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Abstract

The Immersed Boundary (IB) method is a widely-used numerical methodology for
the simulation of fluid-structure interaction problems. The IB method utilizes an
Eulerian discretization for the fluid equations of motion while maintaining a La-
grangian representation of structural objects. Operators are defined for transmitting
information (forces and velocities) between these two representations. Most IB sim-
ulations represent their structures with piecewise-linear approximations and utilize
Hookean spring models to approximate structural forces. Our specific motivation is
the modeling of platelets in hemodynamic flows. In this paper, we study two alter-
native representations – radial basis functions (RBFs) and Fourier-based (trigono-
metric polynomials and spherical harmonics) representations – for the modeling of
platelets in two and three dimensions within the IB framework, and compare our
results with the traditional piecewise-linear approximation methodology. For differ-
ent representative shapes, we examine the geometric modeling errors (position and
normal vectors), force computation errors, and computational cost and provide an
engineering trade-off strategy for when and why one might select to employ these
different representations.
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1 Introduction

The Immersed Boundary (IB) Method was introduced by Charles Peskin in the early 1970’s
to solve the coupled equations of motion of a viscous, incompressible fluid and one or more
massless, elastic surfaces or objects immersed in the fluid [26]. Rather than generating a body-
fitted grid for both exterior and interior regions of each surface at each timestep and using
these to determine the fluid motion, Peskin instead employed a uniform Eulerian Cartesian
grid over the entire domain and discretized the immersed boundaries by a set of points that
are not constrained to lie on the grid. In Peskin’s work as well as many of the follow-on works,
this set of points was connected via piecewise linear segments with Hookean spring models
being used for approximating structural forces. Spreading and interpolation operations are
then defined for transferring force and velocity information between the Lagrangian-defined
structures and the Eulerian-discretized equations of motion.

The IB method was originally developed to model blood flow in the heart and through heart
valves [26,28,29], but has since been used in a wide variety of other applications, particularly
in biofluid dynamics problems where complex geometries and immersed elastic membranes
or structures are present and make traditional computational approaches difficult. Examples
include platelet aggregation in blood clotting [6,10,11], swimming of organisms [6,7], biofilm
processes [3], mechanical properties of cells [1], cochlear dynamics [2], and insect flight [22,23].

We are motivated by the application of the IB method to platelet aggregation in blood
clotting. Real platelets circulate with the blood in an inactive state in which they have
a discoidal shape. In order to participate in clot formation, a platelet must undergo an
activation process, one aspect of which is that the platelet changes shape and becomes more
spherical. In IB modeling, inactive platelets are approximately elliptical or ellipsoidal in 2D
and 3D, respectively, while activated platelets are approximately circular in 2D and spherical
in 3D. Piecewise linear approximations of platelets are currently used within IB methods
applied to platelet aggregation (e.g. [6, 10, 11]). We seek to explore alternative methods for
the modeling of platelets that might decrease the computational time necessary to maintain
and update platelet geometry and motion with comparable or better error characteristics to
the standard piecewise linear models.

In this paper, we examine two alternative representations for platelets: interpolation with
Fourier-based techniques (trigonometric polynomials in 2D and spherical harmonics in 3D)
and interpolation with radial basis functions (restricted to the unit circle in 2D and unit
sphere in 3D). Fourier methods have frequently been used for the modeling of circular and
spherical objects (e.g. [31]). A recent result of Fornberg and Piret shows that both trigono-
metric polynomials and spherical harmonics are just special cases of radial basis functions
(RBFs) when one chooses the shape parameter in a particular limit [13]. Additionally, error
estimates for RBF interpolation on the circle and sphere have been given for a much wider
range of target functions than just C∞ [19, 21,24].

To perform a platelet IB computation, one must (1) have a representation of the surface of the
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platelet and (2) be able to compute forces (internal structural forces) at a specified collection
of material points on the platelet surface. Once forces are determined, they are “projected”
to an Eulerian mesh in which they are incorporated into the solution of the Navier-Stokes
equations for determining the motion of the fluid. Based upon the updated fluid velocity
field, the platelet’s position and shape are updated. We will not detail how the projection
and interpolation are accomplished as this has been amply discussed in other works (e.g. [25]).
Our focus is instead restricted to models for representing the platelet objects and how these
can be used for constructing and maintaining the object’s representation, computing the
normal vectors to the object, and computing the internal structural forces.

For results, we will compare the piecewise linear, Fourier, and RBF based methods for two
different shapes in 2D and two different shapes in 3D that typify observed platelet geometries.
We compare the errors in reconstructing these shapes, computing the normal vectors, and
computing the forces. We provide a discussion of the engineering trade-offs we observe with
respect to error and computational costs. Our results indicate that the RBF and Fourier
models are viable alternatives to the piecewise linear models for platelet-like geometries in
terms of errors versus computational cost. We furthermore find that the RBF models give
better results for objects of varying smoothness than the Fourier models, and thus appear
to be more promising in applications.

The paper is organized as follows. In Section 2 we present the three different modeling
approaches: piecewise linear, Fourier, and RBFs. In Section 3 we review the components
necessary for handling immersed elastic structures in the IB method. In Section 4 we provide
implementation details for all three models in terms of computing normal vectors and forces
for the platelets. Results are partitioned into two sections by spatial dimension. In Section
5 we present our comparison of the three modeling methodologies for 2D platelet objects,
while in Section 6 we present our comparison for 3D platelet objects. Section 7 contains a
summary of our findings.

2 Geometric Modeling Strategies

In this section we present the three different geometric modeling approaches to be examined.
We first present the (traditional) piecewise linear approach for modeling two and three
dimensional platelet structures. We then present our two alternative strategies based on a
parametric representation of the surface: Fourier-based models (trigonometric series in 2D
and spherical harmonic series in 3D) and radial basis function (RBF) models. Implementation
details for all three methodologies are provided in Section 4.
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2.1 Piecewise Linear Models

In the traditional (IB) method, parametric representations of the surface are rarely formed
explicitly. Typically, a piecewise linear representation of the boundary is maintained. In
2D, the piecewise linear interpolant is a set of line segments between pairs of IB points.
However, to perform secondary computations (such as computing normals) with a greater
level of accuracy than what the piecewise linear interpolant would offer, piecewise quadratic
interpolants are typically fitted to a set of IB points(e.g. [37, §3.1.1]).

Given a parameter λ, the piecewise quadratic representation is therefore defined as:

x(λ) ≈ axλ
2 + bxλ+ cx, (1)

y(λ) ≈ ayλ
2 + byλ+ cy. (2)

The coefficients are computed by solving two linear systems of equations for each IB point;
the right hand sides to these systems of equations are simply the x and y coordinates of
the three IB points to which the piecewise quadratics are fitted to. Once the coefficients are
obtained, one can now compute derivatives (and therefore normals and other quantities) at
each IB point.

In 3D, the piecewise linear interpolant is a triangulation of the IB points (e.g. [11]). An
example of such a triangulated surface is given in Figure 1. Secondary computations, such as
computing normals and forces are computed from the triangulation as discussed in Section
4.1.

