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Abstract—Statistical and machine learning is a fundamental and diagnostics of complex systems. Many sensor network
task in sensor networks. Real world data almost always exhibit topologies are possible for the distributed inference problem,

dependence among different features. Copulas are full measures ¢ \yhich we focus on the parallel fusion topology which is
of statistical dependence among random variables. Estimating .
the most popular and widely used one.

the underlying copula density function from distributed data is ’ -
an important aspect of statistical learning in sensor networks. ~ The observations by different sensors are often dependent.

With limited communication capacities or privacy concerns, For simplicity, independence assumption is often made. The
centralization of the data is often impossible. By only collect- efforts to take the dependence into account is often carried
ing the ranks of the data observed by different sensors, we out within a parametric modeling framework, in which the
estimate and evaluate the copula density on an equally spaced e

grid after binning the standardized ranks at the fusion center. observeq data are f”‘.ss“me‘?' to.foIIow specific models S,UCh as
Without assuming any parametric forms of copula densities, @ Gaussian probability distribution for random observations.
we estimate them nonparametrically by maximum penalized  Copulas are full measures of statistical dependence among
likelihood estimation (MPLE) method with a Total Variation  random variables. Understanding and quantifying dependence
(TV) penalty. Linear equality and positivity constraints arise s an important, yet challenging, task in multivariate statistical

naturally as a consequence of marginal uniform densities of deli | l G . Id stochastic d d .
any copulas. Through local quadratic approximation to the modeling. In a linear, Gaussian world stochasuc dependencies

likelihood function, the constrained TV-MPLE problem is castas ar€ captured by correlations. In more general settings, one
a sequence of corresponding quadratic optimization problems. A often needs a complete specification of a joint distribution to
fast gradient based algorithm solves the constrained TV penalized have a complete knowledge of the dependence structure. The
quadratic optimization problem. Numerical experiments show  igicyty level of building such multivariate distributions can
that our algorithm can estimate the underlying copula density .

be greatly lowered if one uses a copula model to separate the

acfﬁ&i;el¥qms_sensor network; dependence; copula; copula Marginal distributions from the dependence structure. Copula
density estimation; (otherwise known as dependence function) has emerged as a

