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ABSTRACT 
 

The continuous wavelet transform was used to characterize the time-frequency 

differences between impact forces from non-cleated and cleated turf shoes among male 

football athletes who perform cut and run activities. This research is significant because it 

elucidates how athletes experience different impact force and torque frequency content 

based on the type of shoe they are wearing. 

The complex Morlet mother wavelet was used to analyze all ground reaction force 

and vertical ground reaction moment signals to create time-frequency power spectrum 

plots. For each signal, a statistical confidence interval was calculated and displayed along 

with the cone of influence caused by edge effects. These methods were used to ensure the 

results to be analyzed were genuine and not a result of edge effects due to the use of the 

wavelet transform technique or noise from the data acquisition system. To compare and 

contrast the power spectrum of both cleated and non-cleated turf shoes, a phase angle 

relationship was computed to find the correlation between the two signals, and then each 

wavelet transform was sliced at particular frequencies ranging from 11 Hz to 65 Hz to 

view this correlation at 5 Hz intervals. By calculating the percent difference between the 

maximum peaks along frequency slices ranging from 11 Hz to 65 Hz, it was possible to 

identify and characterize differences and similarities between force and moment signals. 

In general, but not always, results show that the magnitudes of impact forces are 

directly related to the magnitudes of low frequency content between 11 Hz and 60 Hz, 

and the maximum values of the frequency percent differences vary within each GRF 
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component and the vertical moment plots. For this study, non-cleated turf shoes increase 

the magnitude and duration of the response from the vertical ground reaction force and 

this is also particularly true for the medio-lateral ground reaction force and the ground 

reaction vertical moment of the same style of shoe. 
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INTRODUCTION 

Statement of Purpose 
 

It is a general assumption that repetitive impact forces from jumping and running are 

the primary cause of injuries to athletes since they are often on average the magnitude of 

2.5-3 times the weight of the individual; however, there has been little research to 

validate this assumption [1]. 

One approach to examine this assumption is to view the lower limbs as a highly 

complicated system of structural elements and connective tissue, and to investigate the 

possibility that repetitive impact forces are near the frequencies when the mechanical 

impedance of the leg is minimal, thus leading to injury. The most significant frequencies 

of impact forces during walking and running are in the range of 10 to 20 Hz and the 

natural frequency of the soft-tissues in the lower extremity range from 10 and 50 Hz, thus 

it is possible that these frequencies are near the frequencies when the mechanical 

impedance of the body is a minimum. 

As a result of these mechanical effects, physiological effects will also arise; and 

most importantly, different types of shoes may influence the lower leg’s response to 

repetitive impacts and increase the magnitude and duration of the mechanical and 

physiological effects [2]. Hence, the purpose of this study was to develop a procedure to 

characterize and discern differences between ground reaction force (GRF) and vertical 

moment signals among male football athletes who perform cut and run activities wearing 

typical cleated or non-cleated turf shoes as shown in Figure 1. 
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Figure 1. Typical Outsole of Shoes Worn during Athletic Activities [3]. 

 

The initial motivation to describe these differences arose from the summary of a 16 

year surveillance (1988-1989 through 2003-2004) of collegiate injuries for 15 sports 

released in 2007 showing the high incidence of contact and non-contact injuries to the 

lower extremity of athletes [4]. Figure 2 shows that non-contact injuries account for a 

large percentage of injuries (17.7% during games and 36.8% during practice). During 

practice these non-contact injuries are close to the same percentage of injuries during 

games. Also, as shown in Figure 3, the most common injuries, more than 50%, were in 

the lower extremities—the most common were ankle ligament sprains [4]. 

 

 Cleated Turf Shoe      Non-Cleated Turf Shoe 
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Figure 2. Distribution (percentage) of Injuries by Injury Mechanism for Practices and Games 
Involving 15 Sports [4]. 

 
 

 

Figure 3. Distribution (percentages) of Injuries by Body Part for Games and Practices Involving 15 
Sports [4]. 

 

Additionally, the highest rates of injury, during pre-season practice and in-season 

games, occur in men’s football as shown in Table 1 [4]. During practice the injury rate 

over 16 years was 9.6 injuries per 1000 athlete exposures and during games the injury 

rate was 35.9 per 1000 athlete exposures [4]. These rates are double the injury rates for 

men’s soccer in both practice and actual games, and the frequency of ankle ligament 
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sprains is almost three times as high for football players compared to the fifteen other 

sports [4]. 

Table 1. Overall Practice and Game Injury Rates Per 1000 Athlete-Exposures 

 Practice Game 
Men’s spring football 9.6 --- 

Men’s fall football 3.8 --- 
Men’s football --- 35.9 

Men’s wrestling 5.7 26.4 
Men’s soccer 4.3 18.8 

Women’s soccer 5.2 16.4 
Men’s ice hockey 2.0 16.3 

Women’s gymnastics 6.1 15.2 
Women’s ice hockey 2.5 12.6 

Men’s lacrosse 3.2 12.6 
Men’s basketball 4.3 9.9 

Women’s field hockey 3.7 7.9 
Women’s basketball 4.0 7.7 
Women’s lacrosse 3.3 7.2 

Men’s baseball 1.9 5.8 
Women’s volleyball 4.1 4.6 
Women’s softball 2.7 4.3 

 

Since the 1970’s researchers have been developing varies means to study the causes 

of athletic injuries. Several factors are involved and can be broken down into three main 

categories: the physical condition and health of the athlete, the quality of the playing 

surfaces, and the complicated interactions between the athlete’s shoe and the playing 

surface. These categories are very broad and delving into the details of any one of them 

and understanding how their qualities interact with one another, and then ultimately 

finding quantifiable risk factors leading to athletic injuries, is a formidable task. 

For instance, contact injuries like the hyperflexion of the first metatarsophalangeal 

joint (MTP) of the great toe, i.e. turf toe, as shown in Figure 4 have become more 

common with the use of artificial turf since the 1980’s. Annually, an average of five 
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cases of turf toe incidences are estimated to occur from study findings conducted by the 

University of Arkansas and Rice University throughout a 14-year period among all 

sports, but actual turf toe incidences are not clearly defined [5].   

 

 

 

 

 
 
 
 
 
 
 

Figure 4. Turf Toe: Hyperflexion of the Metatarsophalangeal Joint of the Great Toe [6]. 
 

According to Ohlson’s and O’Connor’s findings, turf toe is the third most common 

injury after knee and ankle traumas, and accounts for the greatest loss of playing time by 

athletes [5]. Understanding how the physical conditions of the athlete and the conditions 

of the playing surface and the type of shoe worn by the athlete and understanding how the 

shoe interacts with the playing surface can lead to injuries and then using this information 

to find a way to mitigate these injuries becomes a necessity when you consider the 

increasingly high cost of surgical procedures to repair the injury, or even more 

importantly, the high cost of losing an important player from a sport for a season. 

Listed in descending order of importance are possible etiological factors leading to a 

turf toe type of injury identified by Ohlson and O’Connor [5]: 

• Footwear: Throughout the past several decades, football shoes have evolved from 

the traditional 7-cleat shoe containing a metal plate in the sole designed for grass 
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surfaces to a more flexible, soccer-style shoe designed for grass surfaces and, 

finally to a shoe designed for artificial turf. These changes have allowed 

increased speed at the expense of stability. The absence of a stiff sole places the 

forefoot, and specifically the MTP joints, at much greater risk of sustaining 

stress-type injuries. Athletes wearing flexible turf shoes are much more prone to 

injury than are those wearing shoes containing a stiff forefoot. 

• Synthetic surfaces: Artificial grass contains a higher coefficient of friction and 

tends to lose some of its resiliency and shock absorbency over time. The 

combination of increased surface friction and a hard undersurface is believed to 

play a major role in the natural history of the injury. 

• Ankle range of motion: The risk of turf toe appears to be related to the range of 

ankle motion in the injured person. A greater degree of ankle dorsiflexion has 

been correlated with the risk of hyperextension to the first MTP joint. 

• Miscellaneous: Player’s position, weight, and years of participation, and prior 

injury. 