2.2 Parametric models

The Fourier and RBF models we propose are both based on explicit parametric representa-
tions of the objects. Since our target objects are platelets, which in 2D models are nearly
elliptical or circular and in 3D models are nearly ellipsoidal or spherical, we choose circular
(or polar) and spherical parameterizations in 2D and 3D, respectively. Before discussing the
two modeling approaches, we introduce some notation and put the modeling problem in the
context of a reconstruction problem using interpolation.

In 2D, we use the following polar parametric notation to represent any of the objects:

x(λ) = (x(λ), y(λ)), (3)

where −π ≤ λ ≤ π and x(−π) = x(π). In the case the object is a circle of radius r,
x(λ) = (r cosλ, r sinλ). In general, given a finite collection of values of the object, {x(λk)}Nk=1

= {(x(λk), y(λk))}Nk=1, our goal is to reconstruct x(λ) from smooth interpolations of each of
its components. We refer to these values as the data sites and the set of values {λk}Nk=1 as

4



Fig. 1. Illustration of the triangulation of a set of IB points in 3D.

the nodes. Figure 2 illustrates this reconstruction problem, of which the main ingredient is
the interpolation of a function defined on the unit circle.

In 3D, we represent any of the objects using the following spherical parametric notation:

x(λ, θ) = (x(λ, θ), y(λ, θ), z(λ, θ)), (4)

where −π ≤ λ ≤ π and −π/2 ≤ θ ≤ π/2. Here the end conditions on x in λ are x(−π, θ) =
x(π, θ), while the end conditions in θ are x(λ, π/2) = x(λ + π, π/2) and x(λ,−π/2) =
x(λ + π,−π/2) for −π ≤ λ ≤ 0 and x(λ, π/2) = x(λ − π, π/2) and x(λ,−π/2) = x(λ −
π,−π/2) for 0 < λ ≤ π. These end conditions on θ are to enforce continuity of x at
the poles of the spherical coordinate system. In the case the object is a sphere of radius r,
x(λ, θ) = (r cosλ cos θ, r sinλ cos θ, r sin θ). Similar to 2D, our goal is to reconstruct a general
object x(λ, θ) from smooth interpolations of each of its components which are given at some
finite collection of locations {x(λk, θk)}Nk=1 = {(x(λk, θk), y(λk, θk), z(λk, θk))}Nk=1. We again
refer to these values as the data sites and {(λk, θk)}Nk=1 as the nodes. Figure 3 illustrates
this reconstruction problem, of which the main ingredient is the interpolation of a function
defined on the unit sphere.
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Fig. 2. Illustration of the parametric representation of a 2D object x(λ) and the reconstruction
from a finite number of data sites. The top figure shows the 2D object together with discrete data
sites x(λk) = (xk, yk). The bottom left figure shows the x component of the object in parametric
space and its values at the node set {λk}Nk=1, while the right figure shows the y component and its
corresponding values. The goal is to reconstruct x(λ) and y(λ) from interpolations of these values
at the node sets shown and then use these to reconstruct x(λ).

2.2.1 Fourier Models

Since the modeling problems involve interpolation on the unit circle in 2D and the unit
sphere in 3D, a natural choice for constructing these interpolants are Fourier based methods:
trigonometric function for 2D objects and spherical harmonics for 3D objects. These methods
have been used extensively for geometric modeling (see for example [31] and the references
therein). We briefly review both of these interpolation techniques in the context of Figures
2 and 3.

Using the notation from Figure 2, we first discuss the case of reconstructing the x(λ) com-
ponent of x(λ). In the case that the number of nodes N is even, we consider a trigonometric
interpolant to this data of the form

px(λ) = cx0 +
N/2∑
k=1

cx2k−1 cos kλ+
N/2−1∑
k=1

cx2k sin kλ. (5)

While there is an analogous formula for odd values of N , we omit this discussion and limit our
current study to even values of N . The coefficients cxk are determined by the interpolation
conditions px(λk) = x(λk), k = 1, . . . , N . The solution to this problem can be written in
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Fig. 3. Illustration of the parametric representation of a 3D object x(λ, θ) and the reconstruction
from a finite number of data sites. Top left figure shows the 3D object together with discrete
data sites {(x(λk, θk), y(λk, θk), z(λk, θk)}Nk=1 represented as black solid spheres. Top right figure
shows the x component of the object in spherical parametric space and its values at the node set
{(λk, θk)}Nk=1 (marked by black solid spheres), while the bottom left and right figures show the
respective y and z components and their corresponding values. The goal is to reconstruct x(λ, θ),
y(λ, θ), and z(λ, θ) from interpolations of the values at the node sets shown and then use these to
reconstruct x(λ, θ).

terms of the following linear system:



1 cosλ1 sinλ1 · · · cos
N − 2

2
λ1 sin

N − 2

2
λ1 cos

N

2
λ1

1 cosλ2 sinλ2 · · · cos
N − 2

2
λ2 sin

N − 2

2
λ2 cos

N

2
λ2

...
...

. . .
...

...
...

...

1 cosλN sinλN · · · cos
N − 2

2
λN sin

N − 2

2
λN cos

N

2
λN





cx0

cx1

...

cxN−1


=



x1

x2

...

xN


, (6)

where xk = x(λk), k = 1, . . . , N . A similar construction to (5) is given for the y(λ) component
of x(λ), which we denote by py(λ). Our trigonometric representation of a 2D object like the
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one in Figure 2 is given by

p(λ) = (px(λ), py(λ)). (7)

We turn our attention now to interpolation with spherical harmonics and use the notation
from Figure 3 to describe the reconstruction of the x(λ, θ) component of x(λ, θ). The dimen-
sion of the space of all spherical harmonics of degree M is given by (M + 1)2. For simplicity,
we thus restrict our attention to the case that the number of nodes is given by N = (M+1)2.
In this case, we look for a spherical harmonic interpolant of the form

px(λ, θ) =
M∑
`=0

[ ∑̀
m=0

cx`,2mY
2m
` (λ, θ) +

∑̀
m=1

cx`,2m−1Y
2m−1
` (λ, θ)

]
, (8)

where Y 2m
` and Y 2m−1

` are defined as follows:

Y 2m
` (λ, θ) :=

√√√√2`+ 1

4π

(`−m)!

(`+m)!
cos(mλ)Pm

` (sin θ), m = 0, . . . , `, (9)

Y 2m−1
` (λ, θ) :=

√√√√2`+ 1

4π

(`−m)!

(`+m)!
sin(mλ)Pm

` (sin θ), m = 1, . . . , `. (10)

Here Pm
` is an associated Legendre function of degree ` and order m. The coefficients cxk are

determined by the interpolation conditions px(λk, θk) = x(λk, θk), k = 1, . . . , N . The linear
system corresponding to these conditions is given by

Y 0
0 (λ1, θ1) Y 0

1 (λ1, θ1) Y 1
1 (λ1, θ1) Y 2

1 (λ1, θ1) · · ·

Y 0
0 (λ2, θ2) Y 0

1 (λ2, θ2) Y 1
1 (λ2, θ2) Y 2

1 (λ2, θ2) · · ·
...

...
...

...
...