useful tool for modeling stochastic dependence. Sklar's theo-

l. INTRODUCTION rem [2] is the theoretical foundation of the copula usage which

Sensor networks have attracted considerable attentionstates that a joint multivariate cumulative distribution function
the past two decades [1]. Distributed inference using seng@DF) equals the copula function of all univariate marginal
networks remains as an active research area due to its adv@b¥s. If all the univariate marginal CDFs are continuous, then
tages such as increased reliability and greater coverage owercopula is unique. In other words, a copula is a multivariate
centralized processing. Distributed inference refers to the deBF with standard uniform marginals. A copula density is
cision making problem involving multiple distributed agentshe partial derivative of the copula, just as a joint multivariate
The recent emergence of wireless sensor networks (WSppbability density function (PDF) is the partial derivative of
has added many new dimensions to this classical inferertbe joint CDF for continuous random variables. The name
problem. The limited capacity and other resource constrairftopula” was chosen to emphasize the manner in which a
make it imperative that each sensor node compress (often withpula “couples” a joint CDF to its univariate marginals. Some
very high ratio) their local observations before forwardingecent review papers on copulas include [3]-[7]. Some recent
the data onto other sensors or fusion centers. Study of W®Noks on copulas include [8]-[10].
has greatly enriched the theory of distributed inference, asln the past two decades, copulas have been widely used in
evidenced by the rapidly increasing literature in recent yeaes.variety of applied work, notably in finance and insurance.
Perhaps more importantly, the feasibility of having networkeSee [3], [8], [11]-[16] for example applications specific to
mobile and miniature sensor nodes has greatly broadened fimance and insurance. Some copula applications started to
tential applications beyond sensing and surveillance. Exampéggoear in signal and image processing recently. In [17],
include health care, environmental monitoring, and monitorirgpnnections between Cohen-Posch theory of positive time-
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frequency distributions and copula theory were establishred of kernel based copula density estimation is that it provides a
[18], useful copula models for image classification were usathooth (differentiable) reconstruction of the copula function
in the frame of multidimensional mixture estimation arisingvithout putting any particular parametric a priori on the depen-
in the segmentation of multicomponent images. In [19], thaence structure between margins and without losing the usual
problem of detecting footsteps was considered where copufssametric rate of convergence [33]. Kernel estimators have a
were used to fuse acoustic and seismic measurements. In [3@)ere drawback as they require a very large amount of data
Gaussian copula was used in the problem of tracking a colorgége 195, [34]) and suffer from a corner bias. Nonparametric
object in video. Copula theory was used to detect changestimator of a copula using splines was proposed in [35] for a
between two remotely sensed images before and after tiew class of copulas called linear B-spline copulas. Sancetta
occurrence of an event in [21]. Generalized Gaussian copalad Satchell [36] employed techniques based on Bernstein
was used for texture classification in [22]. A new divergenggolynomials. Bernstein copula family belongs to the family of
measure based on the copula density functions for imagelynomial copulas [9] and can be used as an approximation
registration was explored in [23]. A possible link betweeto any copula. Nonparametric estimators of a copula density
copula and tomography was elaborated in [24]. In [25], asing wavelets were proposed in [37] [38] and [39]. Hall and
copula-based semi-parametric approach for footstep detectideumeyer [37] used a wavelet estimator to approximate a
using seismic sensor networks was proposed. In [26], a nogepula density. Genest et al. [38] used wavelet analysis to
approach for the fusion of correlated decisions to detect ragenstruct a rank-based estimator of a copula density. Autin
dom signals under a distributed setting was proposed using #ieal. [39] dealt with the copula density estimation using
copula theory. In [27], a maximum-likelihood estimation basedavelet methods by adaptive shrinkage procedures based on
approach using copula functions was proposed to estimate theesholding rules. These wavelet methods can better adapt to
location of a source of random signals using a network obnsmooth regions such as corners of a copula density.
sensors. In [28], a parametric copula based framework forWwhat does a copula density(u,v) look like? In one
hypothesis testing using heterogeneous data was presenteextreme, for two independent random variablegy,v) is
In these applications, parametric model assumptions wereconstant with value 1. When two random variables are
typically motivated by data or prior application-specific dodependentc(u,v) can be smooth, have sharp boundaries,