 
Although extensive research has been completed and insight into the etiological 

factors involving athletic injuries has grown immensely, there remains much to be 

discovered and understood. The first factor listed above concerning footwear has been a 

general observation of doctors and biomechanical researchers. However, the goal of 

finding valid quantitative measurements, which can be used to explain and predict leg 

injuries, remains elusive. Even the effect of adding cushioning to the insoles of shoes is 

controversial and has been viewed as a so-called “mythic solution” to attenuate impact 

forces [7, 8]. 
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Hypothesis 
 

The hypothesis of this study is that athletes will experience different impact force 

and vertical moment frequency content based on the type of shoe they are wearing, and 

these differences can be characterized using cross sections of time-frequency plots 

obtained from the use of the continuous wavelet transform. 
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LITERATURE REVIEW 
 

This literature review is divided into three major sections: 1) Attenuation of impact 

forces and the prime mechanisms of injury for lateral ankle sprains and turf toe, 2) How 

the frequency of ground reaction forces have been used to study gait analysis, and 3) 

How time-frequency signal analysis using the continuous wavelet transform can be used 

to study gait analysis. 

Attenuation of Impact Forces and Mechanisms of Injury 
 

The human body has evolved over several thousands of years and the lower 

extremity itself has developed the ability to absorb GRF energies at heel strike since the 

foot, through it unique compartmentalized skin and soft tissues components, acts as a 

shock-absorbing mechanism as shown in Figure 5 [9] . 

 
 

Figure 5. Midsagittal Section of the Foot [9]. 
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The form of the human foot and the ankle, along with the form of the other lower 

extremity bones and muscles of the human body, has evolved and developed to withstand 

a high level of physical stress on its structure. Identified potential transient attenuators, 

according to Gross, include subchondral bones, cartilage, and soft tissue, which support 

kinematic processes of joints withstanding and dampening sustained impacts and shocks 

[10]. The foot attachment to the shank, and the large range of ankle motion provide 

important roles of alleviating shock to the lower limbs and the upper body [10]. 

Sixty percent of the total gait cycle involves the body going through a stance phase 

where the heel typically hits the ground first and the foot eventually propels the body 

forward by pushing off with the front of the forefoot [9]. This repetitive action will 

eventually cause the body to break down from fatigue and overuse. The most frequent 

traumas experienced are foot and ankle injuries, regardless of the level of athleticism, and 

empirical research supports the idea that transient forces dispersed through the skeleton 

are harmful and contribute to foot and ankle injuries [11, 12].  

Even though the body attenuates these forces by tuning the muscles in the lower 

extremity before ground contact to the correct stiffness, a significant amount of injuries 

still occur [13, 14]. For instance, 45% of all injuries in basketball, football, soccer, and 

volleyball are lateral ankle sprains, which typically cause athletes to miss 25% or more of 

play time in these jumping and cutting type sports, and 40% of these cases end up as 

chronic disabilities [12]. 

The mechanism behind these injuries involves the breakdown of one or more muscle 

or ligament restraints, which provide lateral stability to the ankle. The peroneal muscles 

provide dynamic stability and play a predominant role in stability if the anterior 
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talofibular ligament (ATFL), calcaneofibular ligament (CFL), or posterior talofibular 

ligament (PTFL) become deficient [12]. Shown in Figure 6 are shortened and repaired 

ATFL and CFL ligaments. 

 

Figure 6. The Two Most Important Lateral Ankle Static Stabilizers [6]. 
 

Although the ATFL is the weakest of the three ligaments, it happens to also be the 

main stabilizer to ankle inversion and lateral ankle sprains. If an injury occurs with great 

force the ATFL as well as both CFL ligaments may rupture [12]. 

In conjunction with lateral ankle sprains, during cut and run activities, subtalar joint 

injuries also commonly occur. The subtalar joint consists of the talus and the calcaneus 

bones of the foot and ligaments to provide stability. The articulating surfaces of the talus 

and the calcaneus allow for motion in all three planes, providing an effective mechanical 

shock absorber and is necessary for normal gait [6]. Often, it is difficult to separate the 

original site of injury between the ankle and subtalar joint since both cause lateral ankle 

sprains. 

Many reasons for injury and a resulting subtalar sprains may be provided, but 

according to Mullen, a clinical sports physician, the most common cause is believed to be 
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dorsiflexion and supination of the foot during extreme positions of the ankle, causing the 

various ligaments to tear [6]. This study notes that indoor cutting and jumping athletes 

are the most at risk for subtalar injury. 

In addition to lateral ankle sprains and subtalar joint injuries, hyperextension of the 

first metatarsophalangeal joint of the great toe, known as turf toe, is an ever-increasing 

athlete injury, resulting in a tear of the metatarsal joint capsule at its insertion onto the 

metatarsal neck and a compression injury to the dorsal articular surface of the metatarsal 

head [6]. According to this study, there are different mechanisms for turf toe injuries.  For 

instance, during a football game when an athlete’s heel is elevated and another player 

lands on the back of the foot, a hyperextension injury may occur to the forefoot. 

The same study notes that artificial turf and shoe wear are additional factors 

correlated with a higher incidence of turf toe. Although artificial turf loses its ability to 

absorb impact forces with age, installation of new turf does not change the incidence of 

turf toe injuries. However, artificial turf has been identified as a contributing factor to 

these injuries [6]. Another risk factor for turf toe incidences is the stiffness of the shoe 

worn by the athlete. Shoes with a flexible forefront allow increased motion of the 

metatarsophalangeal joint, which provides less resistance to hyperextension forces [6]. 

Gait Analysis and the Frequency Content of Ground Reaction Forces 
 

Overall, several factors must be included and incorporated into our understanding of 

how the body attenuates impact forces from running and jumping. Factors such as how 

different types of surfaces influence the attenuation of impact forces, how different types 

of shoes interact with these surfaces, and most importantly biomechanical and 
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biodynamic factors of the human body must be fully explored to comprehend how the 

body attenuates impact forces. 

A fundamental method used to provide an objective and clinically useful technique 

to study these various factors has been the use of a force plate to measure forces between 

a foot and the ground. The first force plate was introduced to provide these measurements 

by Amar in 1916 and continuous development since this time has made these devices 

widely available [15]. However, very little use of the device was put in place until the 

early 1980’s. One of the first clinical uses of the force plate was completed in 1980 by 

Jarrett et al when they developed a technique using the components of the ground 

reaction forces to routinely and objectively assess gait [15]. In their clinical method they 

used various parameters from the vertical and the anterior-posterior GRF components. 

For the vertical force they measured parameters such as: 1) peak force after heel strike, 2) 

peak force before toe off, 3) force minima, 4) loading time to peak force after heel strike, 

5) time from peak force before toe off to toe off, 6) duration of stance phase, and 7) the 

time the force is above body weight [15]. For the anterior-posterior component the 

parameters used were: 1) minima and maxima force points within the signal, 2) time from 

heel strike to the first minima, and 3) the time from the maxima to toe off [15]. 

A year later in 1981 Simon et al was one of the first groups of researchers to use 

force plates with the intent to re-examine the frequency range of the vertical GRF during 

normal gait (with and without shoes) since the last research had been completed in the 

mid 1950’s and 60’s [16]. Their intent was to find out if the impact forces consisted of 

only low frequencies or whether or not higher frequencies above 20 Hz might be present 

during the shock at heel strike [16]. Using Fourier analysis of the vertical GRF they 
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found that majority of the frequency content of signals exist below 10 Hz, but some 

higher frequencies also exist up to 75 Hz without shoes and up to 50 Hz with shoes [16]. 

Simon et al note that the velocity and angle of heel strikes are contributing factors to 

the higher frequency findings, but they also conclude that soft tissues in the foot and the 

footwear worn affects the levels of severity experienced from high frequency impact 

loads [16]. 

A few years later in 1987, Munro et al completed one of the next major 

developments using GRF data that was important to understanding the gait of athletes. 

They collected data on adult males running at speeds from 3.00 to 5.00 meters per second 

wearing typical jogging shoes to establish a normative standard of the typical gait of 

runners using common parameters such as impact peak, loading rate, the average vertical 

GRF, and the change in vertical velocity [17]. Also to visually demonstrate the 

magnitudes of the forces through time at various speeds, Munro et al. created 3-

dimensional plots [17]. 

Although this study was able to establish vertical and anterior-posterior GRF norms, 

medial-lateral GRF descriptor variables were not identified and GRF frequencies were 

not analyzed [17]. 