Y 0
0 (λN , θN) Y 0

1 (λN , θN) Y 1
1 (λN , θN) Y 2

1 (λN , θN) · · ·





cx1

cx2
...

cxN


=



x1

x2
...

xN


, (11)

where xk = x(λk, θk), k = 1, . . . , N . Unlike the trigonometric case, this linear system can
be singular depending on how the nodes are arranged [5, §2]. We avoid this possibility by
choosing the nodes in an “optimal” manner as discussed in Section 4.2. For a good review
of the properties of spherical harmonic interpolants see [35]. A similar construction to (8)
is given for the y(λ, θ) and z(λ, θ) components of x(λ, θ), which we denote by py(λ, θ) and
pz(λ, θ). Our spherical harmonic representation of a 3D object like the one in Figure 3 is
given by

p(λ, θ) = (px(λ, θ), py(λ, θ), pz(λ, θ)). (12)
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2.2.2 RBF Models

The RBF method is a popular tool for approximating multidimensional scattered data. An
excellent overview of the theory and application of this method can be found in the two
relatively recent books of Fasshauer [4] and Wendland [34]. The restriction of the RBF
method to interpolation on a circle and on a sphere began to receive considerable attention
from a theoretical standpoint starting in the mid 1990s (see [5, §6] for a discussion). When
restricted to these domains, the RBF method is sometimes referred to as the zonal basis
function (ZBF) or spherical basis function (SBF) method in the literature [34, Ch. 17]. We
will, however, use the more popular term RBF to describe the interpolation technique. Several
studies have been devoted to providing error estimates for RBF interpolation on circles and
spheres; see, for example, [21,24]. In the first of these papers, it is shown these interpolants
can provide spectral accuracy provided the underlying target function is sufficiently smooth.
The latter of these studies gives error estimates in the case that the target function belongs to
some Sobolev space. Recently, the RBF method has been successfully used for approximating
derivatives of scalar and vector-valued quantities on the surface of a sphere and incorporated
into methods for solving partial differential equations numerically in spherical geometries [8,
9, 15].

The construction of the 2D and 3D RBF models of the objects is similar, so we discuss them
together. Using the notation of Figures 2 and 3, and focusing on the reconstructions of the
x(λ) and x(λ, θ) components of the objects, the corresponding RBF interpolants are given
by

2D : sx(λ) =
N∑
k=1

cxkφ
(√

2− 2 cos(λ− λk)
)
, (13)

3D : sx(λ, θ) =
N∑
k=1

cxkφ
(√

2(1− cos θ cos θk cos(λ− λk)− sin θ sin θk)
)
. (14)

Here φ is some scalar-valued, positive (semi-) definite radial kernel. The square root term in
(13) is just the Euclidean distance between the points described in polar coordinates by λ
and λk, while the square root term in (14) is similarly the Euclidean distance between the
points described in spherical coordinates by (λ, θ) and (λk, θk). The coefficients cxk in either
(13) or (14) are again determined by the interpolation conditions. These conditions lead to
the following linear system of equations:

φ (r1,1) · · · φ (r1,N)

φ (r2,1) · · · φ (r2,N)
...

. . .
...

φ (rN,1) · · · φ (rN,N)


︸ ︷︷ ︸

A



cx1

cx2
...

cxN


=



x1

x2
...

xN


, (15)
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where xk = x(λk) and rj,k =
√

2− 2 cos(λj − λk) for 2D objects, and xk = x(λk, θk) and

rj,k =
√

2(1− cos θj cos θk cos(λj − λk)− sin θj sin θk) for 3D objects. Note that rj,k = rk,j so

that the linear system (15) is symmetric. More importantly, this linear system is guaranteed
to be non-singular for the appropriate choice of φ. In this study we restrict our attention to
the multiquadric (MQ) and inverse multiquadric (IMQ) radial kernels, which are popular in
applications and are given explicitly by

MQ: φ(r) =
√

1 + (εr)2, (16)

IMQ: φ(r) =
1√

1 + (εr)2
. (17)

Here ε is called the shape parameter. For both the MQ and IMQ, the linear system (15) is
guaranteed to be non-singular (provided ε > 0). Furthermore, for the IMQ, the A matrix in
this linear system is guaranteed to be positive definite. A full discussion of the non-singularity
of (15) for various radial kernels can be found in either [4] or [34]. We postpone the discussion
of choosing ε to Section 4.3.2. We do, however, note that in the limit that ε → 0 a RBF
interpolant on a circle converges to a trigonometric interpolant, while a RBF interpolant on
a sphere converges to a spherical harmonic interpolant [13] (strictly speaking this was only
shown for the case of the sphere, but the arguments from [13] carry directly over to the
case of the circle as well). Thus, trigonometric and spherical harmonic interpolation can be
viewed as a special case of RBF interpolation.

We denote the RBF representations of a 2D object like the one in Figure 2 by

s(λ) = (sx(λ), sy(λ)), (18)

where sy(λ) interpolates y(λ) and has the form of (13). Similarly we denote the RBF repre-
sentation of a 3D object like the one in Figure 3 by

s(λ, θ) = (sx(λ, θ), sy(λ, θ), sz(λ, θ)), (19)

where sy(λ, θ) and sz(λ, θ) interpolate y(λ, θ) and z(λ, θ), respectively, and have the form of
(14).

We conclude this section by noting that the RBF method is more flexible than the Fourier-
based methods in regard to altering the parameterization for the objects. For example, if one
were to find that a more general ellipse or ellipsoid provided a better parameterization of the
object than a circle or sphere, then the RBF method can be naturally extended to this new
parameterization. The only change to (13) or (14) would be to replace the distance measure
in the argument of φ with the appropriate (Euclidean) distance measure on the target object
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for the parametrization. More general objects, including ones with higher genus, are also
possible; see [14] for a theoretical and numerical discussion.

3 Immersed Boundary Modeling

In this section we review the components needed for an immersed boundary model of
platelets. Our focus here is on the computation of normal vectors and on the modeling
of elasticity. For a discussion of how forces generated from immersed objects are transferred
to the underlying Eulerian mesh and how the fluid velocity is updated see, for example, [25].

Normal vectors do not play a prominent role in most traditional IB calculations. Our interest
in them is motivated by their other uses in the modeling of platelet aggregation. In addition to
the fluid-structure interactions modeled using the IB method, the platelet problem requires
solution of advection-diffusion equations for chemicals in the fluid domain outside of the
moving platelets, along with boundary conditions on the chemical concentration at the fluid-
platelet interface. Normal vectors along the platelet boundary are needed for determining
when an Eulerian grid point is inside or outside of the platelet, and for imposing the boundary
conditions. For further discussion of this, see [38].