main knowledge. However, when data is sparse or prior even be unbounded along boundaries. It is reasonable to
knowledge is vague, these parametric models may becoassume that the total variation (TV) efu,v), or at least its
guestionable. Nonparametric methods are often desirablediacrete version, is bounded. In practice, we often estimate and
such situations. Predd et al. [29] surveyed nonparametdisplay the density in a finite grid. We propose a maximum
distributed learning in WSN. penalized likelihood estimation (MPLE) with TV penalty
In what follows, we focus on the bivariate case only fomethod. This method is capable of capturing sharp changes in
simplicity. That is, we assume the network has two sensothke target copula density, suffering less from edge effects when
with each observing a specific random variable. For examptee copula density can be unbounded at boundaries in some
the first sensor records the temperatures in the surroundistptistically important cases, whereas conventional kernel or
while the second sensor records the pressure in the sagpéne techniques have difficulties in nonsmooth regions. Our
surrounding. The fusion center wishes to learn how the temmethod preserves data privacy because each sensor is only
perature and pressure are related to each other through mbguired to send ranks of its individual records instead of the
copula density. The proposed methodology is extendable dnginal observations to the fusion center.
more than two dimensions. The TV penalty based MPLE for copula density was
The copula density estimation has been mostly studied proposed in [40], where the penalty term is the TV of the
a parametric framework, whereby a bivariate copula densityg density, and the unity requirement for a density func-
c(u,v) is assumed to be a member of a copula family deteion is imposed. However, the marginal unity, symmetry and
mined by a few parameters (for example, [30]). The parametipositivity for a copula density are not enforced. In [41], the
copula density estimation problem is then essentially reducé¥ of the density is the penalty and the marginal unity and
to estimate the few parameters that determine the copugmmetry are enforced by linear equality constraints, but the
Choros et al. [31] provided a brief survey of parametriqositivity is not enforced. In fact, we are not aware of any
semiparametric and nonparametric estimation procedures fieethod that explicitly imposes all the essential properties for
copula models. We propose here to learn the bivariate copalecopula density. The main reason behind this is probably
density in the fusion center nonparametrically. For practitiomelated to the difficulty of the induced high dimensional
ers, nonparametric estimates could be used as the first stptimization problem. In this paper, we enforce the marginal
toward selecting the right parametric family. unity and symmetry properties as linear equality constraints,
Nonparametric estimation of copula and its density doesd positivity property as linear inequality constraints for
not assume a specific parametric form for the copula and tthee discretized copula density. We solve the problem of
marginals and thus provides great flexibility and generalitgninimizing penalized negative log likelihood with TV penalty
Nonparametric estimators of a bivariate copula density usisgbject to linear equality and inequality constraints through
kernels have been suggested by [32] and [33]. The advantdgeal quadratic approximation to the likelihood function first.
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The constrained TV-MPLE problem is then cast as a sequertan be used. When ECDFs are used as the marginal CDF esti-
of corresponding quadratic optimization problems. We applyators (e.g., in [38], [39]){/; = rank( X;)/n where rank{;)
a fast gradient based algorithm to solve the constrained % the rank of X; among X,..., X, and V, = rank(Y;)/n
penalized quadratic optimization problems. The effectivenestiere rankt;) is the rank ofY; amongYi,...,Y,. Hence
of our method is illustrated through numerical experiments.{(Ui,‘Z) ™, is nothing but the standardized ranks which
The rest of the paper is organized as follows: In Section e close substitutes for the unobservable péifs V;) =
we formulate the problem. In Section Ill, we present the loc&F'x (X;), Fy (Y;)) forming a random sample from the copula
quadratic approximation (LQA) algorithm, and in section INC'(u, v).
show the experimental results. Finally, Section V concludesin the second stage, we estimate the copula den&ityv)
the paper. based on the observatio§U;, V;)},.
Here we do not assume any parametric formdar, v) and
o _ instead, obtain an estimate of it that satisfies properties (P1-P4)
A bivariate copula density(u,v), [u,v] € [0, 1] can be and is defined on a partition of the unit square. Specifically,
regarded as the joint PDF of a bivariate standard uniforgpe partition equally divides domain afu,v), [0,1]2, into
random variablgU, V). Most copulas are exchangeable, thug; _ ,,,2 rectangle cells with cell sizél/m) x (1/m) . A
implying c(u,v) is symmetric. Thec(u,v) must satisfy the yaa50nable grid size i64 x 64 (i.e., m = 64) for sample

