

Weak versions of the Alster property

Towards exploration of productiveness for the weaker versions of the covering properties we considered,
we introduce the following family of subsets of a topological space:

GD denotes the collection of sets U where each element of U is a Gδ set, and
⋃U is dense in

the space.

A space is said to be weakly Alster if each member of GK has a countable subset which is a member of
GD.

Using the proof technique of Theorem 4.5 of [7] we find:

Lemma 39. If X weakly Alster and Y is weakly Lindelöf, then X × Y is weakly Lindelöf.

Proof. Let U be an open cover of X × Y . We may assume that U is closed under finite unions. For each
compact set C ⊂ X and for each y ∈ Y we find an open set U(C, y) ∈ U such that C × {y} ⊆ U(C, y). For
each y we find open sets V (C, y) ⊂ X and W (C, y) ⊂ Y such that C × {y} ⊂ V (C, y)×W (C, y) ⊂ U(C, y).

By Theorem 37 C × Y is weakly Lindelöf. Thus the cover {W (C, y) : y ∈ Y } of Y contains a countable
subset with union dense in Y , say {W (C, yCn ) : n ∈ N}. Define V (C) =

⋂{V (C, yCn ) : n ∈ N}, a Gδ subset
of X containing the compact set C ⊆ X. But then V = {V (C) : C ⊂ X compact} is a member of GK for
X. Since X is weakly Alster we find a countable subset {V (Cm) : m ∈ N} of V with union dense in X. But
then {W (Cm, yCm

n ) : m,n ∈ N} ⊂ U is countable and its union is dense in X × Y . �
Since an Alster space is a weakly Alster space, we find

Corollary 40 (CH). Every productively Lindelöf space of weight at most ℵ1 is productively weakly Lindelöf.

Proof. By Theorem 10, productively Lindelöf spaces of weight at most ℵ1 are Alster spaces, and thus
weakly Alster spaces. �

We don’t know if the additional hypotheses are necessary in Corollary 40:

Problem 4. Is every productively Lindelöf space productively weakly Lindelöf?
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Problem 5. Is every productively weakly Lindelöf space a weakly Alster space?

An argument similar to the one in Theorem 39 shows

Theorem 41. If X and Y are weakly Alster, then X × Y is weakly Alster.

Additionally, analogous to Lemma 12 and Theorem 15 we find

Lemma 42. For a topological space X the following are equivalent:

(1) X is a weakly Alster space.
(2) X satisfies the selection principle S1(GK ,GD).
(3) X satisfies the selection principle S1(GK ,GDΩ

).
(4) X satisfies the selection principle S1(GK ,GDgp).
(5) X satisfies the selection principle S1(GK ,GDgp

Ω
).

(6) X satisfies the selection principle Sfin(GK ,GD).
(7) X satisfies the selection principle Sfin(GK ,GDgp).
(8) X satisfies the selection principle Sfin(GK ,GDgp

Ω
).

We also leave to the reader the proof of

Lemma 43. If the T2-space X has a dense subspace which is a weakly Alster space, then X is a weakly
Alster space.

A stronger version of weakly Alster: S1(GK ,GDΓ
)

GDΓ
is the family of infinite sets U where each member of U is a Gδ subset of X, and for

each nonempty open subset U of X, {V ∈ U : U ∩ V = ∅} is finite.

A space with the property S1(GK ,GΓ) has the property S1(GK ,GDΓ
). Indeed:

Lemma 44. If a space X has a dense subset which has the property S1(GK ,GΓ), then X has the property
S1(GK ,GDΓ

).

Proof. LetX be a space which has a dense subspace Y which has the property S1(GK ,GΓ). If (Un : n ∈ N)
is a sequence of elements of GK for X, then choose for each n ∈ N an element Un ∈ U such that {Un : n ∈ N}
is an element of GΓ for Y . Since Y is dense in X, {Un : n ∈ N} is an element of GDΓ

for X. �

Theorem 45. If X has the property S1(GK ,GDΓ
), then it is

(1) productively weakly Menger.
(2) productively weakly Hurewicz.

Proof. We give the argument for weakly Menger productive. Thus, let Y be a weakly Menger space,
and let (Un : n ∈ N) be a sequence of open covers of X × Y . We may assume that each Un is closed under
finite unions.

For each n: For each compact subset C of X find for each y ∈ Y a set Un(C, y) ∈ Un such that
C × {y} ⊆ Un(C, y). Then for each n we find open subsets Vn(C, y) ⊂ X and Wn(C, y) ⊂ Y such that

C × {y} ⊆ Vn(C, y)×Wn(C, y) ⊂ Un(C, y).

