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ABSTRACT 

This study investigated controls on soil water storage and its effect on vegetation 

cover in a semi-arid, mountainous environment characterized by warm-dry summers and 

wet-cold winters. Soil moisture and soil temperature were monitored over 286 days at 

eight sites spanning four elevations (approx. 1100, 1300, 1500, and 1800 m asl), and 

paired north and south exposures. These sites span an ecological gradient from grass and 

shrub land to conifer forest. Measurements of soil texture, soil depth, vegetation cover 

(normalized difference vegetation index, NDVI), and soil carbon content were made at 

the same sites. Variables that strongly influence the soil water distribution are 

topographically-driven and include: mean annual precipitation, which increases by a 

factor of 1.8, and mean annual temperature, which increases by a factor of 1.5, over the 

700 m elevation increase; potential insolation, which is 1.5 to 1.9 times higher from north 

to south aspect, and by 1.1 to 1.4 times over the elevation gradient on north and south 

aspects, respectively; and soil depth, which is 1.1 to 2.3 times greater on a north aspect 

than south aspect at a given elevation, and is 1.4 to 2.3 times greater at higher relative to 

lower elevations on north and south aspects, respectively. North aspects store from 1.1 to 

3.7 times as much water as south aspects at a given elevation, and higher elevations store 

up to 3 times more water than the lowest elevations at a given aspect; these trends are 

dictated by both higher average water content and deeper soils on higher elevations and 

on north facing slopes. Overall, soils are shallow, ranging from 34 to 92 cm deep and 

underlain by granodioritic bedrock. Due to the shallow profile and coarse texture of study 
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area soils, 6 to 16 cm of water infiltrated into dry soil can exceed the storage capacity and 

may be lost to vertical or lateral redistribution in one to four weeks. Filling of the soil 

water reservoir, as indicated by whole-profile hydraulic connectivity and attainment of 

field capacity at the soil-bedrock interface, was observed at all sites in response to both 

winter and spring precipitation, with north aspects and higher elevations experiencing 

longer periods of deep wetting.  

Vegetation cover is typically greater on north relative to south aspects, and 

generally increases with increasing elevation. Maximum (peak) seasonal NDVI values 

are reached as much as seven weeks earlier on south aspects at a given elevation, and as 

much as 12 weeks earlier at lower elevations compared to higher elevations. North-facing 

soils hold 3.5 to 4.2 times as much organic carbon as south-facing soils at all but the 

highest elevation forested sites, where the south and north aspect soil carbon contents 

were similar. Both vegetation cover and soil carbon content are largest at sites that retain 

moisture for a longer portion of the summer period, consistent with a water limited 

ecosystem. The duration of wet soil conditions during the summer, when vegetation 

production peaks, is strongly influenced by the magnitude and duration of spring and 

summer precipitation. These observations suggest that vegetation productivity and soil 

carbon storage in this environment will be particularly sensitive to climatic changes that 

alter spring and summer precipitation, which is delivered near, or during, the growing 

season. In contrast, the ecosystem may be less sensitive to changes in the magnitude of 

winter precipitation, which recharges the relatively small soil reservoir in the winter 
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season and is generally lost from the soil early into the spring when productivity is 

depressed by lower temperatures and low insolation.  
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1. INTRODUCTION 

The response of terrestrial ecosystems to the changing climate is a critical 

question in global change science because terrestrial carbon reservoirs may serve to 

mitigate, or to hasten, the rate of atmospheric CO2 enrichment on human timescales 

(Jobbágy et al. 2000; Amundson 2001; Heimann et al. 2008). The fate of the sizeable 

carbon stocks held in terrestrial ecosystems and soils is uncertain given the current lack in 

understanding of the controls on vegetation productivity and associated soil carbon 

storage in different ecosystems (Schlesinger 1977; Amundson 2001; Davidson et al. 

2006). Climate change is expected to produce changes in precipitation patterns around 

the world (Weltzin et al. 2003). If we are to successfully prepare for global changes in the 

terrestrial carbon and  water cycles, we must first improve our understanding of how 

vegetation and soils in a variety of climates will respond to changing climate conditions, 

and particularly to changing precipitation patterns (Chapin et al. 2002; Weltzin et al. 

2003; Foley et al. 2004; Xu, Baldocchi et al. 2004; Chou et al. 2008).  

The impacts of a changing climate on ecosystem processes remain an area of 

uncertainty, particularly in semi-arid mountainous settings, where high sensitivity to 

changes in precipitation and temperature are coupled with complex topographically-

driven climatic and ecologic gradients (Raich et al. 1992; Wigmosta et al. 1994; Weltzin 

et al. 2003; Williams 2005; Newman et al. 2006; Sole 2007; Caylor et al. 2009; Thomas 

et al. 2009; Vivoni et al. 2009). Integrative mathematical models will ultimately be 
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required to form quantitative predictions of changes in carbon stocks in these systems 

(Monteith 1981; Chen et al. 1999; Arora 2002; Rodríguez-Iturbe et al. 2004; Ivanov et al. 

2008a). Long-term, field-based soil moisture datasets are lacking in steep, complex 

terrain at the watershed scale, prohibiting the calibration and validation  results from 

hydrologic, ecologic, and climate models in many regions (Grayson et al. 1997; Salvucci 

2001; Famiglietti et al. 2008; Ivanov et al. 2008b; Viola et al. 2008). A goal of this study 

is to generate field data that can help to constrain model development, and to build a 

conceptual understanding of how hydrologic drivers impact ecological function in semi-

arid, mountainous environments.   

The availability of soil water is a fundamental control on photosynthesis and 

associated ecosystem processes in semi-arid environments. Inversely,  such ecosystems 

can influence the amount of water in soil (Noy-Meir 1973; Rodriguez-Iturbe et al. 1999; 

Orcutt et al. 2000; Rodriguez-Iturbe et al. 2001b; Arora 2002; Caylor et al. 2006). Soil 

water acts as the link between water, energy, and carbon budgets of a terrestrial 

ecosystem by partitioning climatic forces (i.e. precipitation, radiation) into ecosystem 

activity, latent and sensible heat fluxes, surface water runoff, and deep drainage 

(Rodriguez-Iturbe et al. 2001b; Arora 2002; Williams et al. 2009). Rodriguez-Iturbe 

(2000), Rodriguez-Iturbe et al. (2000; 2001b) and Ridolfi et al. (2003) model the 

vertically-integrated soil water balance at a point as shown in Equation 1, 
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in which n represents soil porosity, Zr represents the soil depth, s is relative soil moisture 

content (0 ≤ s(t) ≤ 1), t represents time, I(s,t) represents infiltration of precipitation into 

soil, E(s,t) is evapotranspiration loss, L(s,t) is leakage loss, and Φlat represents a net 

lateral flux. In mountainous semi-arid systems, the source of soil water at a point can be 

rainfall, snowmelt, or lateral flows on or below the soil surface (Rodriguez-Iturbe et al. 

2001b; Ridolfi et al. 2003). The water table is often too deep to interact with soil water 

via a capillary action (Rodríguez-Iturbe et al. 2004), although some studies suggest 

upward hydraulic gradients in deep arid to semi-arid soils (Walvoord et al. 2004). 

Precipitation may be prevented from reaching or infiltrating into the soil by canopy 

interception, runoff, and sublimation from the snowpack. Water may leave the soil 

vertically through evapotranspiration or leakage from the base of the soil profile into a 

deeper ground water reservoir. Soil texture, depth, composition, and structure influence 

infiltration, evapotranspiration, leakage, water availability, water retention capacity, 

albedo, carbon storage, and lateral flow rates, as well as mineralization rates and 

availability of soil nutrients such as nitrogen (Noy-Meir 1973; Aber et al. 1991; 

Famiglietti et al. 1998; Brady et al. 2002; Hillel 2004; Rodríguez-Iturbe et al. 2004; 

Seyfried et al. 2005; Plante et al. 2006). 

Lateral redistribution of soil water toward or away from a given observation point 

can be influenced by topographic controls including slope gradient, curvature, and 

contributing area in regions of complex terrain (Rodriguez-Iturbe et al. 2001b; 

Rodríguez-Iturbe et al. 2004). Runoff and infiltration can also be influenced by 

topography (Famiglietti et al. 1998; Western et al. 1999). In mountainous terrain, both 
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the amount of precipitation and the air temperature are commonly influenced by elevation 

through the orographic effect (Dingman 2002). Slope aspect determines the amount of 

incident solar radiation (insolation), and thus potential evapotranspiration rates, with 

south aspects having higher rates of insolation and evaporation loss than north aspects in 

much of the northern hemisphere (Brady et al. 2002; Geiger et al. 2003).  

Vegetation both influences and responds to soil water content (Rodriguez-Iturbe 

et al. 2001b; Hupet et al. 2002; Tromp-van Meerveld et al. 2006). Vegetation requires 

water from the soil to fix carbon from the air in photosynthesis (Taiz et al. 1998). 

Through photosynthesis, plants adjust the rate of transpiration by regulating their stomata 

in response to soil water availability (Taiz et al. 1998; Dingman 2002). The vegetation 

canopy intercepts precipitation (affecting infiltration) and shades the soil from insolation, 

protects soil from erosion, and changes the albedo and air turbulence at the land surface 

(affecting evaporation rate and soil temperature) in proportion to the density of coverage 

(Dingman 2002; Breshears et al. 2003). Vegetation protects the soil surface from wind 

and entrains windblown materials which may include loess and nutrients (Chadwick et al. 

1990; Reheis et al. 1995; Goudie et al. 2006). Plants promote weathering and deposit 

organic materials containing carbon, nitrogen, phosphorous, and water onto the soil 

(affecting soil structure, composition, color, and water retention capacity), among other 

influences and feedbacks (Arora 2002; Brady et al. 2002; Gutierrez-Jurado et al. 2006). 

Organic materials in soil, contributed largely by vegetation, affect the soil structure, bulk 

density, composition, color, hydraulic conductivity, and nutrient content (Brady et al. 

2002; Chapin et al. 2002; Wang et al. 2009). 
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Because it is such an important link between abiotic and biotic forces, soil 

moisture is a critical factor influencing large- and small- scale models of climate change, 

vegetation productivity, energy dynamics, and hydrologic processes. Although a clear 

understanding of soil moisture is important to the success of predicting and modeling the 

above processes, spatially and temporally detailed soil moisture data are lacking, and the 

controls on soil moisture distribution are highly variable in space and time (Hawley et al. 

1983; Famiglietti et al. 1998; Grayson et al. 1998; Rodriguez-Iturbe et al. 1999; Salvucci 

2001; Hupet et al. 2002; Porporato et al. 2002; Famiglietti et al. 2008). In prior work 

attempting to correlate soil moisture to its key physical predictors, some easily measured 

topographic factors, such as elevation and aspect, have been treated as controls (Beven et 

al. 1979; Gomez-Plaza et al. 2001; Wilson et al. 2005; Williams et al. 2009). However, 

topographic factors are often surrogates for other, more mechanistic controls on soil 

moisture. For example, elevation alone would be unlikely to affect soil moisture without 

the orographic trends in precipitation and air temperature, as well as changes in soil 

properties, which provide some physical explanation for ecological trends over elevation 

gradients (Daubenmire 1968; Whittaker et al. 1975). Likewise, slope aspect itself would 

provide little explanatory power if not for the different amounts of insolation received 

(Geiger et al. 2003; Ivanov et al. 2008b). Furthermore, factors other than topography can 

exert an important influence on the soil moisture distribution, such as soil properties and 

vegetation (Grayson et al. 1997; Western et al. 1999; Gomez-Plaza et al. 2001; Tromp-

van Meerveld et al. 2006). Currently, our empirical understanding is insufficient to 

reliably identify the key physical controls on soil moisture distribution in a range of 
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environments, seasons and soil moisture states (Western et al. 1999; Gomez-Plaza et al. 

2001; Western et al. 2004; Ivanov et al. 2008b; Williams et al. 2009).  

Ecosystems located in mountainous or complex terrain can be useful for field 

studies because they capture climate gradients. Steep, mountainous terrain induces the 

development of microclimates induced by changing both elevation and aspect 

(Thornthwaite 1961; Geiger et al. 2003; Burnett et al. 2008). These induced climatic 

gradients have been applied over long timescales, making them useful natural settings in 

which to study the effects of different climate conditions on a single region while holding 

factors such as bedrock type and latitude constant (Geiger et al. 2003). Ecological 

transition zones commonly span these topographic gradients in response to the differing 

climate conditions (Smith et al. 2002; Geiger et al. 2003). Previous workers have used 

topographic gradients as a proxy for climate change to examine controls on weathering, 

soil formation, vegetation processes, soil moisture dynamics, and carbon cycling 

(Whittaker et al. 1975; Schulze et al. 1996; Wang et al. 2000; Smith et al. 2002; Caylor 

et al. 2006; Gutierrez-Jurado et al. 2006; Tromp-van Meerveld et al. 2006; Gutierrez-

Jurado et al. 2007; Burnett et al. 2008).  

The present study was conducted in a climate where precipitation and temperature 

occur out of phase, with alternating cold-wet and hot-dry seasons. This system resembles 

Mediterranean climates, which can be found in Greece, Turkey, Portugal, Spain, France, 

Italy, and Chile, as well as in North American in south-central Oregon, southern 

California, and south-central Arizona, among other locations (Henderson-Sellers et al. 

1986; Vourlitis et al. 2007; Chou et al. 2008; Viola et al. 2008; Thomas et al. 2009; 
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Silver et al. 2010). While this system shares the characteristic summers typified by high 

temperatures and drought conditions with rare, sporadic precipitation, it is differentiated 

by much colder winters, which typically see freezing temperatures and development of a 

snowpack at the middle and upper elevations (McNamara et al. 2005; Thomas et al. 

2009). During the transition from winter to summer in this environment, warming 

temperatures briefly coincide with high soil moisture, resulting in an episode of active 

water and carbon exchanges and transient soil moisture conditions (McNamara et al. 

2005; Ladd et al. 2007). Changes in the amount and timing of precipitation and 

temperature, such as those which are expected to result from climate change, are 

anticipated to impact these out-of-phase, water-limited systems in complex, interrelated, 

but not yet predictable, ways (Smith et al. 2000; Weltzin et al. 2003; Xu and Baldocchi 

2004; Chou et al. 2008; Viola et al. 2008). 

Previous research in the mountainous American west has commonly emphasized 

the impacts that changes in snow amount and duration will have on discharge patterns 

downstream (Hamlet et al. 1999; Stewart et al. 2005). Observed and anticipated changes 

in winter precipitation include declining snowpack volume, earlier snowmelt, and an 

increase in the proportion of winter precipitation falling as rain rather than snow (Hamlet 

et al. 2005; Stewart et al. 2005; Knowles et al. 2006; Mote 2006; Hamlet et al. 2007). 

Less work has investigated the impacts of the amount and timing of spring and summer 

precipitation on upland hydrology and ecosystem functioning (Weltzin et al. 2003; 

Hamlet et al. 2007).  
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We have conducted an intensive field campaign examining soil conditions an 

ecosystem carbon stocks in the semi-arid Dry Creek Experimental Watershed, whose 

complex terrain captures gradients in elevation, aspect, climate and ecology. We have 

observed that the natural vegetation appears to be distributed in response to climatic 

gradients across the complex topography of the study area. In this study we examine 

whether measured differences in soil moisture across elevation and aspect gradients 

mimic the observed differences in vegetation cover. A temporally intensive (sub-hourly 

to daily) data series of soil moisture and soil temperature at eight study locations (four 

different elevations, each with paired sites on north and south aspects, and with 

measurements from multiple points and multiple soil depths at each study location) are 

compared to time series of vegetation cover at these sites. Our focus is on relatively 

shallow soil water (maximum depth 116 cm below ground surface, bgs), as the water 

table is very deep (24 to 130 m bgs) on hillslopes in the study area (Aishlin 2006). We 

use the topographic, climatologic, and ecologic gradients, and associated seasonal 

dynamics, to explore how changes in soil moisture may alter patterns in vegetation and 

soil. We analyze temporal trends in soil moisture and vegetation and propose that the 

semi-arid foothills ecosystem will be particularly sensitive to changes in the amount and 

timing of spring precipitation. 
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2. STUDY AREA: THE DRY CREEK EXPERIMENTAL WATERSHED 

The Dry Creek Experimental Watershed (DCEW) is an approximately 27 km2, 

northeast-southwest trending semi-arid basin located about 16 km northeast of Boise, 

Idaho in the mountain foothills region known as the Boise Front (McNamara et al. 2005). 

The watershed acts as a center of hydrologic research for several diverse groups at Boise 

State University, with instrumentation including three weather stations, seven stream 

gages, and multiple soil moisture monitoring stations 

(http://earth.boisestate.edu/boisefront/boisefront/Index.html). Figure B.1 shows the 

DCEW topography, vegetation, and instrumentation discussed in this study. 

Meteorological variables including precipitation, snow depth (from ground surface), air 

temperature, and shortwave radiation are recorded at three meteorological stations 

located in DCEW at elevations of 1151, 1610, and 1850 m. The three stations are 

maintained by Boise State University (BSU). Details regarding data collection and 

processing at the three sites are provided by Aishlin (2006). A fourth site, the Bogus 

Basin SNOTEL meteorological station, is maintained by the USDA Agricultural 

Research Service at an elevation of 1932 m, north of the DCEW upper boundary 

(http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=978&state=id). These meteorological 

stations provide a record extending from as early as 1998 until 2009. 

The perennial Dry Creek drains the watershed from its headwaters in the Boise 

Front Range, at an elevation of about 2100 m, to its confluence with the Boise River west 



10 
 

 

of Boise at about 800 m of elevation (Williams 2005). The DCEW encompasses the 

upper portion of the basin, with its upper boundary located near the headwaters region, 

and the lower boundary located at about 1100 m elevation. The bedrock of DCEW 

consists of medium- to coarse-grained biotite granodiorite of the Idaho Batholith.  Soils 

on hillslopes are typically shallow (< 2 m deep) gravelly loams to gravelly sands, 

developed in situ from weathering of bedrock (USDA 1997; Gribb et al. 2009; Tesfa et 

al. 2009). Slope gradients average about 29% on north-facing slopes, and about 21% on 

south-facing slopes (M. Poulos, personal communication October 2009), with an overall 

average slope gradient of about 25% (Tesfa et al. 2009). The topographically complex 

watershed spans gradients of elevation (1000 m) and slope aspect (north to south).  

In addition to the topographic gradient, the DCEW spans a marked ecological 

gradient. In lower elevations of DCEW, grass and sagebrush shrublands dominate, while 

higher elevations support forest vegetation including fir, spruce, and pine (McNamara et 

al. 2005; Williams 2005). In mid-elevations of the watershed, a steep vegetation gradient 

from shrub lands to evergreen forest is observed at the same elevation from north to south 

aspect. These trends are evident in the aerial photograph shown in Figure B.1. Land use 

in the watershed includes grazing in the lower to middle elevations, logging in the upper 

elevations, and recreational uses throughout (hiking, biking, hunting) (Williams 2005). 

The watershed has been historically affected by fire and invasive species (cheat grass), 

but is representative of many semi-arid environments in the American west. 

The climate of the DCEW is characterized by cold, wet winters and hot, dry 

summers, as well as a hypsometric effect of increasing precipitation and decreasing 
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temperature at higher elevations. The lower DCEW is classified as a steppe summer dry 

climate, and the upper DCEW as a moist continental climate with dry summers, using the 

Köppen climate classification system (Henderson-Sellers et al. 1986; McNamara et al. 

2005). Precipitation and temperature are out-of-phase, with most precipitation falling 

during the cold winter months as snow in the higher elevations, and as rain and snow in 

the lower elevations (Figure B.2).  

Yearly air temperatures range from -15˚C to 33˚C at lower elevations, and from -

14˚C to 26˚C at higher elevations. Average daily temperatures above 5°C generally occur 

from April to November (Figure B.2). Most precipitation typically occurs from 

November through April, with average annual precipitation ranging from about 400 mm 

at lower elevations to about 700 mm in the headwater region (Figure B.3). Figure B.4 

shows how precipitation patterns during the 2008-2009 season of study differ from 

average patterns. The most distinct deviations are unusually high precipitation falling in 

June and August 2009, and relatively low amounts of precipitation over winter. A 

hypsometric effect induces a gradient of greater mean precipitation and lower mean air 

temperature with increasing elevation (Figure B.3).  

Insolation, or the amount of incident solar radiation reaching the surface, varies 

widely with aspect, and to a lesser degree with elevation, in the study area. Slope aspect, 

slope gradient, and elevation are the key long-term variables determining the amount of 

insolation received in the steep terrain of the DCEW (Geiger et al. 2003). Figure B.5 

shows how insolation varies with topography in the study area. The total aannual 

potential insolation was modeled for each site using the Solar Radiation tool in ArcGIS 
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Spatial Analyst (ESRI, Redlands, CA) in order to assess the energy received on slopes of 

different aspects and gradients (Huang et al. 2009). Generally clear sky conditions over 

the year were assumed in model parameters. Topographic inputs to the tool were 

provided as a 10 m resolution digital elevation model provided by the United States 

Geological Survey. The modeled results were compared to observed total annual solar 

radiation for 2000-2008 measured from Lower Weather and Treeline weather stations in 

DCEW, as well as mean annual solar radiation for 2000-2004 measured from the 

SNOTEL Bogus Basin station (Figure B.6). Henceforth, observed solar radiation will be 

termed “observed insolation” and modeled insolation will be termed “potential 

insolation.” As shown in Figure B.6, a positive linear relationship between annual 

potential insolation and elevation is apparent for north and south aspects. The amount of 

potential insolation received at a given elevation can be 2 times higher on the south 

aspect relative to the north aspect. In contrast, potential insolation at a given aspect 

increases by a factor of 1.1 (south aspects) and 1.4 (north aspects) over 700 m of 

elevation change in the watershed. Thus, potential insolation differs more between north 

and south aspects at a given elevation than across the 1000 m-elevation gradient at either 

aspect. The agreement of the observed and potential annual insolation is reflective of the 

generally low annual cloud cover at the study area, and suggests that the modeled values 

are a good approximation of actual insolation. Comparison of the annual timing of 

measured daily insolation and measured air temperature taken from a BSU 

meteorological station at 1610 m elevation in the DCEW shows that peak air temperature 
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(August) is delayed by about one month from peak insolation (July) in the summer 

(Figure B.7).  

Potential insolation exhibits two orographic trends in the study area; there is a 

positive relationship between potential insolation and mean annual precipitation (and 

elevation), as well as a negative relationship between potential insolation and mean 

annual temperature (and elevation) (Figure B.8). The coefficients of determination are 

equal because both mean annual precipitation and mean annual temperature are derived 

from elevation using the orographic relationships shown in Figure B.3. The differences in 

energy received on different slopes may relate to processes such as snowpack duration 

and melt rate, weathering of rock and soil, evaporation from the soil, transpiration and 

productivity of plants, and respiration of roots and soil microbes, among others. 
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3. METHODS 

We have observed that the distribution of vegetation relates to topography in the 

study area. This study seeks to examine whether measured differences in soil moisture 

across elevation and aspect gradients mimic the observed differences in vegetation cover. 

To address the study objective, study sites were located at four elevations on north- and 

south-facing slopes. Soil moisture and soil temperature were measured at multiple depths 

at multiple locations at sub-hourly to daily intervals over 286 days at the study sites. 

Vegetation cover was measured as an approximately bi-monthly time series at each study 

site using two independent light-based methods at different scales. Soil texture, soil 

depth, and soil carbon content were also determined at multiple depths at each site to 

investigate potential differences in water retention, storage capacity, and carbon storage 

properties at each site. 

3.1. Soil Water and Soil Temperature  

3.1.1. Soil Volumetric Water Content, Soil Temperature, Soil Depth 

Soil moisture (as volumetric water content, henceforth “soil water content” or 

“soil moisture”) and soil temperature were monitored at eight sites in DCEW using 121 

ECH2O EC-TM sensors (Decagon Devices, Inc., Pullman WA). Volumetric water 

content is defined as the volume of water per total volume of soil according to Equation 

2, 
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                (Equation 2) 

where θ represents volumetric water content (dimensionless), Vw represents the volume 

of water (cm3), and VT represents the total volume of soil (cm3) (Dingman 2002; Hillel 

2004).  

Study site locations are shown in Figure B.1, and station coordinates and 

characteristics are provided in Table A.1. The stations were placed on north- and south-

facing aspects at four different elevations spanning a 700 m elevation gradient.  The 

naming scheme for the stations, shown in Table A.1, is as follows: H indicates “High 

Elevation”, L indicates “Low Elevation,” and M modifies the elevations to “Mid-.” An N 

indicates a north-facing slope, while an S indicates a south-facing slope. For example, 

site MLN will be the Mid-Low elevation, North-facing slope in this study. The lowest 

and mid-lowest elevation sites (LN, LS, MLN, and MLS) are located in shrub/grass land 

ecology. The highest elevation sites (HN, HS) are placed in forest. At the mid-highest 

elevation sites, the north-facing site (MHN) is located in forest, while the south-facing 

site (MHS) is placed in shrub/grass land (Figure B.1). Each site was placed at the mid-

slope position in a location which represented the vegetation characteristics of the overall 

slope; forested sites were placed in old-growth, unlogged locations. Care was taken to 

locate each north-south pair of sites on slopes of comparable gradient, and to avoid 

convexities or concavities in the topography. Each station was composed of four soil pits 

placed about 2 to 6 m apart, and in each pit EC-TM sensors monitored water content and 

temperature at up to four depths every 10 minutes (Figure B.9).  
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Sensors are placed at depths of 2, 15, and 30 cm below the mineral soil surface. In 

pits where soil depths exceed 30 cm (only LS and MLS have soils no deeper than 30 cm), 

a fourth sensor is installed above the soil-bedrock interface. Bedrock was identified as the 

depth at which the soil became dominated by gravelly decomposed granite which was 

unsuitable for installation of the EC-TM sensors. The depth to the soil-bedrock interface 

was measured from each soil pit, and the mean depth from the four pits was calculated to 

represent mean soil depth at each site. Estimates of mean annual precipitation and mean 

annual air temperature were calculated for the elevation of each study site in this project 

using the hypsometric relationship shown in Figure B.3, and assuming that elevation is 

the most important spatial factor which imposes a significant control on mean annual 

precipitation and air temperature. 

In this study, the four pits at each site are generally treated as replicate samples; 

an average of the four pits is assumed to represent soil conditions typical of the hillslope 

upon which each site is located. As the chief objective of this study is to illustrate the 

differences in soil conditions across watershed-scale topographic gradients, we expect the 

four soil pits placed at mid-slope position at each study site to approximately capture the 

spatial variability and spatiotemporal contrasts at the hillslope scale, particularly at the 

fine temporal resolution of our sampling routine. The data reported in this thesis are 

based on daily averages calculated from the original 10 minute sampling interval. When 

discussing the results, “site average” refers to an average value across all four replicate 

pits and all soil depths monitored at a site. Unless otherwise stated, results are derived 
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from site averages. Results described as “profile-averaged” refer to the mean of all 3 to 4 

depths measured in a profile.  