3.1 Components for 2D

We denote the 2D platelet using the parametric representation x(λ) given in (3) and define

τ :=
∂

∂λ
x(λ) =

(
∂

∂λ
x(λ),

∂

∂λ
y(λ)

)
= (τ x, τ y). (20)

The unit tangent and normal vectors to x(λ) are then given as

τ̂ : =
τ

‖τ‖
= (τ̂ x, τ̂ y), (21)

η̂ : = (−τ̂ y, τ̂ x) (22)

For the force model in 2D, we use the fiber model defined in [27]. According to this model,
the elastic force density on x(λ) at the location x(λi) is given by

F(x(λi)) =
∂

∂λ
(T τ̂ )

∣∣∣∣∣
λi

, (23)

where T = K(‖τ‖) is the fiber tension. In our platelet model, we choose K as a linear
function, K = K0‖τ‖, where K0 is the Hookean spring constant. In this case, (23) reduces
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to

F(x(λi)) = K0
∂

∂λ
(‖τ‖τ̂ )

∣∣∣∣∣
λi

= K0
∂2

∂λ2
x(λ)

∣∣∣∣∣
λi

. (24)

The 2D spring force model traditionally used in piecewise linear representations is a scaled
second-order, central-difference approximation to the above fiber model (assuming springs
of zero rest length). From the physical standpoint, each IB point in a 2D object is thought
to be connected to each of its neighbors via springs. For tension forces, there are only two
neighbors attached to each IB point via springs. This spring force is expressed as:

F(xi) = K0(xi+1 − 2xi + xi−1). (25)

3.2 Components for 3D

We denote the 3D platelet using the parametric representation x(λ, θ) given in (4) and define

τ λ :=
∂

∂λ
x(λ, θ) =

(
∂

∂λ
x(λ, θ),

∂

∂λ
y(λ, θ),

∂

∂λ
z(λ, θ)

)
, (26)

τ θ :=
∂

∂θ
x(λ, θ) =

(
∂

∂θ
x(λ, θ),

∂

∂θ
y(λ, θ),

∂

∂θ
z(λ, θ)

)
. (27)

The unit tangent vectors to x(λ, θ) are then given by

τ̂ λ :=
τ λ

‖τ λ‖
and τ̂ θ :=

τ θ

‖τ θ‖
, (28)

while the unit normal vector is given by

η̂ :=
τ λ × τ θ

‖τ λ × τ θ‖
. (29)

The force model we use in 3D differs depending on whether a piecewise linear representation
for the object is used or a parametric representation. Traditionally, piecewise linear repre-
sentations (triangulated surfaces) in 3D have been used in conjunction with spring forces.
In this model, a spring is assumed to be placed along each triangle edge (again, we assume
these springs have a rest length of zero). Then, the total force acting on an IB point at xi
due to its k nearest neighbors is:

F(xi) = K0

∑
j 6=i

(xi − xj), (30)
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where the sum is over k IB points. The nearest neighbors are typically defined from the
triangulation, i.e. as members of the adjacency list of xi. This is the same strategy that we
follow.

For our parametric representation of platelets, we use surface tension as the model to compute
tension forces. The force due to surface tension is then given by

F = γ(2H)η̂, (31)

where γ is the coefficient of surface tension. H is the mean curvature of the surface, and can
be computed as [17, §16.5]

H =
eG− 2fF + gE

2(EG− F 2)
, (32)

where E, F , and G are coefficients of the first fundamental form,

E = τ λ · τ λ, F = τ λ · τ θ, G = τ θ · τ θ, (33)

and e, f , and g are coefficients of the second fundamental form,

e =

(
∂

∂λ
τ λ
)
· η̂, f =

(
∂

∂θ
τ λ
)
· η̂, g =

(
∂

∂θ
τ θ
)
· η̂. (34)

(35)

4 Implementation Details

In this section we present the implementation details for evaluating the positions on the
Lagrangian objects, computing normals to the surface of the object, and computing the in-
ternal forces as presented in the previous section. For the piecewise linear representation,
these surface normals and forces are computed at the IB points. For the parametric repre-
sentations using Fourier and RBF models, these values are computed at some set of sample
sites, which do not necessarily correspond to the data sites. With these operations defined,
it is possible to employ the traditional spreading and interpolation operators for transferring
the forces and velocity respectively between the Lagrangian and Eulerian discretizations.

4.1 Piecewise Linear Models

In 2D, normals are computed at the IB points using the piecewise quadratic representation
presented in Section 2.1. For each IB point, we first solve for the coefficients in (1) and (2)
using the IB point and its two neighbors. Using (1) and (2), we next compute the tangent
vector at each IB point using (21) and then determine the normal vector using (22).
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In 3D, we compute the normal vectors at each IB point by first computing the normal vector
at the circumcenter of each of the triangles. We then obtain the normal vector at a vertex
(IB point) by a weighted average of the values of the normal vectors at the circumcenters of
the triangles connected to the vertex. Specifically, we weight these facet normals by the angle
at which that facet is incident on the vertex at which we require a normal. This approach
takes into account the geometric configuration of each facet [32].

The implementation of the forces follows directly from the simple spring force model in both
2D (25) and 3D (30). We note that while the 2D implementation follows naturally from a
constitutive model, the 3D implementation is a purely algorithmic extension of the 2D case.

4.2 Parametric Models

For the parametric models, we use the continuous representations of the objects from either
the Fourier or RBF based interpolants to approximate the normal vectors and forces. This
involves analytically computing derivatives of these interpolants and then evaluating the
derivatives at some set of M locations in the parametric space that corresponds to the set of
sample sites. In 2D, we denote the set of sample sites by {x(λej)}Mj=1 and refer to the set of
parametric values {λej}Mj=1 as the evaluation points. Similarly for 3D, we denote the sample
sites by {x(λej, θ

e
j)}Mj=1 and refer to {(λej, θej)}Mj=1 as the evaluation points. The method we use

is similar to the pseudospectral or spectral collocation method (e.g. [12,33]), except that the
derivatives are not evaluated at interpolation nodes.

Before describing the implementation details for the Fourier and RBF models, we discuss
the node and evaluation points used.

4.3 Node and Evaluation points

For our 2D objects, we use N equally-spaced points on the interval (−π, π] as the node set
{λk}Nk=1, and take N to be even. This gives a uniform sampling in the parametric space
and allows fast algorithms to be used for computing the interpolants as discussed below.
Additionally, since the shape of our target objects are near circular or elliptical, these nodes
give a good distribution of data sites on the object. We also use M >> N equally-spaced
points in the interval (−π, π] as the set of evaluation points {λej}Mj=1 since this also results in
a set of sample sites that are well distributed over the object.

To get a good sampling of our nearly ellipsoidal or spherical objects in 3D, we cannot resort to
using equally spaced points in the spherical coordinate system as our node sets {(λk, θk)}Nk=1

because of the inherent “pole problem”. Instead we use node sets that give a quasi-uniform
distribution of data sites on the unit sphere. Since only a maximum of 20 points can be
evenly distributed on a sphere, there are a myriad of methods to define and generate a
quasi-uniform distribution for larger numbers of points [18]. We use two of these methods:
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maximal determinant (MD) for our spherical harmonic models and minimal energy (ME) for
our RBF models. Both of these methods are discussed in [35] and many of these two point
sets for various N can be downloaded from [36]. The MD points are generated by finding
a distribution of points that maximize the determinant of a certain “Gram matrix” related
to (11). The ME points are generated by finding a distribution of nodes that minimize an
electrostatic type energy potential. For spherical harmonic interpolation, the MD points lead
to much better results both in terms of accuracy and stability [35]. For RBF interpolation, the
ME points typically yield better results in terms of accuracy [8,9] for larger shape parameters
ε. For smaller values, the MD points give better results because of the connection to spherical
harmonics as ε → 0 [13]. For the set of evaluation points, {(λej, θej)}Mj=1, we use M >> N
ME points for both the spherical harmonic and RBF models, which again results in a well
distributed set of sample sites on the object.

