
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Mathematics Faculty Publications and 
Presentations Department of Mathematics 

3-1-2013 

Borel's Conjecture in Topological Groups Borel's Conjecture in Topological Groups 

Fred Galvin 
University of Kansas 

Marion Scheepers 
Boise State University 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can 
be found online at Journal of Symbolic Logic, published by The Association for Symbolic Logic. Copyright 
restrictions may apply. DOI: 10.2178/jsl.7801110 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math
https://doi.org/10.2178/jsl.7801110


BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS

FRED GALVIN AND MARION SCHEEPERS

Abstract. We introduce a natural generalization of Borel’s Conjecture. For each infinite

cardinal number κ, let BCκ denote this generalization. Then BCℵ0
is equivalent to the clas-

sical Borel conjecture. Assuming the classical Borel conjecture,¬BCℵ1
is equivalent to the

existence of a Kurepa tree of heightℵ1. Using the connection of BCκ with a generalization

of Kurepa’s Hypothesis, we obtain the following consistency results:

(1) If it is consistent that there is a 1-inaccessible cardinal then it is consistent that BCℵ1
.

(2) If it is consistent that BCℵ1
, then it is consistent that there is an inaccessible cardinal.

(3) If it is consistent that there is a 1-inaccessible cardinal with ω inaccessible cardinals

above it, then ¬BCℵω + (∀n < ω)BCℵn
is consistent.

(4) If it is consistent that there is a 2-huge cardinal, then it is consistent that BCℵω .

(5) If it is consistent that there is a 3-huge cardinal, then it is consistent that BCκ for a

proper class of cardinals κ of countable cofinality.

A metric space (X, d) is strong measure zero if there is for each sequence (εn : n < ω)

of positive real numbers a corresponding sequence (Un : n < ω) of open sets such that for

each n the set Un has d-diameter at most εn, and {Un : n < ω} covers X. Strong measure

zero metric spaces are necessarily separable. E. Borel [5] conjectured that strong measure

zero sets of real numbers are countable. The metric notion of strong measure zero has a

natural generalization to non-metric contexts. Rothberger [17] introduced a generalization

to the class of topological spaces. We consider a generalization to the class of topological

groups. Most of our results can be presented in the more general context of uniformizable

spaces, but we found no advantage to presenting it thus.

Borel’s Conjecture also has natural generalizations to these non-metric contexts. These

generalizations expose, as in the metric case, interesting connections with the foundations

of mathematics. The generalization of Borel’s Conjecture considered here is quite different

from what Halko and Shelah considered in [11].

After a brief introduction of notation and terminology we define Rothberger bounded-

ness and Rothberger spaces in Section 1. In Section 2 we introduce a generalization of

Borel’s Conjecture and in Section 3 explore connections between it and other combina-

torial structures. In Section 4 we give a number of consistency and independence results

regarding the generalization introduced in the earlier sections.

By a well-known theorem of Kakutani a topological group is T0 if, and only if, it is T3 1
2

1.

Throughout this paper we shall assume, without further notice, that all groups considered

are T3 1
2
. Correspondingly, all topological spaces we consider here are assumed to be T3 1

2
.

Let (G, ∗) be a topological group with identity element 1. For nonempty subsets A and

B of G and for g ∈ G the symbol A ∗ B denotes the set {a ∗ b : a ∈ A and b ∈ B}, and g ∗ A

denotes {g} ∗ A. The symbol O denotes the set of all nonempty open covers of G.

2000 Mathematics Subject Classification. Primary 03E05, Secondary 03E35, 03E55, 03E65, 22A99.
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1A T0 topological group need not be normal.

1

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found 
online at Journal of Symbolic Logic, published by The Association for Symbolic Logic. Copyright restrictions may apply.  

DOI: 10.2178/jsl.7801110



2 FRED GALVIN AND MARION SCHEEPERS

Let U be an open neighborhood of 1. Then O(U) = {g ∗ U : g ∈ G} is an open cover of

G. Define:

Onbd := {O(U) : U an open neighborhood of 1}.

According to Guran [10] the topological group (G, ∗) is ℵ0-bounded if each element of

Onbd has a countable subset which covers G. A topological group is said to be pre-compact

if each element of Onbd has a finite subset covering the group.

While pre-compact topological groups and Lindelöf topological groups are ℵ0-bounded

the converse is not true. The class of ℵ0-bounded groups has nice preservation properties:

Every subgroup of an ℵ0-bounded group is ℵ0-bounded, any (finite or infinite) product

of ℵ0-bounded groups is ℵ0-bounded, every continuous homomorphic image of an ℵ0-

bounded group is ℵ0-bounded, and if a dense subgroup of a group is ℵ0-bounded, then so

is the group. The survey [25] gives a good introduction to ℵ0-bounded groups.

Theorem 1 (Guran). A topological group is ℵ0-bounded if, and only if, it embeds as a

topological group into a product of second countable topological groups.

By the Birkhoff-Kakutani theorem each second countable T0 topological group is metriz-

able. Thus the groups appearing as factors in the product in Guran’s theorem are separable

and metrizable. Guran’s theorem has the following quantified form (see [25]):

Theorem 2. For an ℵ0-bounded topological group (G, ∗) and an infinite cardinal number

κ the following are equivalent:

(1) The weight of G is κ.

(2) The character of G is κ.

(3) κ is the smallest infinite cardinal such that G embeds as a topological group into

a product of κ separable metrizable topological groups.

1. Rothberger boundedness in topological groups, Rothberger spaces.

For collectionsA and B the symbol S1(A,B) denotes the selection principle

For each sequence (An : n ∈ N) of elements of A there is a sequence

(bn : n ∈ N) such that for each n, bn ∈ An, and {bn : n ∈ N} ∈ B.

A topological space is said to be a Rothberger space if it has the property S1(O,O) (for

an introdction to Rothberger spaces the reader could consult [12]). The topological group

(G, ∗) is said to be Rothberger bounded if it has the property S1(Onbd,O). For a subset

X of the topological group (G, ∗), OX denotes the family of covers of X by sets open in

G. X is said to be Rothberger bounded if S1(Onbd,OX) holds. These concepts are named

after Rothberger who introduced S1(O,O) and who considered a close analogue of this

boundedness property in the Hilfssatz on page 51 of his paper [17].