The EC-TM sensors send electromagnetic energy along the prongs of the probe, 

and a measurable charge is built between the prongs which is proportional to the 

dielectric permittivity of the surrounding soil; the soil dielectric, in turn, is dominated by 

the water content (Hillel 2004; Decagon Devices 2007).  The raw output signal from the 

sensors is converted into a water content value using a linear calibration equation for 

mineral soils derived by Decagon Devices, Inc., and validated for soils from the Dry 

Creek Experimental Watershed in the laboratory. The sensors measure temperature using 

a thermistor mounted adjacent to a prong, so the thermistor reads the average temperature 

along the length of the prong (5.2 cm). Error in the sensors in media comparable to the 

soils of DCEW has been reported as +/-3% VWC between sensors and per sensor and +/- 

1˚C between sensors (Decagon Devices 2007). The maximum sample volume 

represented by the sensor reading is roughly 400 cm3. 

We used data over the entire period of record common to all sites for calculations 

in which we sought to compare the annual behavior of soil moisture and soil temperature 

at the different sites. The common period of record was 11/20/2008 to 9/1/2009, 

encompassing nearly an entire water year. In analyses where sites were compared, such 

as computations of statistics and the number of days potential bedrock flow days, data 

gaps were linearly interpolated to ensure that the time period was equally represented by 

all sites. To determine maximum and minimum values of soil water content or soil 

temperature, the entire period of record was used.  
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3.1.2 Soil Water Storage  

Measured values of volumetric water content and soil depth were used to 

calculate the total water stored in the profile. Each soil pit contains 3 to 4 sensors 

measuring volumetric water content at depths spanning from 2 cm below ground surface 

(bgs) to near the soil-bedrock interface. From the measured depths the volumetric water 

content of the soil was interpolated at 1 cm increments from soil surface to bedrock 

depth. A line fitting the interpolated points was integrated to determine the total water 

stored in each soil pit. This total amount of water stored is reported as a depth of water. 

Both the interpolation and integration processes were performed using MATLAB 

R2008b software (The Mathworks, Inc., Natick, MA). The water storage values account 

for the different soil depths and water contents observed at different sites, reflecting the 

total volume of water present in a soil mantle at a given time. 

3.1.3. Duration of Snow Cover   

Measured values of soil temperature at the 2 cm soil depth were used to infer 

dates of snow cover formation and disappearance at each site. Periods of snow cover 

were interpreted as the period during which diurnal fluctuations of shallow soil 

temperature were strongly dampened and limited to approximately 0°C. The resulting 

inferences of snow cover periods agreed well with snow depth data recorded using Judd 

Ultrasonic Depth Sensors (Judd Communications LLC, Salt Lake City, UT) from weather 

stations located at similar elevations in the watershed. 
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3.1.4. Soil Matric Potential 

In order to assess the amount of water available for dynamic processes such as 

evapotranspiration and deep drainage to bedrock fractures, it was necessary to account 

for the water retention properties of the different soils in the study area (Brady et al. 

2002). Moist soil subjected to a vacuum (negative pressure, or tension) will lose water 

from pore spaces in a manner related to the pore distribution and strength of attractive 

forces among soil particles, soil capillaries, and pore water; the amount of water lost per 

unit drop in pressure will change over a drying period due to the changing matric 

(energy) potential of pore water (Clapp et al. 1978; Hillel 2004). The empirical 

relationship between the volume fraction of water in a soil and the matric potential of the 

pore water is known as a soil-moisture characteristic curve (Hillel 2004). Equation 3 

relates matric potential to volumetric water content in a given soil textural class as, 

b

s
s
















                                              (Equation 3) 

where ψ (MPa or cm) is the matric potential (“suction”), ψs (MPa or cm) is the suction 

when soil is saturated, θ (dimensionless) is the volumetric water content corresponding to 

ψ, θs (dimensionless) is the assumed saturated water content (the maximum limit of 

which is the soil porosity), and b (dimensionless) is an empirical fitting parameter. 

Values of ψs, θs, and b are unique to each USDA soil texture class and are provided by 

Clapp and Hornberger (1978). Numerous properties relate to the soil water retention 

characteristics of a soil, including texture, structure, carbon content, bulk density, 

topography, and antecedent moisture condition, among others (Famiglietti et al. 1998; 
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Brady et al. 2002; Rawls et al. 2003; Hillel 2004; Leij et al. 2004). In essence, two soils 

with the same water content may have a different amount of water available for 

redistribution due to the different amounts of absorptive force exerted on the pore water 

in each soil.  

In this study we wanted to approximate the time at which each site reached a) a 

water content sufficiently high that soil water could redistribute vertically or laterally 

under the force of gravity, often referred to as “field capacity” (Brady et al. 2002; Hillel 

2004), and b) a water content sufficiently low that plants would experience severe water 

stress and essentially go dormant, similar to the “permanent wilting point” concept often 

used in soil science (Veihmeyer et al. 1955; Hillel 2004). Both field capacity and 

permanent wilting point are physically imprecise concepts. For example, different plants 

have different extraction capabilities and water use efficiencies and thus wilt or cease to 

extract soil water at different matric potentials. Despite such shortcomings, field capacity 

and wilting point continue to be useful standard tools for approximately describing the 

range in soil moisture when water is available for dynamic processes such as 

redistribution and transpiration, respectively (Brady et al. 2002; Hillel 2004). We apply 

the field capacity and wilting point concepts in this study to define the matric potentials 

(and associated soil water contents) below which water is no longer appreciably available 

for redistribution and evapotranspiration, respectively. We acknowledge that, in the semi-

arid environment of this study, many vegetation species have adapted to withstand long 

periods of very dry soil (very negative matric potentials) without permanently wilting, 

but that transpiration activity and extraction of soil water by plants does effectively cease 
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in the late growing season when soil water limitation inflicts severe plant stress in most 

native shrub and grass species (Noy-Meir 1973; Rodríguez-Iturbe et al. 2004; Seyfried et 

al. 2009).  

3.1.5. Approximate Wilting Point 

The approximate wilting point of soil at each site was estimated using parameters 

and relationships from the literature. Equation 3 was solved for θ at chosen values of ψ 

described below. Previous workers have concluded that plants in semi-arid environments 

reach a wilting point below values of -3 to -5 MPa (-30,591 to -50,986 cm H2O), up to as 

low as -9 MPa (-76,500 cm H2O) (Kappen et al. 1972; Scholes et al. 1993; Linton et al. 

1998; Laio et al. 2001). A matric potential value of -3 MPa (-30,600 cm H2O) was used 

here for ψ as the point at which soil water was effectively unavailable for appreciable 

evapotranspiration. Equation 3 was used to estimate the volumetric water content at the 

matric potential of field capacity and wilting point for the different soil textures 

encountered in the study (Clapp et al. 1978; Dingman 2002), although a more site-

specific field capacity was then determined by an alternative method (below). Water 

retention characteristics are commonly approximated using soil textural properties (Laio 

et al. 2001). The volumetric water contents corresponding to the wilting point matric 

potentials at each site are provided in Results.  

3.1.6. Field Capacity 

The chief objective in identifying the field capacity water content at each site was 

to determine whether soils became sufficiently wetted at depth to create a potential for 
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bedrock flow, which could include one or both of vertical flow from the base of the soil 

profile into bedrock (deep drainage) and lateral flow at the soil-bedrock interface 

(McNamara et al. 2005). Thus, field capacity water content for each site was estimated 

from the soil water content data. Because we are primarily interested in the frequency 

with which field capacity is exceeded at the soil-bedrock interface, we focused on 

empirical determinations of field capacity at the bottom of the soil profile at each site. 

Because the USDA soil texture class differed slightly, if at all, over the soil profile, it is 

assumed that field capacity at the soil-bedrock interface is similar to field capacity over 

the soil profile. Time series plots of soil water content at each depth were generated for 

each study site. In each time series, soils were observed to reach a near-maximum water 

content at all depths in early winter following prolonged fall precipitation and the onset 

of snow pack; following the early winter peak, soil water content at all depths declined 

exponentially. According to common definitions, the field capacity water content at the 

soil-bedrock interface was chosen as the water content at which the rate of soil water 

decline approached horizontality (Brady et al. 2002).  

This method of selection is qualified by the observation that the time at which a 

given depth of soil exceeds field capacity is closely associated with the timing of increase 

in soil water content at greater depths. Shallower soils must wet above field capacity 

before soil water redistribution can occur. In the study environment, there is effectively 

no capillary contribution of water from a shallow water table, so vertical and lateral 

redistribution are the most important sources for soil water at the soil-bedrock interface. 

Figures illustrating profile soil water time series and the results of this field capacity 
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selection method are presented in the results. Field capacity is often assumed to occur at a 

matric potential value of -0.03 MPa (-340 cm H2O) of tension (Laio et al. 2001; Dingman 

2002), but in this study the water content corresponding to that matric potential occurred 

at a higher water content than the empirically determined value of field capacity 

described above. Table A.2 provides the results of both methods to determine field 

capacity; the empirically determined field capacity values are reported in Results and 

Discussion.  

3.1.7. Storage Capacity 

A soil’s capacity to store water is determined by a) the depth of soil available to 

hold water, and b) the amount of water a soil can store before added water drains out. We 

multiplied the average soil depth at a site by the field capacity determined for the bottom 

boundary of soil at the site (above) to approximate each site’s potential for soil water 

storage, which we call the storage capacity.  

3.2. Potential Growing Season  

The potential growing season was bracketed for each site using our measured 

values of soil temperature and soil moisture, and our understanding that the growing 

season will be limited by temperature in spring and by water in summer.  Growing season 

is defined somewhat widely depending on geographic location, climate, and crop type 

(Feng et al. 2004; Miller et al. 2005). In this study, we chose to use field observations to 

inform our definition of a natural growing season in the study environment. We defined 
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the onset of the potential growing season as the final date on which the surface (2 cm 

depth) soil warmed to above 5°C as a daily mean temperature, in keeping with some 

definitions of the onset of plant development (Monteith 1981; Feng et al. 2004). We 

defined the initiation of the potential growing season using the temperature of soil at 2 

cm bgs, according to our observation that surface soil temperatures closely track seasonal 

air temperatures (Results). The conclusion of the growing season was defined as the date 

on which the soil profile reached a water content below the soil-texture-specific wilting 

point described above. Thus defined, the potential growing seasons of each site agreed 

well with our field observations of the duration of green vegetation, and with our 

measurements of vegetation cover, as well as with previous observations of the duration 

of active soil respiration in the study area (K. Ladd, personal communication, November 

2009). We acknowledge again that not all vegetation wilts, dies, or browns when soil 

dries to the wilting point, but that general favorability for growth dramatically declines, 

effectively ending the potential growing season .  

3.3. Vegetation Distribution 

3.3.1. Plant Area Index  

Plant area index (PAI), was measured at weekly to bimonthly intervals at 33 

points surrounding each soil moisture station over April to October 2009. An AccuPAR 

LP-80 LAI/PAR ceptometer provided by Decagon Devices, Inc. (Pullman, WA), was 

used to conduct the measurements. The AccuPAR LP-80 contains 80 photosensors which 

detect photosynthetically active radiation (PAR), that portion of the electromagnetic 
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spectrum having wavelengths of 400-700 nm which can be used to manufacture 

carbohydrates in photosynthesis (Taiz et al. 1998; Decagon Devices 2006-2010). The 

fraction of PAR transmitted through the vegetation canopy is determined by measuring 

PAR above and below the vegetation canopy (Breda 2003; Decagon Devices 2006-2010). 

Leaf Area Index (LAI) is defined as the total one-sided leaf area per unit of ground area 

(Breda 2003). The fraction of transmitted PAR is used to indirectly approximate Leaf 

Area Index (LAI), according to Equation 4, 
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                                 (Equation 4) 

where K (dimensionless) is the extinction coefficient for the canopy, fb (dimensionless) is 

the beam fraction of incident PAR, τ (dimensionless) is the fraction of transmitted PAR 

(below-canopy/above-canopy PAR), and A (dimensionless) is a function of leaf 

absorptivity in the PAR waveband (Decagon Devices 2006-2010). The ceptometer 

method cannot distinguish green leaves from branches, stems, dead leaves, and other 

non-leafy vegetation components, and in many environments (such as semi-arid shrub 

lands), such materials may compose a significant portion of the canopy. In such 

environments, measurements of intercepted PAR may more accurately represent PAI 

than LAI (Chen et al. 1996; White et al. 2000; Breda 2003). Thus, values of vegetation 

cover measured using the AccuPAR ceptometer will be reported hereafter as PAI. 

The goal of the PAI measurements was to capture trends in vegetation cover at a 

relatively fine time scale (weekly to bimonthly) and fine spatial scale (approximately 1 
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m). Figure B.10 shows the approximate configuration of PAI sampling locations around 

study stations. Although it is not a direct measurement of vegetation cover, the relatively 

simple ceptometer method allowed many measurements to be taken at the eight stations 

at approximately bimonthly intervals from April to October 2009. Direct measurements 

of leaf or plant area index are time- and labor-intensive, and so are typically limited to 

very low spatial and temporal resolution (Clark et al. 2001; Breda 2003; Duursma et al. 

2003). The ceptometer made it possible to collect relatively high numbers of samples, 

allowing this study to infer relative differences in vegetation cover at different locations 

in spite of high spatial variability of vegetation. Furthermore the on-the-ground method 

provided a validation of trends observed using satellite data collected at a coarser spatial 

and temporal resolution (below). 

Radiation-based measurements of plant cover are sensitive to the intensity of light 

incident upon the top of the vegetation canopy. This means that variables such as solar 

elevation (time of day, time of year) and cloud cover can strongly affect ceptometer 

measurements (Breda 2003; Decagon Devices 2006-2010). Whenever possible, 

ceptometer readings were taken between 9:00 AM and 3:00 PM on sunny or uniformly 

cloudy days to maintain consistency of solar angle. Each reading was taken as the 

average of a series of three readings. The sampling procedure was to place one’s foot on 

a sample point flag, step directly upslope with the opposite foot, and measure PAR above 

and below the canopy in the undisturbed sampling region upslope of the transect flags. 

Care was taken to face the sun in order to prevent shading of the instrument, and the 

built-in bubble level was used to ensure a consistent incident angle of radiation. In low-
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canopy shrub lands, incident PAR radiation was measured by holding the ceptometer 

above the vegetation canopy at each sampling point. At forested sites, incident PAR was 

read in a forest clearing at the beginning, middle, and end of each transect. A uniform 

leaf angle distribution parameter, χ, of 1 was selected in the LP-80 software for all sites to 

maintain consistency in measurement; the computed LAI is not very sensitive to χ, and 

more reliable values of χ for the vegetation being studied were not available. Due to an 

unusually cloudy spring and atypical summer storms, several weeks of PAI data collected 

in this study were considered to be invalid. In spite of this, a time series of PAI was 

measured at all sites late April until late September 2009. Complete details of the PAI 

sampling methodology are included in Appendix C.  

3.3.2. Normalized Difference Vegetation Index 

Remote sensing was used to determine the Normalized Difference Vegetation 

Index (NDVI) (Rouse et al. 1974; Jensen 2000) for all sampling locations over four 

growing seasons (April 1 through October 31). The goal of the four-year monthly average 

NDVI calculation was to incorporate longer-term trends in vegetation productivity than 

the single 2009 growing season of the PAI dataset discussed above. The Normalized 

Difference Vegetation Index (NDVI) is a commonly applied vegetation index which has 

been related to important vegetation characteristics such as type, health, LAI, primary 

productivity, phenology, and biomass (Paruelo et al. 1997; Turner et al. 1999; Elmore et 

al. 2000; Jensen 2000; Running et al. 2000; Pocewicz et al. 2004; Archibald et al. 2007; 

Butterfield et al. 2009; Santin-Janin et al. 2009). In general, vegetation indices exploit the 

fact that chlorophyll content causes green vegetation to reflect strongly in the near 
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infrared (NIR) portion of the electromagnetic spectrum and absorb in the red 

wavelengths. Thus, the NDVI is best described as a measure of “greenness” (Butterfield 

et al. 2009) The NDVI is calculated from remotely sensed reflectance data using 

Equation 5, 

dReNIR

dReNIR
NDVI





                                          (Equation 5) 

where NIR is the reflectance signal in the near-infrared radiometric band, and Red is 

reflectance in the red band (Rouse et al. 1974; Jensen 2000). 

Images collected by Landsat-5 TM at 30 m spatial resolution, and made freely 

available by the United States Geological Survey (USGS), were radiometrically corrected 

to exoatmospheric reflectance using ENVI software and used to calculate NDVI across 

the study area at eight- to sixteen-day time intervals (depending on cloud cover) for 2006-

2009 (Rouse et al. 1974; Turner et al. 1999; Chander et al. 2003). Images with greater 

than 10% cloud cover were not used. Landsat-5 TM has collected spectral data in six 

reflective bands since March 1, 1984, making Landsat data uniquely suited to relatively 

long-term, large-scale analysis of seasonal vegetation change. Values of NDVI for each 

sample site (resampled from the nine pixels nearest the site location) and each image date 

were sampled using the Extraction tool in ArcGIS 9.3, and the monthly average NDVI 

for each location was calculated for those months with multiple images. A four-year 

monthly-average NDVI was calculated by averaging each month’s NDVI over the four-

year period analyzed; average monthly NDVI data for each study site were fit with a 

fifth-order polynomial trendline to allow inference of peak productivity dates. Values of 
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NDVI during the winter months (November through February) were rare because cloud 

cover is especially prevalent during that period; thus, values from Jan, Feb, Nov, and Dec 

may be weaker approximations of the winter-season NDVI. The maximum annual “peak” 

NDVI was chosen from the average monthly NDVI set as an objective estimate of the 

relative amount of vegetation cover at the study sites, which allowed us to avoid error 

associated with the early- and late- season images.  

The two different indirect measures of vegetation cover, PAI and NDVI, were 

found to be suitable methods of assessing vegetation density at different spatial and 

temporal scales, and have been found to correlate well with each other (Running et al. 

1986; Curran et al. 1992). However, each method measures a distinctly different 

property, and neither measures vegetation productivity or biomass directly. For example, 

when used to track phenology of annual grasses in a previous study, NDVI was shown to 

record peak “greenness” 40 days earlier than peak LAI and peak biomass were reached in 

annual grass species (Butterfield et al. 2009). Complete details of NDVI data assembly 

and processing are included in Appendix D. 

3.4. Soil Properties  

Soil textural analysis was performed on soil samples of approximately 300 g to 

500 g from each of the 121 EC-TM sensor locations. Soils were classified using the 

USDA Textural Triangle classification system. Soil texture was determined using two 

methods, mechanical analysis (hydrometer/sieve method) and laser diffraction analysis. 

The two methods of particle size analysis, mechanical and laser diffraction, differ in 
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many aspects of how they measure particle size distributions of materials, but results 

from the methods are linearly correlated to one another (Konert et al. 1997; Beuselinck et 

al. 1998; Arriaga et al. 2006; Malvern Instruments Ltd. 2009). Laser diffractometry 

determines particle size fractions on a volume basis, while hydrometer and sieve analysis 

determine particle size fractions on a mass basis (Syvitski 1991; Beuselinck et al. 1998). 

The laser diffraction method is advantageous when numerous soil analyses must be 

conducted because it can determine the relative fractions of fine materials (fine sand, silt, 

and clay) more rapidly and precisely than the hydrometer method, albeit under a different 

set of assumptions (Konert et al. 1997; Arriaga et al. 2006). 

Twenty unique soil samples, plus random replicates, were dry sieved to remove 

gravel (particles >  2 mm in diameter) and split into subsamples. One subsample was 

analyzed mechanically via hydrometer and wet-sieve methods according to ASTM D422-

63  to determine mass fractions of sand, silt, and clay particles. The other subsample was 

dry-sieved to remove particles >  0.075 mm, soaked for ≥ 16 hours in a 4% solution of 

sodium hexametaphosphate dispersing agent, and was then analyzed using a Malvern 

Mastersizer 2000 laser diffractometer to determine volume percent of fine sand, silt, and 

clay in the <  0.075 mm fraction. The particle refractive index was assumed to be 1.5, and 

the particle absorption index was assumed to be 1 (Sperazza et al. 2004). The laser 

diffraction results were scaled to the whole <  2 mm fraction to determine the mass 

fractions of sand, silt, and clay. A linear correlation model between laser diffraction and 

hydrometer/sieve results, developed from 15 samples (replicates averaged where present) 

from four soil moisture sites, allowed particle size distribution results obtained via laser 
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diffraction to be converted to an estimation of the more traditional mechanical 

(hydrometer-sieve) results. Clay fractions were not sufficiently diverse among the soils 

tested to create a reliable linear relationship between the methods, so hydrometer -

equivalent fractions of sand and silt were estimated from laser diffraction results using 

the linear correlation, while equivalent clay fractions were determined by difference. The 

remaining 101 soil samples were analyzed via wet sieving and laser diffraction to 

determine the sand, silt, and clay fractions, and the linear correlation model was used to 

convert the laser diffraction results to estimates of results via mechanical analysis which 

are reported in this paper. The goal of converting the results was to make our reported 

soil texture information readily relatable to other studies of soil texture which more 

commonly utilize mechanical methods of particle size analysis than the newer laser 

diffraction method. The USDA soil classification system was used to classify the sub-2 

mm fraction of soil (USDA 1999). Complete details of the sieving and laser diffraction 

methodologies are provided in Appendix E.  

3.5. Soil Carbon  

Soil samples were collected in duplicate for analysis of total carbon and total 

nitrogen contents at all eight soil moisture stations during the summer of 2008. Samples 

were collected as soil cores 30 cm deep in 5 cm increments to examine both spatial and 

profile trends. An AMS Standard Core Sampler with Slide Hammer was used to collect 

the samples. Field samples were dried in an oven for 24 hr at 105°C and sieved to remove 

the fraction >  2 mm in diameter. The <  2 mm fraction of each sample was homogenized, 
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sub-sampled and disaggregated in a mortar and pestle. Bulk density was approximated 

for each 5 cm core by dividing the air-dried (24 hr) soil weight by the volume of the 

sampling chamber. Soils were stored at -5°C before and after processing. Complete 

details of the preparation methodologies are provided in Appendix F. 

Total carbon (C) and nitrogen (N) contents were determined through the dry 

combustion method using a Thermo Scientific Flash EA 1112 Elemental Analyzer. 

During analysis triplicates were run randomly on every eighth sample, with laboratory 

blanks and aspartic acid standards run for quality assurance of the results. To determine 

respective fractions of organic and inorganic carbon, selected subsamples were pre-

treated with 2-3 drops of 4 M HCl and allowed to effervesce to completion in a fume 

hood. Pre-treated samples were then oven-dried for 24 hr at 105°C and analyzed using 

dry combustion as described above. Inorganic carbon was determined as the difference 

between total and organic carbon fractions (Kunkel, personal communication, 2009).  
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4. RESULTS 

4.1. Soil Water and Soil Temperature 

An overview of general trends in daily mean soil water and soil temperature 

measured at eight sites, placed on north and south aspects at four elevations across the 

study area, is presented. Appendix I contains detailed descriptions of soil moisture and 

soil temperature observations at each site, as well as comparisons of behavior on paired 

north and south aspects and along the elevation gradient. Plots of soil moisture and soil 

temperature time series at the original 10 minute sampling intervals are provided in 

Appendix H, but are not discussed in this thesis. Results and parameters used to 

determine wilting point and field capacity water contents for each site are provided in 

Table A.2.  

North-facing soils contained more water and had lower temperatures than south-

facing soils at a given elevation, though the differences are minimal at the highest 

elevation sites (Figure B.11). At a given elevation, the north aspect had higher soil water 

content than the south aspect (Figure B.11). Over the common period of record, north 

aspects had higher mean profile-averaged water contents than south aspects at the 

highest, mid-high, mid-low, and lowest elevation sites, by 0.04, 0.03, 0.07, and 0.06 

volumetric water content, respectively (Table A.3). The profile-averaged mean soil 

temperature over the same time period was 1.0°C, 4.7°C, 7.4°C, and 7°C higher on south 
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aspects relative to north aspects from highest to lowest elevations, respectively (Table 

A.3). The same trend is evident when looking at time series of the study sites (Figures 

B.12, B.13, B.14, and B.15); at a given elevation, the north aspect generally had higher 

water content than the complimentary south aspect, and was consistently cooler. Soil 

temperature varies with aspect and correlates negatively and very strongly with elevation 

on both aspects (Figures B.11, bottom and Figure B.16). The difference in soil water 

content and soil temperature between north and south aspects is smallest at the highest 

elevation sites (Figure B.11 and Figure B.16). Soil temperature at 2 cm bgs closely 

tracked seasonal air temperature trends (Figure B.17). 

The average soil depth is 16 cm (mid-high elevations) to 50 cm (mid-low 

elevations) deeper on north aspects relative to south aspects at a given elevation, except 

at the highest elevation sites where the south aspect soil was somewhat deeper (7 cm) 

than that on the north aspect (Figure B.18, Table A.4). The spatial variability in soil depth 

is considerable; the range in soil depth among the four pits at a site (within about 3 to 4 m 

of each other) was as little as 7 cm (high elevation) and as large as 39 cm (mid-high) on 

north aspects, and as little as 3 cm (low elevation) and up to 25 cm (mid-low) on south 

aspects (Table A.4). This range is comparable to that observed by Tesfa et al. (2009) for 

soil depth determinations collected within 2-3 m of each other in the study area.  

North aspects stored from 1.1 to 3.7 times as much water as south aspects at a 

given elevation and higher elevations stored up to 3 times more water than the lowest 

elevations at a given aspect (Table A.3).  Mean water storage (over the common period of 

record) on the north aspect exceeded that on the south aspect by 1.5, 4.8, 11.2, and 8.4 cm 
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on the highest to lowest elevation sites, respectively (Table A.3). To recapitulate, soil 

water storage is the product of the soil depth and the site- and profile-averaged soil water 

content at a site (See Methods). Thus, the difference in soil water content between north 

and soil aspects is amplified by the deeper north-facing soils, producing large differences 

in soil water stored on north and south aspects with the exception of the highest-elevation 

sites, which show similar soil water storage. The spatial distribution of soil water storage 

varies strongly by aspect (Figure B.19), and shares a positive correlation with elevation 

which is weak on north aspects (R2 = 0.54), and strong on south aspects (R2 = 0.93) 

(Figure B.20). 

