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ABSTRACT 

Modern memory semiconductors require different internal voltages to accomplish 

the myriad of tasks that are required for operation.  These internal voltages are multiples 

of the external voltage that is applied to the part.  This multiple can be greater than one, 

as is the case with voltage pumps, less than one, as in the case of regulated supplies, and 

negative, as in the case of negative charge pumps.  All of these potentials require control 

and regulation to ensure proper operation of the die.  The control of the supply ensures 

that the required potentials are available when the die needs it.  The regulation portion of 

the equation ensures that the desired potential is sufficient to meet the circuit needs and 

can react to changes in the circuit using the potential. 

This research explores the use of a Delta-Sigma Modulation-based circuit to 

control and regulate the operation of a voltage-generation circuit as well as introduce the 

ability to dynamically program the output voltage.  What is presented in this thesis is the 

use of Delta-Sigma Modulation to sense, generate, and control the pumped wordline 

potentials necessary in a modern NAND memory device.  These voltages generally 

consist of a read, erase, pass, and program potentials.  The topology was chosen for 

voltage stability, superior response time when measured at the highest potential, and the 

ability to program the desired output potential depending on the circuit operation being 

performed.
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The proposed circuit was designed and fabricated using AMI’s 500 nm process 

through the MOSIS service (www.mosis.com).  The chip performance has been evaluated 

and compared to the simulation results to verify accurate voltage generation over a wide 

input voltage and output response to changes in the input voltage.  The control voltage 

was varied from 0.6 volts to 2.0 volts and the output voltages were measured to be 5.76 

volts and 20.03 volts, respectively.  The linearity of the output response was measured to 

average within 100 millivolts of the ideal.  The response time of the DSM was also 

measured with good correlation to the simulation values. 
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CHAPTER ONE: INTRODUCTION   

1.1 Motivation 

 The advancement of semiconductor devices and their applications have driven the 

need to shrink the devices as well as enable their application in more diverse and 

demanding environments.  One significant area of employment has been in the mobile 

environment.  In this arena the power consumption of every component in the application 

is scrutinized for the utmost efficiency.  The average power as well as the peak power is 

analyzed in detail to ensure that every component is operating at peak efficiency.   

 In order to optimize the efficiency of every component in the system the 

requirements for an efficient and highly optimized circuit design are placed on each 

design.  This requires a significant effort on the part of the circuit designer to evaluate 

every sub-circuit of each chip to ensure that it is as efficient as possible.  One area of 

examination is the generation of the necessary on-chip potentials that are used in the 

course of operating the device. 

 In modern NAND devices, there are a number of potentials generated internally.  

These include an elevated potential that is used for programming or erasing the NAND 

cells.  This is the program potential and can range as high as +20 volts in order to 

properly program the NAND cell.  Another potential is the read potential.  This potential 

is used to determine the threshold voltage of the cell.  This is then interpreted by the 



2 

 

sensing circuitry to determine the contents of the cell.  Another potential is the pass 

potential, which is used to set the voltage on all the remaining cells along the NAND 

string to the potential required to pass current so that the selected cell can be read.  Other 

voltages necessary in modern NAND devices are the program and program inhibit 

voltages [4].  This diversity of required potentials that are necessary has been addressed 

by the design and implementation of various voltage generation supplies within the chip.  

Each chip can require up to 7 different supply voltages in order to operate properly [2].  

Other designs use fewer circuits and inefficient methods of generating the intermediate 

potentials necessary for proper operation.  The regulation and control of the various 

potentials must also meet stringent requirements for set point and ripple. 

 The voltage generation circuit in this work addresses the need for numerous 

potentials on the die as well as simplifying the design of the circuit itself.  In this work a 

Delta-Sigma Modulator (DSM) controller connected to a charge pump is used to generate 

the positively pumped potentials that are necessary for the normal operation of the 

NAND device. 

 The use of a DSM front end to control and regulate the operation of the charge 

pump introduces the opportunity to reduce the number of pump circuits on the die to 

exactly the number necessary for normal operation.  Additional benefits are better control 

of the potential, decrease in overall chip area and a decrease in the power consumption of 

the die. 
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1.2 Flash Cell Construction   

 The essential elements in the construction of flash cells are the control gate, a 

floating gate, barrier oxide, tunnel oxide and a standard silicon substrate with source and 

drain implant areas.  In Figure 1 a basic flash cell is illustrated showing these elements of 

a flash memory cell.  These elements are stacked vertically and form the flash cell 

 

 

Figure 1. Flash Cell Construction   

 The control gate is the (polysilicon) conductor that is used to access and program 

the flash cell.  The necessary bias voltages are applied to this node to control the flash 

memory cells behavior.  The dielectric between the control gate and the floating gate 

serves as a conduction barrier between these two nodes.  As will be demonstrated in the 

operations section this primarily serves as a capacitor dielectric between these nodes.  

The floating gate is the conducting, or in some cases semi-conducting, layer that is used 

to store charge and alter the threshold voltage of the flash cell.  The lower oxide, 

commonly called the gate oxide or tunnel oxide is used to separate the floating gate from 

the substrate.  It is this oxide that electrons tunnel from the channel to the floating gate, as 
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 The tunnel oxide can be seen below the floating gate and above the substrate.  

This oxide must be thin enough to present a low barrier to tunneling and yet be thick 

enough to have sufficient durability in operations. 

1.3 Principles of Flash Memory Operation   

 A flash memory device stores information in an array of floating gate memory 

cells.  These cells store charge through the process of adding or removing charges to and 

from the floating gate of the flash cell.  This movement of charges alters the threshold 

characteristic of the device and thus allows for the programming of a cell so that current 

will either flow through the cell or be blocked during the read procedure.  For the 

purposes of this thesis the flow of electrons from the source to the drain of the device is 

interpreted as a “1” and the absence of current flow is interpreted as a “0” on the floating 

gate. 