Similar time-domain GRF research continued throughout the 1980’s and 1990’s to 

analyze gait. For instance in 1998, Begg et al. used GRFs in the time domain to study 

kinetic and kinematic adaptations made to overcome obstacles and understanding gait 

control processes occurring in normal walking humans [18]. Frequency content of the 

GRF was not used in this study, but data were collected on both feet. Force-time data 

revealed the “trail foot [compared to the lead foot] generated greater vertical and anterior-
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posterior force during the push-off/propulsive phase across all obstacle conditions” and in 

addition, the trailing foot had “lower vertical peak force during mid-stance and produced 

greater vertical and anterior-posterior impulses” [18]. Although these findings are for 

normal walking individuals, the results are still important to know when interpreting the 

cut and run GRF signals from athletes. 

By the late 1980’s, low mass accelerometers along with force-plate and high-speed 

cinematography were non-invasive methods for approximating impact-generated 

transients. With these devices it was possible to investigate in more detail and varied 

ways the kinematic data that might reveal the shock attenuation role of the ankle during a 

landing from a vertical jump [10]. In their 1988 study, Gross and Nelson examined the 

role of the ankle in the shock attenuation process. By using accelerometers during 

barefooted vertical jumps onto three different types of ground cushioning, the skin 

covering the calcaneus and distal anterior-medial portion of the tibia were examined [10]. 

The most important result from these measurements was that the range of cushioning 

for the ground did not significantly alter the shock attenuation effect; rather, they found 

that kinematic patterns, along with bone, cartilage and tissue factors governed the 

damping of impact.  

Another interesting result from their study was that there were two distinct landing 

styles. In one case the heel contacted first during the landing, and in the other case the 

subject produced a more controlled lowering of the heel. The non-heel contact landers 

experience little or no contact for the cushioning phase and skeletal transients, which may 

prevent joint degeneration and long-term injury [10]. 
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In 1989, Kandarp Acharya wrote one of the first articles describing a method to 

measure the force magnitude and the spectral frequency content of the heel strike during 

a typical gait cycle. Acharya and his research group were interested in understanding how 

exposure to hypogravity produces a degenerative response in bone, and consequently 

they were in search of finding the optimum magnitude and frequency of stress to support 

normal bone remodeling under normal gravity conditions [19]. Using basic Fourier 

analysis they found that all frequency content of interest lies below the 40 Hz mark and 

the Fast Fourier Transform magnitude is consistently higher than 40 Hz, approximately 

0.2% of the time [19]. 

In the late 1990’s, Giakas and Baltzopoulos wrote one of the first papers using time 

and frequency domain analysis of GRF signals during normal walking. This study 

showed that the appropriate use of GRF comparison procedures would be to examine 

GRF curve frequency patterns, rather than isolated time domain parameters [20]. They 

used Fourier analysis on GRF signals because they felt that when a clinician compares 

normal and pathological gait signals, it is more important to examine the development 

and oscillation of forces throughout the gait cycle rather than isolated time domains [20]. 

Giakas and Baltzopoulos also concluded that the development of established and normal 

waveforms can enable the detection of pathological conditions [20]. 

Consequently their overall objective was to investigate and verify past studies of the 

symmetry between left and right lower extremities during the support phase of normal 

human gait by analyzing the time and frequency content of GRF signals of normal 

walking subjects [20]. Since variability between subjects is an important factor involved 

in GRF comparisons they were also concerned with studying variability between signals 
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using time and frequency parameters since any signal analysis method used would 

involve this phenomena [20]. 

In their study they used a sampling frequency of 200 Hz because other researchers 

had found a power spectrum of GRF data revealed an average of 98% of their content to 

be below 100 Hz, and others found that a high frequency spike early in heel strike existed 

and varied from 10 to 75 Hz [20]. 

Giakas and Baltzopoulos arrived at five major conclusions from their study [20]: 

1) The frequency content and the variability of left and right sides within the 

same component are similar, and this was confirmed using both time and 

frequency analysis. 

2) The medial-lateral component contains more oscillations compared with the 

other two components, which is evident in force-time patterns, but clearly 

numerically expressed with Fourier analysis. 

3) It was found that the development of forces throughout the gait cycle remains 

consistent and this was true for all three GRF components. 

4) The determination of a single subject’s force-time pattern as representative is 

inappropriate due to intra-subject variability and selected time domain 

parameters in the medial-lateral direction, especially during pronation, 

contains substantial variability and should not be used as a criterion of normal 

gait. 

5) Their hypothesis that normal gait is a symmetric movement was confirmed 

only with the use of Fourier analysis, while substantial asymmetries 

characterized time domain variables in the medial-lateral component. 



 

 

17 

From results like these, researchers were then able to clinically use the frequency domain 

of GRF signals for gait description and characterization. For instance, in 2002, Stergiou 

et al characterized differences in the gait of young and elderly females [21]. 

In addition to these developments a significant paper was written by Nigg in 2001, 

when he developed and revealed a new paradigm called Muscle Tuning that involves 

impact forces and movement control and tries to explain contradictions in heel to toe 

running observations [13]. The new perspective claimed that impact forces are not the 

primary factors in the development of chronic and/or acute running-related injuries, but 

rather, impact forces during running “are input signals that produce muscle tuning shortly 

before the next contact with the ground to minimize soft tissue vibration and/or reduce 

joint and tendon loading” and it is through this repetitive action of muscle tuning that 

affects fatigue and performance [13]. Ultimately, over time, the body is not capable of 

optimizing its tuning ability, and this is what leads to lower limb injuries. 

To support this paradigm, Wakeling, Nigg, and Rozitis showed in 2002 through 

mechanically pulsed and continuous vibrations that the properties of the soft tissues in the 

lower extremities are changed in response to the input frequency content given to the 

body [14]. By subjecting individuals to a vibrating platform driven by a hydraulic 

actuator, across the frequency range of 10 to 65 Hz, and measuring soft tissue responses 

using accelerometers and muscle activity using surface electromyography devices on the 

main muscles of the lower extremities, they were able to show that increased muscle 

activity and increased damping of vibration power occurred when the input frequency 

was close to the resonant frequency of each soft tissue; but, the soft tissue resonant 

frequency did not change in a related way with the frequency of the input [14]. From 
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these results it was concluded that resonance is minimized during initial impact through 

the mechanism of soft tissue damping [14]. 

Overall, there have been many developments over the past several decades that help 

us understand how the body attempts to attenuate repetitive impact forces. We have 

learned that typical impact forces have a frequency range of 10 to 20 Hz and these 

frequencies produce soft tissue vibrations in the body [22]. By 2006, methods to measure 

impact forces and spectral frequency had advanced, and in Boyer and Nigg’s study on the 

implications of an untuned landing they were able to conclude that typical impact 

frequencies can vary substantially between subjects (14.8 to 25.4 Hz) and the magnitude 

of change among subjects varied by 0 to 5 Hz [23]. 

In addition to knowing the general GRF magnitudes through time and frequency, it 

has been found by Wakeling et al that the resonant frequencies of the soft-tissues in the 

lower extremity range between 10 and 50 Hz [24]. These frequency ranges have recently 

been empirically supported by Boyer and Nigg’s research showing the mean 

transmissibility of three major muscles groups of the lower extremity, as shown in Figure 

7 to be around 11 and 35 Hz for the quadriceps, hamstrings, and the triceps surae [25]. 

 

 
 

Figure 7. Mean Transmissibility of Lower Extremity Muscles (Quadriceps, Hamstrings, and Triceps 
Surae) for Viscous Midsole Condition (solid line) and Elastic Midsole Conditions (dashed line) [25] 
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Consequently, in contrast to viewing the ground impact forces to be in resonance 

with the bones of the body, which typically have resonant frequencies above 100 Hz, it is 

possible that these lower frequencies are near the resonant frequencies of the soft tissues 

of the lower extremities or near the frequencies when the mechanical impedance of the 

body as a whole is a minimum [14, 26-28]. It is also known that the fatigue strength of 

bone at frequencies below 50 Hz has not been researched and that stress frequencies 

above 30 Hz results in increased fatigue life [29]. 