4.3.1 Fourier Models

The first step in computing the normal vectors and forces for the 2D trigonometric model
(7) is to compute the interpolation coefficients cxk and cyk, k = 1, . . . , N (see (5)). Since we
are using equally spaced node points {λk}Nk=1, we can avoid having to solve (6) directly for
these coefficients and can instead compute them by means of the fast Fourier transforms
(e.g. [33, §3]) at a cost of O(N logN).

We next compute the derivatives of the interpolants to obtain the following approximation
to (20):

∂

∂λ
x(λ)

∣∣∣
λ=λej

≈ ∂

∂λ
p(λ)

∣∣∣
λ=λej

, j = 1, . . . ,M. (36)

We then determine the normal vector at x(λej) by normalizing the vector above and switching
the components according to (21) and (22). We similarly obtain an approximation of the
force (24) from the second derivative of the interpolants:

∂2

∂λ2
x(λ)

∣∣∣
λ=λej

≈ ∂2

∂λ2
p(λ)

∣∣∣
λ=λej

, j = 1, . . . ,M. (37)

For the 3D spherical harmonic model (12), the first step in computing the normal vectors
and forces is again to compute the interpolation coefficients cxk, c

y
k, and czk, k = 1, . . . , N ,

(see (8)). Unlike the trigonometric interpolant, there are unfortunately no fast algorithms
for computing these coefficients. Since we use relatively small values of N , we thus resort to
determining the coefficients by solving the linear system (11) using a direct LU factorization
of the interpolation matrix. By using the MD points as the nodes in this model, we are
guaranteed that this system is non-singular and relatively well conditioned [35]. We note
that in context of the IB method simulation, the node points will stay fixed throughout the
simulation so that the LU factorization of the interpolation matrix from (11) needs to be
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done only once at the initial time-step and then stored. Thus, for all other time-steps the
coefficients can be determined in O(N2) computations.

After the coefficients are determined, we compute the following six derivatives to obtain
approximations to (26) and (27):

∂

∂λ
x(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂

∂λ
p(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . ,M, (38)

∂

∂θ
x(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂

∂θ
p(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . ,M. (39)

We then compute the normal vectors using these approximations in (28) and (29).

The computation of the force requires the approximation to the normal vectors and an
approximation to the mean curvature (32). For the values of E, F , and G in the mean
curvature computation (see (33)), we use the approximations (38) and (39). For the values
of e, f , and g, we use the approximations

∂2

∂λ2
x(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂λ2
p(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . ,M, (40)

∂2

∂θ∂λ
x(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂θ∂λ
p(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . ,M, (41)

∂2

∂θ2
x(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂θ2
p(λ, θ)

∣∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . ,M. (42)

4.3.2 RBF Models

The normal vectors and forces for the RBF models are computed in the same fashion as for
the Fourier models discussed above; one just needs to replace the Fourier interpolants p(λ)
and p(λ, θ) with the RBF interpolants s(λ) from (18) and s(λ, θ) from (19), respectively.
We thus omit a full description. We will, however, discuss the shape parameter ε and the
computation of the interpolation coefficients.

Infinitely smooth radial kernels like the MQ (16) and IMQ (17) feature a free shape parameter
ε. It has generally been reported in the literature that there is typically an optimal value of
ε that produces the best accuracy in the interpolants with these kernels and that this value
tends to decrease with increasing smoothness of the underlying function being approximated
(e.g. [30]). However, as ε decreases to zero these smooth kernels become increasingly flat
and the shifts of φ in (13) and (14) become less and less distinguishable from one another.
If one follows the direct approach of solving for the expansion coefficients via (15) and
then evaluating the interpolant via (13) or (14) (which is denoted by RBF-Direct in the
current literature) for ε in this flat regime, then ill-conditioning can entirely contaminate
the computation. For RBF interpolation on a sphere, this ill-conditioning can be completely
bypassed by replacing the RBF-Direct algorithm with the RBF-QR algorithm of Fornberg
and Piret [13]. The framework for this algorithm can also naturally be adapted to the task
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of computing RBF interpolants on the unit circle in a stable manner for all ε.

We have implemented both the RBF-QR algorithm and the RBF-Direct approach and
present results in Sections 5.2.1 and 6.2.1 illustrating the behavior of the RBF interpolants
for the full range of ε and the connection to Fourier based methods. However, we have opted
to use the RBF-Direct approach in implementation since it is computationally more efficient
and the coding is much less involved for computing the normals and forces. Additionally, we
have found that with the RBF-Direct approach and the values of N that we considered it
is possible to get as good or better results than the Fourier based methods. For increasingly
large values of N , or objects whose parameterizations are very smooth, it may be necessary
to switch to the RBF-QR algorithms to exploit the better accuracy that can sometimes be
achieved for increasingly small values of ε.

For the RBF-Direct approach, the interpolation coefficients for both the 2D and 3D objects
can be determined by solving the linear system (15) (with the appropriate choice of rj,k for
the dimension of interest). In the case of 2D objects with equally spaced points, solving this
system directly can be bypassed by means of the fast Fourier transform and the coefficients
can be computed in O(N logN) operations [20]. This follows by observing that the matrix
in (15) is circulant (for any radial kernel φ) and can be diagonalized via the discrete Fourier
transform matrix [16, §4.7.7]. For the 2D models, we use the MQ radial kernel (16).

As in the case of the spherical harmonic model, there are no fast direct algorithms for
determining the interpolation coefficients for the 3D RBF model (19) and we thus resort to
using a direct method. However, unlike the spherical harmonic model the system is symmetric
and, as discussed in Section 2.2.2, for the right choice of φ it is positive definite. Thus, a
Cholesky factorization of the matrix can be used which reduces the memory costs and the
need for pivoting over the LU factorization method used in the spherical harmonic model.
We also note that the initial cost of computing the Cholesky factorization is lower than the
LU factorization, but since this is only done once initially there is no real savings in an IB
simulation. We have opted to use the IMQ kernel (16) to exploit the use of the Cholesky
factorization.

5 2D Platelet Modeling Results

In this section, we present the results of our comparative study between using the piece-
wise linear approach as traditionally used within the IB method and our two alternative
parametric approaches in 2D: RBF and Fourier (trigonometric polynomials) interpolation.
Recall that within an IB timestep, the typical procedure employed is as follows. Given the
locations of the immersed boundaries, both the normals and forces on an object are com-
puted. The forces are then projected to an Eulerian grid and used as right-hand-side forcing
to the Navier-Stokes equations. Based upon an update velocity field, the positions of the IB
points are updated. In our comparison, we thus examine the geometric modeling capabili-
ties, accuracy of the normal computations, and accuracy of the computation of the forces. As
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discussed in the previous section, we distinguish between the data sites and sample sites for
the parametric models. Data sites are the positions along the object at which the parametric
models are interpolating. It is at these positions that we propose updating the geometric
information of the object (for instance, at the conclusion of a timestep when the object’s
movement within the flow field is updated). Sample sites (which are normally more numerous
compared to the data sites) are the positions along the object at which normals and forces
are computed. It is from these positions that we propose projecting the IB forces. In all ex-
periments, 100 sample sites are used as this represents the typical number of IB points that
would be used per platelet object in a traditional 2D immersed boundary computation (and
hence a reasonable standard against which to compare our new methods for the purposes of
determining the feasibility of replacement). All errors are computed by taking the maximum
of the two-norm difference between the approximations and the true values.