Il. PROBLEM FORMULATION

following four properties: sizen = 2000 and m = 32 for n = 500. A much finer
(P1) c(u,v) >0, for [u,v] € [0,1]% ; discretization will increase problem size unnecessarily. In most
(P2) fol c(u,v)du =1, for0 <wv < 1; numerical scheme, one fixes a grid resolutionl@fn much
(P3) [ c(u,v)dv =1, for 0 <u < 1; smaller than2=7» with J,, = L%IogQ(loLgn)j (page 207 of
(P4) c(u,v) = c(v,u). [39)).

Note that (P2) and (P4) implies (P3), so (P3) is redundant. Let us usei,j = 1,...,m to index all theN cells of this
A bivariate copulaC'(u, v) defined on the unit squafe, 1]>  grid. On each cells, j), letz;; denote the constant estimate of
is a bivariate CDF with univariate standard uniform margins:(u, v) over the cell and ses;; to the number of observations

u o {(U;,Vi)yr_, falling in this cell.
C(u,v) = / / c(s, t)dsdt. A naive solution toz;; is ;; = pi; N/n, which produces
070 o ~the 3D-histogram of the relative frequencies of the pseudo-
Sklar's Theorem ( [2]) states that the joint CIPKz, y) of a bi- observationgrank( X;) /n, rank(Y;) /n) measured on the grids
variate random variableX, Y') with marginal CDFFx () and  of the unit square. To illustrate this, we generated random
Fy(y) can be written ad’(z, y) = C(Fx(z), Fy (y)), where  samples of sizex = 2000 from the Gaussian copula with
copulaC'is the joint CDF of(U, V) = (Fix (X), Fy(Y)). This  narameter = 0.5 and displayed the 3D-histograms in panel
indicates a copula connects the marginal distributions to thg of Fig. 1. The true Gaussian(0.5) copula density is plotted
joint distribution and justifies the use of copulas for building, panel (a) followed by the rank-rank plot in panel (b). The
bivariate distributions. distinctive features of this copula are apparent as evidenced by
Let X;,...,X,, be a random sample from the unknowRne sharp corners, but the histogram is rather erratic and rough
distribution Fy that is observed at sensor 1. L¥{,...,Y, compared to the true copula density. Similar plots are shown
be a random sample from the unknown distributign that is i, panels (a), (b), (c) in Figs. 2, 3 and 4 for Clayton(0.8),
observed at sensor 2. Further assum@, Y1), ..., (Xu,Yn)  Frank(4) and Gumbel(1.25) copula density respectively.
be a random sample from the unknown distributibhof  The histograms obviously do not satisfy the marginal unity
(X,Y). We wish to estimate the copula density fU”Ct'Ofy}roperty (P2). The marginal integral ofu, v) can be approx-

c(u, v). ) o ) imated by the Riemann sum

When the two marginal distributions are continuous, the
copula densityc(u,v) is the unique bivariate density of 1C(u V)du ~ 1 im 1 i1 m
(U, V) = (Fx(X),Fy(Y)) as implied by Sklar's theorem. o ’ “m — YT T e

As copulas are not directly observable, a nonparametric copula

density estimator has to be formed in two stages: obtaining thad

observations for(U, V) first and then estimating the copula 1 1

density based on these observations. / e(u, v)dv = — wy=1, i=1,...,m.
In the first stage, thg orjginal gata s(eX:i,Yi) for i = 0 j=1

1,...,nis converted taU;, V;) = (Fx (X;), Fy (Y;)), where  The marginal unity (P2) implies

Fx and Iy are conventional estimators dfxy and Fy. If

models are available for the marginal distributionsofindY i .

but not for the joint distribution, one can use a technique such ot

as maximum likelihood to estimate the marginal distribution 7;1

functions. Otherwise, some nonparametric univariate CDF inj = m, i=1,...,m.

estimation methods or simply the empirical CDFs (ECDFs) =1
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The purpose of this paper is to present a smoothed versiamd theL,-based TV is
of the 3D-histogram that practitioners could use as: (1)a
graphical tool to spot the key features of a copula dependenc
structure such as skewness or heavy-tail behavior, (2)as &—!
model selection tool to choose a particular parametric CopuI:Z (Tit1,j = 220 + @i+ |Tign — 2205 + Tij-a]
from families of copulas. In more technical terms, what will “7=2
be proposed is a non-parametric (rank-based) estimator of thigere we set the (standard) reflexive boundary conditions
copula density

EER™M™ TV, (z) =

Tmt2,j = Tmilj = Tmy, J = 1...m;
o2

Qudv The algorithms developed in this paper can be applied to both
The approach described here is based on the maximyse 7.,- and L,-TV. Since the derivations and results for the
penaliZEd likelihood estimation with a total variation penaltx2 and L, cases are very Sim”ar, to avoid repetition, all of
and by enforcing the copula density properties. That is, Wgir derivations will consider thé,-TV.