If a subset of a topological group is a Rothberger space, then it is Rothberger bounded in

the group. The converse is not true. A subspace of a Rothberger space need not be a Roth-

berger space, but subsets of Rothberger bounded sets are Rothberger bounded. Rothberger

boundedness of a subset of a group is preserved by continuous group homomorphisms and

countable unions. The property of being a Rothberger space is preserved by continuous

surjections and by countable unions.

Proposition 3. Every Rothberger bounded subset of an ℵ0-bounded topological group is

zero-dimensional.

Proof: Let (G, ∗) be an ℵ0-bounded group. Choose by Guran’s theorem separable metriz-

able groups (Gi, ∗i), i ∈ I such that (G, ∗) embeds as topological group in the product
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 3

Πi∈I(Gi, ∗i) and let Φ be an embedding. The projection of Φ[G] on each coordinate of

this product is a metrizable group. The Rothberger boundedness of subsets of G is also

preserved by the composition of Φ and projections.

In metrizable groups Rothberger boundedness coincides with strong measure zero. Thus

a Rothberger bounded subset X of an ℵ0-bounded T0 group projects onto a metrizable

strong measure set in each coordinate projection. By a theorem of Marczewski [24] strong

measure zero metrizable spaces are zero-dimensional. Thus, as products and subspaces of

zero-dimensional spaces are zero-dimensional, X is zero-dimensional. �

The proof of Proposition 3 shows: Borel’s Conjecture implies that each Rothberger

bounded subset of an ℵ0-bounded topological group embeds as a Rothberger bounded

subset into a product of countable topological groups (see [6] Theorem 3.2). It also follows

that Rothberger spaces must be zero-dimensional, and that Borel’s Conjecture implies that

Rothberger spaces embed into products of countable topological groups.

If C ⊆ κ is nonempty and if S is a subset of
∏
α<κ Gα, then S C = { f �C : f ∈ S }.

Lemma 4. Let κ be an infinite cardinal number. Let (Gα : α < κ) be topological groups

and let a subset X of G =
∏
α<κGα be given. The following are equivalent:

(1) X is Rothberger bounded.

(2) For each countable set C ⊆ κ the set XC is a Rothberger bounded subset of GC .

Proof: (1)⇒(2): A continuous group homomorphism preserves Rothberger boundedness.

(2)⇒(1): Suppose for each countable C ⊆ κ we have that XC is a Rothberger bounded

subset of GC . Let (Un : n < ω) be a sequence of neighborhoods of the identity element of

G. We may assume that each Un is a basic open set such that there is a finite set Fn ⊆ κ

and for each x ∈ Fn a neighborhood Nx of 1x such that Un = { f ∈ G : (∀x ∈ Fn)( f (x) ∈

Nx)}. Let C be a countably infinite subset of κ for which
⋃

n<ω Fn ⊆ C. Then for each n,

Vn = Un�C⊆ GC is a neighborhood of the identity element of GC . Since XC is Rothberger

bounded choose for each n an xn ∈ GC such that XC ⊆
⋃

n<ω xn ∗ Vn. For each n choose

yn ∈ G such that yn�C= xn . Then we have X ⊆
⋃

n<ω yn∗Un. It follows that X is Rothberger

bounded. �

In the case of Rothberger spaces Lemma 4 has the following analogue:

Lemma 5. Let κ be an infinite cardinal number. Let (Gα : α < κ) be topological groups

and let a subspace X of G =
∏
α<κ Gα be given. Then the following are equivalent:

(1) X is a Rothberger space.

(2) X is Lindelöf and for each countable set C ⊆ κ the set XC is a Rothberger subspace

of GC .

A Rothberger bounded σ-compact subset of a topological group is a Rothberger space:

First note that a union of countably many Rothberger subspaces of a space is again a

Rothberger subspace. Thus, it suffices to show that a compact Rothberger bounded subset

of a topological group is a Rothberger space. For this, use of the following analogue of the

Lebesgue covering Lemma, following from Theorem 6.33 in [13]:

Lemma 6. Let C be a compact subset of a topological group (G, ∗) and let U be a cover

of C by sets open in G. Then there is a neighborhood N of the identity of G such that for

each x ∈ C there is a U ∈ U such that x ∗ N ⊆ U.

Corollary 7. For each infinite cardinal κ any topological group
∏
α<κ Gα, where each Gα

has at least two elements, has a Rothberger subgroup2 of cardinality κ.

2That is, a subgroup which is a Rothberger space.
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4 FRED GALVIN AND MARION SCHEEPERS

Proof: For each α < κ, choose a nontrivial (meaning that it has more than one ele-

ment) countable subgroup Hα of Gα, and let H =
∏
α<κ Hα. Then X = {x ∈ H : xα =

1 for all but finitely many α} is a subgroup of H of cardinality κ. Inasmuch as X is Lin-

delöf (in fact σ-compact), and XC is countable whenever C is countable, it follows by

Lemma 5 that X is a Rothberger space. �

Thus there are Rothberger (and so Rothberger bounded) groups of all infinite cardinali-

ties.

2. The Generalized Borel Conjecture

Let BC denote Borel’s conjecture that each strong measure zero set of real numbers

is countable3. For the real line with the addition operation, Borel’s conjecture translates

to the statement that every Rothberger bounded subset of the topological group (R,+) is

countable.

Theorem 8. The following statements are equivalent:

(1) BC

(2) Each strong measure zero metric space is countable.

(3) Each Rothberger bounded subset of a group of countable weight is countable.

(4) Each subgroup4 of the real line, all of whose finite powers are Rothberger, is count-

able.

Proof: (1)⇔(2): This result is due to T.J. Carlson [6].

(2)⇒(3): By the Kakutani-BirkhoffTheorem a T0 group of countable weight is metrizable

by a left-invariant metric. Any Rothberger bounded subset X of such a group is strong

measure zero in such a left-invariant metric. By 2), X is countable.

(3)⇒(4): Consider a subgroup G of the real line such that each finite power of G is Roth-

berger. Since G is Rothberger it is Rothberger bounded. Since the real line is a second

countable group, 3) implies that G is countable.