North-facing soils had soil water storage capacities 0.1 cm, 4.2 cm, 10.5 cm, and 

6.1 cm greater than south aspects at the highest to lowest elevations, respectively (Table 

A.3). Soil water storage capacity increased with elevation on the south aspects, but did 

not change consistently with elevation on the north aspects (Table A.3). Soil water 

storage capacity reflects the mean soil depth and the field capacity of a soil; a soil’s 

potential for storing water is only as great as the depth of soil available to store water in, 

and the amount of water that the soil can hold before added water is lost to drainage (See 

Methods). A ratio of mean annual precipitation to soil water storage capacity shows that 

north-facing soils at the mid-high to lowest elevations can store a greater proportion of 

the annual precipitation than south-facing soils at the same elevations; the ratio is very 

similar for both aspects at the highest elevation sites (Table A.3). The field capacity water 

content of each soil determined from field data at each site was from 0.02 to 0.08 

(cm3/cm3) lower than that predicted assuming a matric potential of -0.03 MPa, implying 
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that gravitational drainage in natural soils of the study area actually occurs in drier soils 

than would be assumed using common laboratory-derived parameters (Clapp et al. 1978; 

Laio et al. 2001; Dingman 2002). 

During winter and spring we observed evidence of migrating wetting fronts, 

hydraulic connectivity and drainage at the soil-bedrock interface at all sites. Migrating 

wetting fronts were inferred from the exceeding of field capacity at successive depths 

during fall wet-up at each site (Figures B.21, B.22, B.23, B.24, B.25, B.26, B.27, and 

B.28) (See Methods), recognizing that the only source of soil water at a given depth is 

precipitation or infiltration from above (Yenko 2003; McNamara et al. 2005; Seyfried et 

al. 2009). Once field capacity was exceeded at the soil-bedrock interface, it is likely that 

the soil water was able to drain vertically into the bedrock, or perhaps flow laterally along 

the soil-bedrock interface. Hydraulic connectivity was inferred from simultaneous peaks 

in soil moisture at all depths of the soil profile in response to input events (rainfall or 

snow melt). These observations provide evidence for vertical and potentially lateral flux 

and hydraulic connectivity over the soil profiles during the winter wet period. 

Examination of the series of figures (B.21 through B.28) illustrates that the duration and 

timing of this period is unique to each site. Field observations confirm that vegetation 

growth was at a minimum during the winter wet period at each site, which in addition to 

the low temperatures indicates negligible evapotranspiration flux. Thus, during winter the 

soil water content was generally high, and fluxes were likely to occur as vertical or lateral 

redistribution in soil or as drainage to bedrock.  
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Soils began drying down after snow melted and soil temperatures began rising, 

but infiltration associated with spring rains returned the profiles to field capacity and 

reestablished hydraulic connectivity over the profile. The spring wet, high-flux period 

was previously observed by McNamara et al. (2005) in the study area. Figures B.12, 

B.13, B.14 and B.15 illustrate that soil water content generally declined after the snow 

pack disappeared, unless the timing of snow removal coincided with inputs from spring 

rain. At all sites, field capacity was exceeded at the soil-bedrock interface while snow 

pack was present. When the snow pack disappeared, soils exceeded field capacity at 

depth and then soon began drying. Spring rains then returned the profile to field capacity, 

even at the bedrock depth (Figures B.21, B.22, B.23, B.24, B.25, B.26, B.27 and B.28). 

Snow melted and soil temperatures began rising earlier on south aspects and at 

lower elevations (Figures B.12, B.13, B.14, B.15). Snow melted from south aspects up to 

66 days earlier than north aspects, and at a given aspect (south) snowmelt occurred up to 

88 days earlier at the lowest elevation than the highest elevation sites (Table A.3). The 

soil surface (2 cm bgs) warmed above 5°C (our chosen threshold for initiation of 

favorable growth conditions) up to 28 days earlier in spring on the south aspect than on 

the north aspect at a given elevation, and at a given aspect (south) the lowest elevation 

warmed above 5°C up to 65 days earlier in spring than the highest elevation (Table A.3).  

Soils became dry earlier on south aspects and at lower elevations. We used an 

estimated wilting point for each soil to represent a “dry” state in order to account for the 

different water retention properties of different soils at the study sites (See Methods). The 

date of dry down to wilting point water content is compared for each north-south aspect 
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pair in Figures B.12, B.13, B.14, and B.15.  A given north-facing soil remained above the 

wilting point up to 53 days longer into the growing season than a south-facing soil at the 

same elevation, and at a given aspect, a high elevation soil retained plant available water 

up to 63 days longer than a lower elevation soil.  

Summer rain wetted the soil-bedrock interface at some sites. An August rain 

event wetted the soil-bedrock interface at the highest elevations, and at south aspects at 

the mid-low and lowest elevations; mid-high sites and lower elevation north aspects did 

not wet up at depth in response to the August rain (Figures B.21, B.22, B.23, B.24, B.25, 

B.26, B.27, and B.28). Deep wetting induced by this rain was likely due to the unusually 

high intensity of the storm. Such large summer precipitation events are rare in the study 

environment (Figure B.4) (McNamara et al. 2005). The lack of response in deep soils at 

some sites offers evidence for the supposition that evapotranspiration generally removes 

soil water delivered as summer precipitation (McNamara et al. 2005).  

Soil water was highly variable in space, while soil temperature showed much less 

spatial variability. Error bars on the time series shown in Figures B.12, B.13, B.14, and 

B.15 represent the standard deviations of profile-averaged values among the four pits at 

each site. In each figure, the error bars on the soil water content series are far larger than 

those on the soil temperature series, indicating the much higher spatial variability in soil 

moisture than in soil temperature. Soil water content appeared to become most spatially 

variable during wet periods, particularly during wet up from previously dry periods as 

occurs during spring and summer rain events. This is consistent with the conclusions of 

some previous workers (Hawley et al. 1983; Famiglietti et al. 1998; Western et al. 1999), 
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although others have found that soil water becomes most spatially variable during drying 

periods (Famiglietti et al. 1999; Hupet et al. 2002).  

4.2. Vegetation Distribution 

Vegetation is generally denser at higher elevations and on north-facing slopes. 

The date of peak canopy coverage occurs later in the growing season at higher elevations 

(Figures B.29, B.30). NDVI values were field checked against Plant Area Index (PAI) 

measurements collected at approximately equivalent dates over the 2009 growing season 

and were found to be strongly linearly correlated (R2 = 0.79, Figure B.31). The strength 

of linear correlation of Leaf or Plant Area Index with remotely sensed spectral signals 

compares well to results of other studies in a variety of ecosystems, although some 

workers have reported that the relationship becomes asymptotic at PAI values above 

around five (Running et al. 1986; Running et al. 1989; Curran et al. 1992; Turner et al. 

1999; Pocewicz et al. 2004). Generally, vegetation cover is greater, and peak canopy 

cover occurs later, on north aspects and at higher elevation in the study area. The NDVI 

will be discussed below, as it represents longer-term trends in vegetation patterns (four 

seasons) than the PAI (one season).  

The highest elevation sites (HN and HS) are occupied by open forests of Douglas-

fir (Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa). The inferred peak of 

about 0.61 NDVI generally occurs in early August on the north aspect HN, and on the 

south aspect HS the peak of 0.64 NDVI occurs in July (Figure B.29). The duration of 

productivity and the coverage at peak is similar at both sites, although the south aspect 
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develops a higher NDVI at its peak. Trends captured by the NDVI data confirm visual 

observations of vegetation development and relative canopy cover at both sites. 

Vegetation cover is approximately equal on the north and south aspects, and decline in 

cover might begin slightly earlier on the south aspect relative to the north aspect at the 

high elevation sites.  

The mid-high elevation sites (MHN and MHS) are occupied by very different 

ecological communities. The mid-high north aspect, MHN, is vegetated with open forests 

of pine and fir, while the mid-high south aspect, MHS, is covered in sagebrush shrubs 

(Artemisia spp.) and grasses. The inferred peak of 0.55 NDVI occurs in mid-June on the 

north aspect, while the peak of 0.32 NDVI occurs in late May on the south aspect. It 

appears that the peak vegetation cover occurs around 20 days earlier on the south aspect 

than the north. The differences captured using the NDVI match well with trends in 

vegetation development and relative canopy cover at both sites. Vegetation cover on the 

south aspect begins declining about 20 days sooner than the north aspect, and the peak 

NDVI on the north aspect is greater than on the south aspect at the mid-high elevation 

sites. 

The mid-low elevation sites (MLN and MLS) are occupied by sagebrush shrub 

and grass ecosystems, with a higher density of shrubs and grasses occurring on the north-

facing slope. The inferred peak of 0.45 NDVI occurs in early June on the north aspect, 

MLN, while the peak of 0.37 NDVI occurs in mid-April on the south aspect, MLS 

(Figure B.29). Peak productivity occurs about 50 days earlier on the south aspect than on 

the north aspect. Trends in vegetation development and relative canopy cover seen in the 



41 
 

 

NDVI reflect those observed visually at the sites. Peak NDVI is greater on the north 

aspect, and canopy cover begins declining about 50 days earlier on the south aspect 

relative to the north aspect at the mid-low elevation sites. 

The low-elevation sites (LN and LS) are inhabited by grass and sagebrush shrub 

communities, with more dense grass and shrub cover on the north aspect relative to the 

south. The inferred peak of 0.39 NDVI occurs in late May on the north aspect LN, and 

the peak of 0.30 NDVI occurs in late April on the south aspect LS. Peak vegetation cover 

occurs about 30 days earlier on the south aspect than on the north. Vegetation cover on 

the south aspect begins declining about 30 days sooner on the south aspect, and peak 

NDVI is greater on the north aspect at the low elevation sites. 

4.3. Soil Properties 

Soils on north aspects tend to occupy finer textural classes (using the USDA soil 

classification system) than those on south aspects (Figures B.32 through B.35). Table A.5 

provides the size fraction results of paired laser diffraction and mechanical 

(hydrometer/sieve) analyses, and Figure B.36 displays the linear correlation between 

methods. Overall, north-facing soils are classified in the USDA classification system as 

gravelly sandy loams, while south-facing soils classify as gravelly loamy sands to 

gravelly sandy loams (Appendix G, Figures B.32 through B.35) (USDA 1999).  An 

exception is the low elevation north-facing site LN, which classifies as a gravelly loam 

for depths from 2 cm to 30 cm bgs and contains a distinctly greater silt fraction than soils 

at the other sites (Figures B.32 through B.35). Soils with a greater fine fraction may hold 
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more water at complete saturation, and will retain more water as they dry (Table A.2). 

The following discussion will address soil textures as determined using only the sub-2 

mm diameter fraction in accordance with the USDA soil classification system (USDA 

1999). 

The difference in soil texture on north aspects is determined largely by fraction of 

silt. While silt content ranges widely from 4.6% to 42.3% by mass across all samples, 

clay content varies to a lesser degree, from 7.2% to 12.7%. Increases in silt are primarily 

accommodated by decreases in the sand fraction. The distinctly high silt content at LN 

accounts for much of the range in silt content; when LN is excluded, the range in silt is 

from 4.6% to 29.7% and the range in clay is from 7.2% to 11.1% for all sites and depths. 

Averaged across all pits and depths, the silt content of soils on north aspects exceeds that 

of south aspects by 3.4% (highest elevation), 15.1% (mid-high elevations), 8.3% (mid-

low elevations), and 24.8% (lowest elevation). Averaged across all pits and depths, the 

clay content of north-facing soils exceeds that of south aspects by 3.2% (lowest 

elevation), 1.9% (mid-high elevations), and 0.51% (mid-low elevation), while the 

average clay content at the highest elevation sites was actually 0.1% lower on north 

aspects relative to south aspects. Although clay contents are consistently very low in all 

soil samples, the amount of clay in soil is up to 41% greater on the north relative to south 

aspect at the lowest elevation sites, illustrating that the difference in clay content can be 

noteworthy, but is not as large as the differences in silt content.  

Soil textures do not differ significantly with depth (Figures B.37 through B.39).  

Figures B.37 through B.39 show that soil texture does not change systematically with 
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depth, except at the low elevation north aspect which has increasing sand and decreasing 

silt with depth. Clay fraction changes very little at all sites except the lowest elevation 

north-facing site, where the clay fraction decreases by up to 44% (from 9% to 13% by 

mass) moving from 0 to 70 cm bgs over the profile; even at the lowest elevation north 

aspect, clay content is relatively small. Fractions of sand, silt, and clay (as mass percent) 

did not correlate significantly with depth over all samples (sand, r = 0.017, p = 0.805; silt, 

r = -0.031, p = 0.653; clay, r = 0.095, p = 0.175; n = 206, where r is the correlation 

coefficient, and p is the probability of the observed r given the null hypothesis of no 

correlation, r = 0). The mass percent of gravel did correlate significantly and positively 

with depth, but the relationship was not strong (r = 0.366, p = < 0.0001, n = 206).  

Soils on north aspects have lower bulk densities than those on south aspects 

(Figure B.40, Table A.6). Bulk density, the ratio of the mass of solids to the total soil 

volume, reflects the porosity, texture, structure, and organic content of a soil (Brady et al. 

2002; Hillel 2004). Bulk density is higher on the south aspect at all four elevations 

sampled, although the difference is small at the high elevation sites; the high elevation 

south aspect has a bulk density about 0.07 g/cm3 greater than the north aspect, while the 

mid-high elevation south aspect bulk density is 0.39 g/cm3 greater, the mid-low elevation 

south aspect is 0.14 g/cm3 greater, and the low elevation south aspect is 0.23 g/cm3 

greater than the north aspect at the complimentary elevation. The difference in bulk 

density at different aspects does not appear to change systematically with elevation. 
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 4.4. Soil Carbon Content 

Soil carbon content is generally higher at higher elevations, north aspects, and 

shallower portions of the soil profile. Figure B.41 shows the trends in percent by weight 

soil carbon content over the 0 to 30 cm profile at each site. Table A.7 presents the results 

of percent carbon by weight for the 5 cm increments over a profile from 0-30 cm bgs at 

each site and Table A.8 presents results for total carbon in the upper 30 cm of soil at each 

site, in kg/(30 cm*m2). Inorganic carbon was found to be a negligible (< 1%) component 

of the total carbon content; thus, the total carbon values represent organic carbon in all 

samples (M. Kunkel, personal communication, March 2010). The highest elevation sites 

contain the greatest total carbon content in the upper 30 cm of soil (HS = 5.47 kg/m2, HN 

= 4.27 kg/m2) followed by the north-facing soils at mid-low, mid-high, and low 

elevations (MLN = 3.95 kg/m2, MHN = 3.87 kg/m2, LN = 3.42 kg/m2), and then the 

south-facing soils at mid-high, mid-low, and low elevations (MHS = 1.09 kg/m2, MLS = 

0.94 kg/m2, LS = 0.81 kg/m2). Over the 30 cm profile sampled, north aspects hold 3.5 to 

4.2 times as much carbon as complimentary south aspects at similar elevation, except at 

the high elevation sites where the south aspect contains 28% more carbon than the north 

aspect. Soil carbon content differs most among all the sites within the shallow portion of 

the soil profile, ranging from 0.41 kg/m2 to 3.86 kg/m2 carbon in the 0-10 cm depth 

increment as shown in Figure B.41 and Table A.8. Carbon content generally declines 

with depth, converging toward low values of between 0.20 to 1.17 kg/m2 carbon at 30 cm 

bgs.  
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5. DISCUSSION 

 5.1. Water Balance 

The spatial distribution of soil water storage is strongly related to aspect and 

elevation, indicating that the primary physical mechanisms controlling soil water are 

those which are topographically distributed (Figure B.20, Table A.9). However, aspect 

and elevation are not in themselves physical mechanisms controlling soil water 

distribution; rather, they are proxies for other mechanistic variables. Among those 

mechanistic variables are precipitation (which increases moving up the elevation 

gradient), air temperature (which decreases moving up the elevation gradient) (Figure 

B.3), and potential insolation (which increases moving from north to south aspects, and 

increases to a lesser degree with higher elevations) (Figures B.5 and B.6). Precipitation 

varies monotonically with air temperature because each was estimated from the elevation 

of each study site using the orographic relationship provided in Figure B.3. The 

correlations of soil water with precipitation, air temperature, and potential insolation 

indicate a dual importance of water input (precipitation) and energy (insolation) in 

dictating soil moisture conditions and vegetation growth, an observation that has been 

made by many others (Table A.9) (Noy-Meir 1973; Monteith 1981). 

The narrow timing of wet and warm soil conditions indicates that hydrologic 

processes in the study environment are sensitive to spring precipitation.  Our findings 
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indicate that conditions for hydraulic connectivity and one or both of vertical 

redistribution and lateral flow at the soil-bedrock interface are met during winter and 

spring at all sites, and in response to large summer precipitation events at some sites 

(Figures B.21 though B.28). This evidence indicates that the potential for deep drainage 

and lateral flow along the bedrock interface occurred for 125 to 225 days at different 

study sites between 11/20/2008 and 9/1/2009; these conditions were triggered by both 

snow melt and spring rain. Because a chloride mass balance study has suggested that 

groundwater recharge across the watershed may be small (≤ 11% annual precipitation), 

wetting at the bedrock interface may be more likely to produce lateral flow, rather than 

deep drainage to groundwater, at all but the highest elevations where groundwater 

recharge may be higher (≤ 22% annual precipitation) (Aishlin 2006).  

The duration of soil water into the spring and summer is strongly influenced by 

spring rains. Without spring rains, soils would have dried much sooner in the summer. By 

visually projecting the dry-down curve following snowmelt in Figures B.12 through B.15 

it is evident that soils would have dried down weeks or months sooner if not for spring 

precipitation. Winter precipitation is important in recharging the soil reservoir, but once 

field capacity is exceeded, further soil water inputs from winter precipitation are lost 

from the soil reservoir by surface runoff, deep drainage, or lateral flow. According to our 

calculations of storage capacity (field capacity * soil depth) at the study sites, an empty 

soil reservoir can be fully recharged by water inputs ranging from as little as 6 cm to as 

much as 16 cm (Table A.3). As shown in Figure B.43, mean annual precipitation at each 

study site is much larger than the water storage capacity of the soil. If approximately half 



47 
 

 

of the annual precipitation falls as snow in the study area (McNamara et al. 2005), it 

appears that much of the snow melt water would be lost from the soil due to the small 

storage capacity and the early time of snow melt during a period of low temperatures, low 

insolation, and inactive evapotranspiration. Regardless of whether winter precipitation 

arrives as rain or snow, the soil water storage capacity is quickly satisfied in late winter 

and early spring, and the low temperatures and dormant vegetation limit drawdown of the 

soil reservoir. Much of the winter precipitation, then, is expected to drain from the soils 

as excess water. In contrast, spring precipitation reaches unsaturated soil at a time when 

evapotranspiration is more active and a given precipitation input can be lost from the soil 

profile over a period of about one to four weeks. It is only through repeated spring rain 

events that elevated moisture conditions are maintained into the summer. Average spring 

(April-May-June) precipitation is sufficient to recharge the soil water reservoir at the 

ecologically important time of warming temperatures, rising insolation, and active 

evapotranspiration (Figure B.43). The re-establishment of hydraulic connectivity and 

bedrock flow at all of the study sites in response to spring precipitation provides evidence 

of the capacity of spring rains to recharge the soil water reservoir. Thus, the magnitude 

and frequency of spring precipitation is important in determining the duration of soil 

water into the summer. 

5.2. Implications for Ecologic Functioning and Carbon Cycling 

In semi-arid environments, soil moisture dictates vegetation productivity through 

photosynthesis and transpiration (Noy-Meir 1973; Rodríguez-Iturbe et al. 2004); our 
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observations of vegetation cover and soil moisture distributions are consistent with this 

paradigm. Table A.9 presents values of the coefficient of determination, R2, in 

correlations between variables including vegetation cover (peak NDVI), soil carbon, 

mean soil water content, mean soil water storage, mean soil temperature, precipitation, air 

temperature, and potential insolation. Soil water and vegetation distributions are 

correlated, which is consistent with the importance of soil water in driving primary 

productivity, particularly in water-limited environments (Noy-Meir 1973). Vegetation 

and soil carbon are also strongly correlated (R2 = 0.87) (Table A.9). Furthermore, the 

correlations of vegetation distribution with the primary controls on soil water 

(precipitation, air temperature and potential insolation), supports the concept that biomass 

in the study environment is closely linked to the spatial distribution of insolation, and the 

elevation-driven gradients in precipitation and air temperature.  

The distribution of mean soil moisture, vegetation cover, and soil carbon are 

negatively correlated to potential insolation and air temperature and positively correlated 

to precipitation, consistent with trends observed in water-limited environments (Noy-

Meir 1973; Ivanov et al. 2008b). When soil carbon content, peak NDVI, and mean soil 

water storage were modeled by forward selection linear regression with precipitation 

(which varies monotonically with air temperature because each was calculated from 

elevation as shown in Figure B.3) or potential insolation as the single most significant 

independent variable, the model explained 38%, 64%, and 34% of the spatial variability 

in each dependent variable, respectively.  However, when precipitation (or air 

temperature) and potential insolation were both included as independent variables in the 
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multiple regression, the model was able to explain 70%, 84%, and 85% of the spatial 

variation in soil carbon, peak NDVI, and soil water storage, respectively. The results of 

the forward regression are provided in Table A.10. This exercise is not intended to 

produce a full predictive model for ecosystem carbon distribution, but rather shows that 

using the distributions of both precipitation (or air temperature) and potential insolation 

improves the degree to which spatial variability in vegetation cover, soil carbon, and soil 

water is explained.  

The seasonal timing of precipitation, air temperature, and insolation are important 

in controlling vegetation productivity. The densest vegetation cover is observed where 

wet soils, warm temperatures, and high insolation coincide in time; the confluence of 

these environmental conditions is limited to the spring and early summer months. Figure 

B.42 shows the relative growing season lengths and their timing in relation to the annual 

observed insolation and temperature curves, where peak insolation and peak temperature 

can be viewed as approximating the height of summer. In spite of the earlier timing of 

snow melt and soil warming on south aspects, the growing season at a given elevation is 

longer on north aspects than on south aspects by up to 43 days (Table A.3). At a given 

aspect, the potential growing season is longest at the lowest elevations. Because 

vegetation cover is least dense at the lowest elevations, growing season length alone does 

not appear to explain why vegetation is denser at higher elevations. Instead, the 

distribution of vegetation may relate more strongly to the timing of the potential growing 

season in relation to peak summer temperature and insolation. Sites at which plant-

available soil water endures further into summer are the sites which show relatively high 
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vegetation cover. Vegetation is most sparse at sites where soil is dry when peak 

temperatures and insolation occur. At the lowest elevation sites it appears that although 

the potential growing season is relatively long, it occurs early in the year when 

temperature and insolation are too low to allow rapid vegetation growth. Thus, the 

importance of growing season length may be dependent upon the position of the growing 

season relative to seasonal temperature and insolation trends (Figure B.42). 

From another perspective, the vegetation distribution may also depend on the 

length of “lost time” during the growing season, perhaps more so than the period of 

optimal growth conditions (Monteith 1981). For example, Rodriguez-Iturbe et al. (2001a; 

2004) describe plant water stress as comprising three components of soil water content in 

relation to a threshold water content, including the frequency, duration, and intensity of 

the plant water stress period. The stress period represents a time during which soil is in an 

ecologically unfavorable state of high water stress caused by dry soil, intense heat and 

high insolation. In this study, the south-facing and lower elevation sites experience the 

annual equivalent of greater total plant water stress, including greater frequency, 

duration, and intensity of stress (Figures B.12 through B.15). Growth on south aspects is 

brought to an early end by high evapotranspiration demands (high temperature and 

insolation) acting on a relatively small water storage capacity, resulting in a prolonged 

episode of severe water stress which shuts productivity off early in the summer. The 

water stress regime may explain the distribution of vegetation type as well as density, as 

summer water stress is likely to prohibit establishment of trees, which develop slowly and 

germinate later in spring. In contrast, grasses germinate in fall and develop root systems 
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which can respond rapidly to shallow soil water when temperatures rise in spring 

(Daubenmire 1968). Growth on south aspects may be further inhibited by intense 

radiation leading to higher evaporation rates, early soil dry down and possibly additional 

heat stress due to high leaf temperatures (Taiz et al. 1998). On north-facing slopes, 

insolation is moderated, which favors productivity by reducing evaporative demand at the 

soil surface (Ivanov et al. 2008b). Furthermore, the deeper, more finely-textured and 

more organic carbon-rich soils on north aspects provide a greater water retention 

capacity, and a deeper potential rooting zone.  

An August rain event wetted the soil-bedrock interface at the highest elevations, 

and at south aspects at the mid-low and lowest elevations, while mid-high sites and lower 

elevation north aspects did not respond at depth (Figures B.21, B.22, B.23, B.24, B.25, 

B.26, B.27, and B.28). Deep wetting was loosely associated with sites having shallow 

soils and low water storage capacities, but neither appears to be the sole explanation for 

this trend. For example, the highest elevation sites (which did wet at depth) have soil 

depths and storage capacities similar to other sites (such as LN and MHS) which did not 

wet up at bedrock. Instead, assuming that summer precipitation was evenly distributed 

throughout the watershed, the lack of deep wetting at mid-high sites and lower elevation 

north aspects may reflect rapid uptake of shallow soil water through evapotranspiration 

by “intensive exploiter” type vegetation such as grasses, which are abundant at these sites 

(Ehleringer et al. 1991; Rodriguez-Iturbe et al. 2001a; McNamara et al. 2005; Archibald 

et al. 2007). In August, grasses are dormant on the lower elevation south-facing aspects 

(MLS and LS), while on the lower elevation north aspects (MLN and LN), grasses were 
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more dense and remain active (Figure B.29). Active grasses on the lower-elevation north 

aspects may have taken up infiltrating sporadic summer rain, preventing water from 

infiltrating to the soil-bedrock interface as occurred on the complimentary south aspects. 

At the highest elevations, trees did not take up shallow soil moisture and summer rains 

reached the soil-bedrock interface, as could be expected from a plant functional group 

which responds to deeper water supplied over winter and early spring (Ehleringer et al. 

1991; Rodriguez-Iturbe et al. 2001a; Archibald et al. 2007).  

Although climate change is anticipated to impact many characteristics of the 

environment in southwest Idaho and elsewhere, this study indicates that some predicted 

changes are likely to cause more severe responses than others. In the region, air 

temperature is expected to rise, especially winter temperatures (Christensen et al. 2007; 

Field et al. 2007). Mean annual precipitation in the region may increase, but is 

anticipated to decrease in summer (Christensen et al. 2007). Snow pack is expected to 

decrease, and snow melt is expected to occur increasingly early in the year (Hamlet et al. 

2005; Stewart et al. 2005; Mote 2006). Furthermore, many locations in the mountainous 

American west record that rain now composes a higher fraction of annual precipitation 

than snow relative to historic records (Knowles et al. 2006). Earlier spring warming has 

produced a longer growing season in several US and Canada locations (Cayan et al. 