For each C define Un(C) = {Wn(C, y) : y ∈ Y }, an open cover of Y .
Partition N into countably many infinite subsets Sm, m ∈ N.
Since Y is weakly Menger we find for each m and for each n ∈ Sm a finite set F (C, n) ⊂ Y such that⋃{Wn(C, y) : y ∈ F (C, n), n ∈ Sm} is dense in Y in the following sense: For each nonempty open T ⊂ Y

there are infinitely many n ∈ Sm for which Wn(C, y) ∩ T �= ∅ for some y ∈ F (C, n).
Then for each C define V (C) =

⋂
n∈N

⋂{Vn(C, y) : y ∈ F (C, n)}, a Gδ subset of X that contains C.
Then V = {V (C) : C ⊂ X compact} is a member of GK for X. Applying the fact that X has the property
S1(GK ,GDΓ

), we find a countable set {V (Cm) : m ∈ N} such that for each nonempty open set S ⊂ X, for all
but finitely many n, S ∩ V (Cm) �= ∅.

For each n find the m with n ∈ Sm and define Vn = {Vn(Cm, y)×Wn(Cm, y) : y ∈ F (Cm, n)}. Then each
Vn is a refinement of a finite subset of Un. We must show that

⋃
n∈N

(
⋃Vn) is dense in X × Y . Thus, let

U ×V be a nonempty open subset of X×Y . Choose N so large that for all m ≥ N we have V (Cm)∩U �= ∅.
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For such an m there are infinitely many n ∈ Sm such that Wn(Cm, y) ∩ V �= ∅ for some y ∈ F (Cm, n).
Since V (Cm) is a subset of Vn(Cm), it follows that for infinitely many n there are y ∈ F (Cm, n) for which
Vn(Cm)×Wn(Cm, y) ∩ U × V �= ∅. �

As in the case of Lindelöf productiveness, a proof of the following conjectures may depend on a charac-
terization of the properties of being productively Menger or productively Hurewicz.

Conjecture 1. If a space is productively Menger then it is productively weakly Menger.
If a space is productively Hurewicz then it is productively weakly Hurewicz.

Theorem 46. If X is a Rothberger space with the property S1(GK ,GDΓ
), then it is productively weakly

Rothberger.

Proof. Let Y be a weakly Rothberger space. Let (Un : n ∈ N) be a sequence of open covers of X × Y .
We may assume that for each n the elements of Un are of the form U × V . Partition N into infinitely many
infinite subsets Sm, m ∈ N. Then partition each Sm into infinitely many infinite pairwise disjoint subsets
Sm,k, k ∈ N.

For each m, and for each compact subset C of X, do the following. For each k and for each y ∈ Y choose
ii < i2 < · · · < it from Sm,k such that for each j, y ∈ Vij , and such that C ⊆ Ui1 ∪ · · · ∪ Uit , where now
for each j Vij corresponds with Uij . This is possible since C, a compact subset of X is a Rothberger space.
Define Vm,k(y, C) to be the the intersection of these Vij , and Um,k(y, C) to be the union of these Uij . Then
Wm,k(C) = {Vm,k(y, C) : y ∈ Y } is an open cover of Y for each m and k. Applying the fact that Y is weakly
Rothberger to (Wm,k : k ∈ N), choose for each k a yk ∈ Y such that for each open set V ⊂ Y there are
infinitely many k with Vm,k(yk, C) ∩ V �= ∅. Define Vm(C) to be the set

⋂
k∈N

Um,k.
Then for each compact set C ⊂ X define V (C) =

⋂
m∈N

Vm(C), a Gδ subset of X which contains C. Now
apply S1(GK ,GDΓ) to the member {V (C) : C ⊂ X compact} of GK . We find a sequence (V (Cm) : m ∈ N) of
Gδ sets such that for each nonempty open subset U of X, for all but finitely many n, V (Cn)∩U is nonempty.
Then the sequence (Vn(Cn) : n ∈ N) has the same properties.

Now consider the sets Um,k(yk, Cm)×Vm,k(yk, Cm) for k,m ∈ N. For each nonempty open U×V ⊂ X×Y
there is an N such that for all m > N , V (Cm) ∩ U is nonempty, whence Um,k ∩ Cm is nonempty for all k
But for such an m, for infinitely many k also Vm,k(yk, Cm) ∩ V is nonempty. Thus, for infinitely many m
and k, Um,k(yk, Cm)×Vm,k(yk, Cm) has nonempty intersection with U ×V . But now Um,k(yk, Cm) is of the
form Ui1 ∪ · · · ∪ Uit while Vm,k(yk, Cm) is of the form Vi1 ∩ · · · ∩ Vit , where i1 < · · · < it are from Sm,k and
Uij × Vij is an element of Uij .