 Figure 3 illustrates the effect of storing charge on the floating gate on the 

threshold of the device.  As the number of electrons that are added to the floating gate 

increases, the threshold voltage of the device is altered.  If a sufficient number of 

electrons are added to the floating gate the device threshold grows and ultimately the 

device will be incapable of creating a channel and no current will flow in the device.  

This would result in a “0” being read out of the cell.  The inverse case would be that there 

were no electrons stored on the floating gate, the cell is erased, and a channel can easily 

be formed in the device. 
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Figure 3. Storing Charge on the Floating Gate   

1.3.1 Programming a Flash Cell 

 In order to properly describe flash memory operations it is necessary to 

understand the primary mechanisms whereby flash cells operate.  The first operation to 

understand is how a flash cell is programmed.  As was described in the previous section, 

flash memory is programmed by altering the threshold voltage of the cells so that the 

threshold voltage is above or below the read potential programs flash cells.  The primary 

mechanism through which this is achieved is Fowler-Nordheim- Tunneling, FNT [7].  

Figure 4 shows the method of how the flash cell is programmed using this mechanism. 
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Figure 4. Programming a Flash cell with Fowler-Nordheim Tunneling   

  

A high potential, for example, +20 V, is applied to the control gate of the cell and 

this potential capacitively couples to the floating gate, increasing its potential.  The drain 

and the source contacts are floating.  The substrate is tied to a reference potential, 

typically ground, and electrons are drawn up from the substrate, through the tunnel oxide 

and into the floating gate.  The increase in electrons on the floating gate raises the 

effective threshold voltage of the device.  The standard CMOS threshold voltage equation 

can be modified to include the effects of the trapped charges present in the floating gate. 

This term is the ொᇱೣ  term in the threshold voltage equation 1.1[7]. 

௧ܸ ൌ ቆെ߮௦ െ 2߮   2 ቀொᇱ್బᇱೣ  ொᇱᇱೣ ቁቇ                                           1.1  



8 

 

1.3.2 Erasing a Flash Cell   

 The erase procedure is effectively the same procedure as the program operation 

except that the potentials are reversed.  Figure 5 illustrates the flow of electrons from the 

floating gate to the substrate during this operation. 

 

Figure 5. Erasing a Flash cell with Fowler-Nordheim Tunneling   

 

 The control gate is placed at ground, the source and drain contacts are floating and 

the substrate is set to +20 V.  This causes the electrons that were trapped on the floating 

gate to tunnel back through the tunnel oxide and into the substrate.  This lowers the 

threshold voltage of the flash cell. 
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1.3.3 Reading a Non-Programmed or Erased Cell   

 A non-programmed cell has the floating gate in a condition where it has no 

electrons stored upon it.  This is also the desired state of the floating gate after an erase 

condition.  Refer to Figure 6 for the device conditions. 

 

Figure 6. Reading a Non-Programmed or Erased Cell   

 

 For the purposes of this discussion we will assign a threshold voltage of the 

device of −1 V when in the non-programmed condition.  To read this cell a bias is applied 

to the drain of the device and a reference potential, ground, is applied to the source of the 

device.  The read potential is then applied to the gate.  This potential is set at a level 

sufficient to form a channel below the gate when the cell is not programmed and 

insufficient for channel formation when the cell is programmed.  For this example it is set 

at 0.8 Volts.  The channel is formed between the source and drain thereby creating a 

conductive channel between these nodes.  A sensing circuit is then used to determine that 



10 

 

the current was able to flow from the source to the drain of the device indicating a “1” 

stored in the cell. 

1.3.4 Reading a Programmed Cell   

 A programmed cell is one in which charges have been stored on the floating gate, 

thereby raising the threshold voltage of the device.  Refer to Figure 7 for the device 

conditions. 

 

Figure 7. Reading a Programmed Cell   

 

 In this condition the threshold voltage of the device has been altered to be greater 

than 0 V.  For this illustration it will be 3.0 V.  This read operation is procedurally similar 

to the one previously described.  A bias is applied to the drain of the device and a 

reference potential, ground, is applied to the source of the device.  The read potential is 

then applied to the gate.  This potential is once again set at 0.8 Volts, a level sufficient to 
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form a channel below the gate when the cell is not programmed and insufficient for 

channel formation when the cell is programmed. Since this is insufficient to form a 

conductive channel between the source and drain, Vgs < Vth, current cannot flow from 

source to drain.   The sensing circuit now determines that the current was not able to flow 

from the source to the drain of the device indicating a “0” is stored in the cell. 

1.4 NAND String Operations   

Modern NAND memory devices are created from sets of NAND strings.  Figure 8 

is SEM image of a modern NAND string that is 32 cells long.  Current technology has 

NAND strings that are 32 Flash cells long and strings as long as 64 cells have been 

proposed [1], [10]. 

 

Figure 8. NAND String with 32 Cells in Series   

Another technological advance has been the ability to store more than 2 levels in a 

given cell.  This technology, Multiple Level Cell, MLC, allows for the manufacturing of 
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devices with greater than 100% array efficiencies [1].  NAND devices have been 

proposed that use 16 different threshold levels per cell to create a 16 Gb device [12].  A 

complete NAND string consists of the series connection of the flash cells, a source select 

device, a drain select device, and a precharge device.  The entire string can be 

manufactured in a compact form allowing for a significant increase in the bits/cm2. 

 For the purposes of the following discussion simplified version of the NAND 

string will be used.  This string will have 5 flash cells along with the necessary select 

devices used to access the NAND string.  This representation is shown in Figure 9. 

 

Figure 9. Simplified NAND string with 5 Flash cells   

 

Figure 10 shows the corresponding schematic of this simplified NAND string.  

The threshold voltage of an erase cell will be –3 V and a programmed threshold voltage 

will be +4 V. 