2001; Feng et al. 2004; Field et al. 2007). Annual evapotranspiration appears to have 

increased as well (Field et al. 2007; Hamlet et al. 2007). Of the anticipated changes, 

those which are most likely to affect the soil moisture and vegetation distributions will be 

changes to insolation, precipitation, and air temperature, according to our results. In the 
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study environment, changes to insolation are not anticipated (unless cloud cover changes 

considerably). Summertime increases in temperature will potentially produce an increase 

in rates of soil dry down. Increases in air temperature may have mild to moderate effects 

on vegetation in winter due to low insolation and may result in delivery of more winter 

precipitation as rain rather than snow (Knowles et al. 2006). However, our observations 

suggest that this significant phase change may not have a dramatic impact on soil 

moisture dynamics, especially with respect to the amount of moisture available during the 

growing season. Due to the relatively small size of the soil water reservoir, the impact of 

predicted increases in precipitation will be highly dependent on timing. 

Although snow accumulation and melt strongly influence stream discharge in the 

study area (McNamara et al. 2005; Williams et al. 2009), our results indicate that the 

duration of soil water within the watershed, which in turn dictates  the length of the 

growing season, relies heavily on the amount and timing of spring precipitation. 

Although winter precipitation is important in recharging the soil water reservoir, our 

findings suggest that the form of winter precipitation as rain or snow may not be critical 

because storage capacity is small and evapotranspiration demands are minimal; once the 

soils are recharged to field capacity, additional water does not contribute appreciably to 

water storage (Figure B.43). Spring precipitation, on the other hand, is essential in 

recharging soil water while evapotranspiration withdraws water from the reservoir. 

Spring precipitation arrives when soils are warm and insolation is sufficiently high to 

support rapid evapotranspiration and respiration. Thus, the amount and timing of spring 

precipitation exerts an important influence on water and carbon fluxes in this 



54 
 

 

environment. The importance of warm season precipitation to hydrologic and ecologic 

systems has been suggested by modeling experiments (Gordon et al. 2004; Vivoni et al. 

2009) and in some empirical studies (Chou et al. 2008).  

Regardless of whether a shift in climate leads to earlier or later snow melt dates, 

the observations made here underscore the importance of the timing and amount of spring 

precipitation in impacting the duration of the growing season, the duration and severity of 

the water stress period, and, by extension, the amount of vegetation productivity. The 

strong correlations we observe in the distributions of vegetation cover and soil carbon 

content (Figure B.44) indicate that the changes which impact vegetation productivity may 

have serious implications for soil carbon storage as well. Modelers seeking to predict the 

response of water-limited, seasonally out-of-phase (temperature and precipitation are 

asynchronous) ecosystems will benefit from focusing on changes to the amount and 

timing of warm season precipitation. 

We have attempted to simplify the system in order to identify its most important 

characteristic controls, and in doing so we have made a number of assumptions. For 

example, we have assumed that the single year of soil water measurements can represent 

spatiotemporal trends operating over longer time periods, allowing us to compare them 

with variables which reflect multi-year to decadal time scales such as soil carbon content, 

NDVI, and average annual precipitation. While the precipitation received during the 

study year was above average for spring and summer (Figure B.4), we have 

unequivocally observed that the system is highly sensitive to that precipitation. While this 

study identifies key sensitivities and controls in the study environment, we acknowledge 
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that the distribution and timing of precipitation, air temperature, and insolation are not the 

only factors determining the spatial distribution of soil moisture and carbon at every 

scale, and that the system includes important complexities and feedback mechanisms not 

addressed in this study. An additional complication is that the study area has been 

influenced by disturbances including logging, grazing, and fire which have potentially 

altered productivity and soil carbon storage for the past century. However, the lack of tree 

stumps in the shrub lands, and the age of trees at the forested sites provide evidence that 

the general trend in greater vegetation cover with elevation and north aspects has not 

been substantially impacted by disturbances. The long-term trends in vegetation and 

carbon distribution appear to be well represented by the study sites. As the ecology 

transitions from shrub and grasslands at the lower elevations to forests at the upper 

elevations, it is both responding to and producing changes in the primary drivers of soil 

water distribution through biological activity, sediment erosion and deposition, soil 

shading, rain interception, and evapotranspiration, among others (Dingman 2002; 

Breshears et al. 2003; Rodríguez-Iturbe et al. 2004; Caylor et al. 2006; Gutierrez-Jurado 

et al. 2006). Climate itself undergoes a considerable change over the elevation gradient, 

and the observed ecological shift may reflect a change in the degree to which ecosystem 

processes are dominated by seasonal water limitation.  

If the topographic gradients represented in this study can be used as a proxy for 

climatic shifts, we can conjecture about the effects of a shift in seasonal temperature and 

precipitation patterns. It has been predicted that climate change will cause the 

mountainous American northwest to grow warmer, with shorter-lived snow pack, earlier 
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spring, earlier vegetation greening, and hotter, drier summers (Knowles et al. 2006; Field 

et al. 2007; Mix et al. 2010). If these changes occur, we might expect more of the study 

area to assume soil water dynamics like those observed on south aspects and lower 

elevations, where earlier snow melt, earlier peak vegetation cover, and more rapid soil 

dry down lead to loss of soil water prior to the peak summer and to extended periods of 

plant water stress. These trends would in turn be expected to reduce the potential for 

vegetation productivity (Daubenmire 1968; Boyer 1982; Istanbulluoglu et al. 2006; Niu 

et al. 2008), or cause a shift in the predominant vegetation species (Ehleringer et al. 

1991; Tilman 1994; Rodriguez-Iturbe et al. 2001a; Caylor et al. 2009). Such changes 

may initiate a positive feedback, with declines in vegetation cover causing greater 

exposure to insolation and erosional forces (Okin et al. 2001; Breshears et al. 2003; 

Istanbulluoglu et al. 2006). Biological weathering and inputs of soil organic materials 

could be reduced, leading to degradation of soil aggregates, accelerated removal of fine 

soil particles by erosion, and diminution of soil water retention properties (Orcutt et al. 

2000). In time, the deeper, finer, more organic-rich soils of north aspects in the study area 

could evolve to resemble the coarser, shallower soils on south aspects. If snow were 

removed from all locations earlier in the year but spring precipitation were maintained or 

increased (Field et al. 2007), the period of warm, wet soils might be prolonged. Such 

conditions might inspire greater productivity, but could also increase the relative 

importance of soil respiration on the soil carbon reservoir, especially at sites with greater 

soil carbon content (Xu, Baldocchi et al. 2004; Monson et al. 2005; Chou et al. 2008).  



57 
 

 

The responses of ecosystems to climatic change are complex and difficult to 

predict, as are the climate perturbations themselves. We acknowledge that change in one 

climatic variable, such as the timing and amount of spring precipitation, is certain to 

occur in concert with myriad other climatic changes, such as mean annual precipitation 

and mean annual temperature, summer drought, snow, cloud cover, atmospheric 

composition, and others. The array of climatic changes will instigate further changes in 

hydrology, vegetation productivity, phenology, nutrient cycling, soil depth and texture, 

organism distributions and behaviors, and countless others on various spatial and 

temporal scales, and through complex and unpredictable feedback mechanisms. 

Quantification and prediction of complex ecosystem dynamics requires comprehensive 

physically-based models. This research provides empirical evidence to inform and 

constrain such models and underscores the importance of coordinating field studies with 

modeling efforts. Furthermore, the observations discussed here offer an important insight 

into targeting key areas of sensitivity when attempting to model ecosystem responses to 

climate change in a mountainous, seasonally water-limited environment. 
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6. CONCLUSIONS 

Overall, the distribution of vegetation follows the distribution of soil water in the 

study area, consistent with previous work in water-limited ecosystems (Noy-Meir 1973; 

Monteith 1981). North-facing slopes and higher elevations were generally the locations 

of greater water storage and higher vegetation cover. North aspects and higher elevations 

also tended to have deeper, more finely textures soils and higher soil carbon content than 

south aspects and lower elevations. Differences in soil water storage, vegetation cover, 

and soil depth were minimal at the highest elevation pair of study sites (HN and HS).  

The duration of coinciding wet, warm soil conditions was used to delineate a 

potential growing season for natural vegetation in the study area. The season was defined 

as beginning when the profile-averaged soil temperature remained above 5°C in the 

spring, and ending when the profile-averaged soil moisture dried below an approximate 

wilting point specific to the soil texture class. The potential growing season was generally 

longer, and occurred later in the summer, on north aspects. Growing season length and 

timing resembed the seasonal behavior of vegetation cover, which was greater and 

reached maximum (peak) cover earlier on the north aspect in all four pairs of study sites. 

Comparison of vegetation cover and growing season timing indicates that growing season 

length may not be the most important driver of productivity; rather, the timing of the 

growing season relative to peak summer temperature and radiation may be important in 

determining the amount of vegetation growth at a location. If so, the late portion of the 
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growing season, which is here defined by the duration of soil moisture into the summer, 

may have particular importance in determining the amount of vegetation growth.  

The duration of soil moisture into the summer is influenced strongly by the 

amount and timing of summer precipitation in the study area. Due to the small water 

storage capacity of coarse-grained, shallow soils across the study area, there is a limit to 

the contribution snow melt can make to the soil water reservoir. Snow melt occurs in 

early spring, when low temperatures and low insolation prohibit soil water losses through 

evapotranspiration; thus, much of the water delivered by snow melt in the early spring is 

lost as drainage. Evidence for water loss includes the prolonged observation of hydraulic 

connectivity and bedrock flow at all study sites in response to snow melt. In contrast, 

spring precipitation arrives at an ecologically important time when evapotranspiration 

processes create space in the soil water reservoir, and precipitation inputs can be taken up 

and used by vegetation. During the study period, hydraulic connectivity and bedrock flow 

were re-established at all sites by spring rain events, indicating that spring rains were 

sufficient to satisfy the soil water storage capacities (ranging from 6 to 16 cm water). 

Even in a year of average precipitation, spring rains deliver sufficient water to largely 

recharge the soil water storage capacity near the time of ecologically favorable summer 

temperature and insolation conditions.  
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Table A.1. Basic attributes and locations of soil moisture measurement stations. UTM coordinates are from Zone 11 N, in datum NAD83. 

S
ite ID

 

S
ite 

D
escription 

E
asting  

N
orthing  

E
levation 

(m
) 

S
lope (°) 

A
spect (°) 

D
om

inant 
V

egetation 

M
ean 

A
nnual 

P
recipitation 

(m
m

) 

M
ean 

A
nnual 

T
em

perature 
(°C

) 

A
nnual  

P
otential 

Insolation 
(M

J/m
2) 

P
eriod of 

R
ecord 

D
ata G

aps 

HN 
High 
North-
Facing 

57097
3 

4843448 1812 23 0 

Douglas-
fir, 
Ponderosa 
Pine 

682 7.3 3888 
8/7/2008 - 
10/22/2009 

9/17/2009-
10/15/2009 

             

HS 
High 
South-
Facing 

57120
2 

4843273 1835 25 193 

Douglas-
fir, 
Ponderosa 
Pine 

692 7.2 5789 
8/6/2008 - 
10/22/2009 

2/2/2009-2/20/2009 

             

MHN 
Mid-High 
North-
Facing 

57046
0 

4840830 1472 28 5 

Douglas-
fir, 
Ponderosa 
Pine 

533 9.1 3365 
7/16/2008 - 
10/5/2009 

10/15/2008-
10/18/2008 

             

MHS 
Mid-High 
South-
Facing 

57042
1 

4841202 1457 33 170 
Sagebrush 
Shrub, 
Grasses 

527 9.2 5440 
8/16/2008 - 
10/5/2009 

1/18/2009-
1/23/2009 

             

MLN 
Mid-Low 
North-
Facing 

56861
3 

4839073 1288 33 3 
Sagebrush 
Shrub, 
Grasses 

453 10.1 3333 
6/15/2008 -
10/8/2009 

12/7/2008-
12/22/2008; 
2/2/2009-3/9/2009; 
5/31/2009-
6/11/2009; 
8/13/2009 -
8/17/2009 
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S
ite ID

 

S
ite 

D
escription 

E
asting  

N
orthing  

E
levation (m

) 

S
lope (°) 

A
spect (°) 

D
om

inant 
V

egetation 

M
ean A

nnual 
P

recipitation 
(m

m
) 

M
ean A

nnual 
T

em
perature 

(°C
) 

A
nnual  

P
otential 

Insolation 
(M

J/m
2) 

P
eriod of 

R
ecord 

D
ata G

aps 

MLS 
Mid-Low 
South-
Facing 

56850
6 

4839457 1298 25 178 
Grasses, 
Sagebrush 
Shrub 

457 10.0 5163 
10/15/2008 
- 10/5/2009 

9/30/2008-
10/15/2008; 
11/14/2008-
12/22/2008; 
2/2/2009-3/9/2009; 
3/14/2009-
3/24/2009; 
4/6/2009-4/18/2009 

             

LN 
Low 
North-
Facing 

56691
6 

4837694 1120 24 9 
Sagebrush 
Shrub, 
Grasses 

379 10.9 2702 
9/1/2008 -
9/1/2009 

9/2/2009-11/2/2009 

             

LS 
Low 
South-
Facing 

56693
9 

4837869 1139 27 188 
Grasses, 
Sagebrush 
Shrub 

388 10.8 5250 
11/20/08 - 
10/22/2009 

12/26/2008 - 
1/16/2009 
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Table A.2. Water contents associated with wilting point matric potential (-3 MPa), as well as field capacity water contents determined: a) using 
field data, and b) estimated from an assumed matric potential (-0.03 MPa) for each site. Also provided are parameter values used in 
determining water contents associated with matric potentials for each soil class. Parameters from Clapp et al. 1978 and Laio et al. 2001. Symbol 
Φ represents porosity and θ represents water content.  

Site USDA Soil Texture Classification 
(Bottom of Soil Profile) 

Porosity, φ (-), 
or θsaturation 

Air Entry 
Tension (cm) 

b (-) ѲWP (-) ѲFC (-), from 
data 

ѲFC (-), estimated at 
-0.03 MPa 

HN Sandy Loam 0.44 21.80 4.90 0.10 0.19 0.25 

HS Sandy Loam 0.44 21.80 4.90 0.10 0.17 0.25 

MHN Sandy Loam 0.44 21.80 4.90 0.10 0.17 0.25 

MHS Loamy Sand 0.41 9.00 4.38 0.06 0.15 0.18 

MLN Sandy Loam 0.44 21.80 4.90 0.10 0.19 0.25 

MLS Loamy Sand 0.41 9.00 4.38 0.06 0.16 0.18 

LN  Sandy Loam 0.44 21.80 4.90 0.10 0.18 0.25 

LS Loamy Sand (80%)-Sandy Loam 
(20%) 

0.42 15.40 4.64 0.08 0.17 0.22 
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Table A.3. Important dates and values of soil water content, soil temperature, soil water storage, spatial variability, snow cover, and growing 
season initiation and end. Mean values derived from period of record common to all sites, 11/20/2008 to 9/1/2009; other values taken from 
entire measurement period.   

Site ID HN HS MHN MHS MLN MLS LN LS 
Soil Water Content and Soil Temperature 

Maximum 
Profile-

Averaged  Ө 
(Date) 

0.33 
(4/22/2009) 

0.27 
(3/21/2009, 
4/8/2009, 

4/13/2009, 
4/20/2009) 

0.24 
(3/19/2009 

and 
3/22/2009) 

0.20 
(3/16/2009) 

0.28 
(3/16/2009) 

0.21 
(4/2/2009) 

0.29 
(4/9/2008); 

0.28 
(3/15/2009) 

0.21  
(12/23/2009, 

4/2/2009 - 
4/10/2009) 

Minimum  
Profile-

Averaged Ө  
(Date) 

0.03 
(9/18/2008); 

2009 uncertain 
due to failure 

0.02 
(9/14/2008, 
10/3/2009) 

0.03 
(8/24/2008, 
9/30/2009) 

0.00 (pre- 
8/16/2008,  
9/22/2009 

0.03 
(9/1/2008, 
10/2/2009) 

0.03 
(9/1/2008, 
10/1/2009) 

0.04 
(9/12/2008); 

2009 
uncertain due 

to failure 

0.06 
(6/1/2009) 

Mean Profile-
Averaged Ө 

(cm) 
0.24 0.20 0.16 0.13 0.18 0.11 0.20 0.14 

Maximum 
Profile-

Averaged Soil 
Temperature 
(°C) (Date) 

13.39 
(8/4/2009) 

14.22  
(8/29/2009) 

17.88  
(8/3/2009, 
8/5/2009) 

28.73 
(8/4/2009) 

20.77 
(8/3/2009) 

30.99 
(8/3/2009) 

22.03 
(8/3/2009) 

34.64 
(8/3/2009) 

Minimum 
Profile-

Averaged Soil 
Temperature 
(°C) (Date) 

1.18  
(4/21/2009) 

1.70 
(4/14/2009) 

1.24 
(3/1/2009) 

1.8 
(2/13/2009, 
2/15/2009) 

0.68 
(3/16/2009) 

1.13 
(2/1/2009) 

1.13 
(2/21/2009) 

1.36 
(1/27/2009) 

 
Mean Profile-
Averaged Soil 
Temperature 

(°C) 
 
 

5.3 6.3 7.2 11.9 8.9 16.3 9.0 16.0 
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Site ID HN HS MHN MHS MLN MLS LN LS 
         
# Days Profile 

Bottom 
Exceeded Field 

Capacity 

225 218 162 137 [56] [48] 125 175 

         
Spatial Variability Over Replicate Pits 

Spatial 
Variability: 

Mean Standard 
Deviation of 
Soil Moisture 
Among Pits 
(cm3/cm3) 

0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 

Spatial 
Variability: 

Mean Standard 
Deviation of 

Soil 
Temperature 
Among Pits 

(°C) 

0.28 0.53 0.32 0.62 0.52 0.46 0.40 0.91 

Variability Over Soil Profile 
Mean Standard 

Deviation of 
Soil Moisture 
Over Profile 
(cm3/cm3) 

0.04 0.01 0.03 0.04 0.05 0.05 0.05 0.07 

Mean Standard 
Deviation of 

Soil 
Temperature 
Over Profile 

(°C) 
 
 

0.76 0.66 0.96 1.81 1.62 1.64 1.61 1.23 
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Site ID 

 
HN HS MHN MHS MLN MLS LN LS 

         
 

Approximate 
Temperature 

Difference Over 
Profile 

1°C (winter) 
and 3°C 

(summer) 

1°C (winter) 
and 3°C 

(summer) 

2°C (winter) 
and 4.5°C 
(summer) 

2°C (winter) 
and 7°C 

(summer) 

2.5 to 3°C 
(winter) and 

7-8°C 
(summer) 

4°C in winter, 
7-8°C in 
summer 

3°C in winter, 
8°C in 

summer 

3°C in 
winter, 5°C 
in summer 

         
Soil Water Storage 

Maximum 
Water Storage 

(cm) (Date) 

21.5 
(4/22/2009) 

19.6 
(4/8/2009, 
4/13/2009, 
4/20/2009) 

21.7 
(3/19/2009) 

15.6 
(3/16/2009) 

24.8 
(3/16/2009) 

7.9 
(4/2/2009) 

18.6  
(3/16/2009) 

7.1 
(4/3/2009) 

Minimum 
Water Storage 

(cm) (Date) 

1.9 (9/7/2008); 
2009 uncertain 
due to failure 

1.42 
(9/14/2008); 

1.47 
(10/3/2009) 

2.90 
(9/18/2008); 

3.0 
(10/3/2009) 

1.26 
(11/1/2008); 

1.57 
(10/2/2009) 

2.57 
(9/18/2008); 

3.01 
(10/3/2009) 

0.99 
(9/13/2008); 

1.09 
(10/3/2009) 

2.95 
(9/15/2008); 

5.61 
(8/5/2009) 

2.12 
(6/1/2009) 

Mean Water 
Storage (cm) 

15.7 14.3 14.6 9.8 15.4 4.2 13.1 4.7 

Water Storage 
Capacity (cm) 

 
12.5 12.4 15.6 11.4 16.5 6.1 11.9 5.8 

Mean Annual 
Precipitation/ 

Storage 
Capacity 

5.4 5.6 3.4 4.6 2.7 7.5 3.2 6.7 

Potential Growing Season 
Dates of Snow 

Cover 
(continuous or 
intermittent) 

 

12/5/2008 - 
4/20/2009; 
continuous 

12/5/2008 - 
4/15/2009; 
continuous 

12/5/2008 - 
4/6/2009; 

intermittent 

12/11/2008 -
3/13/2009; 
intermittent 

Approx. 
12/4/2008 - 
4/1/2009; 

intermittent 

Approx. 
12/4/2008 -
1/26/2009; 
intermittent 

Approx. 
12/4/2008 - 
3/13/2009; 
intermittent 

12/13/2008 to 
1/18/2009; 
continuous 

Date 2 cm Soil 
Temperature  

Surpassed 5°C 
5/15/2009 5/15/2009 5/2/2009 4/4/2009 4/7/2009 4/4/2009 4/7/2009 3/11/2009 
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Site ID 
 

HN HS MHN MHS MLN MLS LN LS 

         
         

Date Profile 
Dried Below 
Wilting Point 
Water Content 

 

7/27/2009 7/23/2009 7/19/2009 5/27/2009 7/7/2009 5/22/2009 7/9/2009 
5/21/2009 

 

# Potential 
Growing Days 
(5°C surface 

soil to wilting 
point) 

73 70 78 53 91 48 93 71 
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Table A.4. Depth of soil to bedrock as measured in each pit dug for installation of soil moisture and 
temperature sensors. Bedrock was treated as the gravelly decomposed granite layer which was 
unsuitable for sensor installation.  

 

Site-Pit Depth to Bedrock (cm)  Site-Pit Depth to Bedrock (cm) 

HN-1 67  HS-1 65 

HN-2 64  HS-2 70 

HN-3 63  HS-3 80 

HN-4 70  HS-4 77 

HN-Avg 66  HS-Avg 73 

MHN-1 90  MHS-1 80 

MHN-2 116  MHS-2 66 

MHN-3 77  MHS-3 87 

MHN-4 85  MHS-4 70 

MHN-Avg 92  MHS-Avg 76 

MLN-1 100  MLS-1 32 

MLN-2 96  MLS-2 31 

MLN-3 70  MLS-3 56 

MLN-4 83  MLS-4 31 

MLN-Avg 87  MLS-Avg 38 

LN-1 62  LS-1 35 

LN-2 65  LS-2 32 

LN-3 62  LS-3 35 

LN-4 73  LS-4 32 

LN-Avg 66  LS-Avg 34 
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Table A.5. Results of paired laser diffraction (A) and mechanical (hydrometer/sieve) analyses (B) 
used to develop a linear correlation to approximate mechanical results from laser diffraction results.  

A. Laser Diffraction Results     
Site 
ID Pit 

Depth 
(cm) Method Sample ID %Sand %Silt %Clay 

LN 1 15 LaserDiffraction LN-Pit1-15cm 41.0 54.4 4.6 
LN 2 15 LaserDiffraction LN_Pit2-15cm_5Reps 39.2 56.1 4.7 
LN 3 15 LaserDiffraction LN-Pit3-15cm 36.9 58.4 4.7 
LN 4 15 LaserDiffraction LN-Pit4-15cm 39.0 56.5 4.4 
LS 1 2 LaserDiffraction LS-Pit1-2cm-3Reps 83.1 16.1 0.8 
LS 1 15 LaserDiffraction LS-Pit1-15cm-3Reps 85.3 13.8 0.9 
LS 1 30 LaserDiffraction LS-Pit1-30cm 95.2 4.6 0.2 
LS 2 15 LaserDiffraction LS-Pit2-15cm 89.0 10.4 0.6 
LS 3 2 LaserDiffraction LS-Pit3-2cm 80.4 18.3 1.3 
LS 3 15 LaserDiffraction LS-Pit3-15cm 78.0 20.5 1.5 
LS 4 15 LaserDiffraction LS-Pit4-15cm 79.6 19.0 1.4 
MHN 1 15 LaserDiffraction MHN-Pit1-15cm 62.7 34.5 2.8 
MHN 2 15 LaserDiffraction MHN-Pit2-15cm-3Reps 58.7 38.7 2.6 
MHN 3 15 LaserDiffraction MHN-Pit3-15cm 56.7 40.3 3.0 

MHN 4 15 LaserDiffraction MHN-Pit4-15cm-3Reps 58.8 38.6 2.5 
MHS 1 15 LaserDiffraction MHS-Pit1-15cm-3Reps 84.7 14.5 0.9 
MHS 2 2 LaserDiffraction MHS-Pit2-2cm 86.8 12.4 0.8 
MHS 2 15 LaserDiffraction MHS-Pit2-15cm-3Reps 85.6 13.6 0.8 
MHS 2 30 LaserDiffraction MHS-Pit2-30cm-2Reps 86.1 13.0 0.9 
MHS 2 60 LaserDiffraction MHS-Pit2-59cm 86.5 12.7 0.8 
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B. Hydrometer/Sieve Results 
Site 
ID Pit 

Depth 
(cm) Method Sample ID %Sand %Silt %Clay 

LN 1 15 Hydrometer LN-Pit1-15cm-2Reps 47.0 37.7 15.3 
LN 2 15 Hydrometer LN-Pit2-15cm-2Reps 48.1 40.7 11.1 
LN 3 15 Hydrometer LN-Pit3-15cm 44.4 42.4 13.2 
LN 4 15 Hydrometer LN-Pit4-15cm 46.2 42.7 11.2 
LS 1 2 Hydrometer LS-Pit1-2cm-3Reps 81.1 12.3 6.6 
LS 1 15 Hydrometer LS-Pit1-15cm-2Reps 81.2 10.0 8.9 
LS 1 30 Hydrometer LS-Pit1-30cm-2Reps 86.9 5.4 7.7 
LS 2 15 Hydrometer LS-Pit2-15cm 79.0 9.1 11.9 
LS 3 2 Hydrometer LS-Pit3-2cm-2Reps 80.5 13.3 6.1 
LS 3 15 Hydrometer LS-Pit3-15cm-2Reps 75.0 13.7 11.3 
LS 4 15 Hydrometer LS-Pit4-15cm-2Reps 75.3 13.6 11.1 
MHN 1 15 Hydrometer MHN-Pit1-15cm 64.4 28.6 7.0 
MHN 2 15 Hydrometer MHN-Pit2-15cm 68.2 26.8 5.1 
MHN 3 15 Hydrometer MHN-Pit3-15cm 67.3 26.2 6.5 
MHN 4 15 Hydrometer MHN-Pit4_15cm 63.1 32.4 4.5 
MHS 1 15 Hydrometer MHS-Pit1-15cm-2Reps 82.0 12.4 5.6 
MHS 2 2 Hydrometer MHS-Pit2-2cm 91.1 8.5 0.4 
MHS 2 15 Hydrometer MHS-Pit2-15cm-2Reps 81.2 12.9 5.8 
MHS 2 30 Hydrometer MHS-Pit2-30cm 80.1 10.3 9.6 
MHS 2 60 Hydrometer MHS-Pit2-59cm-2Reps 82.8 9.7 7.5 
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Table A.6. Bulk density approximations from soil  samples. Site MLN, sample set “a” was excluded 
due to sampling error. Samples at the 0-5cm bgs interval are not believed to be reliable and are 
excluded. 