At this point we should keep in mind Griffin’s comment in his introduction to the 

study of whole-body biodynamics in the Handbook of Human Vibration [30]:  

While the investigation of resonances is interesting, the use of ‘magic numbers’ 

to summarize knowledge of the dynamic response of the body is of little help: 

the dynamic response of the body must be considered as a continuous function 

throughout the range of frequencies of interest.  

Attempting to view the repetitive impact GRF signals as the primary factor leading to 

potential mechanical failure is like focusing too much on the details of the trees in the 

forest rather than seeing the forest for what it is, and this can lead to the assumption that 

all damaging effects of vibration can be predicted from measurements of the vibration 

transmitted to or through the body. 

To assume that single point impedance or transmissibility measurements will predict 

all frequency responses is to assume that these responses are mainly dependent on a 

single unit of vibration, yet injuries like high ankle sprains or turf toe injury incidents are 

not easily predicted because many factors are involved [30]. Consequently, it is important 

to realize that the effects of repetitive impact forces viewed as GRF signals with a certain 
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frequency range are dispersed throughout the body and that single point transmissibility 

measurements are over simplifications of complex frequency responses [30]. 

So it must be understood and underscored that modeling the lower limb as a single-

mass with a dash pot and spring, as shown in Figure 8, is an extremely over simplified 

biodynamic perspective of the lower limb and that the lower limb has a very complex 

dynamic response and must be viewed as a highly complicated system of interconnected 

masses, elasticities and viscous dampers that probably includes many resonances [30]. It 

is even very unlikely that single axis information can be easily transferred to a multi-axis 

situation as Holmlund and Lundström demonstrated in their investigation of the 

mechanical impedance of the sitting human body exposed to a range of low frequency 

vibrations [31]. 

 

 

 

 

 

 

Figure 8. Simplest Model of the Human Body as a One-Mass-Spring with Damping [2] 
 

Given this awareness of how complex and complicated it is to fully comprehend the 

effect of low frequency repetitive impacts on the human body and the lower limb, it is 

also important to realize that using plots of the GRF magnitudes through time and 

analyzing their frequency domains has been a useful and practical way to describe the 

biomechanical and biodynamic parameters necessary to analyze how the body attenuates 

impact forces. 
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The next step toward adding to this knowledge is to combine the ability of viewing 

GRF signals as either time or frequency domains into one method where magnitude, 

time, and frequency of GRF signals can be plotted and analyzed. 

 

Time-Frequency Signal Analysis Using the Wavelet Transform 
 

Classical spectrum analysis mainly consists of using Fourier Transforms and Short-

Time Fourier Transforms. As is commonly known, these methods break a signal down 

into constituent sinusoids of different frequencies and corresponding coefficients reflect 

the magnitude of those frequencies. Although Fourier analysis is a powerful analytical 

tool to find the dominant frequency of a signal, its weakness is that it does not provide 

localized information concerning when a particular dominant frequency occurs. Short-

Time Fourier analysis (the Gabor transformation) attempts to overcome this weakness by 

windowing the area of interest; however resolution problems are then encountered much 

like zooming in on a low resolution picture [32]. 

A wavelet transform is a relatively new mathematical tool that can be used to process 

signals and provide salient information about both the time and frequency content of a 

transient signal because it uses a waveform pattern of limited duration that has an average 

value of zero in contrast to a sine wave, which has a unlimited duration [32, 33]. 

Wavelet analysis consists of taking a waveform, such as the complex Morlet wavelet 

used in this study, and moving it through the extent of the signal.  Illustrated in Figure 9 

below, as the waveform is stretched out and scaled, coefficients are produced as a 

function of both scale and position, representing how well the waveform matches the 

signal [32]. 
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Figure 9. Explanation of Wavelet, Signal, and Transform Plot [33] 
 

Two main classifications of a wavelet transform exist: the discrete wavelet transform 

(DWT) and the continuous wavelet transform (CWT). DWT’s use a specific subset of all 

scale and translation values; whereas, CWT’s operate over every possible scale and 

translation values. DWT’s are commonly used in pattern recognition and image 

compression processes since the discrete subsets can be convoluted and the results can 

reproduce a compressed copy of the original signal by using only pertinent information. 

Signal analysis engineers use CWT’s since the desired outcome is not to reproduce the 
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original signal, but rather to analyze it at all possible scale and translation values. 

Although there can be an infinite amount of wavelet waveform patterns, the complex 

Morlet wavelet, as shown in Figure 10, was used since it provides a precise pseudo-

frequency because the wavelet scale value “a” is approximately equal to the Fourier 

period, and it could also provide phase information about the signal [34]. 

 

Figure 10. Complex Morlet Mother Wavelet [35] 
 

The mathematical representation of the complex Morlet wavelet is shown in Figure 

11 below. 

 

 

 

 
 

Figure 11. Mathematical Representation of the Complex Morlet Wavelet 
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As a consequence of the Heisenberg uncertainty principle, a wavelet transform has 

good time but poor frequency resolution at high frequencies, and good frequency but 

poor time resolution at low frequencies. As long as the necessary conditions are taken 

into consideration, then the wavelet transform becomes a powerful tool for time-

frequency analysis of signals. 

The first instance where a wavelet transform was used to represent GRF data was in 

1996 by Sloboda and Zatsiorsky [36]. In their article, given at the proceedings of the 

ASME Dynamics Systems and Control Division conference, they proposed the use of the 

discrete wavelet transform as a way to discern how various frequencies are involved in 

the immediate impact forces; most importantly, they were able to characterize the 

differences in energy of two vertical GRF signals using these frequency ranges [36]. 

At the end of their article they noted how the use of wavelets may become a useful 

tool in biomechanical research because the majority of signals gathered in biomechanical 

research are aperiodic and non-stationary, which wavelets were specifically designed to 

study in contrast to Fourier analysis which is well suited for representing periodic 

stationary processes [36]. 

The next successful use of the wavelet transform to analyze ground reaction forces 

was by Verdini and his group in 2000 [37]. The objective of their research was to identify 

details of clinical relevance in ground reaction forces through the use of a wavelet 

transform. They carried out a retrospective study of gait analysis using a wavelet 

transform by tiling the amplitude of the coefficients to represent the percentage of energy 

contained within the signal at particular frequencies and moments [37]. They analyzed all 

ground reaction forces using the wavelet transform and the result was the ability to detect 
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the sharp transient frequency content during the first part of the stance phase [37]. This 

result allowed the researchers to view the time-frequency ability of the wavelet transform 

as a potential tool to use for clinical assessment or treatment analysis [37]. 

By 2006, Verdini and his group had developed and automated their analysis 

technique using the wavelet transform and used it to identify and characterize heel strike 

transients of normal walking subjects [38]. For their study they gathered lower limb 

kinematics, and kinetic and surface electromyography data of subjects walking barefoot 

over a force plate. The result of the study was the ability to reliably identify a heel strike 

transient in the vertical and anterior-posterior components of the GRF for 76% of the 

subjects. They plan to use the results from this normal standard to investigate heel strike 

transient patterns in subjects with pathological gaits. 

In summary, this literature review has discussed how the body attenuates impact 

forces and possible mechanisms to lower limb injuries, and how the use of ground 

reaction forces along with their frequency content has been used to study how the body 

attenuates impact forces and gait analysis. Along with many other parameters, 

researchers have used GRF magnitudes and have begun to analyze their frequency 

contents, using Fourier analysis, as a way to describe how the body attenuates impact 

forces. What has not been fully developed yet is the use of time-frequency signal analysis 

using the CWT to study gait analysis, nor has there been much research done to explain 

how the various GRF frequency differences might influence injury mechanisms. 
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METHODS AND PROCEDURES 
 

Protocol and Instrumentation 
 

Eight active Division I collegiate male football athletes participated in this study. 

Their weight was (mean +/- SD) 807.5 +/- 103.9 N and their ages ranged from 18 years 

old to 25 years old. All eight subjects were running backs or receivers. At the time of the 

experimentation, they were free of pain and injuries to their lower extremities and the 

Boise State University Human Subjects Research and Institution Review Board approved 

the experimental protocol. 