. 
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Figure 10. Schematic of simplified NAND string   

 

1.4.1 NAND String Programming   

The programming operation in a NAND string will increase the threshold voltage 

of one cell and not change the potential on the floating gates other cells in the string.  In 

order to accomplish this, another potential must be introduced.  This is an inhibit 

potential that prevents the cells adjacent to the desired cell from being programmed while 

the desired cell is programmed [4].  The inhibit potential is high enough to prevent the 

unselected cells from being programmed and low enough to prevent threshold voltage 

alteration of these cells.  Figure 11 illustrates this condition.   
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Figure 11. Programming a cell in a NAND string   

 

In this Figure 11, cell number 3 will be programmed and the remaining cells will 

not be programmed.  The gate voltage of cell number three is set to +20 V, the 

programming voltage.  The remaining cells along the string are set to +10 V, the inhibit 

voltage.  The substrate must be set to 0 V.  To accomplish this, the drain select device is 

turned on and the bitline potential is set to 0 V.  This sets ~+20 V across the device to be 

programmed and ~+10 V across the non-programmed cells.  Electrons tunnel through the 

tunnel oxide and into the floating gate, raising the threshold voltage of the programmed 

cell. 

1.4.2 NAND String Erase   

The erase operation is similar to the program operation.  In NAND arrays the cells 

are all erased in a block.  This means that a give section of the array, not individual cells, 

must be erased at once.  The potentials that are necessary must be sufficient to drive the 

electrons trapped in the floating gate out and back into the substrate.  The substrate is 
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driven to +20 V and the wordlines in the string are all set to 0 V.  This will erase the 

entire block of memory at once.  Typical NAND block sizes are 135.2 kB [11]. 

 Figure 12 shows the block erase technique.  There are 4 cells that are programmed 

and one cell that is not programmed. 

 

 

Figure 12. Erasing cells in a NAND string   

 

The substrate, in this case a p-well, is driven to +20 V and all the wordlines are set 

to 0 V.  This causes the electrons stored on the floating gates to be attracted to the 

substrate.  They pass through the tunnel oxide and into the charge pump generating the 

+20 V potential. 

 

1.4.3 Reading a cell in a NAND string   

The cells in this sample NAND string can have two states, programmed and 

erased.  It is important to understand the mechanisms whereby each state is read.  Here 
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the procedure for reading both states is described.  In both cases the digit line is 

precharged to a known level.  This level is determined during the design phase and is 

merely a reference whereby the cell value can be determined in the sensing operation. 

In reading a cell that is not programmed, the threshold voltage is at ~−4 V.  The 

read potential, 0 V, is applied to the gate of the desired cell.  The pass potential, 4.5 V, is 

applied to all the other cells in that string.  The pass potential is high enough so that even 

if a cell is programmed, threshold voltage at ~ 3 V, the cell will still be turned on and 

form a channel beneath the gate and yet low enough to prevent programming the cell.  

Figure 13 illustrates how this is accomplished.  Cell three is not programmed and 

receives the same read potential, 0 V in this example.  Since the threshold voltage for this 

cell is at ~ −3 V this is sufficient for the formation of the channel.   

 

Figure 13. Reading a non-Programmed cell   

 

The pass potential applied to the gates of the remaining cells.  Since their 

threshold voltage is less than 3 V a conductive channel is formed below the remaining 

cells in the string.  The source select and the drain select devices are enabled to connect 
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the string to the reference potential and the bitline, respectively.  The NAND string now 

has a complete conduction path from the bitline to ground.  This causes the bitline 

voltage to decrease and is sensed at the end of the array. 

 The process of reading a programmed cell is the same as reading a non-

programmed cell.  The bitline is precharged to a known level and the pass potential is 

applied to the non-selected cells.  The source select and drain select potentials are the 

same and connect the string to ground and the bitline.  The read potential, 0 V, is once 

again applied to the cell of interest.  Figure 14 illustrates the NAND string condition for 

this case.  The middle cell is the one that is programmed and has a threshold voltage of 

~3 V.  Since the read potential is 0 V this is insufficient for channel formation below the 

gate. 

 

Figure 14. Reading a Programmed cell   

 

1.5 NAND Array   

It can be seen that connection a number of NAND strings together would enable 

the creation of highly dense array architecture.  This array of the example NAND Strings 

is illustrated in Figure 15.  In this figure there are four sets of our primitive arrays 
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connected together.  In order to improve array efficiency the arrays share common source 

and drain connections.  For example the source connection in the center of the array is 

shared between the two adjacent array sections.  The source select and drain select 

devices are highlighted in purple. 

 

Figure 15. NAND Array Architecture 

 

1.6 Challenges with NAND Array Operations   

 As the industry drives to increase the number of cells per unit area, cells/cm2, the 

proximity to the adjacent cells decreases. This causes issues related to unintentional 

programming or program disturb of the cells not selected for the programming operation.  

These issues are unintentional programming along the desired wordline [9], unintentional 

programming of adjacent cells [3], Gate Induced Drain Leakage, GIDL, and Band to 

Band tunneling that can occur.  These program disturb effects are countered with different 

program inhibit schemes.  In order to illustrate the program disturb effects in Figure 16 

we have selected a cell for programming in the mini-array.  This wordline will be driven 
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Figure 17. Cells unintentionally programmed along the wordline   

 

Numerous solutions have been proposed to mitigate these effects.  Boosting 

schemes have been proposed [5] whereby the voltages of adjacent wordlines and bitlines 

are modulated.  There are also circuit methods introduced to modify the source potential 

in order to mitigate the program disturb effects [2], [3].  Various architectures have also 

been implemented in order to reduce the unintentional alteration of the threshold potential 

of the adjacent cells.  Toshiba has implemented an All Bit Line, ABL, architecture in 

which each bit line has its own sensing amplifier circuitry.  This increases the SNR on the 

selected bit lines.  Micron has introduced an architecture in which the page buffers are 

centered on the array [1].  This reduces the bit line length and the loading on the sensing 

circuitry. 
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Another method of increasing the cells/cm2 is to increase the number of bits that 

can be stored in each cell.  In this multi-level cell design requires that the threshold 

values of the flash cells to be adjusted and sensed on the order of hundreds of millivolts.  