It follows that there is a sequence of Sn ∈ Un such that for each nonempty open U × V ⊂ X × Y , here
are infinitely many n with Sn ∩ U × V nonempty. �

Corollary 47. Every space which has a dense σ-compact subset has property S1(GK ,GDΓ).

Proof. A σ-compact space has the property S1(GK ,GΓ). �

Corollary 48. Every separable space has the property S1(GK ,GDΓ
).

Proof. Let X be a separable space, and let D be a countable dense subset of X. Then D is a dense
σ-compact subset of X. �

Corollary 49. Every separable space is productively weakly Lindelöf, productively weakly Menger and pro-
ductively weakly Hurewicz.

Proof. Theorem 45 and Corollary 48. �

Corollary 50. For each cardinal number κ, Rκ is productively weakly Lindelöf, productively weakly Menger,
productively weakly Hurewicz and productively weakly Rothberger.

Proof. We only consider the case when κ in infinite. By Proposition 4 of [10],

{f ∈ Rκ : |{i : f(j) �= 0}| < ℵ0}
is a dense σ-compact subset of Rκ. By Lemma 39, Corollary 47 and Theorem 45 Rκ has the claimed
properties.
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Since Q is σ-compact and Rothberger, Proposition 4 of [10] implies that the subset

Sκ = {f ∈ Qκ : |{α ∈ κ : f(α) = 0}| < ℵ0}
of Qκ is σ-compact. By Corollary 15 of [30], TWO has a winning strategy in the game Gω

1 (Ω,Γ) in Sκ, and
thus Sκ is a γ-space. It is evident that Sκ is a dense subset of Rκ.

But Sκ is dense in Rκ and so as Sκ is productively weakly Rothberger by Theorem 46, also Rκ is
productively weakly Rothberger. �

Separable spaces are weakly Alster, and in fact have several additional properties: For example a separable
space is also weakly Rothberger. Note that a compact space could be weakly Rothberger without being
Rothberger: The closed unit interval is a compact separable space but is not a Rothberger space.

Corollary 51. If X is a separable space then X is productively weakly Rothberger.

Proof. Every countable space has the property S1(GK ,GΓ), and thus the property S1(GK ,GDΓ). Since a
countable space is Rothberger, Theorem 46 implies that any countable space is productively weakly Roth-
berger. Apply Theorem 35 to conclude that any separable space is productively weakly Rothberger. �

Lemma 52. Compact Rothberger spaces are productively weakly Rothberger.

Proof. Let X be a compact Rothberger space and let Y by weakly Rothberger. Let (Un : n ∈ N) be
a sequence of open covers of X × Y . We may assume each Un consist of sets of the form U × V . Write
N =

⋃
n∈N

Sn where the Sn’s are infinite and pairwise disjoint.
Fix n as well as y ∈ Y , and choose a finite sequence Ui1 , · · · , Uik where

(1) i1 < · · · < ik are elements of Sn;
(2) Uij is an element of Uij , 1 ≤ j ≤ k;
(3) X = Ui1 ∪ · · · ∪ Uik ;
(4) y ∈ Vi1 ∩ · · · ∩ Vik (and define Vn(y) to be this latter intersection).

This defines for each n an open cover Hn = {Vn(y) : y ∈ Y } of Y . Now apply the fact that Y is weakly
Rothberger to the sequence (Hn : n ∈ N) and select for each n an Hn ∈ Hn such that for each open set
V ⊆ Y , for infinitely many n, V ∩Hn is nonempty. This produces a sequence of elements Un ∈ Un, n ∈ N,
such that

⋃{Un : n ∈ N} is dense in X × Y . �

Problem 6. Is it true that if X has the property S1(GK ,GDΓ) and each compact subset of X is weakly
Rothberger, then X is productively weakly Rothberger?

Using techniques from the previous section we can prove:

Lemma 53. If each compact subspace of X is a weakly Rothberger space and if X satisfies S1(OK ,D), then
X it is weakly Rothberger.

For a space X define an element U of D to be groupable if there is a partition U =
⋃{Un : n ∈ N} where

each Un is a finite set, and for each nonempty open U ⊆ X, for all but finitely many n we have U ∩⋃Un is
nonempty. Then define

Dgp = {U ∈ D : U is groupable}.
A space is weakly Gerlits-Nagy space if it satisfies S1(Ω,Dgp).

Lemma 54. Compact Gerlits-Nagy spaces are productively weakly Gerlits-Nagy.