Sample ID 
Depth interval 
(cm) 

Bulk Density (g/cm3) Sample ID 
Depth interval 
(cm) 

Bulk Density (g/cm3) 

HN-1a 5 0.47 HN-1b 5 0.54 
HN-2a 10 0.79 HN-2b 10 1.13 
HN-3a 15 0.95 HN-3b 15 1.07 
HN-4a 20 1.21 HN-4b 20 1.23 
HN-5a 25 1.02 HN-5b 25 1.08 
HN-6a 30 1.46 HN-6b 30 1.16 
      
HS-1a 5 0.30 HS-1b 5 0.51 
HS-2a 10 1.03 HS-2b 10 1.15 
HS-3a 15 0.98 HS-3b 15 0.81 
HS-4a 20 1.34 HS-4b 20 1.31 
HS-5a 25 1.06 HS-5b 25 1.26 
HS-6a 30 1.31 HS-6b 30 1.51 
      
LN-1a 5 0.84 LN-1b 5 1.24 
LN-2a 10 1.19 LN-2b 10 1.23 
LN-3a 15 0.82 LN-3b 15 0.80 
LN-4a 20 1.21 LN-4b 20 1.50 
LN-5a 25 1.15 LN-5b 25 1.36 
LN-6a 30 1.48 LN-6b 30 1.09 
      
LS-1a 5 1.15 LS-1b 5 1.39 
LS-2a 10 1.22 LS-2b 10 1.61 
LS-3a 15 0.72 LS-3b 15 1.64 
LS-4a 20 1.42 LS-4b 20 1.27 
LS-5a 25 1.44 LS-5b 25 1.59 
LS-6a 30 1.62 LS-6b 30 1.58 
      
MHN-1b 5 0.67 MHN-1c 5 0.87 
MHN-2b 10 1.21 MHN-2c 10 1.10 
MHN-3b 15 1.09 MHN-3c 15 0.87 
MHN-4b 20 1.28 MHN-4c 20 1.21 
MHN-5b 25 1.05 MHN-5c 25 1.11 
MHN-6b 30 1.27 MHN-6c 30 1.35 
      
MHS-1a 5 1.38 MHS-1b 5 1.63 
MHS-2a 10 1.45 MHS-2b 10 1.40 
MHS-3a 15 1.36 MHS-3b 15 1.39 
MHS-4a 20 1.34 MHS-4b 20 1.49 
MHS-5a 25 1.95 MHS-5b 25 1.87 
MHS-6a 30 1.55 MHS-6b 30 1.68 
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Sample ID 
Depth interval 
(cm) 

Bulk Density (g/cm3) Sample ID 
Depth interval 
(cm) 

Bulk Density (g/cm3) 

MLN-1b 5 1.13    
MLN-2b 10 1.57    
MLN-3b 15 1.25    
MLN-4b 20 1.22    
MLN-5b 25 1.29    
MLN-6b 30 1.38    
      
MLS-1a 5 1.32 MLS-1b 5 1.27 
MLS-2a 10 1.28 MLS-2b 10 1.46 
MLS-3a 15 1.33 MLS-3b 15 1.30 
MLS-4a 20 1.49 MLS-4b 20 1.36 
MLS-5a 25 1.89 MLS-5b 25 1.37 
MLS-6a 30 1.56 MLS-6b 30 1.82 
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Table A.7. Total carbon content of soil as percent by weight for intervals 0-5 cm (“5”), 5-10 cm 
(“10”), 10-15 cm (“15”), 15-20 cm (“20”), 20-25 cm (“25”), and 25-30 cm (“30”) bgs. Values reported 
are the averaged results of 2 field replicates and random lab replicates; replicates deviate less than 
8% from the reported values.  

Depth 
(cm bgs) 

Site, 
North 
Aspect 

Sample ID Weight % C Site, South 
Aspect 

Sample ID Weight % 
C  

5.00 HN HN1 12.37 HS HS1 18.73 

10.00  HN2 7.42  HS2 6.55 

15.00  HN3 3.35  HS3 3.90 

20.00  HN4 1.74  HS4 2.79 

25.00  HN5 1.54  HS5 2.30 

30.00  HN6 1.55  HS6 1.60 

       

5.00 MHN MHN1 7.13 MHS MHS1 2.00 

10.00  MHN2 5.85  MHS2 1.44 

15.00  MHN3 4.01  MHS3 1.04 

20.00  MHN4 3.01  MHS4 0.93 

25.00  MHN5 3.00  MHS5 1.05 

30.00  MHN6 2.39  MHS6 0.68 

       

5.00 MLN MLN1 6.00 MLS MLS1 1.82 

10.00  MLN2 4.60  MLS2 1.22 

15.00  MLN3 4.04  MLS3 1.04 

20.00  MLN4 3.59  MLS4 0.78 

25.00  MLN5 4.17  MLS5 0.69 

30.00  MLN6 3.49  MLS6 0.63 

       

5.00 LN LN1 4.52 LS LS1 2.03 

10.00  LN2 4.19  LS2 0.68 

15.00  LN3 4.06  LS3 0.58 

20.00  LN4 3.41  LS4 0.52 

25.00  LN5 3.39  LS5 0.56 

30.00  LN6 2.83  LS6 0.92 
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Table A.8. Total carbon content in the upper 30 cm of soil at all sites. Values reported are the 
averaged results of 2 field replicates and random lab replicates; replicates deviate less than 8% from 
the reported values. 

Site Depth Interval (cm) Total C 
(kg/(30cm*m2)) 

HN 0 - 10 3.02 

 10 - 20 0.78 

 20 - 30 0.47 

 Total  4.27 

HS 0 - 10 3.86 

 10 - 20 1.02 

 20 - 30 0.59 

 Total  5.47 

MHN 0 - 10 1.98 

 10 - 20 1.07 

 20 - 30 0.82 

 Total  3.87 

MHS 0 - 10 0.53 

 10 - 20 0.30 

 20 - 30 0.26 

 Total  1.09 

MLN 0 - 10 1.62 

 10 - 20 1.16 

 20 - 30 1.17 

 Total  3.95 

MLS 0 - 10 0.46 

 10 - 20 0.28 

 20 - 30 0.20 

 Total  0.94 

LN 0 - 10 1.33 

 10 - 20 1.14 

 20 - 30 0.95 

 Total  3.42 

LS 0 - 10 0.41 

 10 - 20 0.17 

 20 - 30 0.23 

 Total  0.81 
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Table A.9. Values of the coefficient of determination (R2) representing the degree to which variation in one variable is explained by another 
variable. Of the variables, “peak NDVI” was selected from monthly averages derived over a four year period; “soil carbon” was measured as 
total soil carbon in the uppermost 30 cm of the profile; mean soil water content, soil water storage, and soil temperature were calculated from 
the common period of record, 11/20/2008 to 9/1/2009; mean annual precipitation and mean annual air temperature were calculated based on 
elevation using the linear hypsometric relationship observed in the study area; and potential insolation was modeled as total annual insolation. 

 Peak NDVI Soil Carbon 
Mean Soil Water 

Content 
Mean Soil Water 

Storage 
Mean Soil 

Temperature 

Mean Annual Precipitation 
(or Air Temperature, or 

Elevation) 

North Aspects 

Peak NDVI       

Soil Carbon 0.87      

Mean Soil Water Content 0.55 0.64     

Mean Soil Water Storage 0.64 0.8 0.58    

Mean Soil Temperature 0.87 0.89 0.63 0.88   

Mean Annual Precipitation 
(or Air Temperature, or 

Elevation) 
0.92 0.81 0.28 0.54 1  

Potential Insolation 0.83 0.98 0.16 0.83 0.92 0.9 

South Aspects 

Peak NDVI       

Soil Carbon 0.87      

Mean Soil Water Content 0.55 0.64     

Mean Soil Water Storage 0.64 0.8 0.58    

Mean Soil Temperature 0.87 0.89 0.74 0.85   

Mean Annual Precipitation 
(or Air Temperature, or 

Elevation) 
0.84 0.85 0.62 0.93 0.98  

Potential Insolation 0.79 0.85 0.79 0.97 0.84 0.88 
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Table A.10. Results of forward selection multiple regression analysis treating elevation (associated 
with gradients in precipitation and air temperature) and potential insolation as independent 
variables, and treating soil carbon, peak NDVI, and mean soil water storage as dependent variables. 

 
 

Model R2 Model 
Significance, p 

Model Coefficients 

Soil Carbon Content, C    

Elevation, e 0.3789 0.1042 C = 0.0091e- 1.7028 

Elevation, e, and Insolation, i 0.7048 0.0473 C = 0.0118e - 0.0009i + 0.8933 

    

Peak NDVI, N    

Elevation, e 0.6447 0.0164 N = 0.0009e + 0.0021 

Elevation, e, and Insolation, i 0.8421 0.0099 N = 0.0011e - 0.00005i + 0.16025 

    

Mean Soil Water Stored, S    

Insolation, i 0.3405 0.1289 S = 23.7778 - 0.0026i 

Insolation, i and Elevation, e 0.8471 0.0091 S = 0.033e - 0.0037i + 11.2573 
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APPENDIX B 

Figures 
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Figure B.1. The Dry Creek Experimental Watershed study area, including study sites and 
meteorological (weather) stations. Ecological differences across topographic gradients are evident 
from lowest to highest elevations (lower left to upper right), and from south-facing to north-facing 
slopes at middle elevations (as at sites MHS and MHN). Aerial image courtesy of the National 
Agriculture Imagery Program (NAIP) 2004. 
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Figure B.2. Seasonal and topographic trends in precipitation and temperature at Dry Creek 
Experimental Watershed. Temperature as nine-year average at three meteorological stations (top) 
and precipitation as nine-year average at the same meteorological stations (bottom). Precipitation 
and temperature are out-of-phase in this environment. Higher elevations experience overall lower 
temperatures and greater precipitation. 
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Figure B.3. Orographic trend of higher precipitation and lower temperature with increasing 
elevation in the study area. Values are nine-year average total annual precipitation and nine-year 
average annual mean temperature. Mean annual precipitation and mean annual temperature for 
each of the study sites were derived from the hypsometric equations shown. 

 

Figure B.4. Nine-year average seasonal precipitation compared with precipitation during the 2008-
2009 season of study. During an average year, most of the annual precipitation falls during the 
autumn and winter months (Oct-Mar) and the summer (Jun-Sep) is dry. During the 2008-2009 
period of study, winter precipitation was relatively low, spring rains were relatively high, and the dry 
summer was punctuated by a large rain event in August.  
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Figure B.5. Distribution of potential incident solar radiation (insolation) over the study area, 
modeled using the ArcGIS Solar Radiation tool. Values are total potential insolation modeled over 
the 2008 year, but they reflect the general distribution of potential insolation in any year. At a given 
elevation, a south-facing slope may receive nearly twice as much potential insolation as a 
complimentary north-facing slope. 

 



97 
 

 

 

Figure B.6. Modeled values of total annual potential insolation at the study sites (squares and circles), 
with measured values from weather stations (diamonds) in the study area. The measured total 
annual potential insolation values confirm that the modeled values are realistic. Potential insolation 
increases slightly with increasing elevation, but the potential insolation difference across the aspect 
gradient is much larger than the difference across the elevation gradient.  

 

Figure B.7. Time series of mean daily temperature and total daily insolation measured from a 
weather station located at 1610 m elevation in the study area. Peak insolation occurs during the 
midsummer, around July. Air temperature lags slightly, reaching its peak around July to August.  
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Figure B.8. Modeled (potential) insolation relates positively with mean annual precipitation and 
negatively with mean annual temperature in the study area. The amount of radiation received is 
distinctly different for north and south aspects (north aspects receive much less radiation than south 
aspects). 
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Figure B.9. Configuration of soil moisture stations and soil pits in this study. Each site is composed of 
four soil pits which are treated as replicates representing soil moisture and soil temperature at each 
site. In turn, each pit contains soil moisture and temperature sensors located at 2 cm, 15 cm, and 30 
cm below ground surface. Most pits contain a fourth sensor located above the soil-bedrock interface, 
but at two sites (MLS and LS) soil was generally only about 30 cm deep.  
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Figure B.10. General configuration of Plant Area Index (PAI) sampling transects at each soil 
moisture station. Three transects of 11 sampling points each were positioned around each station, 
allowing repeated measurement of 33 sample points per station during the 2009 growing season.  
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Figure B.11. Basic distributions of soil water content (top) and soil temperature (bottom) time series 
over the common measurement period, 11/20/2008 to 9/1/2009. Sample sizes are n = 286 days for each 
site. The height of the boxplots represents variation in time. The separation of box plots suggests that 
overall, growing season soil moisture and soil temperature differ with aspect and, to a lesser degree, 
with elevation. An exception is soil temperature at the highest elevation sites, which does not appear 
to differ significantly with aspect.  
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Figure B.12. Soil water content (top) and soil temperature (bottom) at the high elevation north facing 
(HN) and high elevation south-facing (HS) sites as profile- and site-averaged values. Error bars 
represent spatial variability as the standard deviation of profile-averaged values among the four pits 
at each site. Precipitation events (rain and snow) are plotted in the center graph. Dates of snow cover, 
inferred from dampened diurnal fluctuations in shallow soil temperature, are shown at top of the 
temperature plot. Dates of initial snow cover (marked by bold vertical dashes) are uncertain because 
the temperature trends may reflect snow cover or soil freezing, but dates of snow cover cessation are 
more certain. The north aspect has somewhat higher soil moisture, slightly lower soil temperature, 
and a slightly later snowmelt date than the south aspect.  
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Figure B.13. Soil water content (top) and soil temperature (bottom) at the mid-high elevation north 
facing (MHN) and mid-high elevation south-facing (MHS) sites as profile- and site-averaged values. 
Error bars represent spatial variability as the standard deviation of profile-averaged values among 
the four pits at each site. Precipitation events (rain and snow) are plotted in the center graph. Dates 
of snow cover, inferred from dampened diurnal fluctuations in shallow soil temperature, are shown 
at top of the temperature plot. Dates of initial snow cover (marked by bold vertical dashes) are 
uncertain because the temperature trends may reflect snow cover or soil freezing, but dates of snow 
cover cessation are more certain. The north aspect generally has higher growing-season soil 
moisture, lower soil temperature, and a later snowmelt date than the south aspect.  
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Figure B.14. Soil water content (top) and soil temperature (bottom) at the mid-low elevation north 
facing (MLN) and mid-low elevation south-facing (MLS) sites as profile- and site-averaged values. 
Error bars represent spatial variability as the standard deviation of profile-averaged values among 
the four pits at each site. Precipitation events (rain and snow) are plotted in the center graph. Dates 
of snow cover, inferred from dampened diurnal fluctuations in shallow soil temperature, are shown 
at top of the temperature plot. Dates of initial snow cover (marked by bold vertical dashes) are 
uncertain because the temperature trends may reflect snow cover or soil freezing, but dates of snow 
cover cessation are more certain. The north aspect generally has higher growing-season soil 
moisture, lower soil temperature, and a later snowmelt date than the south aspect. 
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Figure B.15. Soil moisture (top) and soil temperature (bottom) at the low elevation north facing (LN) 
and low elevation south-facing (LS) sites as profile- and site-averaged values. Error bars represent 
spatial variability as the standard deviation of profile-averaged values among the four pits at each 
site.  Precipitation events (rain and snow) are plotted in the center graph. Dates of snow cover, 
inferred from dampened diurnal fluctuations in shallow soil temperature, are shown at top of the 
temperature plot. Dates of initial snow cover (marked by bold vertical dashes) are uncertain because 
the temperature trends may reflect snow cover or soil freezing, but dates of snow cover cessation are 
more certain. The north aspect generally has higher growing-season soil moisture, lower soil 
temperature, and a later snowmelt date than the south aspect. 
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Figure B.16. Relationship between elevation and soil temperature at all sites, with means calculated 
from the common period of measurement, 11/20/2008 to 9/1/2009. Soil temperature shows a strong 
relationship with elevation at both aspects. 
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Figure B.17. Soil temperature measured at 2 cm bgs closely tracks trends in spring, summer, and fall 
air temperatures over 2009 where a study site and a meteorological station are collocated.  
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Figure B.18. Differences in soil depth with aspect and elevation. Error bars show standard deviation 
of soil depths among the four pits at each site. At all but the highest elevation sites, soils are deeper 
on north aspects than on south aspects, and soil depth increases with elevation.  
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Figure B.19. Distributions of soil water stored in the profile over the common measurement period, 
11/20/2008 to 9/1/2009. Sample size is n = 286 days at each site. The soil water storage calculation 
accounts for generally greater soil depths on north aspects and higher elevations. 
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Figure B.20. Relationship between elevation and mean soil water storage at all sites, with means 
calculated from the common period of measurement, 11/20/2008 to 9/1/2009. By accounting for 
generally increasing soil depth at increasing elevations, soil water storage values show a stronger 
relationship with elevation on south aspects than did soil water content.  
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Figure B.21. Soil water content at different depths in the soil profile at site HN, the highest elevation 
north aspect. The green line indicates field capacity and orange line indicates approximate wilting 
point for the soil. 
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Figure B.22. Soil water content at different depths in the soil profile at site HS, the highest elevation 
south aspect. Green line indicates field capacity and orange line indicates approximate wilting point 
for the soil. 
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Figure B.23. Soil water content at different depths in the soil profile at site MHN, the mid-high 
elevation north aspect. Green line indicates field capacity and orange line indicates approximate 
wilting point for the soil. 
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Figure B.24. Soil water content at different depths in the soil profile at site MHS, the mid-high 
elevation south aspect. Green line indicates field capacity and orange line indicates approximate 
wilting point for the soil. Data gaps were linearly interpolated to approximate number of days the 
bottom boundary exceeded field capacity. 
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Figure B.25. Soil water content at different depths in the soil profile at site MLN, the mid-low 
elevation north aspect. Green line indicates field capacity and orange line indicates approximate 
wilting point for the soil. Data gaps were linearly interpolated to approximate number of days the 
bottom boundary exceeded field capacity. 
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Figure B.26. Soil water content at different depths in the soil profile at site MLS, the mid-low 
elevation south aspect. Green line indicates field capacity and orange line indicates approximate 
wilting point for the soil. Data gaps were linearly interpolated to approximate number of days the 
bottom boundary exceeded field capacity. 
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Figure B.27. Soil water content at different depths in the soil profile at site LN, the low elevation 
north aspect. Green line indicates field capacity and orange line indicates approximate wilting point 
for the soil. 
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Figure B.28. Soil water content at different depths in the soil profile at site LS, the low elevation 
south aspect. Green line indicates field capacity and orange line indicates approximate wilting point 
for the soil. Data gaps were linearly interpolated to approximate number of days the bottom 
boundary exceeded field capacity. 
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Figure B.29. Vegetation canopy cover during the growing season approximated using the Normalized 
Difference Vegetation Index (NDVI) derived from remote sensing images collected by Landsat-5 TM. 
Values shown are monthly averages over the growing seasons of the four-year period from 2006 to 
2009. The series for each site has been fit with a fifth-order polynomial to clarify patterns and infer 
relative timing of peak NDVI. Colored shapes mark the inferred peak NDVI for each site. Forested 
sites have the highest NDVI; below them, north-facing sites have greater NDVI than south-facing 
sites at the lowest, mid-low, and mid-high elevations; on a given aspect, NDVI generally increases 
with elevation (MHS is an exception), and the date of peak NDVI generally occurs later on north 
aspects and on higher elevation sites (MLS is an exception).  
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 Figure B.30. Vegetation cover as Plant Area Index (PAI) measured during part of the 2009 growing 
season using a handheld AccuPAR LP-80 ceptometer. Measurements were taken on the ground to 
validate the NDVI values derived from remote sensing. As with NDVI, forested sites show the most 
dense canopy cover. Below them, north-facing sites have greater PAI than south-facing sites, and 
higher elevation sites have greater PAI on a given aspect. The date of peak PAI appears to occur 
later on north aspects and higher elevation sites relative to south aspects and lower elevation sites, 
but peak dates were not determined from the PAI dataset because early and late season 
measurements were prohibited by persistent cloudiness during the 2009 growing season.  
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Figure B.31. Correlation between Plant Area Index (measured at 1 m resolution on the ground) and 
NDVI (measured at 30 m resolution from Landsat 5-TM satellite) for the 2009 growing season. The 
two methods of estimating vegetation cover are strongly correlated, offering validation for using the 
NDVI as a measure of vegetation canopy cover in the study area. 
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Figure B.32. Results of soil textural analyses for samples taken from 2 cm below ground surface. 
Soils on north aspects generally plot in a finer textural class than those on south aspects. Silt is the 
chief determinant of the fine fraction (ranging from 9.0% to 39.8% silt by mass), whereas clay 
content varies little (from 7.4% to 10.5% clay by mass). The low elevation north facing site LN is 
distinctly high in silt relative to all other samples. HN n = 6; HS n = 5; MHN n = 6; MHS n = 8; MLN 
n = 6; MLS n = 7; LN n = 6; LS n = 13. Thank you to A. Gerakis and B. Baer for the plotting 
program. 
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Figure B.33. Results of soil textural analyses for samples taken from 15 cm below ground surface. 
Soils on north aspects generally plot in a finer textural class than those on south aspects. Silt is the 
chief determinant of the fine fraction (ranging from 8.7% to 42.3% silt by mass), whereas clay 
content varies little (from 7.5% to 12.7% clay by mass). The low elevation north facing site LN is 
distinctly high in silt relative to all other samples. HN n = 4; HS n = 4; MHN n = 16; MHS n = 14; 
MLN n = 3; MLS n = 4; LN n = 16; LS n = 13. Thank you to A. Gerakis and B. Baer for the plotting 
program. 
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Figure B.34. Results of soil textural analyses for samples taken from 30 cm below ground surface. 
Soils on north aspects generally plot in a finer textural class than those on south aspects. Silt is the 
chief determinant of the fine fraction (ranging from 4.6% to 42.2% silt by mass), whereas clay 
content varies little (from 7.2% to 11.5% clay by mass). The low elevation north facing site LN is 
distinctly high in silt relative to all other samples. HN n = 4; HS n = 4; MHN n = 4; MHS n = 9; MLN 
n = 4; MLS n = 4; LN n = 4; LS n = 7. Thank you to A. Gerakis and B. Baer for the plotting program. 
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Figure B.35. Results of soil textural analyses for samples taken at the soil-bedrock interface, which 
occurred at varying depths. Soils on north aspects generally plot in a finer textural class than those 
on south aspects. Silt is the chief determinant of the fine fraction (ranging from 9.8% to 35.9% silt by 
mass), whereas clay content varies little (from 7.6% to 10.7% clay by mass). The low elevation north 
facing site LN is distinctly high in silt relative to all other samples. HN n = 4; HS n = 4; MHN n = 4; 
MHS n = 7; MLN n = 4; MLS n = 1; LN n = 8; LS n = 3. Thank you to A. Gerakis and B. Baer for the 
plotting program. 
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Figure B.36. Correlation between particle size fractions (excluding gravel) obtained using laser 
diffraction versus hydrometer/sieve methods. Linear relationships between the sand and silt fractions 
determined using both laser diffraction and mechanical analysis (hydrometer/sieve) were used to 
predict mechanical analysis results from laser diffraction results for soil samples. Because laser 
diffraction is a relatively new method in soil textural analysis, a converting results to the more 
traditional mechanical method allows us to relate our soil classifications with those in other studies.  

 

Figure B.37.  Soil sand content does not generally appear to change systematically with depth; an 
exception is site LN, which contains less sand in the upper 30 cm bgs. 
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Figure B.38.  Soil silt content does not generally appear to change systematically with depth; an 
exception is site LN, which contains more silt in the upper 30 cm bgs. 

 

Figure B.39. Soil clay content does not generally appear to change systematically with depth at the 
study sites, and is low in all soil samples. 
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Figure B.40. Spatial trends in the bulk density of soil averaged over 5 to 30 cm below ground surface. 
Soil was sampled as two replicates from each site except MLN; bars show bulk density results from 
each sample to display uncertainty in results. Bulk density is generally greater where soil carbon 
content is lower - on south aspects relative to north aspects, and in lower elevations relative to higher 
elevations. 

 

Figure B.41. Total soil carbon content as percent by weight over the profile at each site. Results are 
averaged from two field replicates at each site and random laboratory replicates; replicate values lay 
within 8% of the mean value for each depth.  
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Figure B.42. Lengths of the potential growing season for each study site with mean annual trends in 
air temperature and insolation. Potential growing season was defined as the time period beginning 
when the shallow soil (2cm bgs) surpassed 5ºC for the season and ending when the soil profile dried 
below the approximate wilting point. We see denser peak plant cover and greater soil carbon content 
at locations which retain plant-available soil water for a longer period of the warm, sunny summer. 

 

Figure B.43. Comparison of mean annual precipitation, mean spring (April-May-June) precipitation, 
and soil water storage capacity (field capacity * soil depth) at each study site. The storage capacity of 
soils is small relative to annual precipitation. Average amounts of spring precipitation are sufficient 
to recharge the soil water reservoir, and the timing of spring precipitation allows it to be utilized in 
ecosystem functions.  
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Figure B.44. Correlations between annual maximum, or “peak” vegetation cover (as Normalized 
Difference Vegetation Index, NDVI) and soil carbon content at study sites. The strength of the 
correlation between the variables is evidence that above and below ground carbon stocks respond to 
similar controlling factors. 
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APPENDIX C 

Protocol for Plant Area Index Sampling and Data Processing 
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AccuPAR LP-80 Ceptometer Sampling Protocol    9/15/2009 
 

First visit: At each site, lay out 3 transects, each 10m long, using field tape. Flag 
endpoints and every 1m point. To locate the transects, place a flag 10 paces (one step 
with each foot) directly upslope, directly downslope, and either directly east or 
directly west of the center of the polygon defined by soil pits. The flag marks the 5 m 
center point of the 10 m transect, as shown below. 

 
Figure C1. Configuration of Plant Area Index transects around soil moisture stations. 
 