Athletes performed two-footed jumps, upward and forward over a level bar set at 15 

inches off the ground. The athletes landed with their feet on the centers of two ground-

level force platforms situated under artificial turf, then sprinted unanticipated off the 

force plates to a target located either straight ahead, or approximately 30 degrees to the 

right or left. Subjects were not aware of the direction of their sprint until they passed over 

the bar, at which time they were signaled the direction of their run by an electronic 

beacon. Three trials per subject in each direction with 30-second intervals per trial were 

obtained. In this study only the straight ahead (center) cut and run data sets were analyzed 

to simplify analysis. 
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Figure 12. Experimental Setup 

 
The main features of the measuring system are shown in Figure 13. The multi-

component ground reaction forces plates and data acquisition software was purchased 

from Kistler Instruments. Force plates are model number 9281C with vertical and 

transverse resonant frequencies of 1000 Hz. Each plate is 400 mm wide and 600 mm 

long, and they were separated by 3 mm. The force plate reactions (including force and 

moments along the Z, Y, and X-axes) for both feet were recorded using BioWare at a 

sample rate of 1250 Hz [39]. 

 

 

 

 

 

 

 

 
 

Figure 13. Ground Reaction Force Plates 
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Data Preparation 
 

A typical pattern of the vertical ground reaction force is shown in Figure 14. Only 

the impact portion of the signal was used in this study to simplify analysis and results. 

The impact point for each trial run was located by viewing the first dramatic point of 

change in the vertical force component. The signal was then pre-value padded out from 

this point by 125 sample points and then post-value padded out from the first minimum 

of the vertical force to achieve a standard sample space of 500 samples, equivalent to 400 

ms. Although only 50 ms of genuine activity takes place within this sample space, this 

size was necessary to accommodate for border effects involved in the data analysis 

process described later. This initial impact point was used to align the additional force 

and moment data along the Z, Y, and X-axes to a common reference point. 

 

 
Figure 14. Typical Vertical Component of Ground Reaction Force [11]. 

 
The force-time data was then normalized by dividing each force component by body 
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weight to make it possible to compare force magnitudes across subjects independent of 

body weight. Only the moment data along the Z-axis was used to analyze due to the 

inability to control the landing position of the subjects. 

And finally the three trials from each subject were averaged, and each of these 

signals was then averaged as a total since there is not a standard to which individual trials 

can be compared and judged. This procedure may cause nuances in the data to be washed 

out; however, since this is a preliminary study, this averaging procedure allows for a 

global perspective of the data. The overall result was a single force signal for each GRF 

axes, and a single moment signal along the Z-axis for both the left and right foot of all 8 

subjects. Plots of the averaged force and moment signals are shown in the following 

pages.
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Figure 15. Z-Axis Averaged Force Signals of Cleat and Turf Shoe for Left and Right Foot (Not the Same Vertical Scale) 
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Figure 16. Y-Axis Averaged Force Signals of Cleat and Turf Shoe for Left and Right Foot (Not the Same Vertical Scale) 
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Figure 17. X-Axis Averaged Force Signals of Cleat and Turf Shoe for Left and Right Foot (Not the Same Vertical Scale) 
 32 
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Figure 18. Z-Axis Averaged Moment Signals of Cleat and Turf Shoe for Left and Right Foot (Not the Same Vertical Scale) 
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Data Analysis 
 

Each averaged signal was processed with the continuous wavelet transform using the 

complex Morlet wavelet as the mother wavelet. To take a spike in the time series into 

account, a 95% statistical confidence interval for the data was calculated according to the 

process describe by Ge [40]. Plus, to account for border effects a decorrelation 

calculation called the cone of influence (COI) was computed from a sample of the trials 

according to the procedure described by Torrence and Compo [34]. These statistics were 

used to ensure that the data to be analyzed is real and not a result of edge distortion from 

the wavelet transform or noise from the data acquisition process. Figure 19 on the next 

page illustrates an example of taking a sample force signal and plotting the results of the 

continuous wavelet transform and illustrating that the valid results are within a 95% 

confidence interval and the results outside of the COI, influenced by border effects of the 

signal, must not be considered when analyzing the data. 
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Figure 19. Wavelet Transform Example Showing Confidence Interval and COI. 
 

Examining the region between the 95% confidence level and the COI, it was verified 

that the frequency content within the window of 11 to 60 Hz and 50 ms after the initial 

point of impact are valid analytical results for this data set. 

To begin the process of comparing and contrasting the two signals the coherence 

between the two signals was computed, which Torrence and Compo refer to as the cross 

wavelet spectrum [34]. Cooper and Cowan refer to the same process as semblance 

analysis and have verified that “wavelets can be used to perform semblance analysis of 

time and spatial data series to display their correlations as a function of both scale 

(wavelength) and time (or position)” [41]. 

Area 
eliminated by 
significance 
testing. 

Area 
eliminated by 
taking border 
effects into 
consideration. 
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The coherence is computed by finding the arctangent between the real and imaginary 

parts of the dot product of the two signals in question. For this study, the arctangent2 

command in Matlab was used to provide a unique value between –pi and +pi to discern 

which quadrant the coherence occurs and for ease of viewing, the values plotted were 

divided by pi to provide a spectrum between -1 and +1, where a value of zero represents 

the greatest difference between the two signals. With the atan2 function, ”there is also a 

discontinuity where –pi and +pi describe the same series of points along the negative X 

axis (between quadrants 2 and 3)” [42]. In this study, the discontinuity is acceptable 

because it is far from the area of interest. 

Shown in Figure 20 is an example of CWT coherence plots, along with its 

corresponding coherence phase plot. The plot shows the original cleat and non-cleated 

turf shoe signals for a given axis (the Z-axis in this case), along with the CWT of each 

signal. In this case, the coherence plot shows that the signals match in magnitude between 

11 Hz and 20 Hz range, but their phase dissimilarity shows up in the coherence phase 

plot where zero is represented by the light green color. The complete results for each 

GRF and the vertical moment of both the cleated and non-cleated turf signals of the left 

and right foot are provided in the results section of this document. 
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Figure 20. Example Result of CWT Coherence and Coherence Phase between Two Signals (Right Foot GRF in the Z Direction) 
 

37 
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To elucidate the similarities and differences between the two signals, slices of both 

CWT plots at specific frequencies can be taken and plotted together. In this study, a slice 

at 11 Hz was taken, then 15 Hz, and so on at 5 Hz intervals, to end at 65 Hz. As an 

example, Figure 21 below shows a slice of the vertical force for the right foot at 25 Hz 

for the two signals used to produce the coherence plots in Figure 20. 

Figure 21. Example of two CWT plots sliced at 25 Hz. 
 

The complete results at particular frequencies (approximately 5 Hz intervals) for 

each GRF and the vertical moment of both the cleated and non-cleated turf signals of the 

left and right foot are provided in the results section of this document. 

The final step to analyzing the data was to find the percent difference between the 

maximum values of the wavelet slices at each specific frequency to quantify the 

similarity or difference between the two signals, and then to plot the results for each GRF 

and for the vertical moment force. 
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RESULTS 
 

From a previous study using the same data set, the mean peak vertical GRF for the 

left and right foot for both the cleated and non-cleated turf shoe trails were calculated and 

a statistical t-test was performed [43]. Table 2 is a summary of the statistical results for 

the straight ahead (center) cut and run test trials. 

Table 2. Statistical Comparison of the Mean Peak Vertical Ground Reaction Forces 

 Left Leg Right Leg 

Cleated (N) 1836.5 2118.4 

Standard Deviation 649 617 

Non-Cleated (N) 2122.6 2479.2 

Standard Deviation 251 608 

Percent Difference 15.6 17 

T-Test 0.20 0.31 

 

The t-test value for both the left and right legs are low; however, they are both above 

0.05 indicating they are not significantly different.   

Looking at the anterior posterior (Y-Force) data for the left and right foot for both 

the cleated and non-cleated turf shoe trials, it was possible to determine which foot 

provided the primary push off force necessary to create forward momentum. On average 

when the subjects wore the cleated shoe there was little difference between the use of the 

left and right foot for push off (45.8 versus 54.2 respectively); however, for the non-
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cleated turf shoe trials, the subjects used their right foot to push off 79.2 percent of the 

time. 

This difference can be seen in the average vertical force of impact when comparing 

the left and right foot for both the cleated and non-cleated subjects. On average, the 

cleated subjects had a normalized vertical impact force of 2.26 for the left foot and 2.59 

for the right foot. In comparison, for the non-cleated turf shoe, the averaged normalized 

vertical impact force was 3.03 for the left foot, and 3.53 for the right foot. Thus, both 

vertical impact signals are stronger for the non-cleated turf shoe regardless of being the 

left or right foot when contrasted with the cleated shoe, and the right foot received the 

dominant impact force in anticipation of being the dominant push off foot. 