(4)⇒(1): If X is a set of real numbers, then [X], the subgroup of the real line generated

by X, is a countable union of continuous images of finite powers of X, and the same goes

for any finite power of [X]. Hence, if X has the property that all of its finite powers are

Rothberger, then [X] also has that property. Thus the implication (4)⇒ (1) follows from

the result of Tsaban and Weiss [27] that BC is equivalent to the statement that each subset

of the real line, all of whose finite powers are Rothberger, is countable. �

For λ a cardinal number and (G, ∗) a topological group, BC(G, < λ) states:

Each Rothberger bounded subset of (G, ∗) has cardinality less

than λ.

BC(G, < λ+) is also written BC(G, λ) and BC(G, ω) is also written BC(G).

It is clear that if μ < λ then BC(G, < μ) implies BC(G, < λ). Moreover, if H is a

subgroup of the group G then BC(G, < μ) implies BC(H, < μ).

Corollary 7 shows that for each infinite cardinal κ the statement BC(κ2, < κ) is false.

The status of BC(G, κ) for ℵ0-bounded groups of weight κ is more elusive. For an infinite

cardinal number κ we define, inspired by (3) of Theorem 8:

3Sierpiński [21] proved that the Continuum Hypothesis implies the negation of Borel’s conjecture, and Laver

[15] proved that Borel’s conjecture is consistent relative to the consistency of ZFC, the Zermelo-Fraenkel axioms

plus the Axiom of Choice. Thus, Borel’s conjecture is independent of ZFC.
4(4) remains equivalent to BC if we change ”subgroup” to ”subfield”.
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 5

BCκ: Each Rothberger bounded subset of an ℵ0-bounded group of

weight κ has cardinality at most κ.

Thus, BCℵ0
is Borel’s Conjecture, BC. It is also clear that for each infinite cardinal κ,

BCκ implies BC(κ2, κ). The status of BC(κ2, κ) is the focus of this paper.

3. BCκ for uncountable κ.

Let λ ≤ κ be uncountable cardinal numbers. A familyF of subsets of κ such that |F | > κ

and for each infinite subset A of κ such that |A| < λ, we have |{X ∩ A : X ∈ F }| ≤ |A|, is

said to be a (κ, λ) Kurepa family5. The (κ, λ) Kurepa Hypothesis, KH(κ,λ), is the assertion

that there exists a (κ, λ) Kurepa family. KH(ℵ1,ℵ1) is the classical Kurepa Hypothesis.

Theorem 9. Let κ be an uncountable cardinal. Let (Gα : α < κ) be a family of topological

groups, each with more than one element. If KH(κ,ℵ1), then
∏
α<κGα has a Rothberger

bounded subset (indeed, subgroup) of cardinality κ+.

Proof: For each α < κ let 1α denote the identity element of, and let gα be any other

element of the group Gα. Let F be a (κ,ℵ1) Kurepa family on κ. For each X ∈ F define

φX ∈
∏
α<κ Gα so that for each α < κ

φX(α) =

{
1α if α � X

gα if α ∈ X

Then S = {φX : X ∈ F } is a subset of cardinality |F | of
∏
α<κ Gα.

For each countable subset C of κ, the set S C = {φX�C : X ∈ F } has the same cardinality

as {X ∩ C : X ∈ F } and thus is countable. But then for each countable set C ⊂ κ, S C

is a Rothberger, and thus Rothberger bounded, subset of
∏
α∈C Gα. By Lemma 4 S is

a Rothberger bounded subset of
∏
α<κ Gα. Evidently S generates a Rothberger bounded

group. �

Corollary 10. For uncountable cardinals κ, BC(κ2, κ) implies the failure of KH(κ,ℵ1).

Solovay proved that Kurepa’s Hypothesis is consistent (it holds in the Constructible

Universe L). Silver [22] proved that the negation of Kurepa’s Hypothesis is consistent if,

and only if, it is consistent that there is an inaccessible cardinal. Thus, the consistency

of BCℵ1
(or even BC(ω1 2,ℵ1)) requires the consistency of the existence of an inaccessible

cardinal.

Theorem 11. For an uncountable cardinal κ, each of the statements below implies all the

succeeding ones; moreover, if BC holds, then they are all equivalent.

(1) BCκ.

(2) BC(κ2, κ).

(3) Each Rothberger bounded subgroup of the group (κ2,⊕) has cardinality at most κ.

(4) ¬KH(κ,ℵ1).

Proof: It is clear that (1) implies (2) and that (2) implies (3). Theorem 9 shows that (3)

implies (4). To see that (4) implies (1), assume that BCℵ0
holds and BCκ fails. Let G be an

ℵ0-bounded group of weight κwitnessing the failure of BCκ, and let S ⊆ G be a Rothberger

bounded subset of G of cardinality κ+. By Theorem 2 choose separable metrizable groups

Gα, α < κ such that G embeds as a topological group into
∏
α<κ Gα. Then S , considered

a subset of
∏
α<κ Gα, is Rothberger bounded in the latter and of cardinality κ+. Thus, by

Lemma 4, for each countable set C ⊆ κ the set S C ⊆
∏
α∈C Gα is Rothberger bounded.

5This definition is like the one in Chapter VII.3 of [8], but we do not require κ to be regular.
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6 FRED GALVIN AND MARION SCHEEPERS

Since
∏
α∈C Gα is a separable metrizable space and BCℵ0

holds, Theorem 8 implies that S C

is countable. Considering S as a family of subsets of
⋃

S we find that S is a witness that

the statement KH(κ,ℵ1) is true. �

Corollary 12. Assume BCℵ0
. Then BC(ω1 2,ℵ1) is equivalent to the failure of the Kurepa

Hypothesis.

A family F of subsets of an uncountable cardinal κ is said to be a κ-Kurepa family if

|F | > κ and for each infinite α < κ we have |{X ∩ α : X ∈ F }| ≤ |α|. Kurepa’s Hypothesis

for κ, KHκ, states that there exists a κ-Kurepa family. Note that a (κ, κ)-Kurepa family is

also an example of a κ-Kurepa family. Thus, KH(κ, κ) implies KHκ
6. It is clear that KH(κ, κ)

also implies KH(κ, λ) for each uncountable λ < κ.

Lemma 13. Let κ be an uncountable cardinal. If KH(λ, λ) fails for each uncountable

λ ≤ κ, then KH(κ,ℵ1) fails.