1) From these flagged points, construct each 10 m transect line according to Figure 

C2. At each 1m point on the transect, place a flag. The region directly upslope 
(shown as the dashed square in Figure C2) will be sampled weekly for leaf area 
index, so should not be trampled at all.  
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Figure C2. Layout for each transect. 

 
Sampling Protocol 

1)  Take ceptometer readings around noon (10am to 2pm is ideal, though 9-3 is 
acceptable), on a uniformly cloudy or uniformly clear day, so that the sun 
angle and above-canopy radiation remain consistent. Record the site name, 
date, and weather conditions, including estimate of cloud cover and wind, 
in your notebook. Please carefully note where the soil pits are located at 
each site (they are four points near the action packer, flagged) and avoid 
stepping on the area around the soil pits. Also note the location of the 
flagged transects, and do not walk on the area about 3m upslope of 
transects so as not to disturb the soils and vegetation we are measuring.  

2)  You should have the following items with you each time you sample: 
a) Field notebook and pencil 
b) Current timepiece 
c) Safety glasses  
d) Isopropyl alcohol and lens cloth 
e) LP-80 instrument 
f)  Extra flags 
g) Girded-up loins 
h) 4 Extra AAA batteries 

3)  Power on the LP-80.  
4)  Setup: Using the Menu button, go to the Setup Menu and set the first two 

sections as follows, leaving the other sections untouched:  
a) Date/time- set to current; daylight savings (box will be checked from 

March 8, 2009 until November 1, 2009). It is very important that these be 
correct to calculate zenith angle! Hit Esc to return to Setup Menu. 

b) Location- Seattle (Enter); then input correct latitude and longitude for Dry 
Creek Watershed: 44 lat, -116 long, GMT offset -6hrs (during summer 
daylight savings time): THEN HIT ESC TO SAVE!!! You won’t be able 

10m
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to go back and check this entry because it will reset when you re-enter the 
screen, but if you hit ESC it will save the coordinates. Have faith.  

5)  BEGINNING A TRANSECT: 
a) Use the Menu button to Select File: New, and press Enter for OK. You can 

use File:View to see the filename (which is the time the file was opened) 
of the currently open file to which your data will be saved. 

b) Record the filename (time) and the transect (T1, T2, T3) you are sampling 
in your notebook for each transect you sample (the filenames are just the 
time, so if you record the time I can connect each file to the appropriate 
transect). If any mistakes are made as you sample the transect, please note 
them specifically within that time/transect note so that I can locate the 
errors when I process the data.  

c) Clean LP-80 rod with fiber-free lens cloth and isopropyl alcohol. 
d) Use the Menu button to go to PAR to begin sampling.  
e) I encourage you to record your measurements by hand in your notebook. 

The AccuPAR will save the data, but hand-recording the data will ensure 
that you can track any mistakes on paper for correction later, and that the 
data make it back to the office.  

 
6)   Sampling All Transects 

a) Sample the transects in sequence beginning with the upslope transect (T1), 
downslope through T2 and then T3.  

b) Always begin sampling at the easternmost flag (sample moving east to 
west).  

c) As you sample the transect, be sure to face the sun so that you will not cast 
a shadow on the sensor.  

d) The protocol for taking measurements at each 1m flag is to stop with one 
foot on the flag, face the sun, then gently (taking care not to disturb the 
ground surface and vegetation!) take one sidestep directly upslope (just 
big enough for you to balance somewhat comfortably) and position the 
length of the LP-80 sensor rod perpendicular to the slope (parallel with the 
transect), holding the sensor uphill from your body as far as possible while 
still allowing you to see the bubble level. It is important to hold the 
instrument far from your body so that you do not shade the instrument, 
and so that light is not reflected off you onto the instrument. Do not sit on 
the ground, but rather balance gently on your upslope foot to minimize 
disturbance of soil and vegetation. 

e) Clean the sensor frequently with the lens cloth and isopropyl alcohol, as 
debris on the sensor will obstruct the measurements. 
 

7) Sampling Grass/Shrub Areas (LN, LS, MLN, MLS, MHS) 
a) Follow the same directions for “#5, BEGINNING A TRANSECT.” 
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b) At the first flag, first take a series of 3 good readings above the canopy by 
holding the instrument level and pushing the up arrow button 3 times.  

c) Then, carefully slide the entire instrument below the vegetation canopy, as 
close to the ground as possible while still allowing you to level the 
instrument using the bubble level. Try to slide the rod in underneath the 
vegetation, rather than bringing the rod straight down and flattening the 
vegetation. The rod should be oriented pointing toward the sun, parallel 
with the transect (perpendicular to the fall line of the slope). Do not place 
your hand anywhere on the sensor rod because you will interfere with light 
and will add oils to the sensor; keep your hands on the control box. Take 3 
good readings from the leveled instrument by pressing the down arrow 3 
times. The displayed readings are averages above and below.  

d) Record the readings for average above- and below-canopy PAR (displayed 
values) in your notebook. 

e) Hit enter to save the set of readings to file, then proceed carefully to the 
next flag along the transect.  
 

8) Sampling Forested Sites (HN, HS, MHN): Getting above-canopy readings 
will be different for these sites. 
a) Follow the same directions for “#5, BEGINNING A TRANSECT.” 
b) First take a series of 3 above-canopy reading (by hitting the UP ARROW 

button) in a clearing in direct sunlight. Then, take 3 below-canopy 
readings (DOWN ARROW button, in series of 3 button-pushes per flag) 
along the transect. Record the values for above and below and hit enter. 
Then take below-canopy readings (DOWN ARROW button, in series of 3 
button-pushes per flag) for 5 more flags. Follow with another above-
canopy reading in a clearing and a below canopy reading (record and hit 
enter), then take the rest of the below-canopy readings at the remaining 
flags, then close the set with a final above-canopy reading in a clearing 
and record and enter the data. Thus, you will be making an above-canopy 
reading at the beginning, middle, and the end of each transect.  
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AccuPAR LP-80 Ceptometer Data Entry Procedure   9/15/2009 
 

I. Downloading Data 
1) Connect the LP-80 to the serial port on your computer or laptop using the 

provided cable, and plug in the USB drive (provided).   
2) Insert the AccuLink CD into your DVD or CD drive and open it. Follow the 

steps to install the software on your computer.  
3) Open AccuLink and turn on the LP-80. Go to the Setup menu and scroll down 

to highlight “Download All Data;” hit ESC. Then go to “File” and select 
“Send.” In the AccuLink dialogue box on the computer, set the Baud Rate to 
9600. Click “Connect” in the AccuLink dialogue box. You should see all the 
files on the LP-80 listed. Click the top file, hold the Shift Key, and click the 
last file. This should select all the files in the list. Click “Save” and browse to 
the location you want to save them in (the provided USB drive). When you hit 
okay, the files should start saving into the location. After you click okay on 
the box that says your file was saved successfully, go to the specified location 
and open the file to see if it has every file you have in your notes. Sometimes 
the files fail to save, and you have to try it 2 or 3 times to make sure the 
complete file gets transferred. After you have confirmed that the data is 
downloaded from the LP-80, click Delete All in the AccuLink box to clear the 
LP-80 memory. 
 

II. Entering Data into Spreadsheets 
1) Get out your field notebook and open to the first record you have for the 

datafile you are entering. Open the .csv file you just downloaded from the LP-
80.  OPEN IT WITH EXCEL 2003, NOT EXCEL 2007. 

2) OPEN EXCEL 2003, NOT EXCEL 2007. From Excel 2003 click the “Open 
File” button and navigate to 
E:\Research\LAI\AccuPAR_Data\GroomedDataFiles and open the file for the 
site corresponding to the first record. 

3) Navigate to E:\Research\LAI\AccuPAR_Data\GroomedDataFiles\Templates 
and open either the Grassland or Forested AccuPAR template file, depending 
on whether the site was grassland (LN, LS, MLN, MLS, or MHS) or forest 
(MHN, HN, HS).  

4) In the template file, right click on the spreadsheet tab and select “move or 
copy sheet.” Copy the sheet into the book corresponding to the site, “move to 
the end”, and be sure to click “create a copy.”  

5) In the site book, right-click the tab for the empty template (it should say 
“Date”) and rename it the collection date of the data you are inputting. At the 
top right of the spreadsheet, type in the site name and date the data was 
collected in the cells below the headings for these entries (Site Name and 
Date). 
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6) In the raw data .csv file, confirm the date and time of the first transect at the 
site correspond with your field notes. 
a. For Grassland Sites: 

i. In the raw data .csv file corresponding to the first set of transect 
readings, copy the file name (date and time of file) and paste it into 
the site book spreadsheet for the corresponding date in the box 
directly right of T1.  

ii. Record your notebook notes on the climate conditions (sunny, 
cloudy, etc) in the Notes box (cell E2). 

iii. Back in the raw data .csv file, hold the CTRL key and select all 11 
SUM rows for the T1 record. Copy and paste them into the empty 
box below T1 in the site book spreadsheet for the corresponding 
date.  

iv. Check values in columns C and D in the pasted data to be sure that 
they match with your field  notes (C is average above- and D is 
average below- canopy readings for each flag). 

v. Repeat i and ii for T2 and T3 for that date.  
vi. Navigate to E:\Research\LAI\AccuPAR_Data\GroomedDataFiles 

and open LAI_Extract_AllSites.xls. 
vii. Copy row 2 (site name, date, average LAI, standard deviation, and 

notes) in the site book and paste it onto the bottom of the data 
record for the corresponding site in LAI_Extract_AllSites.xls. 
Check to make sure the data point is now plotted on the pertinent 
graph at right.  

b. For Forested Sites: 
i. In the raw data .csv file corresponding to the first set of transect 

readings, copy the file name (date and time of file) and paste it into 
the site book spreadsheet for the corresponding date in the box 
directly right of T1.  

ii. In cell E5 of the site book, enter the day of year, in Ordinal date 
format (converter at http://www.fs.fed.us/raws/book/julian.shtml), 
on which the data was collected. Hit return and the day will copy 
itself down. 

iii. In cell D5 of the site book, enter the Standard time in hours at 
which the first transect, T1, was measured. When we are in 
Mountain Daylight Time (Summer, about March 8-Nov 1 in 2009), 
subtract one hour from the time the measurement was taken (if the 
filename is Sep-13-09 11:13, your Standard time in hours will be 
10.22, because 11-1=10 and 13/60=0.22). 

iv. Back in the raw .csv file, locate the first SUM row in the date/time 
file you are working with. Holding the Ctrl button, highlight the 
cells in columns C, D, and F of that row. Copy them and paste 
them to the right somewhere in column M.  
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v. Next, holding the Ctrl button highlight the cells in column D of the 
next four SUM rows (four is flexible, depending on how the data 
was collected. You want to highlight the SUM-row cells with 0’s 
to the left of them). Copy them, and paste them in column N 
beneath the previous row of data you pasted. 

vi. Holding the Ctrl button, highlight the cells in columns C,D, and F 
of the next SUM row (the next SUM row with numbers in all of 
those cells). Copy and paste into M beneath the last row of data 
pasted in N.  

vii. Holding the Ctrl button highlight the cells in column D of the next 
four (give or take) SUM rows (again, those with 0’s to the left of 
them). Copy them, and paste them in column N beneath the 
previous row of data you pasted. 

viii. Holding the Ctrl button, highlight the cells in columns C,D, and F 
of the last SUM row (with numbers in all of those cells). Copy and 
paste into M beneath the last row of data pasted in N.  

ix. Your spreadsheet should look like the image below. 
 

 
x. Select the square of data you have pasted in columns M-O as 

shown above, copy it, and paste it in cell L11 (or the cell in column 
L aligned with the top line of data for the transect you are working 
with). Check it now to make sure the values agree with those 
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recorded in your field notes. If they don’t, find your error and 
figure out which set of values to enter into the sheet. 

xi. Select M11-21 (the below-canopy readings), copy, and paste in 
B11.  

xii. Copy L11 (or the first above-canopy reading) and paste into A11.  
xiii. Copy L16 (or the second above-canopy reading) and paste into 

A16.  
xiv. Copy L21 (or the third above-canopy reading) and paste into A21. 
xv. The equations between A11, A16, and A21 assume that the values 

decrease moving down the column. When the values increase, you 
need to select the first equation (either A12 or A17 depending on 
whether the numbers increase from A11 to A16, or from A16 to 
A21), change the first (-) sign to a plus sign, and drag the box to 
copy the equation down to the next 3 cells below.  

xvi. Select and delete L and M 11-21, shifting the LP-80 LAI values 
(column N) left so they line up with the predicted LAI column. 
Check them to see if they are close to the values predicted in the 
LAI column. If the measured values are much more than about 1 
LAI unit different than the predicted values, double check the 
spreadsheet for errors (more error is expected if the above-canopy 
reading did not correspond with the 6th flag, as the spreadsheet 
assumes). Your sheet should look like the below: 
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xvii. Always check the column with the orange heading, 

“*r,FractionPotentialPARReachingProbe (All Values > 0.82 
Set=0.82. Values< 0.2,Set=0.2.)”. As it instructs, if the values are 
> 0.82 or < 0.2, you need to manually adjust them. Usually this 
only happens if it was an intermittently cloudy day, or if you 
measure outside the 9am-3pm time frame. Failure to check this can 
lead to big errors.  

xviii. Repeat the above i through xvii (except ii) for T2 and T3, 
remembering to manually enter the corresponding Standard time in 
hours into cells D6 and D7, respectively, for each transect file.  

xix. Check your values against your field notes for accuracy.  
xx. Navigate to E:\Research\LAI\AccuPAR_Data\GroomedDataFiles 

and open LAI_Extract_AllSites.xls. 
xxi. Copy row 2 (site name, date, average LAI, standard deviation, and 

notes) in the site book and paste it onto the bottom of the data 
record for the corresponding site in LAI_Extract_AllSites.xls. 
Check to make sure the data point is now plotted on the pertinent 
graph at right.  
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APPENDIX D 

Protocol for NDVI Data Assembly and Processing 
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Performing NDVI Analyses in DCEW using Landsat 5 Remotely Sensed Data 

 
1) Finding and downloading Landsat Data:  

a) Go to: http://edcsns17.cr.usgs.gov/EarthExplorer/ 

b) Enter Search terms:  
Address/Place Name: Boise ID (Hit “Search” after this, so that the lat/long show 
up in the boxes below) 

c) In “From” and “To” specify dates desired, and check “Search these months only” 

d) At left bar, navigate to Landsat Archive, then down to Landsat 4-5 TM 
Additional Search Criteria:  choose Cloud cover < 10%.  

i) These criteria return images for Path 41 row 30, and Path 42 row 30, from 
Landsat 5. Look for clouds obscuring Dry Creek (in far upper right corner). 
Most data has been downloaded to G:\Boisefront\ToniSmith folder, as well as 
to the M: drive (see Jason Watt for access to backup copies). See the 
document entitled AvailableLandsat5DataforDryCreek.doc for a list of files 
found for the different growing seasons using the above criteria. 

2) Unzipping Files: Landsat files arrive as compressed .tar.gz files. I used Power 
Archiver to unzip the .gz files into .tar files, leaving me with a folder for each image 
containing individual files for each band as well as a readme file and a metadata file.  
I then saved the folders to the D: drive on my computer for faster processing.  

3) In ENVI 4.6.1, I use File: Open External File: Landsat: GeoTIFF to open the files for 
B20, B30 and B40 (bands 2, 3 and 4, or green, red and NIR, respectively). Load the 3 
bands as a false color 4,3,2 (RGB) image and check for clouds obscuring the image. 
If the key locations are cloud free, then proceed with processing the image. The raw 
DN values are not corrected for atmospheric affects, sensor issues, etc. to top-of-
atmosphere reflectance, so in order to compare band to band within an image we need 
to convert DN to reflectance. 

a) Convert raw DN values to reflectance for each of Band 2, Band 3 and Band 4 for 
each image date, using ENVI Band Math. The sample equation below combines 
two equations provided in Chander and Markham, 2003, discussed later under 
“Explanation of Equation”.... Open and load the file for a given band, Go to Basic 
Tools: Band Math, and enter the appropriate expression for the specific band, 
taking care to calculate d and θs for the date and band you are working on. Open 
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the associated Landsat file ending in _MTL.txt using Wordpad to obtain solar 
elevation for calculating θs. 

Example Band Math Expression for DN to reflectance conversion in Band 2: 
((((367.84/255)*float(B2))‐2.84)*3.14159*(d^2))/(1826* cosθs) 

Example Band Math Expression for DN to reflectance conversion in Band 3: 
((((265.17/255)*float(B3))‐1.17)*3.14159*(d^2))/(1554* cosθs) 

Example Band Math Expression for DN to reflectance conversion in Band 4: 
((((222.51/255)*float(B4))‐1.51)*3.14159*(d^2))/(1036* cosθs) 

 
 Where: 

o d = Earth‐Sun distance in astronomical units (interpolated from Chander and 
Markham 2003, Table III) 

o θs = solar zenith angle in degrees (= 90˚ ‐ solar elevation; solar elevation 
available in Landsat file ending in _MTL.txt associated with date of the 
Landsat folder you’re working with) 

 

After entering the equation into band math with the appropriate parameter values, 
click “Add to List” and OK, and then identify variable B4 (or the variable in your 
expression) as the appropriate Band file in the Available Bands list. Spatially subset 
the data by image by finding Dry Creek Watershed and drawing a generous square 
around the watershed (this makes processing faster). Save to a folder marked as “DN 
to Reflectance Conversions” with image date in file title. Repeat for each of Band 2, 
3, and 4. 

 Explanation of equation in example Band Math Expression, from Chander and Markham 2003: 

Ρp = (π*Lλ*d
2
)/ (ESUNλ*cosθs) 

In which  Lλ = [((Lmaxλ – Lminλ)/Qcalmax)*Qcal]+Lminλ 

Where: 

 Lλ = spectral radiance at sensor’s aperture in W/(m
2
*sr*µm) 

 Lmaxλ =spectral radiance scaled to Qcalmax in W/(m
2
*sr*µm) (from metadata file associated with Landsat 

file or Chander and Markham 2003, Table I, Band‐specific) 

 Lminλ =spectral radiance scaled to Qcalmin in W/(m
2
*sr*µm) (from metadata file associated with Landsat 

file or Chander and Markham 2003, Table I; Band‐specific) 

 Qcal = calibrated pixel value in Digital Numbers (DNs) (the raw value of pixels in the Landsat image) 

 Qcalmax = maximum calibrated pixel value (DN) corresponding to Lmaxλ (DN = 255) 

 Qcalmin = minimum calibrated pixel value (DN) corresponding to Lminλ (DN = 0) 

 Ρp = unitless planetary top‐of‐atmosphere reflectance 

 Lλ = spectral radiance at sensor’s aperture(radiance image calculated in (a) above) 

 d = Earth‐Sun distance in astronomical units (in Chander and Markham 2003, Table III) 

 ESUNλ = mean solar exoatmospheric irradiances in W/(m
2
μm) (from Chander and Markham 2003, Table 

II) 

 θs = solar zenith angle in degrees (= 90˚ ‐ solar elevation; solar elevation available in Landsat file ending in 
_MTL.txt associated with date of the Landsat folder you’re working with) 

 
If you choose not to combine the equations (takes longer but less room for error), here are samples for each stepwise 
conversion (DN to radiance, then radiance to reflectance): 
 

An example calculation in the Band Math window for a Band 4 image from 4/13/2008, convert DN to radiance, is: 
(((221+1.51)/255)*float(B4))‐1.51 

 
Example Band Math calculation converting radiance to reflectance for a June 23, 2008 image of Band 4 is: 
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(3.141592654*float(B4)*1.032764063)/(1036*0.8879491327) 
 

4) Perform Layer Stacking for the three bands processed above to combine them into 
one file. Go to Map: Layer Stacking; under Selected Files for Layer Stacking, Import 
the Reflectance image for B2 B3 or B4 created above, subset the image By File using 
the file NDVI_ISUClass_20080623 in the NDVI folder; click “Exclusive: range 
encompasses file overlap;” select the other Reflectance bands from that date as the 
file for layer stacking, and name the output file appropriately (place in a folder of 
StackedRed,NIRFiles). 

5) Next, perform NDVI processing on the stacked images produced in (b) above using 
the following equation in Band Math: 

NDVI = ( NIR-red)/(NIR+red); for Landsat 5, NDVI = (B4-B3)/(B4+B3) 
Where B4 and B3 are converted reflectance values for the NIR and red wavebands. 

 Band Math expression for NDVI:  (float(B4)-float(B3))/(float(B4)+float(B3)) 

Identify the variables in the expression by selecting the respective reflectance images 
from the stacked image. Spatially Subset the data, By File, selecting the file 
NDVI_ISUClass_20080623 in the NDVI folder; rename it NDVI_(imagedate), then 
save to the NDVI folder.  

6) Save each NDVI file as a Geotif/tif format with a modified name (I add “geotif” to 
the end of the file name as in “NDVI_date_geotiff”) and then you can open them in 
ArcGIS. 

7) Open all of the geotiffs for a given season (year) into a new ArcMap .mxd file titled 
“NDVI_year_DatesAsLayers.mxd.”  

a) For each layer, 

i) Click the layer to highlight it, then go to ArcToolbox, Data Management 
Tools, Projections and Transformations, Raster, Project Raster.   

(1) In the Project Raster dialogue box, select the image as your input raster. 

(2) The next box, Input Coordinate System, should automatically say 
WGS_1984_UTM_Zone_11N because the geotiff contains this 
information. Otherwise, you can select that system.  

(3) Give your Output Raster Dataset a name and location (I click the folder 
box and navigate to the location, then type in a name).   

(4) Choose your Output Coordinate System by clicking the finger/paper 
browse button to the right of the box, go to XY Coordinate System tab, 
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click Select, Projected Coordinate Systems, UTM, NAD 1983, and NAD 
1983 UTM Zone 11N.prj.   

(5) For Geographic Transformation, select NAD_1983_To_WGS_1984_5.  

(6) For Resampling Technique, I use Cubic, and I keep Output Cell Size as 
30.  

(7) Hit OK. You just made the projection of the Landsat data match the 
projection of all our Dry Creek data. Be sure to do this for every single 
layer. 

ii) If the added geotifs don’t show up well, or show up as black squares, you 
need to stretch the values. Right-click each layer and go to Properties, 
navigate to the Symbology tab. Low in the dialogue box you’ll see a section 
titled “Stretch, Type:” in the type box select Histogram Equalize and OK, then 
click “yes” to the dialogue box asking if you want to compute histograms . 
This will stretch the values so that a) you can see the NDVI image instead of a 
big black box, and b) the values will closely match the distribution, max mean 
and min, of the values the image had in ENVI (the numbers will differ very 
slightly, by less than about 0.01, due to the cubic convolution resampling 
technique chosen in reprojection above). You can check it in ENVI by loading 
the NDVI image, right clicking on it, and selecting “Quick Stats” which 
reports the statistical distribution of the image values. Be sure to do this for 
every single layer. 

8) Now that you have the season’s worth of NDVI data loaded as layers into the map 
file, and you have them all stretched so the data values are correct, and they are 
reprojected into NAD 83 so they’ll match our other Dry Creek data, you can get out 
the values at all the important locations you have UTM coordinates for (have them 
saved in a database IV, .dbf file, with all columns formatted as numbers. You can 
Save As this file format from an excel file).  

a) Load your locations (point data), either as the existing .shp or .lyr files, or as your 
.dbf file (to to Tools-Add XY data to get the tabulated locations mapped onto the 
image, and Save As a layer file if you want). 

b) Go to ArcToolbox: Spatial Analyst Tools: Extraction: Sample. You may need to 
enable the Spatial Analyst toolbox by going to “Tools: Extensions… “ and 
clicking the box for Spatial Analyst, then “Close.” In “Input Rasters” select all of 
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the raster layers that you’ve loaded into the map file. For Input location raster or 
point features, select the file of your point locations.  Use the folder button to 
select a location and name for your Output Table.  I select “Nearest” for 
Resampling Technique.  Then hit OK.  

c) Once the output file shows up in the map file (under Source tab, not usually 
Display) you can open its attribute table and go to Options: Export, select All 
Records and specify the location you want to save it to.  
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APPENDIX E 

Methodology for Particle Size Analysis by Sieving and Laser Diffraction 



145 
 

 

PARTICLE SIZE ANALYSIS PROCEDURE BY SIEVING and LASER 
DIFFRACTION 
 (adapted from ASTM Standard D 422-63 and Gee and Or 2002) 
 
Supplies

 Balance accurate to 0.01 g 
 Deionized water (DI) 
 Ziploc sample bags 
 Sharpie pen 
 Wax paper 
 Thermometer 
 4% sodium 

hexametaphosphate (SHP) 
dispersing agent, 40g/L (mix 
VERY well in distilled by 

stirring vigorously in a beaker) 
 Clock or timing device 
 Standard Sieves (9.5mm, #4, #10, 

and #200) 
 Sieve Shaker Apparatus 
 Milkshake mixer and mixing cups 
 Mortar and pestle 
 250 and 500 mL Beaker 
 Metal Spatula  
 Metal spoon 
 Paper plates

 
 
Dry Sieving: 

 
1. If the sample is moist, air-dry the field sample in its opened ziploc sample bag for 

24 hrs in a 20°C room. Weigh the total sample and record the Total Sample Mass, 
Sample ID, Date Collected, and any notes on the Sieve Datasheet (headings table 
below). Paper plates and wax paper can be used as a weighing surface for the 
balance, just remember to zero the balance to the weighing surface. 

2. Use the mortar and pestle to gently break up obvious aggregates of particles, 
tackling the samples in small portions of (roughly 2 tablespoons worth) soil at a 
time. Prepare a stack of 9.5mm, #4, #10, and #200 sieves, and pour the total 
sample onto the top sieve. Sieve the sample dry through a 9.5mm, #4, #10, and 
#200 sieves, shaking in sieve shaker for 10 minutes. Weigh the mass of sample 
retained on each sieve; if needed, use the mortar and pestle again to gently break 
up obvious aggregates of particles for the portion held on each sieve (especially 
the larger sieves, where aggregates are typically more obvious), then pour it back 
onto the sieve and shake/tap it a few times to allow fine particles to pass through 
before weighing. Record the mass retained on each sieve.   

3. Label and individually bag portions a) > 2mm (retained on #10, #4, and 9.5mm 
sieves), b) < 2mm but > 0.075mm (retained on #200), and c) < 0.075mm (passing 
#200, retained in bottom pan). Mark bag of material < 0.075mm (passing #200) as 
“for LD analysis” (for laser diffraction analysis). 

4. Enter resulting data carefully into the spreadsheet provided.  
 
Wet Sieving: 
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1. Prepare enough 4% solution of sodium hexametaphosphate and distilled water to 
cover each sample you plan to run the next day in 125 mL of solution. I 
recommend placing the desired amount of SHP in a large beaker, then adding the 
appropriate amount of deionized water and stirring vigorously, letting the solution 
soak while you complete other work to help the crystals dissolve completely.  