The storage of two bits per cell is current technology and the storage of 3 and 4 bits per 

cell is leading edge [1].  Storing two bits per cell requires the establishment of four 

different threshold values in each cell.  This is accomplished through accurate program 

potentials and complex algorithms to determine the state of the cell.  One proposed 

architecture is one in which a 1.8 V process is used and there are 16 different levels 

available in each cell [12].  This requires that the programming voltages be adjusted in 

the 100 mV realm. 

Each of these methods implemented to reduce the unintentional programming of 

non-selected cells requires the generation of accurate potentials that can be used to 

program or inhibit the programming of the cells in the array.  Voltage charge pumps are 

designed and implemented that generate these potentials.  In many cases dedicated pump 

circuitry is designed for each desired potential.  If intermediate potentials are necessary 

then they are derived from the dedicated pumps.  One example would be the generation 

of the pass potential, +10 V.  This has been generated from the +20 V program potential 

through the use of a voltage divider and regulation circuits.  This wastes power in the 

generation of twice the desired potential as well as power in the wasting of half that 

power in the divider circuit. 

A dynamically programmable voltage pump would reduce the necessity to over 

generate the desired potential and decrease the power wasted in the die.  It could also 
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decrease the overall area requirement for the voltage pumps on the die though more 

efficient use of current pumps. 

1.7 Thesis Contribution   

 This Thesis looks at the use of Delta-Sigma Modulation, DSM, based control of a 

voltage pump.  The operation of the DSM control of the voltage is explained and 

demonstrated.  Comparison to standard fixed potential generators is also examined.  

Special attention to the ability to program the voltage pump to desired levels and 

response time of the pump to control inputs are analyzed and demonstrated.
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CHAPTER TWO: VOLTAGE PUMP CONTROL METHODS 

2.1 Current Pump Control Technology 

 Modern charge pumps are controlled with relatively basic on/off regulation.  The 

desired potential is generated and a portion of this is fed back into a regulation circuit. 

The output of the regulation circuit either enables or disables the pump in some manner.  

Figure 18 is a block diagram of a voltage pump with the pump controller and the 

feedback path. 

 

Figure 18. Voltage Pump with Control Circuitry 

 

The pump controller is designed with a desired set point that is specified and then 

trim circuits are added to allow for manufacturing variations in circuit performance.  The 

output of this circuit is a steady pumped voltage at a fixed level.  An example pump 

control circuit is detailed in Figure 19 [7].  The high voltage bias string is used to 
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translate the pumped voltage to a more appropriate voltage level.  The output of his 

circuit is used to enable or disable the clock generation circuit.  With this type of control 

circuit the pump either receives the clock signal or it doesn’t.  The variation in the output 

voltage is determined by the hysteresis value set in the control circuit, the delay in the 

pumps ability to turn on and reach the desired potential and the leakage on the output of 

the pump. 

 

Figure 19. Sample Voltage Pump Control Circuit   

 

While this method is simple and reasonably accurate it lacks the necessary ability 

to dynamically modulate the level to which the charge pump operates.  The high voltage 

clamp sets the potential at which the pump control circuit will enable or disable the clock 
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that operates the charge pump.  The control circuit could have adjustable components in 

the circuit but once trimmed it would remain at a fixed value. 

 If other pumped values are desired then the pumped value can be regulated down 

to the desired level.  Figure 20 shows a simple regulation circuit.  The disadvantage to 

this circuit is that the pumped voltage must be generated and then regulated down to the 

desired potential.  This wastes valuable energy due the requirement of generating a 

pumped voltage that is higher than necessary. 

 

Figure 20. Simple Regulation Circuit   
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 Another method of modulating the pumped value is to introduce a voltage that 

controls the value of the charge pump [9].  This control value can be adjusted based on 

the needs of the circuitry using the charge pump voltages.  Figure 21 illustrates the 

concept of having a controllable voltage determine the pumped voltage value. 

 

 

Figure 21. Pump Controller with programmable Input Voltage   

  

This is common practice in NAND devices where precise adjustment of the 

threshold value is desired.  In Multi-Level-Cell, MLC, devices the threshold value of the 

cell must be set to one of many different values.  During the program phase of operations 

the internal algorithm of the device performs a program operation and then reads the cell 

to determine whether or not the cell is at the desired level.  If the cell has not yet reached 

the desired level then another programming operation is executed until the read operation 

results match the desired programming value.  In advanced NAND devices the 

programming voltage is actively adjusted to properly program the cell to the desired 

threshold voltage [9].  This has an added benefit of preventing a condition called over-

programming.  Over-programming occurs when the threshold value is set at a level 
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beyond the desired level and results in a data error.  In order to correct this condition the 

entire block must be erased and reprogrammed or error correction methods must be used 

to compensate for the over programmed cells.
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CHAPTER THREE: DELTA SIGMA MODULATION 

3.1 DSM Theory of Operation 

 Delta Sigma Modulation works by translating a value to be measured into a flow 

rate and converting that flow rate into an average value.  The key steps to the process are 

the conversion of the value to be sensed into a proportional flow rate and then 

determining the value of that flow rate over time.  This value can then be used to 

determine the average flow rate and that value can be related back to the value that is 

being measured.  Figure 22 shows a simplified analogy of how Delta Sigma Modulation 

works. 

 

Figure 22. Simple Analogy of DSM   

 This analogy uses four simple components to demonstrate how the Delta Sigma 

Modulation works.  There is the container with the unknown value of water to be 
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measured, the Sigma bucket, the proportional valve that controls the flow rate into the 

Sigma bucket and the Delta cup.  As the water level in the sensing bucket changes this 

opens and closes the proportional valve adjusting the flow rate of the water into the 

Sigma bucket.  The Delta cup is a precisely determined amount that will be conditionally 

removed from the Sigma bucket at periodic intervals.  This is important as the accuracy 

of the Delta value and the timing of the sampling is critical to the overall accuracy of the 

system. 