Theorem 14. For an uncountable cardinal κ, each of the statements below implies all the

succeeding ones. If BC holds, then statements (1)-(3) are equivalent. If BCλ holds for each

infinite cardinal λ < κ, then all four statements are equivalent:

(1) BCκ.

(2) BC(κ2, κ).

(3) ¬KH(κ,ℵ1).

(4) ¬KH(κ, κ).

Proof: In light of Theorem 11 and the definitions, the only statement that requires proof

is: For each uncountable cardinal κ, if for each infinite λ < κ, BCλ holds, then (4) implies

(3). This will be proven by induction on κ.

For κ = ℵ1 there is nothing to prove. Thus, assume that κ > ℵ1 and that the statement has

been proven for all uncountable cardinals less than κ. Towards proving the contrapositive,

assume that KH(κ,ℵ1) holds. Let F be a family of subsets of κ witnessing KH(κ,ℵ1). Then

|F | > κ, and for each countable subset A of κ, |{X ∩ A : X ∈ F }| ≤ ℵ0. Since BCλ holds for

each infinite cardinal λ < κ, Theorem 11 implies that KH(λ,ℵ1) fails for each uncountable

λ < κ. By the induction hypothesis, KH(λ, λ) fails for each uncountable cardinal λ < κ.

Thus, for each uncountable ordinal α < κ we have |{X ∩ α : X ∈ F }| ≤ |α|. But this means

KH(κ, κ) holds. �

Now consider inaccessible cardinals of uncountable cofinality. An uncountable regular

cardinal κ is ineffable if there is for each sequence (Aα : α < κ) where for each α, Aα ⊆ α,

a set A ⊆ κ for which {α < κ : Aα = A ∩ α} is stationary.

Theorem 15. Let κ be an ineffable cardinal. If BCλ holds for each infinite cardinal λ < κ,

then BCκ holds.

Proof: Let κ be an ineffable cardinal. Then KH(κ, κ) fails ([8], Theorem VII.3.1). By

Theorem 14 BCκ holds. �

An increasing sequence (να : α < μ) of cardinals is said to be continuous if for each

limit ordinal β < μ we have νβ = sup{να : α < β}.

Theorem 16. Let κ be a singular strong limit cardinal of uncountable cofinality μ. If there

is an increasing continuous μ-sequence of cardinal numbers (να : α < μ) below κ with

supremum equal to κ such that {α < μ : BCνα } is a stationary subset of μ, then BCκ.

6We don’t know if the converse is true.
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 7

Proof: Let κ be a singular strong limit cardinal of uncountable cofinality μ. Let S be

a Rothberger bounded subset of an ℵ0-bounded group G of weight κ. By Theorem 2 we

may assume that G embeds as topological group in the product Πα<κGα where each Gα
is a separable metrizable group. Let (να : α < μ), an increasing continuous μ-sequence

of cardinal numbers with supremum equal to κ, be such that {α < μ : BCνα holds} is a

stationary subset of μ.

For each α < μ the set S α = { f �να : f ∈ S } is Rothberger bounded in the ℵ0-bounded

group
∏
β<να Gβ of weight at most να. By hypothesis the set {α < μ : |S α | ≤ να} is

stationary.

Theorem 6 of [9] implies that the pairwise disjoint family (S α : α < μ) has at most κ

almost disjoint transversals. Since distinct elements of S specify distinct almost disjoint

transversals of (S α : α < μ}, it follows that |S | ≤ κ. �

Next we explore the relevance of Chang’s Conjecture to instances of BCκ. Consider a

countable language L with a distinguished unary relation symbol U. We say that a structure

A of L is of type (κ, λ) if the underlying set A of A has cardinality κ, and {x ∈ A : UA(x)}

has cardinality λ.

For infinite cardinal numbers κ, λ, μ and ν the symbol

(1) (κ, λ)� (μ, ν)

denotes the statement that for each countable language L with a distinguished unary relation

symbol U, and for each structure A of type (κ, λ) there is an elementary substructure B of

type (μ, ν). The instances of interest have κ > λ, μ > ν, κ ≥ μ and λ > ν. The instance

(ℵ2,ℵ1) � (ℵ1,ℵ0) is the classical conjecture of Chang.

Rowbottom [18] discovered a convenient combinatorial equivalent for (1): For infinite

cardinal numbers κ, λ, μ and ν the symbol

(2) κ → [μ]
<ℵ0

λ,ν

denotes the statement that for each function f from [κ]<ℵ0 , the set of finite subsets of κ, into

λ, there is a set X ⊆ κ such that |X| = μ, and |{ f (Y) : Y is a finite subset of X}| ≤ ν. The

following lemma, a special case of a theorem of Rowbottom, is stated in the form we will

use.

Lemma 17 (Rowbottom). Let κ > λ be infinite cardinal numbers. Then (κ+, κ) � (λ+, λ)

is equivalent to κ+ → [λ+]
<ℵ0

κ,λ
.

For infinite cardinal numbers κ, λ, μ and ν the symbol

(3) κ→ [μ]2
λ,ν

denotes the statement that for each function f from [κ]2, the set of 2-element subsets of κ,

into λ, there is a set X ⊆ κ such that |X| = μ, and |{ f (Y) : Y ⊆ X, |Y | = 2}| ≤ ν.

It is evident that κ → [μ]
<ℵ0

λ,ν
implies κ → [μ]2

λ,ν
. When λ is a regular cardinal the

converse is also true. A proof of this fact can be gleaned from the corresponding argument

for κ = ℵ2, λ = μ = ℵ1 and ν = ℵ0 on page 592 of [4].

Theorem 18. Assume that for the infinite cardinal numbers κ and λ the partition relation

κ+ → [λ+]2
κ,λ

holds. Then BCλ implies BCκ, and BC(λ2, λ) implies BC(κ2, κ).

Proof: Suppose, towards deriving a contradiction, that BCκ fails. Select an ℵ0-bounded

group (G, ∗) of weight κ and a subset X of G such that X is Rothberger bounded and

|X| = κ+. By Theorem 2 there are separable metrizable groups (Gα : α < κ) such that G is
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8 FRED GALVIN AND MARION SCHEEPERS

a subgroup of
∏
α<κGα , and X is a subset of this product. Define a coloringΦ from [X]2 to

κ so that

Φ({ f , g}) = min{γ < κ : f (γ) � g(γ)}.