5.1 Test Cases

We consider 2 prototypical test objects and define them based upon perturbations of ide-
alized shapes (an ellipse and a circle). Let xideal be a function representing the idealized,
unperturbed shapes as given by the following equation:

xideal = (xc + a cosλ, yc + b sinλ) (43)

where −π ≤ λ ≤ π. Here (xc, yc) denotes the object center and a and b denote the radii. The
two objects used for our comparison are defined as follows:

Object 1: x2d obj1 =

[
1.0 + A exp

(
−(1− cosλ)2

σ1

)]
xideal, (44)

Object 2: x2d obj2 =

[
1.0 +B exp

(
(−(1− cos2 λ)1.5)

σ2

)]
xideal. (45)

For Object 1, we use the following parameters: xc = yc = 0.9, a = 0.04, b = 0.05, A = 0.09
and σ1 = 0.1. For Object 2, we use the following parameters: xc = yc = 0.2, a = b = 0.1,
B = 0.04 and σ2 = 0.9.

Figure 4 displays the two test objects (44) and (45). Object 1 is a smooth (in terms of
regularity) yet highly perturbed ellipse, while Object 2 is a non-smooth perturbation of a
circle. It can be shown that the parameterization (45) for this object has only two continuous
derivatives.
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Fig. 4. The test objects (44) and (45) for the 2D study.

5.2 Comparison of Reconstructing the Objects

We first examine the errors in reconstructing the objects using the RBF and Fourier ap-
proaches. In Figure 5 we present the errors in reconstructing the objects as a function of
the number of data sites. The error at the sample sites gives an indication of the modeling
capability of the RBF and Fourier methods. We can see from this figure that both the RBF
and Fourier models are converging at a spectral rate for Object 1 (left figure), but at a much
slower rate for Object 2 (right figure). This is expected since Object 1 is infinitely smooth,
while Object 2 has only two continuous derivatives. The RBF and Fourier models perform
similarly for Object 1. For Object 2, the RBF model shows better reconstruction properties
as the number of sample sites increases above 20. No direct comparison with the piecewise
linear model is given as the piecewise linear IB method always samples at the interpolating
points.

Fig. 5. Error in the reconstruction of the shape of the objects (left is Object 1 and right is Object
2) evaluated at M = 100 sample sites as a function of the number of data sites. Circles denote the
errors in the RBF model and squares denote the errors for the Fourier model. For the RBF model,
the shape parameter for Object 1 was set to ε = 0.9 and for Object 2, it was set to ε = 3.6.
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5.2.1 Shape Parameter Study

In this section, we examine the impact of the shape parameter on the reconstruction errors of
the RBF model. Figure 6 displays the reconstruction errors for the two objects as a function
of the shape parameter using N = 24 data sites. A similar comparison for N = 56 data sites is
given in Figure 7. For ε . 0.85, it was necessary to use the RBF-QR algorithm [13] (adapted
to the unit circle) to compute the model in a numerically stable manner for the N = 56 case.
We can see from both figures that the errors are smallest for ε ≈ 0 for the smooth Object 1
and increase quite dramatically as ε increases. For the non-smooth Object 2, there is a much
larger range of ε for which the errors are small, and this range includes values for which the
RBF-Direct approach can be used without issues of numerical instabilities.

Fig. 6. Errors in the RBF reconstructions of the objects using N = 24 data sites and M = 100
sample sites as a function of the shape parameter.

Fig. 7. Errors in the RBF reconstructions of the objects using N = 56 data sites and M = 100
sample sites as a function of the shape parameter.

We used Figures 6 and 7 to help guide our selection of ε for the numerical experiments.
However, we found from extensive tests on other objects, that if the object is smooth, and
RBF-Direct is to be used, then one generally wants to choose ε as small as the numerical
conditioning allows. For non-smooth objects there is much more freedom in the choice and
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the results will not vary that greatly. It is unclear if we should expect smooth or non-smooth
objects in an IB simulation.

We conclude this section by noting that there are several algorithms that have been devoted
to selecting an “optimal” shape parameter [4, §17]. However, these are too costly to be used
every time-step of an IB simulation. We are thus advocating using a fixed ε for all time-steps.
This value could be selected based on an expected typical shape for the immersed objects and
one of the algorithms from [4, §17] or from trial and error. We will report on these strategies
in a follow up paper where the RBF models are used in actual IB method simulations.

5.3 Comparison of Normal Vectors and Forces

We next focus on the errors in the parametric models in the approximation of the normal
vectors to the objects and the forces. In this case, we compare the results to the traditional
piecewise linear models.

Figure 8 displays the errors in the normal vectors at M = 100 sample sites as a function of
the number of data sites N for both the RBF and Fourier models. A solid line denoting the
errors in the normal vectors for 100 IB points is given for comparison using the method for
the piecewise linear models discussed in Section 4.1. We can see from this figure that at about
N = 18 data sites the errors for both the RBF and Fourier models of Object 1 are lower
than the piecewise linear model. The errors are similar between both parametric models and
decrease rapidly with increasing N . The results for Object 2 are even more favorable for the
parametric models compared to the piecewise linear model. For increasing N the RBF model
appears to have an advantage over the Fourier model.

Fig. 8. Errors in the approximations of the normal vectors to the objects at 100 sample sites as
a function of the number of data sites N . The left plot is for Object 1, while the right one is for
Object 2. The line denotes the error for the method used in the piecewise linear model with 100
IB points. Circles denote the errors for the RBF model and squares denote the Fourier model. For
the RBF model, ε = 0.9 for Object 1 and ε = 3.6 for Object 2.

We lastly examine the errors in the force computation incurred by the two parametric models
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and the traditional piecewise linear model. Figure 9 shows the errors in forces evaluated at
100 sample sites as a function of the number of data sites N . In all experiments, the force
constant K0 is set to 0.2. The solid line in Figure 9 denotes the error for the piecewise linear
model computed at 100 IB points. For Object 1, we can see from the left plot of this figure
that the errors for both parametric models are lower than the piecewise linear model starting
at about N = 30 data sites. Again, both the RBF and Fourier models give similar results
for this object. For the non-smooth Object 2, it requires about N = 32 data sites for the
RBF model to match the errors of the piecewise linear model, while it takes approximately
N = 56 data sites for the Fourier model to give similar errors. We note that the errors for
both the RBF and Fourier models do not fall as sharply for the non-smooth Object 2 as the
number of datasites is increased. This is because Object 2 is generated from a function that
has only two derivatives, and the force computation involves computing a second derivative.
It therefore follows that these global methods would therefore not converge as they would in
the case of the smooth Object 1.