The following pages provide the complete CWT and coherence plot results for each 

GRF and the vertical moment of both the cleated and non-cleated turf signals of the left 

and right foot. Following each result, slices at particular frequencies at approximate 5 Hz 

intervals between 10 Hz and 65 Hz, are also provided, which can be used to visually 

compare and contrast the magnitude of the frequency for both types of shoes. 
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Figure 22. Left Foot Ground Reaction Force in the Z Direction with CWT Analysis 41 
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Figure 23. Left Foot Z-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz 
 42 
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Figure 24. Left Foot Z-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 
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Figure 25. Right Foot Ground Reaction Force in the Z Direction with CWT Analysis 44 
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Figure 26. Right Foot Z-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz. 
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Figure 27. Right Foot Z-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 46 
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Figure 28. Left Foot Ground Reaction Force in the Y Direction with CWT Analysis 
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Figure 29. Left Foot Y-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz. 
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Figure 30. Left Foot Y-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 49 
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Figure 31. Right Foot Ground Reaction Force in the Y Direction with CWT Analysis 50 
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Figure 32. Right Foot Y-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz. 
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Figure 33. Right Foot Y-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 
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Figure 34. Left Foot Ground Reaction Force in the X Direction with CWT Analysis 
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Figure 35. Left Foot X-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz. 
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Figure 36. Left Foot X-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 
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Figure 37. Right Foot Ground Reaction Force in the X Direction with CWT Analysis 
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Figure 38. Right Foot X-Force Cross-Sections of Power Spectrum from 11 Hz to 35 Hz. 
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Figure 39. Right Foot X-Force Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 
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Figure 40. Left Foot Ground Reaction Moment in the Z Direction with CWT Analysis 
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Figure 41. Left Foot Z-Moment Cross-Sections of Power Spectrum from 11 Hz to 35 Hz 
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Figure 42. Left Foot Z-Moment Cross-Sections of Power Spectrum from 40 Hz to 65 Hz. 
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Figure 43. Right Foot Ground Reaction Moment in the Z Direction with CWT Analysis 
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Figure 44. Right Foot Z-Moment Cross-Sections of Power Spectrum from 11 Hz to 35 Hz 63 
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Figure 45. Right Foot Z-Moment Cross-Sections of Power Spectrum from 40 Hz to 65 Hz 
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As described in the data analysis section of this document, it was possible to 

summarize and quantitatively characterize the average frequency content of the GRF 

signals for the left and right foot and the vertical ground reaction moment by plotting the 

percent differences between maximum values of CWT slices at specified frequencies. 

From examining the region between the 95% confidence level and the COI of each signal 

it was verified that the frequency content within the window of 11 to 60 Hz provide valid 

analytical results. 

To read these plots, it is necessary to know that the magnitude of the percent 

difference is positive when the non-cleated turf shoe has a higher percent difference at a 

particular frequency. When the magnitude of the percent difference is negative, then the 

cleated shoe has a higher percent difference, which only occurs in the anterior-posterior 

(Y-Force) of the right foot and only slightly in the medio-lateral axis (X-Force) of the left 

foot.  

As shown in Figure 46 on the next page, the peak percent difference for the vertical 

GRF (Z-Force) occurs for both the right foot at 15 Hz and 11 Hz for the left foot.  
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Figure 46. Z Force Frequency Percent Difference Between Non-Cleated and Cleated Turf Shoes 
 

For the right foot, the percent difference for the vertical force never goes below 80 

percent. Similarly, the pattern occurs for the left foot, but carries with it an overall lower 

percent difference, and only reaches a close to zero percent difference between 40 and 45 

Hz and then increases from there. This percent difference plot shows that the non-cleated 

turf shoe allows lower frequency content for the vertical GRF (Z-Force) to dominate both 

feet, and the right foot in particular has a high percent difference. 

 In contrast, the anterior-posterior (Y-Force) percent differences are much lower 

overall compared to all other GRF signals. The percent difference is much lower for the 

left non-cleated turf shoe foot; plus, as shown in Figure 47, the cleated turf shoe 

dominates the frequency range, with a peak at 15 Hz and approaches a minimum percent 

difference at 30-35 Hz, and grows in dominance from 35 Hz. 
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Figure 47. Y Force Frequency Percent Difference Between Non-Cleated and Cleated Turf Shoes 

 
 Even though the GRF signal in the medio-lateral (X-Force) direction is on average 

one-half the normalized body weight of the subjects, there is a very large percent 

difference of magnitude between the right non-cleated turf shoe and the cleated turf shoe 

as shown in Figure 48 below. The percent difference plot peaks at 25 Hz, but never goes 

below the value of 300. For the left foot, the non-cleated turf shoe overwhelmingly 

dominates from 11 Hz to 25 Hz, whereas the cleated shoe then dominates at a 

comparatively low percent difference level. 
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Figure 48. X Force Frequency Percent Difference Between Non-Cleated and Cleated Turf Shoes 
 

The vertical ground reaction moment (Z-Moment) percent difference results, shown 

on the next page, reveal that again, the non-cleated turf shoe has a much higher 

magnitude throughout the specified range of frequencies.  
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Figure 49. Z Moment Frequency Percent Difference Between Non-Cleated and Cleated Turf Shoes 
 

For the right foot, the non-cleated turf shoe has a large percent difference starting at 

low frequencies and the slope of the percent difference plot decreases until it reaches 50 

Hz, where the cleated shoe then has a higher percent difference. For the left foot the non-

cleated turf shoe always has a higher percent difference and increases from 33.7 percent 

difference up to a maximum of 298 percent difference, as shown in Figure 49 below. 

Consequently, the torque frequency content of both the left and right foot of the non-

cleated turf shoe, reflecting the rotational traction of the shoes, is much higher than the 

cleated shoe between 11 Hz and 50 Hz. 
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DISCUSSION 
 

The major result of this study is that cross sections of the power spectrum of a CWT 

can be utilized to characterize and discern frequency content differences between impact 

GRF signals and vertical moment signals among subjects wearing non-cleated and 

cleated turf shoes during straight ahead (center) cut and run trials. This result supports the 

hypothesis of the study that athletes experience different impact force and vertical 

moment frequency content signals based on the type of shoe they are wearing. 

In general, but not always, results show that the magnitudes of impact forces are 

directly related to the magnitudes of low frequency content between 11 Hz and 60 Hz, 

and the maximum values of the frequency percent differences vary within each GRF 

component and the vertical moment plots. 

For instance, looking at the magnitudes of the Z force impact signals, the non-cleated 

turf shoe has an impact level of around 3.5 and 3.0 times percent body weight for the 

right and left foot respectively, while the cleated shoe has an impact level of around 2.25 

and 2.6 percent body weight for the right and left foot respectively. The result of the Z 

force frequency percent difference plot shows how the non-cleated turf shoe contains a 

higher level of frequency content for both feet (the right foot in particular) and what is 

interesting is that for both feet, the maximum value of the percent differences are around 

11 to 15 Hz, and this percent difference drops and is a minimum at 55 Hz for the right 

foot, and 40 Hz for the left foot. For the right foot, where the impact magnitude value is 
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about one times higher for the non-cleated turf shoe, the percent difference magnitude in 

frequency content from 11 Hz to 45 Hz is on average over 100% for the same shoe.  

This result might lead one to suspect that the magnitude of the impact load always 

directly relates to the magnitude of the frequency content of the same signal, but looking 

at the Y force magnitudes and their frequency contents for the right foot in this study, this 

is not the case. For the Y force, the impact level for the root foot is around 1.65 times 

percent body weight for both types of shoes, but the Y force percent difference plot 

shows that the cleated shoe dominates in frequency content in this case with a maximum 

peak of 35 percent difference around 11 to 15 Hz and has a minimum percent difference 

of 17 at 30 to 35 Hz. For the left foot, the Y component force for the non-cleated shoe has 

a slightly higher level, and this is reflected in the Y Force percent difference plot since 

the percent difference magnitude is slightly higher, but varies with a peak of 14 at 25 Hz, 

throughout the frequency range of 11 to 60 Hz. 