e(w,v) = == Clu,v), [u,0] € [0,1]2 Tim42 = Bima1 = imy L= Lo

estimate a copula densitfu,v) as am x m discrete image et I(z) = — Z;’%j:lpiﬂog%, then Vi(z) = —p./x,
z by solving: where V denotes the gradient operator with respectato
) and./ denotes element-wise division. The HessHix) =
min Tx(z) = — > pijlogei; + A TV (z), 821(z)/02? is a diagonal matrix with diagonal vecter/z2
i The gradient and Hessian will be used in the optimization

algorithm discussed in the next section.

m
such that i = j=1,... and . :
me mJ SRR Our proposed copula density estimate solves:

i=1
Tij = xji, 4, j=1,...,m, and min {{(z) + ATV(z)}, such thatdz =b, =>0. (1)

.I‘ij>0, i, 7=1,....,m. . L .
When A — oo, the solution of (1) ist = 1 leading to

where ) is a smoothing parameter controlling the smoothneééu, v) = 1 which implies the indepence of andY for the
of the estimate. density estimation and apparently over-smoothes the density
As is customary, a discrete image= [z;;]7_, € R™*™ for dependent case. When = 0, the solution of (1) is the
’ 1Jli,j=

will be dealt with as a vector in the usual Euclidean spadtstogram estimate which under-smoothes the density. For an
RN through the column stacking isometry; < 2. In appropriatgly chosgn, the solution is a properly regularized
the sequelz could mean either a 2D array or a 1D columigStimate with the right amount of smoothness.

vector depending on the context in which it appears. The linear m
equality constraints in the above minimization problem can be
written in the form Az = b by forming them(m +1)/2 x N

sparse matrixd andm(m + 1)/2-vectorb. The details of4,» 10 solve problem (1), we first approximater) locally by
can be found in [41]. its quadratic expansion around at kth iteration:

. LocAL QUADRATIC APPROXIMATION (LQA)
ALGORITHM

In a typical TV-based image restoration problem, T)/(s 1

based on the first order finite difference which stems fro ) ~ l($k)+(x_xk)Tw(xk)+§(x_$k)TH($k)(x_xk)'

the piecewise constant assumption of the underlying imagg, ;. — 0,1,..., we then solve the following problem

x. A well-known drawback of the first order finite difference

based TV regularized estimates is the staircase effect: the, 2TVi(2F) + }(x_xk)TH(mk)(x_xk) +)\TV(3:)},

estimated values produced by TV regularization tend to cluster 2

in patches [42], [43]. A copula density functiaf{u,v) is such thatAx = b, x > 0, (2)

continuous for[u,v] € [0,1]?, hence the first order finite ) o

difference ofz may not be sparse. But the higher order finitdntil certain convergence criteria is met.

difference ofz are typically sparse. We choose the second ProPlem (2) is a special case of the optimization problem

order finite difference to define T¥j. The even higher order With @ composite objective function [44]:

finite difference based TV leads to unrealistic oscillatory min {F(z) = f(z) + g(z)}, ©)

solutions in our numerical experiments. z
The Ly norm and second order finite difference basedith the following assumptions:

discrete TV is e g(x) : R™*™ — (—00,+0oc] is a proper closed convex
function which is possibly nonsmooth;

o f(x): R™*™ — (—00,00) is continuously differentiable
with Lipschitz continuous gradient

x € R™™  TVa(z) =

m—1
> \/(xm,j =225 + Tim1,5)? + (Tig41 — 2255 + Tijo1)?, y
ij=2 IVf(x) = VIl < L(Hllx =yl Yo,y € R™*™
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where||-|| denotes the standard Euclidean norm &fd) The problem (6) is obviously a proximal map by setting:

is the Lipschitz constant oV f; y—aVf(y).
 problem (3) is solvable, i.e B, := argmin, F(z) # 0. When the subproblem (7) is not solved accurately, the
Problem (3) reduces to problem (2) by setting FISTA may diverge. To get rid off this trouble, the objective

1 function F(z) in (3) is forced to be non-increasing at each
V(") + = (x — 2")TH(2®)(z — zF), (4) step, which leads to the monotone version of FISTA: MFISTA.