2. Obtain the bagged portion labeled “< 2mm but > 0.075mm” (the bag may just 
marked as “< 2mm”). On Wet Sieve Datasheet, record Sample ID, date collected, 
and today’s date as “Date of Wet Sieve Test.” Zero the balance with a paper plate 
as the weighing surface, then weigh the contents of the bag on the paper plate and 
record as “Dry Mass of < 2mm Fraction Before Wet Sieve.” Place each sample in 
a labeled 250mL beaker and record Beaker ID on datasheet. Cover each sample 
with 125mL of 4% SHP solution (or more, if needed, to cover the soil sample) 
and stir until the soil is thoroughly wetted. Cover each beaker and allow it to soak 
for at least 16 hrs.  

3. Wash as many baking pans as you plan to need and allow them to dry. Make sure 
they are all labeled uniquely and clearly.  

4. After soaking, use a spatula to stir the soil sample up again. Using the spatula and 
a squirt bottle of DI, transfer the entire soil sample into a metal mixing cup and 
add enough DI to fill cup to 1/3 full. Stir in milkshake mixer for 1 minute, then 
use spatula and DI squirt bottle to transfer entire contents of mixing cup into the 
#200 large bucket sieve poised over the sink. Fine material can go down the drain.  

5. Wash the sieve contents with tap water until the wash water is clear. Weigh a 
baking pan and record the Pan ID and mass on the datasheet, then carefully 
transfer all the material retained on the #200 sieve to the marked baking pan 
(using a squirt bottle and more water if needed), and dry overnight in an oven at 
about 110 degrees Celsius.  

6. Next day, remove samples from oven and allow to cool until mass stabilizes. 
Then weigh and record mass of pan and sample as “Dry Mass of < 2mm, > 
0.075mm Fraction and Pan After Wet Sieve (g).” The spreadsheet will calculate 
the mass of dry soil in the pan. 

7. Scrape the sample out of the pan as best you can and bag it, labeling the bag with 
the original sample ID, date collected, as well as the words “< 2mm, > 0.075mm, 
wet-sieved.”  

8. Enter data carefully into the spreadsheet provided.  
 

 
Laser Diffraction:  
 

1. Prepare enough 4% solution of sodium hexametaphosphate and distilled water to 
cover each sample you plan to run the next day in 10 mL of solution. I 
recommend placing the desired amount of SHP in a large beaker, then adding the 
appropriate amount of deionized water and stirring vigorously, letting the solution 
soak while you work to help the crystals dissolve completely.  
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2. Obtain the bagged fraction < 0.075mm labeled “for LD analysis” (for laser 
diffraction analysis). Zero the balance with a small piece of wax paper as a 
weighing surface, then spoon and weigh out a subsample of 0.1 to 0.2g soil < 
0.075mm for laser diffraction. Place each subsample in a labeled test tube and 
record tube ID, sample ID, and sample mass on attached Laser Diffraction 
Datasheet.  

3. Cover each sample with 10 ml of 4% (40g/L) sodium hexametaphosphate 
solution- please remember to stir this solution thoroughly and dissolve the SHP 
completely in deionized water! Cap the tube and invert 10 times to mix 
thoroughly, then let soak for ≥16 hours (but < 24 hours). 

4. Run the sample through the Mastersizer according to the Mastersizer SOP 
document using the Toni’sSoils SOP. 
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Wet Sieve Datasheet   Date_______________    

Samples included:        
         
Wet Sieve Analysis         
         

Sample ID 
Date 

Collected 

Date of 
Wet 
Sieve 
Test  

Beaker 
ID 

Dry Mass of < 
2mm Fraction 

Before Wet 
Sieve (g) 

Pan ID 

Pan 
Dry 

Mass 
(g) 

Dry Mass 
of < 2mm, 

> 
0.075mm 
Fraction 
and Pan  

After Wet 
Sieve (g)  

Dry Mass 
of < 2mm, 

> 
0.075mm 
Fraction 

After Wet 
Sieve (g) 
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Wet Sieve Datasheet  Date_______________    

Samples included:       
        
Wet Sieve Analysis        
        

Sample ID 
Date 

Collected 
Beaker 

ID 

Dry Mass of < 
2mm Fraction 

Before Wet 
Sieve (g) 

Pan ID 

Pan 
Dry 

Mass 
(g) 

Dry Mass of 
< 2mm, > 
0.075mm 

Fraction and 
Pan  After 

Wet Sieve (g)  

Dry Mass of 
< 2mm, > 
0.075mm 
Fraction 

After Wet 
Sieve (g) 
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Laser Diffraction Datasheet  Date _______________ 
Samples included: 

Sieve samples to < 0.075mm (through #200 sieve) and disperse for 16 or more hours in 40g/L sodium hexametaphosphate. 

Sample ID Test Tube ID Mass Soil (g) Notes 
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APPENDIX F 

Protocol for Preparation of Soil Samples for Analysis of Carbon Content 
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Preparation of Air-Dried Soil Samples for Soil Carbon Analysis 
 (from M. Kunkel, personal communication, March 2008) 

1. Weigh and record weights for soil bags and pans; weigh five groups of 10 bags or 

pans, dividing the total weight of each group by 10; the result is the average 

weight, with error, of the sample bags or pans, determined from 50 individuals. 

2. Weigh original soil sample and bag and record weight. 

3. Place in freezer to await processing or start processing steps. 

4. Air dry over night with bag open.  Very moist samples may require longer drying 

(until weight becomes constant). 

5. Label two new bags with code. 

6. Sieve sample with 2 mm and 1 mm sieves.  Using the metal pestle, lightly stir 

sample on the 1 mm grate to break up any clumps and make sure all material < 1 

mm goes through. 

7. Put remaining sample (> 1 mm) back into original bag and label bag “coarse.”  

Weigh and record coarse weight.   

8. Weigh the < 1 mm portion in the pan. Record weight. 

9. Pour < 1 mm sample onto a piece of wax or freezer paper and roll sample back 

and forth to homogenize. 

10. Take 1 Tbsp sub-sample and place on paper plate.  Re-homogenize sample and 

take another 1 Tbsp sub-sample and place on plate; repeat this a third time. 

11. Place remaining sample in a new Ziploc bag labeled with code and “< 1 mm”. 

Weigh and record weight. 

12. Pour sub-sample on paper plate back on to the wax or freezer paper and 

homogenize.   

13. Take ¼ tsp sub-sample and place in 250 µm sieve. 
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14. Place the soil remaining on wax paper in a new bag labeled with code and 

“Subsample 1”. Weigh and record.  

15. Process the soil on the 250 µm sieve. Shake sieve and tap on counter to remove 

all material < 250 µm. 

16. Pour sub-sample that did not go through the sieve onto the paper plate. 

17. Place sub-sample on plate into the agate mortar and pestle and grind sample by 

hand for about 30-60 seconds.  

18. Put sub-sample into 250 µm sieve and shake and tap sieve. 

19. Sub-sample that did not go through the sieve can either be ground by hand again, 

or placed in the capsule and ground in the WIG-L-BUG. 

20. When the entire sub-sample goes through the 250 µm sieve, swirl sub-sample 

until homogenized. 

21. Label tin. 

22. Transfer ground soil to the tin. 

23. Place soil tin in oven at 105ºC for 1 hour. 

24. Remove soil tin from oven, let cool for 1 minute.  

25. Weigh and record weight. 

26. Transfer soil in tin into small, labeled, glass vial (make a funnel out of weighing 

paper, or put on paper plate and fold, or bend the tin cup) and place in a 

Rubbermaid container with about 2 cm of Drierite (or return to freezer to await 

analyses). 

27. Analyze sample for organic and inorganic carbon using Flash EA Elemental 

Analyzer according to standard operating procedures developed by M. Kunkel.   
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APPENDIX G 

Soil Texture Results by Laser Diffraction and Hydrometer/Sieve Conversion 
Methods 
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Table G1. Soil Texture Results by Laser Diffraction and Hydrometer/Sieve Conversion 
Methods. Samples whose depth is labeled “BR” were taken from the decomposed granite 
horizon treated as bedrock. Gravel content was derived from the whole sample. 
 

   Laser Diffraction Results 
Hydrometer/Sieve Conversion 
Results 

Original 
Gravel 
Content 

Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

HN 1 2 67 31 2 
sandy 
loam 
(SL)  

68 23 8 
sandy 
loam 
(SL)  

22 

HN 1 15 67 31 2 
sandy 
loam 
(SL)  

68 23 8 
sandy 
loam 
(SL)  

21 

HN 1 30 82 17 1 
loamy 
sand 
(LS)  

79 14 8 
loamy 
sand 
(LS)  

38 

HN 1 34 80 19 1 
loamy 
sand 
(LS)  

77 15 8 
sandy 
loam 
(SL)  

34 

HN 2 2 69 29 2 
sandy 
loam 
(SL)  

70 22 8 
sandy 
loam 
(SL)  

22 

HN 2 2 69 29 2 
sandy 
loam 
(SL)  

70 22 8 
sandy 
loam 
(SL)  

22 

HN 2 15 66 32 2 
sandy 
loam 
(SL)  

67 24 8 
sandy 
loam 
(SL)  

18 

HN 2 30 72 26 2 
loamy 
sand 
(LS)  

72 20 9 
sandy 
loam 
(SL)  

21 

HN 2 40 68 29 3 
sandy 
loam 
(SL)  

69 22 9 
sandy 
loam 
(SL)  

27 

HN 3 2 71 27 1 
sandy 
loam 
(SL)  

71 21 8 
sandy 
loam 
(SL)  

22 

HN 3 15 67 32 2 
sandy 
loam 
(SL)  

68 24 8 
sandy 
loam 
(SL)  

41 

HN 3 30 68 30 2 
sandy 
loam 
(SL)  

69 23 9 
sandy 
loam 
(SL)  

21 

HN 3 54 80 19 2 
loamy 
sand 
(LS)  

77 15 8 
sandy 
loam 
(SL)  

23 

HN 4 2 67 31 2 
sandy 
loam 
(SL)  

68 23 8 
sandy 
loam 
(SL)  

16 

HN 4 2 67 31 2 
sandy 
loam 
(SL)  

68 23 8 
sandy 
loam 
(SL)  

16 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

HN 4 15 69 29 2 
sandy 
loam 
(SL)  

70 22 8 
sandy 
loam 
(SL)  

19 

HN 4 30 74 24 2 
loamy 
sand 
(LS)  

73 18 9 
sandy 
loam 
(SL)  

19 

HN 4 52 77 21 2 
loamy 
sand 
(LS)  

75 16 8 
sandy 
loam 
(SL)  

15 

HS 1 2 78 20 1 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

31 

HS 1 15 73 25 2 
loamy 
sand 
(LS)  

73 19 8 
sandy 
loam 
(SL)  

28 

HS 1 30 75 23 3 
loamy 
sand 
(LS)  

74 18 9 
sandy 
loam 
(SL)  

21 

HS 1 48 75 22 3 
loamy 
sand 
(LS)  

74 17 9 
sandy 
loam 
(SL)  

24 

HS 2 2 74 25 2 
loamy 
sand 
(LS)  

73 19 8 
sandy 
loam 
(SL)  

19 

HS 2 2 74 24 2 
loamy 
sand 
(LS)  

73 19 8 
sandy 
loam 
(SL)  

19 

HS 2 15 75 23 2 
loamy 
sand 
(LS)  

74 18 8 
sandy 
loam 
(SL)  

20 

HS 2 30 75 22 3 
loamy 
sand 
(LS)  

74 17 9 
sandy 
loam 
(SL)  

20 

HS 2 52 75 23 3 
loamy 
sand 
(LS)  

74 18 9 
sandy 
loam 
(SL)  

22 

HS 3 2 78 21 1 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

20 

HS 3 15 77 22 1 
loamy 
sand 
(LS)  

75 17 8 
sandy 
loam 
(SL)  

27 

HS 3 30 76 22 2 
loamy 
sand 
(LS)  

75 17 9 
sandy 
loam 
(SL)  

23 

HS 3 57 77 20 2 
loamy 
sand 
(LS)  

76 16 9 
sandy 
loam 
(SL)  

25 

HS 4 2 78 20 1 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

43 

HS 4 15 74 24 2 
loamy 
sand 
(LS)  

73 18 8 
sandy 
loam 
(SL)  

22 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

HS 4 30 75 22 3 
loamy 
sand 
(LS)  

74 17 9 
sandy 
loam 
(SL)  

27 

HS 4 57 78 20 2 
loamy 
sand 
(LS)  

76 16 9 
sandy 
loam 
(SL)  

27 

            

LN 1 2 42 53 4 
silt loam 
(SiL)  

51 39 11 loam (L)  24 

LN 1 15 41 52 7 
silt loam 
(SiL)  

49 38 12 loam (L)  40 

LN 1 15 42 51 6 
silt loam 
(SiL)  

50 37 12 loam (L)  40 

LN 1 15 41 54 5 
silt loam 
(SiL)  

50 40 11 loam (L)  40 

LN 1 30 40 54 5 
silt loam 
(SiL)  

49 40 11 loam (L)  41 

LN 1 60 46 49 5 
sandy 
loam 
(SL)  

53 36 11 
sandy 
loam 
(SL)  

34 

LN 1 BR 68 29 3 
sandy 
loam 
(SL)  

69 22 9 
sandy 
loam 
(SL)  

47 

LN 2 2 43 53 4 
silt loam 
(SiL)  

51 39 10 loam (L)  24 

LN 2 2 43 53 4 
silt loam 
(SiL)  

51 39 10 loam (L)  24 

LN 2 15 40 55 5 
silt loam 
(SiL)  

49 40 11 loam (L)  28 

LN 2 15 39 56 5 
silt loam 
(SiL)  

48 41 11 loam (L)  28 

LN 2 15 39 56 5 
silt loam 
(SiL)  

48 41 11 loam (L)  28 

LN 2 15 39 56 5 
silt loam 
(SiL)  

48 41 11 loam (L)  28 

LN 2 15 39 56 5 
silt loam 
(SiL)  

48 41 11 loam (L)  28 

LN 2 15 39 54 7 
silt loam 
(SiL)  

48 39 12 loam (L)  28 

LN 2 15 40 54 7 
silt loam 
(SiL)  

49 39 12 loam (L)  28 

LN 2 30 41 54 5 
silt loam 
(SiL)  

49 39 11 loam (L)  37 

LN 2 60 49 47 5 
sandy 
loam 
(SL)  

55 34 11 
sandy 
loam 
(SL)  

30 

LN 2 BR 65 32 3 
sandy 
loam 
(SL)  

67 24 9 
sandy 
loam 
(SL)  

50 

LN 3 2 41 55 4 
silt loam 
(SiL)  

49 40 11 loam (L)  28 

LN 3 15 38 55 7 
silt loam 
(SiL)  

47 40 13 loam (L)  32 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

LN 3 15 40 53 7 
silt loam 
(SiL)  

49 39 13 loam (L)  32 

LN 3 15 38 55 7 
silt loam 
(SiL)  

47 40 13 loam (L)  32 

LN 3 15 37 58 5 
silt loam 
(SiL)  

47 42 11 loam (L)  32 

LN 3 30 36 58 6 
silt loam 
(SiL)  

46 42 12 loam (L)  35 

LN 3 59 56 40 4 
sandy 
loam 
(SL)  

60 29 10 
sandy 
loam 
(SL)  

65 

LN 3 
70 
(BR) 

69 28 3 
sandy 
loam 
(SL)  

69 22 9 
sandy 
loam 
(SL)  

64 

LN 4 2 44 52 4 
silt loam 
(SiL)  

52 38 10 loam (L)  36 

LN 4 2 44 52 4 
silt loam 
(SiL)  

51 38 10 loam (L)  36 

LN 4 15 39 57 4 
silt loam 
(SiL)  

48 41 11 loam (L)  35 

LN 4 15 40 53 7 
silt loam 
(SiL)  

49 39 12 loam (L)  35 

LN 4 30 37 57 6 
silt loam 
(SiL)  

47 42 12 loam (L)  28 

LN 4 64 54 42 5 
sandy 
loam 
(SL)  

59 31 11 
sandy 
loam 
(SL)  

38 

LN 4 
73 
(BR) 

58 38 4 
sandy 
loam 
(SL)  

61 28 10 
sandy 
loam 
(SL)  

47 

LS 1a 2 88 12 0 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

26 

LS 1a 2 88 12 0 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

26 

LS 1a 15 88 11 1 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

44 

LS 1a 15 88 11 1 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

44 

LS 1a 30 85 14 1 
loamy 
sand 
(LS)  

81 11 7 
loamy 
sand 
(LS)  

58 

LS 1a 40 77 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

66 

LS 1b 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

22 

LS 1b 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

22 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

LS 1b 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

22 

LS 1b 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

22 

LS 1b 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

22 

LS 1b 15 85 14 1 
loamy 
sand 
(LS)  

81 11 7 
loamy 
sand 
(LS)  

29 

LS 1b 15 85 14 1 
loamy 
sand 
(LS)  

81 11 7 
loamy 
sand 
(LS)  

29 

LS 1b 15 85 14 1 
loamy 
sand 
(LS)  

81 11 7 
loamy 
sand 
(LS)  

29 

LS 1b 15 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

29 

LS 1b 30 95 5 0 
sand 
(S)  

88 5 7 sand (S)  52 

LS 2 2 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

24 

LS 2 2 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

24 

LS 2 15 89 10 1 
sand 
(S)  

84 9 7 
loamy 
sand 
(LS)  

40 

LS 2 30 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

62 

LS 3a 2 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

23 

LS 3a 15 74 24 2 
loamy 
sand 
(LS)  

73 18 8 
sandy 
loam 
(SL)  

58 

LS 3a 30 75 23 2 
loamy 
sand 
(LS)  

74 18 8 
sandy 
loam 
(SL)  

70 

LS 3a 40 84 15 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

60 

LS 3b 2 80 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

16 

LS 3b 15 77 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

37 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

LS 3b 15 78 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

37 

LS 3b 30 92 8 1 
sand 
(S)  

86 7 7 
loamy 
sand 
(LS)  

52 

LS 4 2 84 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

19 

LS 4 2 84 15 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

19 

LS 4 15 76 22 2 
loamy 
sand 
(LS)  

75 17 8 
sandy 
loam 
(SL)  

41 

LS 4 30 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

50 

LS 4 42 82 17 1 
loamy 
sand 
(LS)  

79 13 8 
loamy 
sand 
(LS)  

62 

LS 4b 15 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

30 

LS 4b 15 80 19 1 
loamy 
sand 
(LS)  

77 15 8 
sandy 
loam 
(SL)  

30 

LS 4b 30 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

36 

MHN 1 2 64 34 2 
sandy 
loam 
(SL)  

66 25 9 
sandy 
loam 
(SL)  

32 

MHN 1 15 63 33 4 
sandy 
loam 
(SL)  

65 25 10 
sandy 
loam 
(SL)  

35 

MHN 1 15 63 33 4 
sandy 
loam 
(SL)  

65 25 10 
sandy 
loam 
(SL)  

35 

MHN 1 15 63 35 3 
sandy 
loam 
(SL)  

65 26 9 
sandy 
loam 
(SL)  

35 

MHN 1 30 68 29 3 
sandy 
loam 
(SL)  

69 22 9 
sandy 
loam 
(SL)  

35 

MHN 1 71 73 25 2 
loamy 
sand 
(LS)  

73 19 8 
sandy 
loam 
(SL)  

34 

MHN 2 2 63 35 2 
sandy 
loam 
(SL)  

65 26 9 
sandy 
loam 
(SL)  

37 

MHN 2 2 63 35 2 
sandy 
loam 
(SL)  

65 26 9 
sandy 
loam 
(SL)  

37 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MHN 2 15 58 37 5 
sandy 
loam 
(SL)  

62 28 11 
sandy 
loam 
(SL)  

34 

MHN 2 15 58 37 5 
sandy 
loam 
(SL)  

62 27 11 
sandy 
loam 
(SL)  

34 

MHN 2 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

34 

MHN 2 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

34 

MHN 2 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

34 

MHN 2 30 63 35 3 
sandy 
loam 
(SL)  

65 26 9 
sandy 
loam 
(SL)  

26 

MHN 2 97 67 30 3 
sandy 
loam 
(SL)  

68 23 9 
sandy 
loam 
(SL)  

32 

MHN 3 2 66 32 2 
sandy 
loam 
(SL)  

68 24 8 
sandy 
loam 
(SL)  

32 

MHN 3 15 56 39 5 
sandy 
loam 
(SL)  

60 29 11 
sandy 
loam 
(SL)  

34 

MHN 3 15 56 39 5 
sandy 
loam 
(SL)  

60 29 11 
sandy 
loam 
(SL)  

34 

MHN 3 15 57 40 3 
sandy 
loam 
(SL)  

61 30 9 
sandy 
loam 
(SL)  

34 

MHN 3 30 64 33 3 
sandy 
loam 
(SL)  

66 25 9 
sandy 
loam 
(SL)  

39 

MHN 3 52 68 29 3 
sandy 
loam 
(SL)  

69 22 9 
sandy 
loam 
(SL)  

29 

MHN 4 2 60 38 3 
sandy 
loam 
(SL)  

63 28 9 
sandy 
loam 
(SL)  

26 

MHN 4 2 60 38 3 
sandy 
loam 
(SL)  

63 28 9 
sandy 
loam 
(SL)  

26 

MHN 4 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

29 

MHN 4 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

29 

MHN 4 15 59 39 3 
sandy 
loam 
(SL)  

62 29 9 
sandy 
loam 
(SL)  

29 



162 
 

162 
  

 
Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MHN 4 15 58 37 5 
sandy 
loam 
(SL)  

61 28 11 
sandy 
loam 
(SL)  

29 

MHN 4 15 58 37 5 
sandy 
loam 
(SL)  

62 27 11 
sandy 
loam 
(SL)  

29 

MHN 4 30 66 31 3 
sandy 
loam 
(SL)  

68 23 9 
sandy 
loam 
(SL)  

29 

MHN 4 74 65 32 3 
sandy 
loam 
(SL)  

66 24 9 
sandy 
loam 
(SL)  

40 

MHS 1 2 88 11 1 
sand 
(S)  

84 9 7 
loamy 
sand 
(LS)  

26 

MHS 1 2 89 11 1 
sand 
(S)  

84 9 7 
loamy 
sand 
(LS)  

26 

MHS 1 15 85 14 1 
loamy 
sand 
(LS)  

81 11 7 
loamy 
sand 
(LS)  

14 

MHS 1 15 85 14 1 
sand 
(S)  

81 11 7 
loamy 
sand 
(LS)  

14 

MHS 1 15 84 15 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

14 

MHS 1 15 84 15 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

14 

MHS 1 15 84 15 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

14 

MHS 1 30 84 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

21 

MHS 1 30 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

21 

MHS 1 30 84 15 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

21 

MHS 1 70 82 17 1 
loamy 
sand 
(LS)  

79 14 8 
loamy 
sand 
(LS)  

25 

MHS 1 70 82 17 1 
loamy 
sand 
(LS)  

79 14 8 
loamy 
sand 
(LS)  

25 

MHS 2 2 87 12 1 
sand 
(S)  

82 10 7 
loamy 
sand 
(LS)  

18 

MHS 2 15 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

21 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MHS 2 15 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

21 

MHS 2 15 85 14 1 
sand 
(S)  

81 11 7 
loamy 
sand 
(LS)  

21 

MHS 2 15 86 14 1 
sand 
(S)  

81 11 7 
loamy 
sand 
(LS)  

21 

MHS 2 15 86 14 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

21 

MHS 2 30 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

24 

MHS 2 30 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

24 

MHS 2 59 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

22 

MHS 3 2 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

20 

MHS 3 2 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

20 

MHS 3 2 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

20 

MHS 3 15 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

19 

MHS 3 15 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

19 

MHS 3 30 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

24 

MHS 3 30 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

24 

MHS 3 60 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

19 

MHS 3 60 85 14 1 
loamy 
sand 
(LS)  

81 12 7 
loamy 
sand 
(LS)  

19 

MHS 4 2 87 13 1 
sand 
(S)  

82 10 7 
loamy 
sand 
(LS)  

21 

MHS 4 2 87 13 1 
sand 
(S)  

82 10 7 
loamy 
sand 
(LS)  

21 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MHS 4 15 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

21 

MHS 4 15 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

21 

MHS 4 30 87 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

22 

MHS 4 30 86 13 1 
sand 
(S)  

82 11 7 
loamy 
sand 
(LS)  

22 

MHS 4 60 87 12 1 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

29 

MHS 4 60 87 12 1 
sand 
(S)  

83 10 7 
loamy 
sand 
(LS)  

29 

MLN 1 30 64 33 3 
sandy 
loam 
(SL)  

66 25 9 
sandy 
loam 
(SL)  

21 

MLN 1 84 72 26 2 
sandy 
loam 
(SL)  

72 20 8 
sandy 
loam 
(SL)  

68 

MLN 2 2 72 26 1 
loamy 
sand 
(LS)  

72 20 8 
sandy 
loam 
(SL)  

23 

MLN 2 2 72 26 1 
loamy 
sand 
(LS)  

72 20 8 
sandy 
loam 
(SL)  

23 

MLN 2 15 67 31 2 
sandy 
loam 
(SL)  

68 24 8 
sandy 
loam 
(SL)  

26 

MLN 2 30 67 31 2 
sandy 
loam 
(SL)  

68 23 8 
sandy 
loam 
(SL)  

26 

MLN 2 89 66 32 3 
sandy 
loam 
(SL)  

67 24 9 
sandy 
loam 
(SL)  

26 

MLN 3 2 68 30 1 
sandy 
loam 
(SL)  

69 23 8 
sandy 
loam 
(SL)  

20 

MLN 3 2 68 30 1 
sandy 
loam 
(SL)  

69 23 8 
sandy 
loam 
(SL)  

20 

MLN 3 15 65 33 2 
sandy 
loam 
(SL)  

67 25 9 
sandy 
loam 
(SL)  

27 

MLN 3 30 65 33 2 

sandy 
loam 
(SL)  
 

66 25 9 
sandy 
loam 
(SL)  

27 
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Site 
ID 

Pit 
Depth(
cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MLN 3 61 73 25 2 
loamy 
sand 
(LS)  

73 19 8 
sandy 
loam 
(SL)  

58 

MLN 4 2 71 27 1 
loamy 
sand 
(LS)  

71 21 8 
sandy 
loam 
(SL)  

22 

MLN 4 2 71 27 1 
loamy 
sand 
(LS)  

71 21 8 
sandy 
loam 
(SL)  

22 

MLN 4 15 66 32 2 
sandy 
loam 
(SL)  

67 24 8 
sandy 
loam 
(SL)  

18 

MLN 4 30 65 33 3 
sandy 
loam 
(SL)  

66 25 9 
sandy 
loam 
(SL)  

19 

MLN 4 71 80 19 1 
loamy 
sand 
(LS)  

78 15 8 
sandy 
loam 
(SL)  

39 

MLS 1 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

19 

MLS 1 2 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

19 

MLS 1 15 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

18 

MLS 1 30 77 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

23 

MLS 2 2 84 15 1 
loamy 
sand 
(LS)  

80 12 7 
loamy 
sand 
(LS)  

20 

MLS 2 2 84 15 1 
loamy 
sand 
(LS)  

80 12 7 
loamy 
sand 
(LS)  

20 

MLS 2 15 83 16 1 
loamy 
sand 
(LS)  

80 13 7 
loamy 
sand 
(LS)  

21 

MLS 2 30 84 15 1 
loamy 
sand 
(LS)  

81 12 8 
loamy 
sand 
(LS)  

23 

MLS 3 2 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

21 

MLS 3 2 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

21 

MLS 3 15 81 18 1 

loamy 
sand 
(LS)  
 

78 14 8 
loamy 
sand 
(LS)  

24 
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Site 
ID 

Pit 
Depth 
(cm) 

% 
Sand 

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% 
Sand  

% 
Silt 

% 
Clay 

USDA 
Texture 
Class 

% Gravel 

MLS 3 30 78 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

24 

MLS 3 52 79 19 1 
loamy 
sand 
(LS)  

77 15 8 
sandy 
loam 
(SL)  

22 

MLS 4 2 81 18 1 
loamy 
sand 
(LS)  

78 14 8 
loamy 
sand 
(LS)  

17 

MLS 4 15 77 21 2 
loamy 
sand 
(LS)  

76 16 8 
sandy 
loam 
(SL)  

21 

MLS 4 30 84 15 1 
loamy 
sand 
(LS)  

80 12 8 
loamy 
sand 
(LS)  

43 
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APPENDIX H  

Time Series of Soil Moisture and Soil Temperature at 10-minute Sampling Intervals 
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Figure H1. Volumetric water content and temperature of soil for site HN at original 10-minute sampling intervals.  