Fig. 9. Errors in the approximation of the forces evaluated at M = 100 sample sites as a function
of the number of data sites N for Object 1 (left) and Object 2 (right). The black line denotes the
errors for a piecewise linear model with 100 IB points. Circles denote the errors for the RBF model
and squares denote the errors for the Fourier model. For the RBF model, ε = 0.9 for Object 1 and
ε = 3.6 for Object 2.

5.4 Comparison of the Computational Cost

We conclude the 2D results experiments with an examination of the computational cost asso-
ciated with the three methods. We measure the computational cost as the elapsed wallclock
time required to compute the interpolation coefficients, evaluate the interpolants, compute
the normal vectors and compute the forces. Under the assumption that all objects will be
evaluated at the same parametric sites at each timestep, for both parametric models we pre-
compute the matrices for evaluating the interpolants, the derivatives, and the force operator
once the interpolation coefficients have been determined (see Section 4.2 for details). We do
not account for this setup time in our timing results.
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Since for the piecewise linear model the number of evaluation sites is the same as the number
of data sites, the total computational cost includes only the time required to compute the
normal vectors and forces (see Section 4.1 for details).

All computations were performed in Matlab version 7.10.0499 (64-bit) on a Windows desk-
top with a Intel Core i7 Sandy Bridge 3.4 GHz processor and 4 GB of 1600 MHz RAM. Times
were measured using the tic and toc functions in Matlab . All results presented are averages
of a 100 trials and are in seconds.

Figure 10 displays the elapsed time between the RBF, Fourier, and traditional piecewise
linear models. The results for the RBF and Fourier models are displayed as a function of
the number of data sites N for a fixed number of M = 100 sample sites. The results for the
piecewise linear model are for a fixed number of 100 IB points. We can see from the figure
that the parametric models require significantly less time than the piecewise linear model.
For N = 56 data sites, the parametric models are over one order of magnitude faster.

Fig. 10. Elapsed wallclock time (in seconds) for one object to perform interpolation, evaluation,
the computation of normal vectors, and the computation of forces at M = 100 sample sites as a
function of the number of data sites N . The piecewise linear computations were done with 100 IB
points for comparison.

We note that all the evaluation and derivative computations for the parametric models can
be formulated in terms of matrices in order to avoid the need to first solve for the coefficients
every time step of the IB simulation. Thus, the results we present are not optimal in terms
of computational time. If, however, during the IB simulation the sample sites change, then
the step of going first through the coefficients as we have done will be necessary.

6 3D Platelet Modeling Results

Following a similar approach to the last section, we present here the results from a compar-
ative study between using the traditional piecewise linear approach as used within the IB
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method and our two alternative parametric approaches in 3D: RBF and Fourier (spherical
harmonics) interpolation. We examine the reconstruction capabilities of the models and the
accuracy in computing normal vectors and forces. As in the 2D tests, we distinguish be-
tween data sites and sample sites. In all experiments unless otherwise specified, M = 1024
sample sites are used as this represents the typical number of IB points that would be used
per platelet object in a traditional 3D IB computation (and hence a reasonable standard
against which to compare our new methods for the purposes of determining the feasibility
of replacement). All errors are computed by taking the maximum of the two-norm difference
between the approximations and the true values.

6.1 Test Cases

We again consider 2 prototypical test objects and define them based on perturbations of
idealized shapes (an ellipsoid and a sphere). Let xideal be a function representing the idealized,
unperturbed shapes as given by the following equation:

xideal = (xc + a cosλ cos θ, yc + b sinλ cos θ, zc + c sin θ), (46)

where −π ≤ λ ≥ π and −π
2
≤ θ ≤ π

2
. Here (xc, yc, zc) denotes the object center, a and b are

the equatorial radii, and c is the polar radius. The two objects used for our comparison are
defined as follows:

Object 1: x3d obj1 =

[
1.0 + A exp

(
r2c
σ1

)]
xideal, (47)

Object 2: x3d obj2 =

[
1.0 +B exp

(
r2.5c
σ2

)]
xideal. (48)

where rc = 1 − cos θ cos θc cos(λ − λc) − sin θ sin θc. For Object 1, we use the following
parameters: xc = yc = zc = 0.9, a = 0.1, b = 0.2, c = 0.09, A = 0.09 and σ1 = 0.2. For
Object 2, we use the following parameters: xc = yc = 0.1, zc = 0.2, a = b = c = 0.1, B = 0.04
and σ2 = 16

25
. For both objects λc = 0 and θc = π

2
.

Figure 11 displays the two test objects (47) and (48). Object 1 is a smooth (in terms of reg-
ularity) yet highly perturbed ellipsoid, while the Object 2 is a non-smooth perturbation of a
sphere. It can be shown that the parameterization (48) has only three continuous derivatives.

6.2 Comparison of Reconstructing the Objects

As in the 2D results, we first examine the errors in reconstructing the objects using the two
parametric models. Figure 12 displays the errors in reconstructing the objects as a function
of the square root of the number of data sites N . We use

√
N since these are 2D objects
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Fig. 11. The test objects (47) and (48) for the 3D study.

and thus the reciprocal of this value gives a good measure of the spacing between data sites.
These errors give a indication of the modeling capability of the RBF and Fourier methods.
The results are similar to what we observed in 2D. For the smooth Object 1 (left plot in
Figure 12), the RBF and Fourier models are converging at a spectral rate, but at a much
slower rate for non-smooth Object 2. The RBF and Fourier models are giving similar errors
for Object 1, with a few values of N where the spherical harmonic method is clearly better.
For Object 2, the RBF model consistently gives better results than the spherical harmonic
model as N increases. No direct comparison with the piecewise linear model is given as the
piecewise linear IB method always samples at the interpolating points.

Fig. 12. Error in the reconstruction of the shape of the objects (left is Object 1 and right is Object
2) evaluated at M = 1024 sample sites as a function of the square root of the number of data sites
N . Circles denote the errors in the RBF model and squares denote the errors for the Fourier model.
For the RBF model, the shape parameter for Object 1 was set to ε = 0.9 and for Object 2 was set
to ε = 1.5. Data sites for the RBF model are the ME points, while the data sites for the Fourier
model are the MD points.
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6.2.1 Shape Parameter Study

Figures 13 and 14 display the reconstruction errors of the RBF model for the two objects
as a function of the shape parameter using N = 256 data sites and N = 529 data sites,
respectively. The left plot of each of these figures contains the results for the ME points,
while the right plot contains the results for the MD points. For ε . 0.85, it was necessary
to use the RBF-QR algorithm [13] to compute the model in a numerically stable manner
for the N = 529 case. We see similar results to the 2D shape parameter study from Section
5.2.1. For the smooth Object 1 and the MD points the errors decrease rapidly as ε decreases
and reach a minimum near ε = 0 (at ε = 0 in the N = 256 case), which correspond to a
spherical harmonic interpolant on these nodes. For the ME points we see the error rise right
as ε gets to zero. For the non-smooth Object 2 and both types of nodes, we see that the
error reaches a minimum at a larger value of ε that is well within the numerically safe range
of RBF-Direct. The errors then increase slightly as ε decreases toward zero (with a jump up
at ε = 0 in the case of the ME points). From both Figures 13 and 14, we see that the errors
in the RBF model are much better for the MD points when ε is near zero, but as ε increases
away from zero the errors are better for the ME points.