2 With the specificg(z) in (5), the problem (7) becomes the
constrained TV-based denoising problem:

flz) ==
g9(x) = ATV(z) + do(x) ®)

whereC = {x € RY : Az = b, x > 0} a closed convex

: 2

set anddc being the indicator function od@'. The Lipschitz me {0.5]]z — 2" + aATV(2) } . (8)
constant of this specifig(x) is the maximum of the Hessian S ) .
diagonal vector, which g, = max {p./(z*)?}. One of the intrinsic difficulties to solve this problem is the

To solve problem (3), Beck and Teboulle [44] [45] propose@onsmoothness of the TV function. This was overcome by a
a gradient-based algorithm which shares a remarkable simpf¢al approach in [44] which followed [51]. The objective func-
ity together with a proven global rate of convergence which ;g_)n for_ the dual problem is contln_uously differentiable and its
significantly better than currently known gradient projectiond-PSchitz constant has an analytical upper bound. Hence, the
based methods. The algorithm is termed MFISTA which stanél§al problem is solvable by a fast gradient projection algorithm
for monotone fast iterative shrinkage/thresholding algorithr@2s€d on FISTA. The dual problem requires a projection onto
The key idea is to adopt a quadratic separable approximati§ linear equality and positivity constrained convex set which

to f(z) around the current estimate we discuss below.
fo(@) = fly) + (x —y)"Vf(y) + in — %, A. Projection onto Linear Equality and Positivity Constrained
20 Convex Set

for a givena > 0. This approximation interpolates the first-
derivative information of f(z) and uses a simple diagonal
Hessian approximation to the second-order term. Hence a
quadratic separable approximationf@z) around the current
estimatey is

For a giveny € RV, this projection is to solve
min ||z — y||*, such thatdz = b,z > 0. )

By penalizing the square of the, norm of the difference
Fo(z) = folz)+g(x) betweenAz andb, we obtain the following approximation to

1 problem (9)
= fW)+ @ =)'V + e —yl* + g().

This quadratic approximation t6'(z) can also be interpreted

as a regularization method with a quadratic prOXimaI term th@tth a Sufﬁcienﬂy |arge pena|ty parametéﬁ This type of

would measure the local error in the linear apprOXimatiorq,uadratiC pena|ty approach can be traced back as ear|y as

and also results in a well defined, i.e., a strongly convgg2] in 1943. It was discussed in section 17.1 in [47]. It is

approximate minimization problem for (3) [46]: well known that the solution of (10) converges to that of (9)

as 3 — oo. This quadratic penalty approach was popular in

large-scale underdetermined linear equality constrained sparse

= argmin {0.5|]z — (y — aV£(y))||* + ag(z)}. (6) recovery problems in recent years [48]. It was used in a new

‘ alternating minimization algorithm for total variation image

Apparently, thex serves the role of step size. There are mangconstruction [53] as well.

data adaptive ways to search for step size, including backtrackye prefer to solve the following equivalent problem to (10):

ing line search algorithm (section 3.1 of [47]) and spectral

gradient method [48]. Under the assumption fdf:) having min {0.5||[Az — b||* + 0.5u||z — y[|*}, stz >0 (11)

Lipschitz continuous gradient, it turns out that= 1/L(f) is v

a good fixed step size. with a small penalty parametegr, because problem (11) is

Instead of solving problem (6) at the current iterate more stable than (10) in case whdhnis ill-conditioned.

FISTA algorithm smartly solve the problem at tpewvhich is |t is straightforward to apply FISTA algorithm to solve

formed by a very specific linear combination of the previougroblem (11) by setting

two iterates.