 As the unknown water level changes the valve opens and closes adjusting the flow 

rate into the Sigma bucket.  In the Sigma bucket there is a sensor that determines whether 

or not to remove a Delta cup amount of water from the Sigma bucket.  The position of 

this sensor is not important, just that it accurately and reliably determines the level in the 

Sigma bucket and communicates this to the Delta cup.  As the water level rises the level 

is sensed and a decision is made whether or not to remove a Delta cup of water from the 

Sigma bucket.  As the number of samples increases we can develop a signal based in the 

sample rate and the number of times we removed a Delta cup from the Sigma bucket.  

This signal becomes the average flow rate of water into the Sigma bucket and it 

represents the relative height of the water in the bucket. 

 In order to translate the conditional output bit stream into a meaningful data set 

we connect the sample decision bit stream to a counter.  When the decision is made to 

remove water from the Sigma bucket, meaning that the water level in the Sigma bucket is 

less than the unknown value, the counter is incremented.  If the decision is made not to 

remove water from the Sigma bucket, the counter is not incremented. 
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 As this value builds over time the bit stream converges on the average amount of 

water that was removed from the bucket, which represents the average rate at which 

water flows from the proportional valve.  This flow rate is representative to the weight of 

the unknown item. 

 An example would be if the rate that the water is flowing into the Sigma bucket is 

one cup every 30 seconds.  If we sample the Sigma bucket every 10 seconds then the 

average flow rate should be 0.33 cups ever 10 seconds.  The Delta cup is set at 1 cup.  If 

the sensing starts at an arbitrary level in the sigma bucket of 10 cups we can generate the 

desired bit stream which can be used to calculate the flow rate of water into the Sigma 

bucket.  Table 1 shows this data set for 15 samples.  At the first sample point, 10 seconds, 

0.33 cups have been put into the Sigma bucket.  This is above the sense line so a Delta 

cup is removed from the bucket. The level in the Sigma bucket is now 9.33 cups.  At the 

next sample point, 20 seconds later, 0.33 cups has been put into the Sigma bucket.  Since 

this is below the sense line, 9.66 cups are in the Sigma bucket, the Delta cup is not 

removed.  At the 30 second point the Sigma bucket contains 9.66 cups and the value is 

still below 10 cups so no Delta value is removed.  The 40 second point the Sigma bucket 

now contains 10.32 cups so another Delta cup amount is removed from the Sigma bucket.  

As the number of samples increases we approach the average value of the flow rate, 0.33 

cups per 10 seconds. 
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Table 1. Data for DSM Sample Data   

Time 
(seconds) 

Level in  
Sigma Bucket 

Decision  
Bit Stream 

Running 
Average 

0 10  0 
10 10.33 Yes 1.00 
20 9.66 No 0.50 
30 9.99 No 0.33 
40 10.32 Yes 0.50 
50 9.65 No 0.40 
60 9.98 No 0.33 
70 10.31 Yes 0.43 
80 9.64 No 0.38 
90 9.97 No 0.33 

100 10.3 Yes 0.40 
110 9.63 No 0.36 
120 9.96 No 0.33 
130 10.29 Yes 0.38 
140 9.62 No 0.36 
150 9.95 No 0.33 

 

3.2 DSM for Voltage Pump Control   

The Delta Sigma Modulation circuit in this implementation measures a 

proportional value of Vout, and converting this to a rate of flow, Iin.  This flow of Iin is 

stored during each sampling period.  This stored flow rate is then quantized over time by 

sampling the stored value of the flow rate. 

This quantized value is then averaged over time to obtain an average flow rate that 

represents Vout.  In this implementation the input value, Vin, is a voltage level that is 

proportional to the desired output voltage at a 10:1 ratio.  That is Vin = 0.1*Vout.  The 

output voltage is fed back through a divider network to produce Vfb. 
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The value of Vfb = 0.1*Vout.  The difference between Vin and Vfb is converted into a rate of 

flow, Iin, and is stored on a capacitor.  This stored charge represents the Delta value. 

3.2.1 Generalized Explanation of the Circuit 

A simplified implementation of the entire circuit is shown in Figure 23.  The 

summation of the currents at the input to the Op-Amp are the input current, Iin, the 

feedback current, Ifb and the integrated value of the integrating amplifier, Iouti. 

 

Figure 23. Simplified Schematic of DSM Pump Control Circuit 

 The summation of these currents at the input of the Op-Amp results in equation 

3.1. 

)1.3(outifbin III =+  
 Converting this to the voltages and treating the op-amp as an ideal amplifier, Iin = 

Vin/R, results in equation 3.2. 
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The error that is introduced into the circuit through noise and device variations is lumped 

into the parameter Error, Er, and is inserted at the output of the integrator.  The sum of the 

error and the output of the integrating amplifier yield the output voltage, Vout. 

( )3.3outoutir VVE =+  
Substituting this result into equation 3.2 yields equation 3.4 with the variables Vin, Vout 

and Er. 
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Solving equation 3.4 for the transfer function yields equation 3.5. 
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 This equation has two primary components.  The first portion of the equation is 

the Signal Transfer Function, STF.  The second portion of the equation is the noise 

Transfer Function, NTF. The STF portion is the Low Pass filter at DC is just the ratio of 

R2 and R1.  The NTF is a high pass filter, which at DC = 0. 

 The above derivations are with an idealized charge pump with no pump delay.  In 

a real application there is a delay in the charge pumps ability to react to a circuit demand 



34 

 

for the pumped voltage and delay in the pumps ability to respond to changes in the 

programming voltage.  Figure 24 shows the circuit with the incorporation of the pump 

delay. 

 

Figure 24. Schematic of DSM Pump Control Circuit with Pump Delay   

This pump delay takes the form of equation 3.6. 