When looking at the X Force, again looking at a situation when the impact loads for 

the left foot are virtually equal at 0.44 times percent body weight, the intriguing result in 

the X force percent difference plot is that the non-cleated turf shoe has a higher percent 

difference between 11 and 20 Hz. Yet, between 25 Hz and 60 Hz, the cleated shoe then 

has a higher percent difference and the percent difference never goes above 100%.   

However, for the right foot, which has an impact load of around 0.47 times percent 

body weight for the non-cleated shoe and around 0.2 times percent body weight for the 

cleated shoe weight, the frequency percent difference plot reveals a large difference 

between the two types of shoes. The magnitude of the percent difference is always above 

300% between the frequency ranges of 11 to 60 Hz, and has a peak of 677 percent 



 

 

72 

difference at 25 Hz. This result stands out from the others and needs further exploration 

since the impact loads are much lower than the vertical impact loads, and the degree of 

difference between the maximum values of these loads for the X component compared to 

the Z component is not much higher, yet produces a much higher percent difference 

magnitude in the frequency domain.  

For the vertical ground reaction moment, the magnitude of the moment seems to 

again directly relate to the magnitude of the frequency percent difference between the 

two types of shoes. The non-cleated turf shoe has a higher magnitude for both the right 

and left feet. The non-cleated turf shoe has a peak moment around 27 Nm and the cleated 

shoe has a peak moment around 13 Nm for the right foot, thus almost double the torque 

load. The Z moment frequency percent difference plot shows a large magnitude percent 

difference for the non-cleated turf shoe, peaking at 365 percent difference at 11 Hz and 

drops to 0 percent difference between the range of 15 Hz to 40 Hz, where the cleated 

shoe surprisingly then has a higher percent difference between 50 and 60 Hz. For the left 

foot, the general pattern holds true showing that for the non-cleated turf shoe, which has a 

higher moment of -38 Nm contrasted to – 28 Nm for the cleated shoe, the Z moment 

percent magnitude plot shows that the non-cleated turf shoe always dominates the 

frequency content. In contrast to all the other GRF components, the percent difference 

plots for the Z moment of the left foot has a minimum at 11 Hz and increases steadily and 

has a maximum value of 224 percent difference at 60 Hz. 

These results are important because they reveal that the magnitude of the impact 

forces in general increase the frequency content being transferred to the foot and the 

lower limbs of the body. Consequently, although the two types of signals in this study on 
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average were not significantly different, the non-cleated turf shoe showed a higher 

percentage of frequency content entering the foot in the Z and X component directions, 

and through the vertical moment. 

 These results are counterintuitive since the non-cleated turf shoe has a softer heal, 

which would normally imply that the harder heel of the cleated shoe would transmit more 

frequency, or at least more of the higher frequencies. Plus, the vertical moment result 

directly contradicts Villwock’s recent work showing that the “turf cleat produced 

significantly lower torque than [four] other groups” of patterned football shoes [44].  

Blurring out distinct features of the subjects when taking the average of the trials and 

then averaging them together could have possibly created both of these counterintuitive 

results. For instance, by looking more closely at each particular group of trials, and 

statistically analyzing them and throwing out outliers from the overall group might reveal 

a clear picture of events. Overall though, the averaging process gives us a general idea of 

what is occurring, and these results for this study show that non-cleated turf shoes 

attenuate the impact forces less and allow a great percent of frequency content to enter 

the lower limbs of the body. 

Another important explanation for these results is that the exact height from which 

the subject jumped and impact the force plates could have varied. If the subjects on 

average jumped higher over the level bar during the trial runs when they were wearing 

the non-cleated turf shoes, then the impact forces for those cases would have been higher. 

In this study the maximum height was not determined for each individual. 

Another important factor that could influence the results is that the landing pattern of 

the subjects could also have differed depending on the type of shoe they were wearing, or 
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even the particular psychological moment for the athlete. Both, the actual height from 

which the athlete dropped and their landing patterns major are factors that could lead to 

errors when attempting to interpret the results. 

Consequently, there are several limitations to this study that future researchers may 

improve upon. First of all, it would be important to examine the shoes in isolation from 

the athlete wearing them. That way, controlled heights and impact loads could be created 

to discern the magnitudes of the percent differences between the two shoes. If the setup 

were to involve athletes, then it would also be important to somehow have a standard 

height to drop from onto the force plates, and also capture data on how the subjects are 

landing onto the force plates. By doing this, then it would be possible to correlate landing 

patterns to frequency content for each type of shoe. Future studies should also collect 

data on whether or not the subjects primarily use their right foot to push off with when 

running, or their left foot since this might influence how the subjects lands in the first 

place. 

Secondly, only the impact portion of the signal was taken into consideration. This 

was decided upon because the primary frequency content was contained in the impact 

portion and made it possible to take sections of the CWT and find the percent difference 

between the peaks, but it is possible that other pertinent frequency content information 

exists throughout the signal during push off. So, exploring how to analyze and quantify 

the entire GRF and vertical moment signals (from heel on to toe off) rather than just 

using the point of impact as a means of discerning differences, would be an important 

development. 

And last of all, one significant limitation of this study was that data was gathered 
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from only 8 male subjects; and, we see in the study done by Hootman, that the injury rate 

to the lower extremities is a maximum of 35.9 per 1000 athletes [4]. Hootman’s study 

had a confidence interval of 95% when considering “slightly more than 1 million 

exposure records”, which would indicate that a future study should have a similar sample 

size. So, a larger sample size is required with the purpose of building a base reference 

signal for cleated and non-cleated turf shoes.  

Overall, one of the more intriguing aspects about this study that is unclear and should 

be addressed in later studies is how the frequency content entering the lower limbs can be 

greater for certain shoe even if the impact levels are the same on average. In this study 

the magnitude of impact signals for the right foot in the Y force direction, and the left 

foot in the X force direction were the same, yet the frequency content entering the body 

was different. The reasons for this difference must involve the characteristics of the shoe 

itself, along with other parameters such as landing pattern, and deserves further study. 

In addition to this main interesting aspect, there are two follow up questions that 

could be explored in future studies. The first would be easy to answer and the second 

would be more difficult. The first is, “what do the left and right cut and run trials look 

like when analyzed with this technique?” Since this data was part of the original data set 

gathered, it would be just a matter of performing the same data preparation and data 

analysis techniques to these other sets, and comparing and contrasting the results. Of 

course, the same limitations would apply, but the results would be worth examining. 

The second more important and interesting follow up question is, “Is it possible that 

the peaks of the lower frequencies are near the resonant frequencies of the soft tissues of 

the lower extremities or near the frequencies when the mechanical impedance of the body 
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as a whole is a minimum?” Since the soft tissue natural frequency components of the foot 

are not specifically known at present time, they deserve further study to elucidate the 

consequences of different low frequency content for cleated and non-cleated athletes. 

This line of reasoning is substantiated by the study done by Boyer and Nigg, showing 

how the frequencies of minimum impedance and maximum transmissibility of lower 

extremity muscle groups were found to be in the range of 5 to 50 Hz [25]. 

Transmissibility describes the factor of the force input magnitude which is 

transferred to the mass being observed and it is theorized that muscle damage can occur 

at these frequencies of maximum transmissibility, which generally coincide with the 

natural frequency of the system, as the magnitude of the landing is amplified in the 

muscles [25]. Plus, it is important to recall (shown previously in Figure 7) that Boyer and 

Nigg found peaks of the mean transmissibility for the Quadriceps (11 Hz and 35 Hz), the 

Hamstrings (11-15 Hz, and 35 Hz) and the Triceps Surae muscle group (11 Hz and 35 

Hz), which all reside in the same low frequency range described by the percent difference 

plots in this study. Since the frequencies of the transient impact forces, ranging from 11 

to 60 Hz, are near the resonant frequency when the mechanical impedance of the lower 

limb is a minimum then exploring this question in a future study is justified.  
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CONCLUSION 
 

This study shows that cross sections of the power spectrum of a CWT can be utilized 

to characterize and discern frequency differences between impact GRF signals and 

vertical moment signals among subjects wearing cleated and non-cleated turf shoes 

during straight ahead (center) cut and run trials.  

