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Abstract We give two sufficient criteria for schlichtness of envelopes of holomorphy in terms of topology.
These are weakened converses of results of Kerner and Royden. Our first criterion generalizes a result of
Hammond in dimension 2. Along the way, we also prove a generalization of Royden’s theorem.
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Let Ω ⊆ Cn be a domain. The envelope of holomorphy of Ω is a pair (Ω̃, π) consisting of a
connected Stein manifold Ω̃ and a locally biholomorphic map π : Ω̃ → Cn, together with
a holomorphic inclusion α : Ω → Ω̃, characterized by the following properties: π ◦ α is
the identity, and each holomorphic function f on Ω has a unique holomorphic extension
Ff on Ω̃, with f = Ff ◦ α. Let Ω′ = π(Ω̃) and let i = π ◦ α : Ω → Ω′. The envelope
of holomorphy (Ω̃, π) is schlicht if π : Ω̃ → Ω′ is biholomorphic. One would like to give
conditions on Ω to have a schlicht envelope of holomorphy.

Two results of Kerner and Royden lead to necessary conditions. Kerner [5] has shown
that α∗ : π1(Ω) → π1(Ω̃) is surjective. Royden [8] has shown that α∗ : H1(Ω̃; Z) →
H1(Ω; Z) is injective. It follows trivially that if (Ω̃, π) is schlicht, so Ω̃ = Ω′, then
i∗ : π1(Ω) → π1(Ω′) is surjective and i∗ : H1(Ω′; Z) → H1(Ω; Z) is injective.

Neither of these conditions is sufficient, by a result of Fornæss and Zame [1] (see [2,
§ 3]). Following an idea of Hammond [2], one may seek sufficient conditions by adjoining
to the surjectivity of i∗ (or injectivity of i∗) the assumption that π : Ω̃ → Ω′ is a covering
space. This strong assumption is still reasonable, as covering maps certainly occur among
envelopes of holomorphy; indeed, Fornæss and Zame show in [1] that for any covering
map π : Ω̃ → Ω′ there is a domain Ω ⊆ Ω′ with envelope of holomorphy (Ω̃, π).

Specifically, Hammond has shown that, in dimension n = 2, if i∗ : π1(Ω) → π1(Ω′) is
surjective and π : Ω̃ → Ω′ is a covering map, then (Ω̃, π) is schlicht. We give an elementary
proof of Hammond’s theorem in all dimensions n � 2. In addition, we give a sufficient
condition for schlichtness in terms of the injectivity of i∗ on cohomology, again assuming
π is a covering map. Along the way, we give an alternative proof of Royden’s theorem,
which also extends it to coefficient groups other than Z.
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Theorem 1. If π is a covering map and i∗ : π1(Ω) → π1(Ω′) is surjective, then (Ω̃, π)
is schlicht.

This extends the theorem of Hammond for dimension n = 2. Hammond’s proof relies
on a result of Jupiter [4], which is special to dimension 2.

Proof. The number of sheets of the covering map π is equal to the index of π∗(π1(Ω̃))
in π1(Ω′) (see, for example, [3, Proposition 1.32]). The surjectivity of i∗ = π∗ ◦ α∗
implies that π∗ is surjective. Hence, the index of the image subgroup is 1, so π : Ω̃ → Ω′

is 1-sheeted, i.e. a homeomorphism. Since π is a holomorphic homeomorphism, it is
biholomorphic and so Ω̃ is schlicht. �

Compare with the more technical proof in [2].
The cohomology in Royden’s result is Čech cohomology with coefficients in the sheaf

of locally constant Z-valued functions. Since our spaces are manifolds, Čech cohom-
ology coincides with singular cohomology (with coefficients in Z); see, for example, [6,
Theorem 73.2]. Recall also that by the universal coefficient theorem, H1(X; G) =
Hom(π1(X), G) for a path-connected space X and abelian coefficient group G [3, p. 198].

Before we go on, observe that this proves Royden’s theorem as a consequence of
Kerner’s theorem and extends it to other coefficient groups.

Theorem 2 (Royden). For any abelian group G, α∗ : H1(Ω; G) → H1(Ω̃; G) is injec-
tive.

Proof. Since α∗ : π1(Ω) → π1(Ω̃) is surjective,

α∗ : Hom(π1(Ω), G) → Hom(π1(Ω̃), G)

is injective and these Hom groups coincide with H1(Ω; G), H1(Ω̃; G). �

Royden proves this for G = Z using Čech cohomology, in particular the exponential
short exact sequence (hence the restriction to G = Z). No such result holds for higher
cohomology groups [1, Theorem 4].

Now, we aim to give a sufficient criterion for schlichtness by assuming i∗ : H1(Ω′; G) →
H1(Ω; G) is injective for every abelian group G, and that π is a covering map. Our
strategy is to deduce that π∗ : π1(Ω̃) → π1(Ω′) is surjective, as in the proof of Theorem 1.
This would follow if we could deduce that i∗ : π1(Ω) → π1(Ω′) is surjective, but, in
general, injectivity of Hom(A, G) → Hom(B, G) does not imply surjectivity of B → A.
The problem is that if the image of B is a proper subgroup which is not contained in any
proper normal subgroup, then there is no non-zero f : A → G vanishing on the image of
B. For example, let S3 be the symmetric group on three letters and let B = Z/2Z be
the subgroup generated by a transposition. If f : S3 → G is any group homomorphism
such that the restriction f | B is zero, then f itself is zero.