ܸ௨௧݁ିଶగ∆                                                       ሺ3.6ሻ 
Incorporating the delay equation into the simple transfer function, yields equation 3.7.  

This is the complete transfer function for the circuit. 
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3.2.2 DSM Pump Control   

 The incorporation of DSM control of the pump replaces other methods of pump 

control with the DSM methodology.  A block diagram of the DSM controlled charge 

pump is shown in Figure 25. 

 

Figure 25. DSM Controlled Charge Pump   

 The programmed value of Vin is determined by the controlling algorithm and is 

used as the controlling voltage for the DSM pump controller.  The DSM controller 

determines when the clock signal is fed to the charge pump based on the difference 

between the Vin value and the feedback pumped voltage, Vfb.  The inputs to the DSM 

controller are the same as prior pump controllers.  The Vin signal, which determines the 

set point of the DSM controller and CLK, drives the voltage pump. 

3.2.3 Developing the Delta signal   

The first stage of the DSM controller is circuitry necessary to develop the Delta 

signal.  This is done through a switched capacitor matrix, Figure 26.  The inputs to this 

circuit are the programming voltage, Vin, the fed back voltage from the charge pump, Vfb 

and the two non-overlapping clock signals CLK and CLK*. 
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Figure 26. Switched Capacitor Circuit (Delta)   

 
The output of this circuit is the signal VOut.  This is the signal fed to the amplifier in the 

Sigma stage. 

3.2.4 Developing the Sigma signal   

The function of the Sigma integrator is to accumulate, or sum, the difference 

between Vin and Vout.  The schematic in Figure 27 shows that the two inputs to the 

integrator are ground and the output signal from the switched capacitor stage.  As this 

value is integrated over time an analog difference signal is generated that represents the 

difference between Vin and Vout.  When the Vin is greater than Vout the integrator drives the 

positive output of the integrator more positive and the negative output more negative.  

This difference enables the clock signal to the charge pump.  As the cumulative 

difference between Vin and Vout decreases, the input to the integrator is gradually driven to 

ground.  Once the two levels are equal the outputs of the integrator switch relative 

polarities, the positive output is below the negative output.  This disables the charge 

pump. 
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Figure 27. Integrating Amplifier, Sigma stage 

3.2.5 Connecting Delta to Sigma 

The circuit diagram in Figure 28 shows how the Delta and Sigma portions of the 

circuit are connected together.  The output node of the Delta circuit, Vout, is connected to 

the inverting input to the differential amplifier.  The reference node is connected to 

ground in both the Delta circuit and the Sigma circuits.  The input value, Vin, is compared 

to Vfb and then this difference is integrated, averaged, by the integrating amplifier.  The 

results of this integration control whether or not the pump is enabled.  

 

Figure 28. Complete Delta-Sigma Circuit 
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3.2.6 Delta-Sigma Operation   

In order to show how the DSM can be used to control the pump the pump will be 

started with an initial condition that pump is idle Vout and Vin are at 0 V and CLK is not 

running.  The CLK is started and allowed to stabilize.  Vin is applied to the input of the 

DSM circuit.  Since Vin is greater than Vfb there will a difference in the magnitude of the 

charge on the capacitor.  The Qin value, (Vin*C) will be greater than the fed back charge 

value, Qfb, (Vfb*C).  This will cause the current to flow from the node connected to the 

op-amp in order to balance the charge.  This node will decrease and the op-amp will 

attempt to compensate for the input imbalance it sees and drive the Vouti signal higher.  

This will enable the charge pump.  Figure 29 illustrates this condition. 

 

Figure 29. Current path when Vin is greater than Vfb   

As the charge pump operates the Vfb value will increase and the difference 

between Qin and Qfb will decrease.  Once the pump has operated long enough the Vfb 

value and the Vin value will be equal.  When this condition is achieved the charge that is 

placed on the capacitor, Qin, will equal the charge that is placed on it from the Vfb signal, 
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Qfb.  As a result there will be no charge flow from the output node.  This will cause the 

DSM to turn off the enable signal to the pump. 

Since there is a delay in the pumps response to the turn off signal from the DSM 

the output level, Vfb, will rise above the input signal, Vin.  In this case the charge Qin will 

be less than the feedback charge, Qfb. As illustrated in Figure 30 this will cause a reversal 

of the current flow and the output level, Vout, will increase. 

 

Figure 30. Current path when Vin is less than Vfb   

3.2.7 Complete Circuit   

The entire circuit is shown in Figure 31.  In the complete schematic there is 

clocked comparator in the forward path and an additional amplifier in the feedback path.  

The clocked comparator receives the bit stream from the Sigma stage and amplifies the 

output from the integrating amplifier and delivers the Enable signal to the pump.  The 

feedback network schematic is shown in Figure 32.  The resistors produce the required 

10:1 voltage ratio and the unity gain amplifier isolates the Delta circuit from the output. 
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Figure 31. Completed Schematic of DSM controlled High Voltage Pump   

 

 

Figure 32. Feedback network schematic  
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CHAPTER FOUR: CHIP TEST RESULTS   

4.1 Simulation and Experimental Methodology   

The DSM controlled high voltage charge pump was designed and fabricated using 

AMI’s 500 nm process through the MOSIS service.  Characterization of the DSM 

controller to transient as well as DC operating conditions was conducted.  Measurements 

included determining the range of appropriate Vin values, controller sensitivity to changes 

in Vin as well as a how fast the controller responds to a change in Vin.  The controller was 

also characterized to determine its response to a change in the Vpump signal to determine 

the feedback path delay. 

The floor plan of the chip is shown in Figure 33.  The DSM controlled charge 

pump is laid out across the bottom of the die and each circuit component was placed 

around the remaining sides.  The placement of the individual circuit components around 

the chip is for testing purposes and serve as a backup should the fully integrated circuit 

have not performed.
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Figure 33. Die floor plan and pin assignment   

Figure 34 shows the photograph of the chip after manufacture.  The complete 

DSM controlled charge pump is located on the bottom of the chip and the individual 
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circuits can be seen around the remaining sides.  The wired bonds can be seen lining the 

periphery of the chip with pin one as the center bond pad on the right hand side. 