For this study, results show that the percent difference for the vertical GRF is 

dominated by the non-cleated turf shoes around 11 Hz for both the left and right foot. For 

the anterior-posterior direction (Y-Force) the non-cleated turf shoe for the left foot has a 

percent difference peak near 25 Hz, and in contrast for the right foot, the cleated turf shoe 

has a percent difference peak near 11 Hz. The medial-lateral (X-Force) percent difference 

plots have large percent difference peaks dominated by the non-cleated turf shoe around 

11 Hz for the left foot and 25 Hz for the right foot. The vertical ground reaction torque 

(Z-Moment) percent difference plot is again largely dominated by the non-cleated turf 

shoe near 65 Hz for the left foot and 11 Hz for the right foot. 

Overall, this study supports the view that athletes experience different impact force 

and vertical moment frequency content signals based on the type of shoe they are wearing 

and the main take home message is that in general, but not always, that the magnitudes of 

impact forces are directly related to the magnitudes of low frequency content between 11 

Hz and 60 Hz, and the maximum values of the frequency percent differences vary within 

each GRF component and the vertical moment plots. 

The most intriguing aspect of the study is to examine in future studies why and how 
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greater amounts of frequency content can enter the lower limbs of the body even when 

the impact loads for each particular shoe is the same. 
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MATLAB Software Programs 
 
*********************************************************** 
% Code written by Wayne Fischer, Wes Orme, and Joe Guarino 
% This routine computes a complex Morlet wavelet transform with central frequency and 
bandwidth both at 1 Hz 
*********************************************************** 
% *** Inputs; 
% *** t         Sample Space (time) 
% *** y1,y2  Datasets to be compared 
% *** nscales    No. of scales to use 
*********************************************************** 

 dt=0.0008; 
 t1=500; 
 t=1:t1; 
 fileaxis=input('Input the axis being evaluated (i.e. X,Y,Z):  ','s'); 
%Input the base name of the file 
 nscales=128; 
 order=9; 
 a=0;lsnum=49; 
 stepvectors=-1:(2/14):1; 
 N=300; 
 NL=15 
 

%Perform the wavelet transforms and compute the semblance 
    c1=cwt(y1,1:nscales,'cmor1-1');    % Compute the Complex Continuous Transform 
    c2=cwt(y2,1:nscales,'cmor1-1');    % Compute the Complex Continuous Transform 
    ctc=c1.*conj(c2); ct=abs(ctc);       % Cross wavelet transform amplitude 
    spt=atan2(imag(ctc),real(ctc));      % Cross wavelet phase 
    order=abs(order); order=floor(order/2)+1; % Check the user input a valid order 
    s=cos(spt); s=s.^order;      % Semblance 
    cp=spt/pi;                    % Coherence Phase divided by Pi 
    d=s.*ct;                                      % Dot product 

          
%Plot the two cleat and turf signals 

subplot(3,3,1); plot(y1, 'r'); xlim([0 300]);hold all;   plot(y2, 'b'); xlim([0 300]); hold 
off;  
titlename1=strcat(fileaxis,'-FORCES AVERAGED TIME SIGNALS'); 
title(titlename1); 
axis square 
ax=get(gca,'XTicklabel'); 
Bnum=str2num(ax); 
BF=dt*Bnum; 
set(gca,'XTicklabel',BF); 
legend('Cleat Force','Turf  Force','Location','NorthWestOutside') 
xlabel('Time(sec)')  ylabel('Normed Magnitude') 
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%Plot of Power Spectrum of the Cleat Signal 
       subplot(3,3,2);  
       imagesc(abs(c1).^2), colormap(jet); xlim([0 300]); 
       title('CLEAT POWER SPECTRUM') 
       ay=get(gca,'YTicklabel'); 
       Anum=str2num(ay); 
       AF=scal2frq(Anum,'cmor1-1',dt); 
       set(gca,'YTicklabel',AF); 
       set(gca,'XTicklabel',BF); 
       colorbar('location','eastoutside') 
       xlabel('Time (sec)') 
       ylabel('Frequency (Hz)') 
       hold on 
 
%Calculate and plot cone of influence for Cleat Shoe 
       for coi_t = 1:NL  
       plot(coi_t,128-1.373/(coi_t*dt),'white');%plot left side of coi 
       end 
       N2L=NL+1; 
       for coi_t = N2L:N 
       plot(coi_t,128-1.373/((Ncoi_t)*dt),'white'); 
 
%plot right side of coi   
       end 
       hold off 
          
%Plot of Power Spectrum of the Turf Signal 
      subplot(3,3,3); 
      imagesc(abs(c2).^2),colormap(jet); xlim([0 300]); 
      title('TURF POWER SPECTRUM') 
      colorbar('location','eastoutside') 
      set(gca,'YTicklabel',AF); 
      set(gca,'XTicklabel',BF); 
      xlabel('Time (sec)') 
      ylabel('Frequency (Hz)') 
      hold on 
 
%Calculate and plot cone of influence for Cleat Shoe 
         for coi_t = 1:NL  plot(coi_t,128-1.373/(coi_t*dt),'white'); 
%plot left side of coi 
         end 
         N2L=NL+1; 
         for coi_t = N2L:N 
         plot(coi_t,128-1.373/((N-coi_t)*dt),'white'); 
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%plot right side of coi   
         end 
         hold off 
          
%Plot Max Power vs Frequency 
         subplot(3,3,4); 
         c1flip=flipud(c1); 
         c2flip=flipud(c2); 
         FA=flipud(AF); 
         plot(max(abs(c1flip).^2,[],2), 'r'); xlim([1 128]); hold all;  
         plot(max(abs(c2flip).^2,[],2), ‘b’); xlim([1 128]); hold off; 
         set(gca,'XTicklabel',FA); 
         title('MAXIMUM POWER VS FREQUENCY') 
         xlabel('Frequency (Hz)') 
         ylabel('Maximum Power') 
          
%Plot Max Power vs Time 
         subplot(3,3,5); 
         plot(max(abs(c1).^2), 'r'); xlim([0 300]); hold all;  
         plot(max(abs(c2).^2), ‘b’); xlim([0 300]); hold off;        
         title('MAXIMUM POWER VS TIME'); 
         axis square 
         set(gca,'XTicklabel',BF); 
         xlabel('Time (sec)') 
         ylabel('Maximum Power') 
          
%titlename=strcat(fileaxis,filefm,fileleg,' X WAVELET POWER'); 
subplot(3,3,7); contourf(ct); title(titlename); colorbar('location','eastoutside') 
         ch=(abs(ctc)).^2;ch=ch/max(max(ch));        %Coherence 
         titlename=strcat(fileaxis,'-FORCE',' COHERENCE'); 
         subplot(3,3,6); 
         imagesc(ch); xlim([0 300]); 
         title(titlename); 
         colorbar('location','eastoutside') 
         set(gca,'YTicklabel',AF); 
         set(gca,'XTicklabel',BF); 
         xlabel('Time (sec)') 
         ylabel('Frequency (Hz)') 
         hold on 
 
%Calculate and plot cone of influence for Cleat Shoe 
         for coi_t = 1:NL  
         plot(coi_t,128-1.373/(coi_t*dt),'white'); 
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%Plot left side of coi 
         end 
         N2L=NL+1; 
         for coi_t = N2L:N 
         plot(coi_t,128-1.373/((N-coi_t)*dt),'white'); 
 
%Plot right side of coi   
         end 
         hold off 
         titlename=strcat(fileaxis,'-FORCE',' COHERENCE PHASE/PI'); 
         subplot(3,3,7); 
         imagesc(cp);xlim([0 300]); 
         title(titlename); 
         colorbar('location','eastoutside') 
         set(gca,'YTicklabel',AF); 
         set(gca,'XTicklabel',BF); 
         xlabel('Time (sec)') 
         ylabel('Frequency (Hz)') 
         hold on 
 
%Calculate and plot cone of influence for Cleat Shoe 
         for coi_t = 1:NL  
         plot(coi_t,128-1.373/(coi_t*dt),'white'); 
 
%Plot left side of coi 
         end 
         N2L=NL+1; 
         for coi_t = N2L:N 
         plot(coi_t,128-1.373/((N-coi_t)*dt),'white'); 
 
%Plot right side of coi   
         end 
         hold off 
 