Apply the partition relation to this coloring to find a subset Y of X and a subset C of κ such

that |Y | = λ+ and |C| = λ and Φ restricted to [Y]2 has values all in C. YC is Rothberger

bounded since the projection map is a continuous homomorphism, and |YC | = λ
+ since Φ

is one-to-one on Y. But then the group GC contains a λ+-sized Rothberger bounded set

YC , and as GC ⊆
∏
α∈C Gα this ℵ0-bounded group has weight at most λ. This provides a

contradiction to BCλ.

The proof that BC(λ2, λ) implies BC(κ2, κ) is left to the reader. �

4. Consistency results

We now consider the consistency of instances of the general Borel Conjecture.

4.1. Consistency of the total failure of the general Borel Conjecture.

Lemma 19. If (G, ∗) is an ℵ0-bounded (totally bounded) topological group and (P, <) is a

forcing notion, then

1P ‖− “(Ǧ, ∗) is ℵ0-bounded (respectively totally bounded)”.

Proof: Note that the notion of being ℵ0-bounded or of being totally bounded is upwards

absolute. �

Theorem 20. If (G, ∗) is an ℵ0-bounded group then in generic extensions by uncountably

many Cohen reals, (G, ∗) is Rothberger bounded.

Proof: Let (P(κ), <) denote the partially ordered set for adding κ > ℵ0 Cohen reals. By

Lemma 19 1P(κ) ‖− “(Ǧ, ∗) is ℵ0-bounded”. Let (U̇n : n < ω) be a name for a sequence of

elements of Onbd. Since P(κ) has the countable chain condition and κ is uncountable, there

is a countable subset C of κ such that (U̇n : n < ω) is a P(C)-name. As the forcing factors

over C we may assume that in fact the sequence so named is a ground model sequence.

Since (G, ∗) is ℵ0-bounded in this model also, we may select for each n a countable set

Xn ⊂ G such that G = Xn ∗ Un. For each x define for each n, fx(n) = m if x ∈ xm ∗ Un ,

xm ∈ Xn. These objects are all in the ground model. Take a Cohen real over the ground

model. It selects a sequence of elements of G which witness Rothberger boundedness. �

Theorem 21. It is consistent, relative to the consistency of ZFC, that BC(κ2, κ) fails for

each infinite cardinal number κ.

Proof: In the model of Theorem 20, for each infinite cardinal κ the ground model version

of the additive group κ2 is a Rothberger bounded group of cardinality 2κ. �

Since adding ℵ1 Cohen reals leaves large cardinal properties of the ground model intact,

there is no large cardinal property that implies any instance of BC(κ2, κ).

4.2. Consistency of BCℵ0
+ BCℵ1

. A partially ordered set (P, <) is said to have the Laver

property if for each h ∈ ωω it is forced that whenever τ, a term in the forcing language of

P, is such that (∀n)(τ(n) < ȟ(n)) then there exists an f ∈ ω([ω]<ω) such that (∀n)(| f (n)| ≤

2n) and (∀n)(τ(n) ∈ f̌ (n))), and for all but finitely many n, f (n) ⊆ h(n).

If in the generic extensions obtained from a partially ordered set all the real numbers

are members of the ground model, then the partially ordered set has the Laver property by

default.

The importance of the Laver property is twofold:
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 9

Lemma 22 (Shelah). A countable support iteration of partially ordered sets, each satisfy-

ing the Laver property, satisfies the Laver property7.

The second important fact about the Laver property is the following folklore result for

which a proof can be found in [2], Lemma 3.1:

Lemma 23. Let X be a set of real numbers which does not have strong measure zero. If

(P, <) is a partially ordered set with the Laver property, then

1P ‖− “X̌ does not have strong measure zero.”

A cardinal κ is said to be 1-inaccessible if it is inaccessible, and there are κ many inac-

cessible cardinal numbers less than κ. Now we obtain the following consistency result:

Theorem 24. If it is consistent that there is a 1-inaccessible cardinal, then it is consistent

that ZFC plus Borel’s Conjecture plus the negation of Kurepa’s Hypothesis, plus 2ℵ1 = ℵ2

hold.

Proof: Let (κα : α < κ) be a monotonic enumeration of the inaccessible cardinals below

κ. We construct a κ-stage countable support iteration Pκ as follows: Let π : κ → κ × κ be a

bookkeeping function such that

• For each (β, γ) ∈ κ × κ the set {α < κ : π(α) = (β, γ)} is cofinal in κ;

• If π(α) = (β, γ) then β ≤ α.

P1 is defined as follows:

Let L0 denote the Levy collapse of κ0 to ω2 with countable conditions. By Silver’s Theo-

rem,

(4) 1L0
‖− “CH + There are no ω1 Kurepa trees ”

Let 〈Ṫ 0
γ : γ < κ̌0〉 enumerate L0-names of all ω1-trees with nodes members of ω1. By

Silver’s Theorem each has at most ℵ1 cofinal branches. Pick π(0) = (0, γ0), and let Ė0

be an L0-name for a proper partially ordered set that does not add reals and specializes8

Ṫ 0
γ0

(see Chapter 5, Theorem 6.1 and Theorem 7.1 of [20]). Here we use the fact that if

an ω1-tree has ≤ ℵ1 cofinal branches of length ω1, then it has a subtree with no cofinal

ω1-branches, such that rendering this subtree special ensures that no further forcing that

preserves ω1 will add new cofinal ω1-branches through the original tree. Since 1L0
‖−

“Ė0 has the Laver property” it follows that L0 ∗ Ė0 has the Laver property. Next, let Ṁ be a

L0 ∗ Ė0-name for the Mathias reals partially ordered set. Since the Mathias reals partially

ordered set has the Laver property and forces that every uncountable ground-model set of

reals does not have strong measure zero, we find that L0 ∗ Ė0 ∗ Ṁ has the Laver property

and forces that CH holds and every uncountable set of reals from its ground model fails to

be strong measure zero. We set P1 = Q0 = L0 ∗ Ė0 ∗ Ṁ.