For a givenz € R™*™ and a scalary > 0, the proximal f(z) = 0.5||Az — b||?, Vf(z)=AT(AB —b),
_ma(ljp qu I\/(Ijotr)eau [49] [50] associated to a convex functjomn) L(f) = maxeig AT A), g(x) = 0.5ul|lz —y||*> + S1z>0y (7).
is defined by

min{O.5ﬁ||Am—b||2—|—0.5||a:—y\|2}, st.z>0 (10)

x* = argmin Fg(z)
€T

We note that the maximum eigen value4f A asL(f) should

R : 2
prox, (z, &) := arg e {05]]z = 2] +ag(@)} . (7) pe precomputed outside the main loop and be passed to FISTA
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to avoid redudant computation . The closed-form solution te ¢5. All the best regularization parameters were found near
the sub-problem (7) in this case is: the central portion of this grid.
Fig. 1 displays the surface plots of the estimated copula
densities in panels (e) (f) for Gaussian(0.5) copula. For com-
Z + oy parison, we computed a 2D kernel density estimate using the
= P>o <1+au> ) kde2D program [54] [55] as shown in panel (d). Obviously,

there is an oversmoothing by KDE. The TV estimates catch

where P(,~.01(-) is simply the positivity projection operator. the two peaks in the front and back corners well.
Figs. 2, 3 and 4 display the results for Clayton(0.8), Frank(4)

and Gumbel(1.25) respectively. Again, The TV estimates are
We conduct simulation studies designed to demonstrate gse to the truth.

effectiveness of the TV-MPLE subject to linear equality and
positivity constraints for copula density estimation.

The stopping criterion for LQA in the main algorithm was (2)Gaussian(0.5) copula density 1. ) renkerank scatte
|[xF*+1 — 2F||/||2*|] <= 1076 or total number of iterations bk
reaching 10. '

In the simulation, the marginal CDH8y and Fy were esti-
mated by ECDFs. This amounts to use the standardized ra
of the sample{(X;,Y;)}" , as estimates of(U,,V;)}", _ _
(remind thatU; = Fx(X;) andV; = Fy(Y;)). The CDF ety !
of a continuous random variable is continuous and strict (e KDE estimate, RE1=0 0751, RE2=0.1850
increasing within its domain, which implies that the ranks ¢
X,'s are the same as the ranks ©f's, so are the ranks of
Y;'s and those o¥/;’s. Therefore it is unnecessary to explicitly
specify theF'x and Fy in our simulation for copula density
estimation. One can first generafgU;,V;)}, from an
underlying copula density(u, v), then use their standardized
ranks as their estimates.

We tested four parametric families of copulas: Gaussia
Clayton, Frank and the Gumbel families. For each copu
model, independent and identically distributed (i.i.d.) stai
dard uniform bivariate random variabldsU;, V;)}7, were
generated from the specified copula with paramétersing
MATLAB’s copularnd) function. That was,{U;}?_, was
a sample from a Uniform(0,1) distribution, and so was th
{Vz‘}?:l- The joint pdf of (U,V) was the Specified copula Fig. 1._ True and _estimated copula Qensities ina typic_al rurhef dase:
densityc(u, v) with parametes. The sample sizes considered®2UsSian copula wit = 0.5, sample size = 2000, grid sizem = 64.
wasn = 2000. The grid sizes used was = 64.

Various error measures were evaluated over the equallyOur TV-MPLE copula density estimate can serve the pur-
spaced grid points withid0, 1]2 where the copula densitiesP0S€ to select a parametric copula from several parametric
were estimated. For one data set, the quality of an estimfgnilies. A parametric copulay is wholly determined by its
¢x(u,v) of the true copula density(u, v) was measured by parameterd. The parametef can be estimated by classical

— s 2 2
prox, (2, a) : = argmin {||z — z||* + apllz — y||*}

IV. SIMULATIONS

an error measur&oss(éy, c), which is relative errors parameter estimation methods such as maximum likelihood.
. We measure the distance between our nonparametric estimate
RE,(\) = [1ex = cllng forqg=1, 2. (12) ¢x and the parametric estimaig by their relative errors
llellng ’

o i e —clln,
The regularization parametarwas chosen from 10 equally RE,(0) = w forg=1, 2,00.