169 
 

169 
  

 

Figure H2. Volumetric water content and temperature of soil for site HS at original 10-minute sampling intervals.  
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Figure H3. Volumetric water content and temperature of soil for site MHN at original 10-minute sampling intervals.  
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Figure H4. Volumetric water content and temperature of soil for site MHS at original 10-minute sampling intervals.  
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Figure H5. Volumetric water content and temperature of soil for site MLN at original 10-minute sampling intervals.  
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Figure H6. Volumetric water content and temperature of soil for site MLS at original 10-minute sampling intervals.  
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Figure H7. Volumetric water content and temperature of soil for site LN at original 10-minute sampling intervals. 
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Figure H8. Volumetric water content and temperature of soil for site LS at original 10-minute sampling intervals. 
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APPENDIX I 

Site-by-Site Description of Soil Moisture and Soil Temperature Observations 
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The following sections detail characteristic trends in soil water and soil 

temperature at the soil moisture study sites. Descriptions are ordered first by individual 

site, from the highest elevations to the lowest with north aspect site followed by south 

aspect site at each elevation. Next, north-south aspect pairs at each elevation are directly 

contrasted, with comparisons ordered from highest elevation to lowest elevation. Last, 

observed trends across the elevation gradient at each aspect is reported.  Data are 

tabulated in Table A.7. 

  

HN: High Elevation, North Aspect Site 

Site HN represents the highest-elevation, north-facing slope in this study. It is 

located at an elevation of 1812 m a.s.l., on a slope of approximately 23° and an aspect 

due directly north. Figure A28 shows the time series of soil water content and soil 

temperature with timing of precipitation and snow cover at site HN (blue). Table A7 

summarizes the dates and values given here. Snow covered the site continuously from 

12/5/2008 to 4/20/2009. Mean soil water content at the site over the shared period (the 

period of record common to all sites, 11/29/2008 to 9/1/2009) was 0.24. The soil profile 

reached a maximum water content of 0.33 on 4/22/2009. The minimum observed water 

content was 0.03 on 9/18/2008; a site failure during late summer dry down prevented 

observation of a real minimum moisture value in 2009. The profile dropped below the 
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wilting point water content of 0.10 on 7/27/2009. Mean profile-averaged soil temperature 

over the shared period was 5.3°C, with a maximum of 13.4°C on 8/4/2009 and a 

minimum of 1.2°C on 4/21/2009. The mean depth of water stored in the soil profile was 

15.7 cm, with a minimum storage of 1.9 cm on 9/7/2008 and a maximum of 21.5 cm on 

4/22/2009.  

Figure A29 shows the differences in soil water content at different depths in the 

soil profile, along with the field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (37-54 cm bgs) were generally the driest portions of 

the profile, while the 15 and 30 cm depths tended to be the wettest. Mean standard 

deviation over the profile was 0.04 for water content and 0.76°C for temperature. The 

bottom of the profile exceeded the field capacity water content of 0.190 for 225 days 

during the winter and spring. The soil-bedrock interface wetted up in mid-November 

2008, remained wet through winter, and responded to large rain events in spring 

and summer. 

HS: High Elevation, South Aspect Site 

Site HS represents the highest elevation, south-facing slope in this study. It is 

located at an elevation of 1835 m a.s.l., on a slope of approximately 25° and an aspect 

due approximately 13° west of south. Figure A28 shows the time series of soil water 

content and soil temperature with timing of precipitation and snow cover at site HS (red). 

Table A7 summarizes the dates and values given here. Snow covered the site 
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continuously from 12/5/2008 to 4/15/2009.  Mean soil water content at the site over the 

shared period was 0.20. The soil profile reached a maximum water content of 0.27 on 

3/21/2009, 4/8/2009, 4/13/2009, and 4/20/2009. The minimum observed water content 

was 0.02 on 9/14/2008 and 10/3/2009. The profile dropped below the wilting point water 

content of 0.1 on 7/23/2009. Mean profile-averaged soil temperature over the shared 

period was 6.3°C, with a maximum of 14.2°C on 8/29/2009 and a minimum of 1.7°C on 

4/14/2009. The mean depth of water stored in the soil profile was 14.3 cm, with storage 

minima of 1.4 cm on 9/14/2008 and 1.5 cm on 10/3/2009, and maximum storage of 19.6 

cm on 4/8/2009, 4/13/2009, and 4/20/2009.  

Figure A30 shows the differences in soil water content at different depths in the 

soil profile, along with the field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (48-57 cm bgs) were generally the driest portions of 

the profile, while the 15 and 30 cm depths tended to be the wettest. Mean standard 

deviation over the profile was 0.01 for water content and 0.66°C for temperature. The 

bottom of the profile exceeded the field capacity water content of 0.170 for 218 days 

during the winter and spring. The soil-bedrock interface wetted up in mid-November 

2008, remained wet through winter, and responded to large rain events in spring 

and summer. 
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MHN: Mid-high Elevation, North Aspect Site 

Site MHN represents the mid-high elevation, north-facing slope in this study. It is 

located at an elevation of 1472 m a.s.l., on a slope of approximately 28° and an aspect 

due approximately 5° east of north. Figure A31 shows the time series of soil water 

content and soil temperature with timing of precipitation and snow cover at site MHN 

(blue). Table A7 summarizes the dates and values given here. Snow covered the site 

intermittently from 12/5/2008 to 4/6/2009.  Mean soil water content at the site over 

shared period was 0.16. The soil profile reached a maximum water content of 0.24 on 

3/19/2009, 3/22/2009. The minimum observed water content was 0.03 on 8/24/2008 and 

9/30/2009. The profile dropped below the wilting point water content of 0.10 on 

7/19/2009. Mean profile-averaged soil temperature over the shared period was 7.2°C, 

with a maximum of 17.9°C on 8/3/2009 and 8/5/2009, and a minimum of 1.2°C on 

3/1/2009. The mean depth of water stored in the soil profile was 14.6 cm, with storage 

minima of 2.9 cm on 9/18/2008 and 3.0 cm on 10/3/2009, and maximum storage of 21.7 

cm on 3/19/2009. 

Figure A32 shows the differences in soil water content at different depths in the 

soil profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (50-60 cm bgs) were generally the driest portions of 

the profile, while the 15 and 30 cm depths tended to be the wettest. Mean standard 

deviation over the profile was 0.03 and 0.96°C. The bottom of the profile exceeded the 

field capacity water content of 0.165 for 162 days during the winter and spring. The soil-
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bedrock interface wetted up in January 2008, remained wet through winter, and 

responded to a large rain event in June. Summer rain (August) did not appear to 

reach the bottom of the soil profile. 

MHS: Mid-high Elevation, South Aspect Site 

Site MHS represents the mid-high elevation, south-facing slope in this study. It is 

located at an elevation of 1457 m a.s.l., on a slope of approximately 33° and an aspect 

due approximately 10° east of south. Figure A31 shows the time series of soil water 

content and soil temperature with timing of precipitation and snow cover at site MHS 

(red). Table A7 summarizes the dates and values given here. Snow covered the site 

intermittently from 12/11/2008 to 3/13/2009. Mean water content at the site over the 

shared period was 0.13. The soil profile reached a maximum water content of 0.20 on 

3/16/2009. The minimum observed water content was 0.02 on 10/28/2008 and 9/22/2009. 

The profile dropped below the wilting point water content of 0.06 on 5/27/2009. Mean 

profile-averaged soil temperature over the shared period was 11.9°C, with a maximum of 

28.7°C on 8/4/2009 and a minimum of 1.8°C on 2/13/2009 and 2/15/2009. The mean 

depth of water stored in the soil profile was 9.8 cm, with storage minima of 1.26 cm on 

11/1/2008 and 1.57 cm on 10/2/2009, and maximum storage of 15.6 cm on 3/16/2009. 

Figure A33 shows the differences in soil water content at different depths in the 

soil profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (71-97 cm bgs) portions of the profile were generally 
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the driest, while the 15 and 30 cm depths were generally the wettest. The mean standard 

deviation over the profile was 0.04 water content and 1.8 C. The bottom of the soil 

profile exceeded the field capacity water content of 0.145 for 137 days during the winter 

and spring. The soil-bedrock interface wetted up from mid-November through 

December, remained wet through winter, and responded to a large rain event in 

June. Summer rain (August) did not appear to reach the bottom of the soil profile. 

MLN: Mid-low Elevation, North Aspect Site 

Site MLN represents the mid-low elevation, north-facing slope in this study. It is 

located at an elevation of 1288 m a.s.l., on a slope of approximately 33° and an aspect 

due approximately 3° east of north. Figure A34 shows the time series of soil water 

content and temperature with timing of precipitation and snow cover at site MLN (blue).  

Table A7 summarizes the dates and values given here. Snow covered the site 

intermittently from approximately 12/4/2008 to 4/1/2009. Mean soil water content at the 

site over the shared period was 0.18. The soil profile reached a maximum water content 

of 0.28 on 3/16/2009. The minimum observed water content was 0.03 on 9/1/2008 and 

10/2/2009. The profile dropped below the wilting point water content of 0.1 on 7/7/2009. 

Mean profile-averaged soil temperature over the shared period was 8.9°C, with a 

maximum of 20.8°C on 8/3/2009 and a minimum of 0.68°C on 3/16/2009. The mean 

depth of water stored in the soil profile was 15.4 cm, with storage minima of 2.6 cm on 

9/18/2008 and 3.0 cm on 10/3/2009, and maximum storage of 24.8 cm on 3/16/2009. 
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Figure A35 shows the differences in soil water content at different depths in the 

soil profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (61-89 cm bgs) portions of the profile were generally 

the driest, while the 15 and 30 cm depths were generally the wettest. The mean standard 

deviation over the profile was 0.05 water content and 1.6°C. The bottom of the profile 

exceeded the field capacity water content of 0.190 for at least 56 days during winter and 

spring (data gaps prevent a conclusive total). The soil-bedrock interface wetted up in 

late December through January, remained wet through winter, and did not respond 

to summer rain (August). 

MLS: Mid-low Elevation, South Aspect Site 

Site MLS represents the mid-low elevation, south-facing slope in this study. It is 

located at an elevation of 1298 m a.s.l., on a slope of approximately 25° and an aspect 

due approximately 2° east of south. Due to a series of malfunctions, the time series at 

MLS contains several data gaps (from 9/30/2008 to 10/15/2008, 11/14/2008-12/22/2008, 

2/2/2009-3/9/2009, 3/14/2009 to 3/24/2009, 4/6/2009 to 4/18/2009, 9/16/2009 to 

9/17/2009), therefore the following discussion is based largely on observed data; data 

gaps were filled by linear interpolation to calculate days of potential deep drainage. Also, 

the soil profile was only deep enough at only one soil pit to add a sensor below the 30 cm 

depth, so the deep soil conditions reported here for 52 cm bgs result from only one 

sensor, rather than a mean of four deep sensors as at most other sites.  
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Figure A34 shows the time series of soil water content and temperature with 

timing of precipitation and snow cover at site MLS (red). Table A7 summarizes the dates 

and values given here. Snow covered the site intermittently from approximately 

12/4/2008 to 1/26/2009.  Mean profile-averaged soil water content at the site over the 

shared period was 0.11. The soil profile reached a maximum water content of 0.21 on 

4/2/2009. The minimum observed water content was 0.03 on 9/1/2008 and 10/1/2009. 

The profile dropped below the wilting point water content of 0.06 on 5/22/2009. Mean 

profile-averaged soil temperature over the shared period was 16.3°C, with a maximum of 

31.0°C on 8/3/2009 and a minimum of 1.1°C on 2/1/2009. The mean depth of water 

stored in the soil profile was 4.2 cm, with storage minima of 0.99 cm on 9/13/2008 and 

1.1 cm on 10/3/2009, and maximum storage of 7.9 cm on 4/2/2009.  

Figure A36 shows the differences in soil water content at different depths in the 

soil profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (52 cm bgs) portions of the profile were typically the 

driest, while the 15 and 30 cm depths were generally the wettest. The mean standard 

deviation over the profile was 0.05 water content and 1.6°C. The bottom of the profile 

exceeded the field capacity water content of 0.16 for at least 48 days during spring (data 

gaps prevent a conclusive total). The soil-bedrock interface wetted up in January and 

responded to large rain events in spring and summer. 
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LN: Low Elevation, North Aspect Site 

Site LN represents the low elevation, north-facing slope in this study. It is located 

at an elevation of 1120 m a.s.l., on a slope of approximately 24° and an aspect due 

approximately 9° east of north. Figure A37 shows the time series of soil water content 

and soil temperature with timing of precipitation and snow cover at site LN (blue). Table 

A7 summarizes the dates and values given here. Snow covered the site intermittently 

from approximately 12/4/2008 to 3/13/2009. Mean soil water content over the shared 

period was 0.20. The soil profile reached a maximum water content of 0.28 on 3/15/2009. 

The minimum observed water content was 0.04 on 9/12/2008 (2009 minimum uncertain 

due to failure). The profile dropped below the wilting point water content of 0.14 on 

7/9/2009. Mean profile-averaged soil temperature over the shared period was 9.0°C, with 

a maximum of 22.0°C on 8/3/2009 and a minimum of 1.1°C on 2/21/2009. The mean 

depth of water stored in the soil profile was 13.1 cm, with storage minima of 2.95 cm on 

9/15/2008 and 5.61 cm on 8/5/2009, and maximum storage of 18.6 cm on 3/16/2009. 

Figure A38 shows the differences in soil water content at different depths in the 

soil profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (62-64 cm bgs) portions of the profile were generally 

the driest, while the 15 and 30 cm depths were generally the wettest. The mean standard 

deviation over the profile was 0.05 water content and 1.6°C. The bottom of the profile 

exceeded the field capacity water content at of 0.175 for 125 days during winter and 

spring. The soil-bedrock interface wetted up in late December through January 
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2008, remained wet through winter, and responded slightly to a large rain event in 

June. Summer rain (August) did not appear to reach the bottom of the profile.  

LS: Low Elevation, South Aspect Site 

Site LS represents the low elevation south-facing slope in this study. It is located 

at an elevation of 1139 m a.s.l., on a slope of approximately 27° and an aspect due 

approximately 8° west of south. Figure A37 shows the time series of soil water content 

and temperature with timing of precipitation and snow cover at site LS (red). Table A7 

summarizes the dates and values given here. Snow covered the site continuously from 

12/13/2008 to 1/18/2009. Mean soil water content over the shared period was 0.14. The 

soil profile reached a maximum water content of 0.21 on 4/2/2009. The minimum 

observed water content was 0.07 on 5/21/2009. Mean profile-averaged soil temperature 

over the shared period was 16.0°C, with a maximum of 34.6°C on 8/3/2009 and a 

minimum of 1.4°C on 1/27/2009. The mean depth of water stored in the soil profile was 

4.7 cm, with a minimum storage of 2.1 cm on 6/1/2009, and maximum storage of 7.1 cm 

on 4/3/2009. 

Figure A39 shows the differences in soil moisture at different depths in the soil 

profile, along with field capacity and wilting point water contents at the site. The 

shallowest (2 cm bgs) and deepest (30 cm bgs) portions of the profile were generally the 

driest, while the 15 cm depth was generally the wettest. The mean standard deviation 

over the profile was 0.07 water content and 1.2°C. The bottom of the profile exceeded the 
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field capacity water content of 0.17 for 175 days during winter, spring, and summer. The 

soil-bedrock interface wetted up in December 2008, remained wet through winter, 

and responded to large rain events in spring and summer. 

Comparing North and South Aspects at the Highest Elevation Sites 

The amount and timing of soil water and the soil temperature were all similar 

during the growing season at both of the highest elevation sites, HN and HS (Figure B.27, 

Table A.7). A priori means comparisons at the α = 0.0001 level demonstrated that soil 

water storage at the high elevation sites over March through July 2009 did not differ 

significantly with aspect (n = 153 for each site; F = 8.10; p <  0.0045). Similarly, soil 

temperature did not differ between sites (n = 153 for each site; F = 0.57; p = 0.4513) 

(Table A.8). Soil moisture reached higher values slightly later into the spring on the north 

aspect relative to the south aspect (0.33 on 4/22/2009 versus 0.27 on 3/21/2009-

4/20/2009), and soil water content reached higher values on the north aspect (Figure B.27 

and Table A.7). Minimum observed moisture was similar on both aspects (0.02 on south 

aspect, 0.03 on north aspect). Overall, temperature tended to be slightly higher on the 

south aspect, but profile-averaged temperatures generally differed between the aspects by 

only around 1°C over the year (Figure B.27).  

Daily time series of soil water content at different depths indicate the soil-bedrock 

interface at both sites wetted up in mid-November 2008, remained wet through winter, 

and responded to large rain events in spring (June) and summer (August) (Figures B.28 
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and B.29). Field capacity at the base of the profile was exceeded on 225 days at the north 

aspect, and on 218 days on the south aspect. The initiation and duration of growing 

conditions were very similar at the highest elevation sites. Water content was slightly 

higher on the north face during the dry down period, indicating that slightly more water 

was present later into the growing season on the north aspect than on the south aspect 

(Figure B.27). Snow disappeared about 5 days earlier on the south aspect than the north. 

The surface soil temperature warmed above 5°C on the same date at both aspects. The 

south aspect dried below the wilting point 4 days earlier than the north aspect.  

Comparing North and South Aspects at the Mid-High Elevation Sites 

At the mid-high elevation sites MLN and MLS, soils on the north aspect were 

significantly more wet and cool and soil moisture lasted longer during the growing 

season relative to the south aspect (Figure B.30, Table A.7). A priori means comparisons 

at the α = 0.0001 level showed that over March – July 2009, soil water storage at the mid-

high elevation sites was significantly higher (n = 153 for each site; F = 298.14; p< 

0.0001) and profile-averaged soil temperature was significantly lower (n = 153 for each 

site; F = 61.27; p< 0.0001) on the north aspect. Maximum depth- averaged soil water 

content was higher and occurred at approximately the same time on the north aspect (0.24 

on 3/19/2009 and 3/22/2009) relative to the south aspect (0.20 on 3/16/2009). Minimum 

water content was lower and occurred about 7 days earlier on the south aspect (0.02 on 

9/22/2009) relative to the north aspect (0.03 on 9/30/2009).  A similar pattern was 
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observed in the previous dry season, when the south aspect reached minimum water 

content of 0.00 before the earliest record on 8/16/2008, while the north aspect reached a 

minimum water content of 0.03 on 8/24/2008. Average annual soil temperature was about 

5°C higher on the south aspect than the north, and soil temperature on the south aspect 

began rising about 45 days earlier than on the north aspect (Figure B.30). Daily time 

series of soil water content at different depths indicate that the soil-bedrock interface 

wetted up about 1 month earlier on the north aspect, remained wet through winter, 

responded to rains in June on both aspects, and did not respond to August rains on either 

aspect (Figures B.31 and B.32). Field capacity at the base of the profile was exceeded on 

162 days at the north aspect, and on 137 days on the south aspect.  

 Growing conditions initiated earlier on the south aspect, but lasted longer 

into the growing season on the north aspect, resulting in a longer growing season on 

the north aspect. Snow disappeared 24 days earlier on the south aspect than on the 

north. The surface soil temperature warmed above 5°C 28 days earlier on the south 

aspect. Water content was higher on the north aspect during the dry down period, 

indicating that more water was present later into the growing season on the north aspect. 

The north aspect remained above the wilting point for 53 days longer into the growing 

season than the south aspect.  
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Comparing North and South Aspects at Mid-Low Elevation Sites 

At the mid-low elevation sites MLN and MLS, north-facing soils were 

significantly more wet and cool and soil moisture lasted longer during the growing 

season relative to the south aspect (Figure B.33, Table A.7). A priori means comparisons 

at the α = 0.0001 level revealed that soil water storage over March through July 2009 was 

significantly higher (n = 153 for each site; F = 748.38; p< 0.0001), and profile-averaged 

soil temperature was significantly lower (n = 153 for each site; F = 55.89; p< 0.0001) on 

the north aspect. Although data gaps prevent comparison of the timing of maximum 

moisture, the maximum moisture value observed on the south aspect was lower (0.21) 

than on the north (0.28). The minimum water content of 0.03 was reached almost 

simultaneously on both aspects. Average annual soil temperature was about 7°C higher 

on the south aspect than on the north. Daily time series of soil water content at different 

depths indicate that the soil-bedrock interface wetted up very slightly earlier on the north 

aspect, responded to rains in June on both aspects, and responded to August rains only on 

the south aspect (Figures B.34 and B.35). Data gaps prevented determination of the 

number of days field capacity was exceeded at the base of the profile.  

Growing conditions initiated slightly earlier on the south aspect, and lasted 

longer into the summer on the north aspect, resulting in a longer growing season on 

the north aspect. Soil water content was higher on the north aspect relative to the south 

aspect (Figure B.33) during the dry down period. Snow disappeared about 66 days earlier 

on the south aspect than on the north. Surface soils warmed above 5°C three days earlier 
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on the south aspect than on the north. The north aspect remained above the wilting point 

for 46 days longer into the growing season than the south aspect.   

Comparing North and South Aspects at the Lowest Elevation Sites 

At the lowest elevation sites LN and LS, north-facing soils were significantly 

more wet and cool and soil moisture lasted longer during the growing season relative to 

the south aspect (Figure B.36, Table A.7). A priori means comparisons at the α = 0.0001 

level revealed that soil water storage over March through July 2009 showed that soil 

water storage was significantly higher (n = 153 for each site; F = 444.48; p< 0.0001), and 

profile-averaged soil temperature was significantly lower (n = 153 for each site; F = 

97.13; p< 0.0001) on the north aspect. Maximum soil moisture was higher and occurred 

18 days earlier on the north aspect (0.28 on 3/15/2009) than on the south aspect (0.21 on 

4/2/2009). Minimum moisture on the south aspect was lower and occurred 60 days earlier 

(0.06 on 6/1/2009) than the minimum moisture on the north aspect (0.08 on 7/31/2009). 

Mean soil temperature is 7°C warmer on the south aspect. Soil temperature became 

increasingly different on north and south aspects as the summer progressed, with south 

aspect increasing from 0 to 13°C warmer than the north aspect between late January and 

late August. Daily time series of soil water content at different depths indicate that the 

soil-bedrock interface wetted up very slightly earlier on the south aspect, remained wet 

through winter, responded to rains in June on both aspects, and responded to August rains 
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only on the south aspect (Figures B.37 and B.38). Field capacity was exceeded at the base 

of the soil profile for 125 days on the north aspect and for 175 days on the south aspect. 

Growing conditions initiated earlier on the south aspect, but lasted longer 

into the growing season on the north aspect, resulting in a longer growing season on 

the north aspect. Moisture was almost consistently lower on the south aspect from 

January in to summer, indicating that more soil water was present later into the growing 

season on the north aspect than on the south. One exception occurred when the heavy (37 

mm) summer storm on August 7, 2009 wetted the soils sufficiently that the south aspect 

became temporarily more wet than the north, after which the south aspect moisture 

declined more steeply, again becoming the drier slope. Snow left the south aspect 55 days 

earlier than the north aspect. Surface soils warmed to 5°C 27 days earlier on the south 

aspect than on the north. The north aspect remained above the wilting point water content 

for 49 days longer into the growing season than the south aspect.  

Comparing Sites Over the Elevation Gradient  

 Soil moisture shows a weak relationship with elevation, while soil 

temperature shows a consistent relationship with elevation. Figure B.39 shows the 

mean soil water content and soil temperature plotted against elevation for north and south 

aspects, with a trend line fitted to each group. The low coefficient of determination (R2 = 

0.42) and low slope on the north aspects are evidence of a weak relationship between 

elevation and soil moisture; on the south aspects, the R2 value (0.69) and slope are 
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somewhat higher. In contrast, soil temperature shows a consistently strong negative 

relationship with elevation at both aspects (R2 = 0.99 and 1.00), but the greater slope of 

the trend line fitting south aspect sites indicates a greater effect of elevation on soil 

temperature compared to the north aspects. In Figure B.40, the mean values of soil water 

storage over March through July 2009 have been plotted against elevation. Soil water 

storage accounts for the different soil depths at different sites; except for the highest 

elevation sites, soil depth increases with increasing elevation (Figure B.24). Soil water 

storage shows a stronger relationship with elevation on south aspects than did soil water 

content, although the relationship is still weak on the north aspects. When north-south 

aspect pairs at each elevation are grouped, a priori means comparisons indicate that soil 

water storage and soil temperature differ significantly at the highest elevation sites versus 

the mid-high elevation sites (n = 153 for each site; F = 88.76; p < 0.0001), and at the mid 

low elevation sites versus the lowest elevation sites (n = 153 for each site; F = 16.25; p < 

0.0001). The length of the potential growing season increases consistently with 

decreasing elevations on north aspects, and does not relate consistently with elevation on 

the south aspects. 

 