With α ≤ κ, and assuming that each Pβ has been defined for β < α.

Pα is defined as follows:

α = β + 1 and β ≥ 1: Define a Pβ name Q̇β for a partially ordered set as follows: Let L̇β be

a Pβ name for the Levy collapse of κβ to ω2 with countable conditions. Let 〈Ṫ
β
γ : γ < κ̌β〉

enumerate L̇β-names for all ω1 trees with nodes elements of ω1 With π(β) = (δ, γ) let Ėβ be

a L̇β-name for specializing theω1 tree Ṫ δγ (note that as δ ≤ β the most recent Levy collapse

7See Conclusion 2.12 in Chapter VI.2 of [20].
8In the sense of Baumgartner - see Section 8 of [3].
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10 FRED GALVIN AND MARION SCHEEPERS

ensures that this tree is not a Kurepa tree), and let Ṁ be a L̇β ∗ Ėβ-name for the Mathias

reals partially ordered set9. Finally we set

Q̇β = L̇β ∗ Ėβ ∗ Ṁ and Pα = Pβ ∗ Q̇β.

Then we have

(5) 1Pβ ‖− “Q̇β has the Laver property”

and also

(6) 1Pβ ‖− “1̇Q̇β
‖− uncountable ground model sets of reals are not strong measure zero”

α a limit ordinal: If α has countable cofinality then Pα is the inverse limit of the Pβ, β < α,

and else Pα is the direct limit of Pβ, β < α.

Since κ is inaccessible, for each β < κ |Pβ | < κ. Then Pκ has the κ-chain condition. It

also follows from Lemma 22 that Pβ, β ≤ κ has the Laver property.

To see that

1Pκ ‖− “ There are no ω1 Kurepa trees”

let

1Pκ ‖− “(ω̌1, ≺̇) is a tree order”

Since Pκ has the κ-chain condition and κ is inaccessible we find a β < κ such that (ω̌1, ≺̇) is

a Pβ name and 1Pβ ‖− “(ω̌1, ≺̇) is a tree order”. But then

1Pβ ‖− “1̇
L̇β
‖− “(ω̌1, ≺̇) is not a Kurepa tree””

Now let Ṫ
β
γ be the Lβ name for (ω̌1, ≺̇), and choose an α ≥ β such that π(α) = (β, γ),

and now consider Pα+1. Since L̇α is a Levy collapse of an inaccessible cardinal Silver’s

Theorem implies that (ω̌1, ≺̇) is an ω1 tree with no more than ℵ1 cofinal ω1 branches.

Since π(α) = (β, γ), it follows that Ėα specializes (ω̌1, ≺̇). Consequently,

1Pκ ‖− “(ω̌1, ≺̇) is not a Kurepa tree”

To see that

1Pκ ‖− “BC”

let Ẋ be a Pκ name such that

1Pκ ‖− “Ẋ is a set of real numbers of cardinality ℵ1”

By the κ chain condition and the strong inaccessibility of κ choose a β < κ such that Ẋ is a

Pβ name and

1Pβ ‖− “Ẋ is a set of real numbers of cardinality ℵ1”

From the definition of Q̇β it is clear that

1Pβ ‖− “1̇Q̇β
‖− “Ẋ is not strong measure zero””

and thus

1Pβ+1
‖− “Ẋ is not strong measure zero”

Since P[β+2,κ) has the Laver property it follows that

1Pκ ‖− “Ẋ is not strong measure zero.”

We leave to the reader the standard argument that in the generic extension we have 2ℵ0 =

ℵ2 = κ �

9Instead of the Mathias reals partially ordered set, one could also use the Laver reals partially ordered set

introduced in [15].
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 11

Corollary 25. If it is consistent that there is a 1-inaccessible cardinal, then BCℵ0
+ BCℵ1

is consistent.

Proof: Corollary 12 and Theorem 24. �

Since we may assume the ground model is L, we may assume that the generic model

of Theorem 24 satisfies: For each uncountable cardinal κ, 2κ = κ+ holds. It is well-known

that 2ℵ0 = ℵ1 implies ¬BCℵ0
. Theorem 24 shows that 2ℵ1 = ℵ2 does not imply ¬BCℵ1

.

4.3. Consistency of (∀n < ω)BCℵn
.

Lemma 26. Let κ and λ be uncountable cardinal numbers with λ < κ. Let (P, <) be a

partially ordered set which is κ+-closed. If ¬KHλ, then 1P ‖− “¬KHλ̌.”

Proof: This follows from Theorem VII.6.14 of [14]. �

Lemma 27. Let κ be a regular cardinal number with 2ℵ0 ≤ κ. Let (P, <) be a partially

ordered set which is κ-closed. If BCℵ0
, then 1P ‖− “BCℵ0

.”

Proof: This also follows from Theorem VII.6.14 of [14]: No new sets of real numbers of

cardinality ℵ1 are added by this forcing. �

Theorem 28. Assume it is consistent that the following three statements hold: BCℵ0
,

¬KHℵ1
, 2ℵ1 = ℵ2, and there are inaccessible cardinals κ0 < · · · < κn < · · · , n < ω.

Then BCℵ0
+ (∀n < ω)(0 < n⇒ ¬KHℵn

) is consistent.

Proof: As in Exercise (F4) on p. 295 of [14] define a countable support iterated forcing

poset P such that successively “for each n[> 0], κn is Levy collapsed to ℵn+2 by conditions

of cardinality ≤ κn−1”. Then, by [3], Theorem 2.5, (P, <) is ℵ2-closed. By Lemmas 26

and 27 (P, <) preserves BCℵ0
+ ¬KHℵ1

. By the cited exercise from [14], in the resulting

generic extension we have (∀n < ω)(0 < n ⇒ ¬KHℵn
). �

Corollary 29. If BCℵ0
+ ¬KHℵ1

+ 2ℵ1 = ℵ2 + there are inaccessible cardinals κ0 < · · · <

κn < · · · , n < ω is consistent, then (∀n < ω)BCℵn
is consistent.

Proof: Theorem 28 and Theorem 14. �

4.4. Consistency of BCκ first failing at κ = ℵω.

Theorem 30. Suppose it is consistent that there is an inaccessible cardinal κ such that

there are κ inaccessible cardinals below κ, and ω inaccessible cardinals above κ. Then it

is consistent that (∀n < ω)BCℵn
while also ¬BCℵω .