spaced numbers ifi0~%,1072] in a log10 scaleX; > Xy > 3 l1n.q

. > Ao With A\; = 1072 and )\ = 10~*. We started The selected parametric copula is the one with the smallest
solving problem (1) withA = A; using the initial value REq(é) among all parametric candidates.
Tinit = 1. We then proceeded to solve problem (1) with A simulation study was to illustrate this model selection
A = Az and set the initial value far as the previous solution. strategy. An i.i.d. standard uniform bivariate random sample
This choice of initial value is the so-called warm start [53[(U;, V;)}", with n = 2000 was generated from the Gaussian
Finally, we select the best out of {\;,...,A\jo}. For the copula density withd = 0.5 . TV-MPLE estimate¢, was
error measure Log8,, ¢), the best regularization parameter constructed based on the dafél;, V;)}™ , with grid size

is the one which minimizes Loss(,c) and the best estimatern = 64 and A selected by the best in terms of RE5(\).
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(a)Clayton(0.8) copula density (b) rank-rank scatter plot

0 0.5
ranks(U)/n
(d) KDE estimate, RE1=0.1004, RE2=0.3569

40 40

20 4+

(e) TV-RE1 estimate, RE1=0.0954 (f) TV-REZ2 estimate, RE2=0.2524

40 40

Fig. 2. True and estimated copula densities in a typical runhefdase:
Clayton copula withd = 0.8, sample sizex = 2000, grid sizem = 64.

(a)Frank(4) copula density

(b) rank-rank scatter

ranks(V)h

.5 1
ranks(U)/n

(d) KDE estimate, RE1=0.0655, RE2=0.0832

(e) TV-RE1 estimate, RE1=0.0599

A

(f) TV-RE2 estimate, RE2=0.0676

A

— 05

S
05

— 05 ——

00

Fig. 3. True and estimated copula densities in a typical runhefdase:
Frank copula withd = 4, sample sizex = 2000, grid sizem = 64.

The # was estimated by the Canonical Maximum Likelihood

(CML) method using MATLAB'’s copulafi{) function. Table

| reports theRE,(6) for 4 different candidates. TV-MPLE

(a)Gumbel(1.25) copula density (b) rank-rank scatter plot

ranks(V)h

0 05 1
ranks(U)/n

(d) KDE estimate, RE1=0.0741, RE2=0.2573

20

=
10 5
- =
05 \i“‘"///OS
o0

() TV-RE2 estimate, RE2=0.1554

~—
o0

Fig. 4. True and estimated copula densities in a typical runhefdase:
Gumbel copula withh = 1.25, sample sizex = 2000, grid sizem = 64.

relative errors. We correctly select the Gaussian model among
four parametric families considered.

TABLE |
RELATIVE ERROR RE () FOR THE SIMULATED DATA FROM
GAUSSIAN(0.5)WITH n = 2000, m = 64

Parametric Estimate RE:1(0) | RE2(0) | REx(0)
Gaussian 0.0527 | 0.0917 0.3997
Clayton 0.1621 | 0.3406 0.7605
Frank 0.0933 0.1270 0.5889
Gumbel 0.7567 | 0.7869 0.9468

V. CONCLUDING REMARKS

In a distributed sensor network, working with rank data only
in the processing center, we presented a TV penalized max-
imum likelihood copula density estimate subject to the con-
straints that the marginal distributions are standard uniforms.
The linear equality and positivity constrained TV regularized
MPLE problem is solved by a local quadratic approximation
algorithm in the main iteration. The sub-problem of con-
strained quadratic programming with TV penalty is solved by
MFISTA. The resulting nonparametric copula density estimate
captures the salient features of the underlying copula density.
The data adaptive choice of the regularization parameteitl
be implemented in the future.
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