 

 

Figure 34. Chip photograph   
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 Table 2 shows the pin assignments for the circuit elements on the chip.  Note that 

each major circuit component has an individual Vss connection.  This is to allow for 

separating each circuit should it be necessary due to a manufacturing or design flaw in 

the chip. 

Table 2. Package Pin Assignments   

Pin Function  Pin Function 
1 Vpump (pump)  21 CLK in (CLK Input Buffer)
2 CLK (pump)  22 VDD 
3 CLK* (pump)  23 VSS(CLK Input Buffer) 
4 CLK* (CLK Buffer)  24 VSS (Switched Cap) 
5 VSS (CLK Buffer)  25 VDD 
6 CLK (CLK Buffer)  26 CLK (DSM) 
7 CLK in (CLK Buffer)  27 VSS 
8 Q (Clocked Comparator)  28 Vin (DSM) 
9 CLK in (Clocked Comparator  29 ROP (DSM) 
10 In N (Clocked Comparator)  30 ROP(DSM) 
11 In P (Clocked Comparator)  31 VFB (DSM) 
12 VSS (Clocked Comparator)  32 VSS 
13 Out P (Diff-Amp)  33 Vpump (DSM) 
14 ROP (Diff-Amp)  34 VDD 
15 IN M (Diff-Amp)  35 VSS (Charge Pump) 
16 VSS (Diff-Amp)  36 VSS (Diff-Amp) 
17 Vout (Switched Cap)  37 Out P (Diff-Amp) 
18 Vin  (Switched Cap)  38 ROP(Diff-Amp) 
19 VFBB  (Switched Cap)  39 In P (Diff-Amp) 
20 NC  40 In M (Diff-Amp) 

 

Figure 35 shows the characterization bench for the chip.  A function generator was 

used to provide the 15 MHz clock signal and a power supply was used to provide the 

programmed input voltage, Vin.  The output was measured with an oscilloscope and a 

digital volt meter. 
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Figure 35. Characterization bench setup   

4.1.1 Charge pump testing   

 A Dickson Charge pump [6], [8] was used to test the response of the DSM 

controller on an actual charge pump.  The open loop response of the pump was simulated 

to reach 36 V with no load.  The pump can maintain 20 V with a DC load of 50 μa with a 

load capacitance of 5 pF.  The layout of the charge pump is shown in Figure 36. 

The charge pump performance was tested and the results closely match the 

simulation results.  The open loop response of the pump measured 38 V and the loaded 

voltage measured 19 V.  Figure 37 shows the photograph of the charge pump in the 

fabricated chip. 
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Figure 36. Charge pump layout   

 

Figure 37. Charge pump photograph   

4.1.2 Transient response analysis   

The transient response of the circuit was measured using two different methods.  

The first transient response measured the startup response with different Vin values.  The 

circuit was started up and Vin values ranging from 0.6 V to 2.0 V were applied to the 
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input.  Once the Vin value was set the DSM response time was measured.  Simulation data 

showed that the DSM circuit would have an initial response of 102 ns, two clock periods,  

at startup with the range of Vin values from 0.7 V to 2.0 V.  The startup value for the 0.6 

V, Vin, value was slightly slower at 152 ns, three clock periods.  When Vin was increased 

to 1.75 V the response time deceased to 50 ns, one clock period.  This response indicates 

the speed at which the DSM controller can respond to the programmed voltage, Vin, 

changing to meet the demands of the NAND controller.  Figure 38 shows the response to 

a change in Vin from 0 V to 0.75 V.  The DSM sensing circuitry senses the change and 

begins to clock the charge pump within in 100 ns. 

 

Figure 38. DSM response to Vin level change 0 V to 0.75 V   

 

 The Vin signal, blue, transitions from 0 V to 0.75 V at 200 ns.  At 300 ns the pump 

signal is initiated to the charge pump and the output, Vrow, red, begins to rise.  At the 1 μs 

interval the charge pump has elevated the output to the desired level. 0.78 V, and the 

charge pump has stopped pumping the output.  
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The response time of the DSM control circuit to a level adjustment of Vin was also 

characterized.  The circuit was initialized to a Vin level of 0.75 V and then after 

stabilization the Vin level was increased to 2.0 V in 0.25 V increments.  A plot of the data, 

Figure 39, shows that the DSM controller has a fast response time, less than 4 clock 

periods, to changes in the programmed input voltage.  As the set point change magnitude 

increases above 1 V the response time settles at a minimum value of one clock period.  

Both simulated and measured data was taken with a clock period of 66 ns as the 

frequency generator used in testing was limited to 15 MHz. 

 

Figure 39. Response time to start up   

The response of the DSM controller to the output reaching a desired set point and 

then responding to a load change was also tested and simulated.  The simulation results in 

Figure 40 shows that the response time to the output reaching the programmed level is 

0

50

100

150

200

250

300

0 0.5 1 1.5

Fe
sp

on
se

 T
im

e 
(n

s)

Vin Step Value (V)

Input Step Response (nS)

Simulation
Response time(nS)

Measured
Response time(ns)



49 

 

190 ns and the DSM response to the output dropping below the desired set point is 108 

ns.  In this simulation the DSM circuitry was started and the programmed input voltage, 

Vin, light green, ramped from 0 V to 1 V at 0.2 μs.  This was sensed by the DSM 

controller at 0.32 μs as indicated by the Venable, blue, signal initiating the clock to the 

charge pump.

 

Figure 40. DSM controller response to varying output conditions.   