We must solve this problem by adjoining a hypothesis to ensure that every proper
subgroup of π1(Ω′) is contained in a proper normal subgroup. However, this alone is not
enough. For, suppose that B ⊂ π1(Ω′) is a proper subgroup, contained in a proper normal
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subgroup N . We get a non-zero homomorphism f : π1(Ω′) → G = π1(Ω′)/N , namely the
quotient map, whose restriction to B ⊆ N is zero, so Hom(π1(Ω′), G) → Hom(B, G) is
not injective. This will prove the theorem we want, but only if G is abelian, so we can
identify these Hom groups with singular cohomology.

So we need to know that every proper subgroup of π1(Ω′) is not only contained in a
proper normal subgroup, but in one such subgroup N whose quotient G = π1(Ω′)/N is
abelian.

Fortunately, this condition is more natural than it sounds. It holds if π1(Ω′) is nilpo-
tent, as in that case every maximal proper subgroup is normal and has prime index
(see [7, Theorem 5.40]).

We get the following.

Theorem 3. If π is a covering map, π1(Ω′) is nilpotent and i∗ : H1(Ω′; G) → H1(Ω; G)
is injective for every abelian group G, then (Ω̃, π) is schlicht.

Proof. Since i∗ = α∗ ◦ π∗ is injective, π∗ is injective as well. Via π∗, we regard π1(Ω̃)
as a subgroup of π1(Ω′). Recall that if H is any nilpotent group, then every maximal
proper subgroup N of H is normal and has prime index, and, in particular, H/N is
abelian. If π1(Ω̃) � π1(Ω′), there exists a maximal subgroup π1(Ω̃) ⊆ N � π1(Ω′) and
hence a surjection π1(Ω′) → G = π1(Ω′)/N to an abelian group with π1(Ω̃) mapping to
zero. This surjection is non-zero and lies in the kernel of

π∗ : H1(Ω′; G) = Hom(π1(Ω′), G) → Hom(π1(Ω̃), G) = H1(Ω̃; G)

for the abelian group G = π1(Ω′)/N , contradicting the injectivity of π∗.
It follows that π1(Ω̃) = π1(Ω′). As before, this implies that π is a degree 1 covering

map, and hence a biholomorphism. �

Solvability would not be enough, as shown by the example of Z/2Z ⊂ S3. This would
not only obstruct the proof given above, but would actually lead to a counter-example
to the version of the statement, with solvable in place of nilpotent.

Example 4. Recall that Artin’s braid group on three strands, denoted B3, is the
fundamental group of the complement of the braid arrangement A2 in C3, the union of the
three hyperplanes defined by (y−x)(z−x)(z−y) = 0. Quotienting by the small diagonal,
the line x = y = z = 0, B3 is the fundamental group of Ω′ ⊂ C2, the complement of the
union of three lines through the origin in C2. Let B2 ⊂ B3 be a subgroup corresponding
to two of the strands, so B2 ∼= Z has index 3 in B3 and is not normal. There exists a
covering space Ω̃ → Ω′ such that π1(X) = B2 ⊂ B3. Since U is a Stein manifold, so is
Ω̃ [9]. By [1, Theorem 5], there exists a domain Ω ⊂ Ω′ with envelope of holomorphy
Ω̃. This is not schlicht, but for every abelian group G, Hom(B3, G) → Hom(B2, G) is
injective.

More generally, let H be any finitely presented group. H is the fundamental group of
a 2-complex, which may be embedded in R5, or, for that matter, C3; then, a tubular
neighbourhood Ω′ of this complex (in C3) still has π1(Ω′) = H. Any subgroup K ⊂ H
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occurs as the fundamental group of a covering space Ω̃ → Ω′. Again, Ω̃ is Stein since Ω′

is, and there exists a domain Ω ⊂ Ω′ with envelope of holomorphy Ω̃.
It is not necessary to assume that i∗ is injective when coefficients are taken in any

abelian group G. It would be enough to assume that i∗ is injective when coefficients are
taken in any finite cyclic group, in any abelian quotient G of π1(Ω′) or even just in a
single abelian quotient G = π1(Ω′)/N for some proper normal subgroup N containing
π1(Ω̃).

If, in addition, π : Ω̃ → Ω′ is a normal covering space, then π1(Ω̃) ⊆ π1(Ω′) is a normal
subgroup and we can take G to be an abelian quotient of π1(Ω′)/π1(Ω̃), which is the
group of deck transformations.

Corollary 5. Suppose π is a normal covering map with deck transformation group H.
If there exists a non-zero abelian quotient G of H such that i∗ : H1(Ω′; G) → H1(Ω; G)
is injective, then (Ω̃, π) is schlicht.
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