Proof. Let X be a compact Gerlits-Nagy space and let Y be weakly Gerlits-Nagy. Let (Un : n ∈ N)
be a sequence of ω-covers of X × Y . We may assume each Un consists of sets of the form U × V . Write
N =

⋃
n∈N

Sn where the Sn’s are infinite and pairwise disjoint.
Fix n and F , a finite subset of Y , and choose a finite sequence Ui1 , · · · , Uik where:

(1) i1 < · · · < ik are elements of Sn;
(2) Uij is an element of Uij , 1 ≤ j ≤ k;
(3) X = Ui1 ∪ · · · ∪ Uik ;
(4) F ⊆ Vi1 ∪ · · · ∪ Vik = Vn(F ), say.
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This defines for each n an ω-cover Hn = {Vn(F ) : F a finite subset of Y } of Y .
Now apply the fact that Y is weakly Gerlits-Nagy to the sequence (Hn : n ∈ N) and select for each n an

Hn ∈ Hn and select an increasing sequence m1 < m2 < · · · < mk < · · · in N such that for each open set
V ⊂ Y , for all but finitely many k, V ∩⋃{Hj : mk ≤ j < mk+1} is nonempty.

This produces a sequence of elements Wn ∈ Un, n ∈ N, such that {Wn : n ∈ N} is an element of Dgp for
X × Y . �

Problem 7. Is each compact weakly Rothberger space a weakly Gerlits-Nagy space? (or maybe a weakly
γ-space?)

We also don’t know if weakly Lindelöf P-spaces have stronger properties in terms of products. They are
at least productively weakly Lindelöf as we now show:

Lemma 55. If X is a weakly Lindelöf P-space, then it has property S1(GK ,GD).

Proof. For each n ∈ N let a set Un ∈ GK be given. Since X is a P-space, Un is an open cover of
X. For each compact subset C of X choose for each n a Un(C) ∈ Un with C ⊆ Un(C), and then define
V (C) =

⋂
n∈N

Un(C). Then V (C) is a Gδ subset of X and V = {V (C) : C ⊂ X compact} is an open cover
of X as X is a P-space. Since X is weakly Lindelöf, choose a countable subset {V (Cn) : n ∈ N} of U which
has the property that there is for each nonempty open V ⊂ X an infinite number of n with V ∩ V (Cn) �= ∅.
For each n, choose Un = Un(Cn) ∈ Un. Then {Un : n ∈ N} is a member of GD. �

It also follows that weakly Lindelöf P-spaces are weakly Rothberger. Since the finite product of P-spaces
are P-spaces, Lemma 55 and Lemma 39 imply that the product of finitely many weakly Lindelöf P-spaces is
a weakly Lindelöf P-space.

Problem 8. Let X be a weakly Lindelöf P-space.

(a) Does X then have the property S1(GK ,GDΓ
)?

(b) Is X productively weakly-Rothberger?
(c) Is X weakly-Hurewicz?

For the family D we introduce

DΓ := {U ∈ D : U infinite and each infinite subset of U is in D}.
A space is weak γ-space if it satisfies S1(Ω,DΓ). A space is weakly Gerlits-Nagy space if it satisfies

S1(Ω,Dgp).

Lemma 56. Compact γ-spaces are productively weakly γ-spaces.

Proof. Let X be a compact γ-pace and let Y be a weakly γ-space. Let (Un : n ∈ N) be a sequence of
ω-covers of X × Y . We may assume each Un consist of sets of the form U × V . Write N =

⋃
n∈N

Sn where
the Sn’s are infinite and pairwise disjoint.

Fix n as well as F finite subset of Y , and choose a finite sequence Ui1 , · · · , Uik where

(1) i1 < · · · < ik are elements of Sn;
(2) Uij is an element of Uij , 1 ≤ j ≤ k;
(3) X = Ui1 ∪ · · · ∪ Uik ;
(4) F ⊆ Vi1 ∩ · · · ∩ Vik = Vn(F ), say.

This defines for each n an ω-cover Hn = {Vn(F ) : F finite subset of Y } of Y . Now apply the fact that Y is
weakly γ-space to the sequence (Hn : n ∈ N) and select for each n an Hn ∈ Hn such that {Hn :: n ∈ N} ∈ DΓ.
This produces a sequence of elements Un ∈ Un, n ∈ N, such that {Un : n ∈ N} is a member of DΓ for X ×Y .
�
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[33] P. Staynova, A comparison of Lindelöf type covering properties of topological spaces, Rose-Hulman Undergraduate
Mathematics Journal 12:2 (2011), 163-204.

[34] F.D. Tall, A note on productively Lindelöf spaces, manuscript dated March 24, 2010.
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