The Vrow signal was then ramped in SPICE simulating the charge pump output 

ramping to the desired level.  At the 0.75 μs point the Vrow signal was decreased below the 

set point determined by the Vin level.  The DSM sensed the output and enabled the clock 

signal to the charge pump within 105 μs, indicated by the Venable signal toggling again. 
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During testing of the chip the output was loaded with a programmable power 

supply once the output was at the programmed voltage.  The results showed that the 

circuit would respond within two clock periods, 120 ns, in close agreement with the 

simulation data. 

4.1.3 Delta Vin Sensitivity   

The DSM controller was also characterized to determine the minimum step 

transition on Vin that could be detected by the circuit. The smallest change in Vin that the 

circuit can detect is 100 mV.  This was simulated with a programmed Vin level at one set 

point and then after the pump had stabilized the Vin level was changed.  Simulation data 

for this change shows that the 100 mV change was sufficient for the DSM to detect and 

enable the charge pump.  Figure 41 shows the simulation of the Vin, blue, value changing 

from 0.75 V to 0.85 V.  The DSM detects the 100 mV change and enables the charge 

pump, Venable, green, within 200 ns.  The output, Vrow, red, also shows that the output is 

driving to the new programmed level.  Experimental data agreed closely with the 

simulation.  The charge pump output would begin rising, within 250 ns, four clock 

periods. 
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Figure 41. DSM detecting a Vin change of 100 mV 
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4.1.4 Linearity   

 The linearity of the pump is plotted in Figure 42. The desired set point was 

designed to have a 10:1 ratio of Vout to Vin.  The simulation data shows good correlation 

to the ideal characteristic.

 

Figure 42. Vout Linearity with Vin   

The average deviation in simulation is approximately -200 mV from the ideal.  The 

measured response of the circuit is also plotted.  The average variation or the measured 

values is 100 mV. 

4.1.5 Vout ripple   

 The output ripple of the pumped voltage was simulated with different load 

capacitances.  The pump is a simple 8 stage Dickson Charge pump [6], [8].  The 

simulated load capacitance was varied between 0.5 pF, 5 pF and 10pF as seen in Figure 
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43.  The ripple voltage was measured with a 2.8 pF load capacitance and closely matched 

the simulation value for the 5 pF capacitance.  This difference is most likely due to the 

affect of the test fixture capacitance on the overall load capacitance. 

 

Figure 43. Vout Ripple with varying load capacitance   

 The ripple and the response time of the charge pump can be optimized with a 

more complex pump design, which is a topic for future research.  It should be noted that 

the ripple can be reduced by reducing the size of the devices in the charge pump.  The 

drawback of size reduction is that the amount of current the pump can supply also 

decreases.   

 The ripple on the output of the charge pump can be reduced with an increase in 

the load capacitance or the inclusion of a more complex pump circuit.  The increase in 

load capacitance will decrease the ripple effects but will require an increase in layout area 

and a decrease in the pump response time.  A more complex pump circuit could be use 

that incorporates different phases of the clock signal to pump the output at different 
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times. This method would effectively increase the frequency of the pump putting charge 

on the output capacitor.  This would also require a more complex pump design and clock 

driver scheme, consume more area on the chip and increase the power consumption of 

the circuitry. 

4.1.6 Summary   

 The design of a Delta Sigma modulation controller for a charge pump has been 

discussed.  The design method was presented with special attention given to the 

advantages of the DSM method over other design methods as well as the performance of 

the DSM in the control of a charge pump.  The DSM controller was fabricated using the 

AMI 0.5 μm process through the MOSIS fabrication organization and the chip 

performance was characterized and compared to simulation results.
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK   

5.1 Conclusions   

The design of a delta-sigma modulation controller for a charge pump is presented 

in this work.  The DSM controller was designed to achieve a 100 mV resolution with a 

programmable input level.  The controller had a gain factor of 10 so that low voltages 

could be used to control the higher voltage charge pump output.  Special attention was 

given to the resolution and accuracy of the controller and the response time to changes in 

the input levels. 

 The DSM controller was chosen for its superior accuracy and resolution 

characteristics through the use of the averaging characteristics of the DSM methodology. 

The DSM controller was shown to have a high degree of sensitivity to the programming 

potential and a high degree of resolution in setting the output potential. 

 One of the limiting factors in this design is the delayed response of the DSM 

controller to the charge pump reaching the programmed potential.  This delay in the 

pump response can be masked during normal NAND operations.  One method would be 

to adjust the high voltage during the program verify operation.  This would allow the high 

voltage to be ready, if necessary, to subsequent programming operations.  This delay is 

primarily caused by the feedback network.  The delay is determined by the RC delay of 

the voltage dividing resistors that sense the output voltage and feed this through to the 
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DSM controller.  The DSM controller does have advantages over conventional methods 

of generating programmable potentials in greater sensitivity, noise immunity and 

sensitivity. 

5.2 Future Work   

Some areas of future exploration could improve the feedback path response time 

and increasing the programming range of the DSM controller.  Also, in order to improve 

on the overall characteristics of the DSM a greater level of response to the programming 

input voltage, Vin, could be improved. This increase in sensitivity would allow for tighter 

placement of output levels and tighter programming ranges.  The addition of a multi-

phase charge pump on the controller would allow for a decrease in the ripple magnitude 

and develop a faster response to circuit demands. 

The precision at which the threshold levels can be programmed in modern NAND 

devices could be greatly expanded in the programming voltages could be easily 

controlled.  As the VDD levels of modern NAND devices are driven down in order to 

conserve power the programming range is also decreased.  In addition to this requirement 

the drive to store more levels in each NAND location is being driven upwards.  With 

these competing requirements the ability to accurately place the threshold of the device 

and the drive to place more thresholds in each device drive the need for methods to 

control the programming of each cell to higher degrees of accuracy.  The DSM 

methodology can be used to improve the control of the charge pump and allow for greater 

resolution and accuracy in the placement of the programming voltages in the NAND cell.  
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Exact placement to within 10’s of millivolts can be used to increase the capacity and 

decrease the overall voltage consumption of the device.
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