We make similar comments to those at the end of Section 5.2.1 in regards to selection of the
shape parameter for the 3D case, and thus refer the reader there.

Fig. 13. Error in the shape at 1024 sample sites as a function of the shape parameter for 256 data
sites on Object 1 (solid circles) and Object 2 (open circles) using minimal energy points (left) and
maximal determinant points (right) for the data sites.

6.3 Comparison of Normal Vectors and Forces

We next focus on the errors in the parametric models in the approximation of the normal
vectors to the objects and the forces. In the case of computing the normal vectors, we compare
the results to the traditional piecewise linear models based on triangulations of the surface.
As discussed in Section 4.1, a comparison against the traditional piecewise linear 3D force
model is not appropriate since this model is described purely algorithmically, and hence the
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Fig. 14. Error in the shape at 1024 sample sites as a function of the shape parameter for 529 data
sites on Object 1 (solid circles) and Object 2 (open circles) using minimal energy points (left) and
maximal determinant points (right) for the data sites.

underlying material constitutive model is not known and cannot be computed exactly even
though the shape is known analytically.

Figure 15 displays the errors in the normal vectors at M = 1024 sample sites as a function
of the square root of the number of data sites N . The solid and dashed lines in both plots
from this figure denote the errors in the normal vectors at 1024 and 10242 IB points. We see
that increasing the number of IB points, decreases the errors in the normal vectors. However,
unlike the 2D case, both parametric models always give better results in the normal vector
computations even for the high value of 10242 IB points. Additionally, the errors in these
computations for Object 1 are similar for the RBF and Fourier models. For Object 2, the
RBF model gives consistently better results for increasing data sites N .

We lastly focus on the errors in the computation of the forces that occur in both parametric
models. Figure 16 displays the errors in forces evaluated at 1024 sample sites as a function
of the square root of the number of data sites N . In all experiments, both the coefficient of
surface tension γ and the spring constant K0 are set to 0.2. We see that the results between
smooth and non-smooth objects are consistent with those from the shape reconstruction and
normal vector approximations.

6.4 Comparison of the Computational Cost

We conclude the 3D results experiments by examining the computational cost associated
with the three methods. As in the 2D experiments, we measure the computational cost as
the elapsed wallclock time required to compute the interpolation coefficients, evaluate the
interpolants, compute the normal vectors and compute the forces. We pre-compute and store
the LU decomposition of the spherical harmonic interpolation matrix (11) and the Cholesky
decomposition LLT of the RBF interpolation matrix (15). We also pre-compute matrices
for evaluating the interpolants, the derivatives, and the force operator once the interpola-
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Fig. 15. Errors in the approximations of the normal vectors to the 3D objects at M = 1024 sample
sites as a function of the square root of the number of data sites N . The left plot is for Object
1, while the right one is for Object 2. The solid line denotes the error for the method used in the
piecewise linear model with 1024 IB points and the dashed line corresponds to the error with 10242
IB points. Circles denote the errors for the RBF model and squares denote the Fourier model. For
the RBF model, ε = 0.9 for Object 1 and ε = 1.5. Data sites for the RBF model are the ME points,
while the data sites for the Fourier model are the MD points.

Fig. 16. Errors in the approximations of the forces evaluated at M = 1024 sample sites as a function
of the square root of the number of data sites N for Object 1 (left) and Object 2 (right). Circles
denote the errors for the RBF model and squares denote the Fourier model. For the RBF model,
ε = 0.9 for Object 1 and ε = 1.5. Data sites for the RBF model are the ME points, while the data
sites for the Fourier model are the MD points.

tion coefficients have been determined (see Section 4.2 for details). We do not account for
these pre-computations in our timing results. As in 2D, all computations were performed in
Matlab using the machine described in Section 5.4.

Since for the piecewise linear model the number of evaluation sites is the same as the number
of data sites, the total computational cost includes only the time required to compute the
normal vectors and forces (see Section 4.1 for details), we do not include the time to compute
the triangulation of the surface.

28



Figure 17 displays the elapsed time between the RBF, Fourier, and traditional piecewise
linear models. The results for the RBF and Fourier models are displayed as a function of
the number of data sites N for a fixed number of M = 1024 sample sites. Two results
are presented for the piecewise linear model: one with 1024 IB points (solid) line and one
with 10242 IB points (dashed line). We can see from the figure that the parametric models
require significantly less time than the piecewise linear model, especially for the 10242 case.
For N = 529 data sites, the parametric models are over one order of magnitude faster than
the piecewise linear model with 1024 IB points and nearly 3 orders of magnitude better with
10242 IB points.

Fig. 17. Elapsed wallclock time (in seconds) for one object to perform interpolation, evaluation,
the computation of normal vectors, and the computation of forces at M = 1024 sample sites as a
function of the number of data sites N . The piecewise linear computations were done with 1024 IB
points (solid line) and 10242 IB points (dashed line) for comparison.

7 Summary

The IB method is a common numerical methodology for applications involving fluid struc-
ture interactions. Our particular interest in this method is in simulating platelet aggregation
during blood clotting. In this application, the platelets are modeled as immersed elastic
structures whose shape changes dynamically in response to blood flow and chemistry. One of
the fundamental ingredients of this application of the IB method (and many others involving
immersed structures) is how to model the platelets geometrically, so that internal structural
forces can be computed at specified locations on the platelet surface. The current strategy is
to use piecewise linear models for representing the platelets. In this paper we have presented
two alternative geometric models for platelets: RBFs and Fourier-based methods. Both of
these models are based on a parametric representation of the surface using polar coordi-
nates in 2D and spherical coordinates in 3D. This choice of parameterization is motivated
by the observed shape of platelets both during their inactive and active states. We have
described how these new models can be used for constructing and maintaining the platelet’s
representation, computing the normal vectors to the platelet surface, and computing the
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internal structural forces. We have presented numerical comparisons between the traditional
piecewise linear models and the new RBF and Fourier-based models in both 2D and 3D.
Our findings indicate that both the RBF and Fourier methods provide viable alternatives
to the traditional approach in terms of geometric modeling accuracy, force accuracy, and
computational efficiency.

Although both the RBF and Fourier-based methods provided comparable results in terms
of error characteristics and computational efficiency, we would advocate the use of the RBF-
based models for the following reasons:

• they are easier to implement;
• they have accuracy similar to that of Fourier methods for smoothly-perturbed objects with

similar computational costs;
• they are more accurate than Fourier methods for roughly perturbed objects with similar

computational costs;
• they are more flexible than Fourier methods in terms of changing the underlying param-

eterizations of the objects (e.g. changing to an elliptical parameterization rather than
polar) [14].

One issue with the RBF models is how to choose an appropriate shape parameter. We
will study this issue as part of our next step in applying the RBF-based models in an IB
simulation. This step will involve implementing the RBF-based models in a full IB simulation
of platelet aggregation. The simulation will require projection of the forces from the sample
points to the Eulerian mesh, computation of the Navier-Stokes system with forcing based
upon the platelets, and then movement of the platelets via updating of the RBF data points.
We will study how the shape parameter affects the simulations and compare the results of
these simulations to those based on the traditional piecewise linear models for platelets.
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