Proof: We may assume the ground model is L. Let λ be the limit of the inaccessible

cardinals assumed to exist in the hypothesis. Thus, λ has countable cofinality and there is

a Kurepa family on λ. Performing the forcing in Theorem 24, followed by the forcing in

Theorem 28 preserves this Kurepa family, but collapses λ to ℵω. �

4.5. Consistency of BCℵω .

An uncountable cardinal number κ is said to be μ-strong if there is an elementary em-

bedding j : V→ M with critical point κ such that Vμ ⊆ M. κ is said to be a strong cardinal

if it is μ-strong for all μ.

Theorem 31. If it is consistent that for an uncountable cardinal κ of countable cofinality

both 2κ = κ+ and BC(κ2, κ), then it is consistent that there is a strong cardinal.
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12 FRED GALVIN AND MARION SCHEEPERS

Proof: Todorcevic proved (see for example Chapter 7 of [26]) that if κ is an uncountable

cardinal of countable cofinality then �κ plus cof([κ]ℵ0,⊆) = κ+ implies that there is a cofinal

in [κ]ℵ0 family of countable sets that witnesses KH(κ,ℵ1). Applying Theorem 11 we find

that ¬BC(κ2, κ) holds.

Thus, if BC(κ2, κ) and 2κ = κ+ hold, then �κ fails. Jensen has proved that failure of �κ
for uncountable κ of countable cofinality implies the existence of an inner model with a

strong cardinal (see Fact 2.6 of [7]). �

In consistency strength strong cardinals lie between measurable cardinals and strongly

compact cardinals: A strong cardinal is measurable. If κ is strongly compact then �λ fails

for each cardinal λ > κ and thus there is an inner model with a strong cardinal.

Theorem 32. If BC(κ2, κ) holds for an uncountable cardinal κ of countable cofinality for

which we have λℵ0 < κ for all λ < κ, then the axiom of projective determinacy is true.

Proof: Let κ be an uncountable cardinal of countable cofinality such that for each cardinal

λ < κ we have λℵ0 < κ. Also assume that BC(κ2, κ) holds. Using the argument in the proof

of Theorem 31, it follows that �κ fails. But this, by [19] Corollary 6, implies that the axiom

of projective determinacy is true. �

Corollary 33. If 2ℵ0 < ℵω and if BC(ℵω2,ℵω), then Projective Determinacy holds.

Corollary 34. If for each n < ω we have 2ℵn < ℵω and if BC(ℵω2,ℵω), then Determinacy

holds in L(R).

Proof: The argument is as in the proof of Theorem 32, except that we now use [23],

Theorem 0.1, which states that if there is a singular strong limit cardinal κ such that �κ
fails, then the axiom of determinacy holds in L(R). �

Now we determine upper bounds on the consistency strength of BCℵω .

Lemma 35. Let κ > λ be infinite cardinal numbers. Let (P, <) be a κ++-closed partially

ordered set. If the partition relation κ+ → [λ+]2
κ,λ

holds, then

(7) 1P ‖− “κ̌+ → [λ̌+]2

κ̌,λ̌
.

Proof: Assume that (7) is false. Choose p ∈ P such that p ‖− “κ̌+ � [λ̌+]2

κ̌,λ̌
”. Choose

a P-name ḟ such that p ‖− “ ḟ : [κ̌+]2 → λ̌+ witnesses κ̌+ � [λ̌+]2

κ̌,λ̌
”. Since P is κ++

closed we find a ground model function g : [κ+]2 → λ+ and a q < p such that q ‖−

“ ḟ = ǧ on the ground model set [κ+]2”. Applying the partition relation κ+ → [λ+]2
κ,λ

in

the ground model to g we find an uncountable ground model subset S of κ+ and a ground

model subset C ⊂ λ+ such that |C| ≤ λ and for any F ∈ [S ]2 we have g(F) ∈ C. But

then q ‖− “For each finite F ∈ [Š ], ḟ (F) ∈ Č”, contradicting the fact that q < p and

p ‖− “κ̌+ � [λ̌+]2

κ̌,λ̌
”. �

For an ordinal number α and for a cardinal number κ, the notation κ+α denotes the α-th

cardinal number larger than κ.

Lemma 36 (Levinski, Magidor, Shelah). Let μ be an inaccessible cardinal. Let (P, <) be

a partially ordered set such that |P| = μ and P has the μ-chain condition. If (μ+ω+1 , μ+ω)�

(ℵ1,ℵ0) holds, then 1P ‖− “(μ̌+ω+1 , μ̌+ω) � (ℵ̌1, ℵ̌0)”.

Proof: See page 168 of [16]. �

If μ is an inaccessible cardinal and θ is a regular cardinal with μ > θ, then Lv(μ, θ) is the

set of p such that p is a function with dom(p) ⊆ μ × θ, |p| < θ, and for all (α, ξ) ∈ dom(p)

we have p(α, ξ) ∈ α. For p and q in Lv(μ, θ) write q < p if p ⊂ q. Then the partially
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BOREL’S CONJECTURE IN TOPOLOGICAL GROUPS 13

ordered set (Lv(μ, θ), <) is the Levy collapse. It is θ-closed, has the μ-chain condition, and

has cardinality μ.

Lemma 37 (Levinski, Magidor, Shelah). Let λ > μ be inaccessible cardinals. If

(λ+ω+1, λ+ω) � (μ+ω+1 , μ+ω)

holds, then 1(Lv(μ+ω,ω),<) ‖− “(λ̌+ω+1 , λ̌+ω) � (ℵ1,ℵ0)”.

Proof: See p. 168 of [16]. �

Lemma 38. Let μ be an inaccessible cardinal such that (μ+ω+1, μ+ω) � (ℵ1,ℵ0) holds.

Let α < μ be an ordinal and let θ < μ be the cardinal ℵω·α+2. Then

1(Lv(μ,θ),<) ‖− “(ℵω·(α+1)+1,ℵω·(α+1))� (ℵ̌1, ℵ̌0)”

Proof: By Lemma 36, 1(Lv(μ,θ),<) ‖− “(μ̌+ω+1 , μ̌+ω) � (ℵ̌1, ℵ̌0)”. It is well-known that

1(Lv(μ,θ),<) ‖− “|μ̌| = ℵω·α+3”. Consequently, 1(Lv(μ,θ),<) ‖− “|μ̌+ω+1 | = ℵω·α+ω+1” and

1(Lv(μ,θ),<) ‖− “|μ̌+ω | = ℵω·α+ω” �

For 0 < n < ω the uncountable cardinal λ is said to be n-huge if there is an elementary

embedding j : V → M to a transitive inner model M of the set theoretic universe V such

that λ is the critical point of j, and setting κ0 = λ and κi+1 = j(κi) for i < n, we have
κn M ⊆ M. It can be shown that if λ is n-huge then, in the above notation, each of the

cardinals κi, 0 ≤ i ≤ n is measurable.

Lemma 39 (Levinski, Magidor, Shelah). If λ is a 2-huge cardinal, then

(κ+ω+1
1 , κ+ω1 )� (λ+ω+1, λ+ω).

Theorem 40. If it is consistent that there is a 2-huge cardinal, then it is consistent that

BCℵω .

Proof: Let λ be a 2-huge cardinal and let j be an elementary embedding witnessing this.

Put κ = j(λ). It is known that κ is measurable and κ > λ. By Lemma 39 (κ+ω+1, κ+ω) �

(λ+ω+1, λ+ω).

Forcing first with P0 = (Lv(λ+ω, ω), <) we obtain by Lemma 37 a generic extension in

which we have (κ+ω+1, κ+ω) � (ℵ1,ℵ0). Since κ is still measurable in this generic exten-

sion, it is an inaccessible limit of inaccessible cardinals. Now let P1 be the corresponding

partially ordered set for Theorem 24. Then |P1| = κ, and P1 has the κ-chain condition.

Since 1P1
‖− “κ̌ = ℵ2”, Lemma 36 gives (ℵω+1,ℵω)� (ℵ1,ℵ0) in the generic extension.

By Theorem 24 this generic extension also satisfies BCℵ0
and BCℵ1

. But then since BCℵ0

holds, Lemma 17 and Theorem 18 imply that BCℵω holds in this generic extension. �

By the facts in the table below BCℵω·n + BCℵω·n+1
holds in the model of Theorem 40 for

each n < ω.

The argument to prove Lemma 39 gives for all n: Then the model of Theorem 40 gives:

(κ+ω+n+1
1

, κ+ω+n
1

)� (λ+ω+n+1, λ+ω+n). (ℵω+n+1,ℵω+n)� (ℵn+1,ℵn).

(κ
+ω(n+1)+1

1
, κ
+ω(n+1)

1
)� (λ+ω(n+1)+1, λ+ω(n+1)). (ℵω(n+1)+1,ℵω(n+1)) � (ℵωn+1,ℵωn).
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14 FRED GALVIN AND MARION SCHEEPERS

4.6. Consistency of: For a proper class of κ with c f (κ) = ℵ0, BCκ.

For ordinal number α a cardinal number λ is said to be n-huge α times if there is for each

ordinal β < α an elementary embedding jβ into a transitive inner model Mβ such that each

jβ witnesses that λ is n-huge, and when β < δ < α, then jβ(λ) < jδ(λ).

Theorem 41 (Barbanel, Di Prisco, Tan). If λ is n + 1-huge, then there is a cardinal μ < λ

such that μ is n-huge, and

{α < λ : There is an n-huge elementary embedding j with j(μ) = α}

is a stationary subset of λ.

Corollary 42. If λ is a 3-huge cardinal, then there is a 2-huge cardinal μ such that

T = {α < λ : α is measurable and (α+ω+1, α+ω)� (μ+ω+1, μ+ω)}

is a stationary subset of λ.

Proof: Lemma 39 and Theorem 41. �

Corollary 43. If it is consistent that there is a 3-huge cardinal, then it is consistent that

BCℵ0
as well as BCℵ1

, and there is a proper class of cardinals κ such that ω = cf(κ), and

BCκ as well as BCκ+ .

Proof: Now let T be as in Corollary 42. Upon forcing with (Lv(μ+ω, ω), <) we find that

T = {α < λ : α is a measurable cardinal and (α+ω+1, α+ω) � (ℵ1,ℵ0)}

Enumerate T in increasing order as (αξ : ξ < λ). Next we force with the poset of Theorem

24, using an iteration of lengthα0. In the resulting model we have α0 = ℵ2 and for all ξ > 0,

αξ is still measurable. Moreover we have for each ξ that BCα+ω
ξ

as well as BCα+ω+1
ξ

hold.

Since λ is still measurable, Vλ is a model of ZFC, and in Vλ we have for each 0 < ξ < λ

that BCα+ω
ξ

as well as BCα+ω+1
ξ

hold. �

5. Questions

In Theorem 21 we showed that (∀κ)(¬BC(κ2, κ)) holds in generic extensions by ℵ1 Co-

hen reals.

Problem 1. Does V = L imply (∀κ)(¬BC(κ2, κ)?

In all our models of instances of BCκ also BCℵ0
is true.

Problem 2. Is it consistent that BC(κ2, κ) holds for some uncountable cardinal κ, while

BC fails? What if κ = ℵ1 or κ = ℵω?

BC(κ2, κ) implies that every Rothberger subspace of κ2 has cardinality at most κ. For

κ = ℵ0 the converse is true. This is not known for κ > ℵ0.

Problem 3. Is it for each infinite cardinal κ true that if each Rothberger subspace of κ2

has cardinality at most κ, then BC(κ2, κ) holds?

For each κ, BCκ implies BC(κ2, κ). For κ > ℵ0 it is not clear if the converse is true.

Problem 4. Is it true that for each uncountable cardinal κ, BC(κ2, κ) implies BCκ?

We obtained from the consistency of a large cardinal hypothesis the consistency of the

statement that BCκ holds for a proper class of cardinals κ (of countable cofinality).
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Problem 5. Is ZFC + (∀κ)BC(κ2, κ) consistent relative to the consistency of any large

cardinal axioms?

Our findings indicate that BC(ℵω2,ℵω) has considerable consistency strength.

Problem 6. What is the exact consistency strength of BC(ℵω2,ℵω)?
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