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ABSTRACT  

We investigated soil carbon (C) and nitrogen (N) distribution and developed a model, using  

readily available geospatial data, to predict that distribution across a mountainous, semi-arid,  

watershed in southwestern Idaho (USA). Soil core samples were collected and analyzed from  

133 locations at 6 depths (n=798), revealing that aspect dramatically influences the distribution  

of C and N, with north-facing slopes exhibiting up to 5 times more C and N than adjacent south- 

facing aspects. These differences are superimposed upon an elevation (precipitation) gradient,  

with soil C and N contents increasing by nearly a factor of 10 from the bottom (1100 m  

elevation) to the top (1900 m elevation) of the watershed. Among the variables evaluated,  

vegetation cover, as represented by a Normalized Difference Vegetation Index (NDVI), is the  

strongest, positively correlated, predictor of C; potential insolation (incoming solar radiation) is a  

strong, negatively correlated, secondary predictor. Approximately 62% (as R
2
) of the variance in  

the C data is explained using NDVI and potential insolation, compared with an R
2
 of 0.54 for a  

model using NDVI alone. Soil N is similarly correlated to NDVI and insolation. We hypothesize  

that the correlations between soil C and N and slope, aspect and elevation reflect, in part, the  

inhibiting influence of insolation on semi-arid ecosystem productivity via water limitation. Based  

on these identified relationships, two modeling techniques (multiple linear regression and  

cokriging) were applied to predict the spatial distribution of soil C and N across the watershed.  

Both methods produce similar distributions, successfully capturing observed trends with aspect  

and elevation. This easily applied approach may be applicable to other semi-arid systems at  

larger scales. 
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RESEARCH HIGHLIGHTS  

  

The distribution of soil carbon is strongly correlated with elevation and aspect  

  

NDVI and insolation predict soil carbon distribution in semi-arid montane environment  

  

Slope, aspect and elevation reflect the role of insolation in ecosystem productivity   

  

Accounting for past land disturbance improves predictions of soil carbon distribution  
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1. INTRODUCTION  

Large spatial variation in soil carbon (C) content in topographically and ecologically diverse  

landscapes make quantification difficult (Arrouays et al., 1998; Jobbagy and Jackson, 2000;  

Kulmatiski et al., 2004; Yimer, 2007; Garcia-Pausas et al., 2007). Given the importance of the  

soil reservoir as a potential source or sink of atmospheric CO2, there is a need for easily applied  

tools to improve estimates of soil C inventories (Foley and Ramankutty, 2004). The development  

of such tools can also elucidate underlying influences on the amount and spatial distribution of C  

in the soil reservoir.   

 In complex terrain, large variations in soil C are often observed with changing elevation,  

slope, aspect and hillslope position. These physical characteristics have been used to predict soil  

C distribution (e.g. Garcia-Pausas et al., 2007; Tsui et al., 2004). Other physical characteristics  

used to predict C distribution include soil depth, texture, and bulk density (e.g. Arrouays et al.,  

2006; Garcia-Pausas et al., 2007; Don et al., 2007). Because aboveground biological activity is  

the primary source of soil C, a strong positive correlation is often found between net primary  

productivity and soil C content (Jobbagy and Jackson, 2000; Hooker et al., 2008; Carrera et al.,  

2009). Remotely sensed vegetation parameters can be used as surrogates for ecological  

productivity (Curran et al., 1992; Scanlon et al., 2002) and these data have been successfully  

used to predict below ground C stocks (Burnham and Sletten, 2010; Paruelo et al., 2010). Many  

of these relationships have been exploited to predictively map the distribution of soil C using  

both statistical and geostatistical approaches (Arrouays et al., 1998; Camarero et al., 2009;  

Delbari et al., 2010; Vasques et al., 2010).   

In most ecosystems, ecological productivity positively correlates to incoming solar  

radiation (insolation). In these systems, higher insolation produces higher ecological productivity  

(Dingman and Koutz, 1974; Lee, 1964). This relationship is often incorporated into the  

biogeochemical models of net primary productivity and associated soil C content (Melillo et al.,  

1995; Law et al., 2001). However, in arid and semi-arid environments, where the ecosystems are  

water limited, higher insolation can increase water stress and limit ecological activity  

(Rodriguez-Iturbe, I., 2001; Yetemen et al., 2010). In such ecosystems, ecological productivity  

can be inversely related to potential insolation (Reid, 1973; Wang et al., 2009; Beaudette and  

O’Geen, 2009). It is, therefore, probable that in semiarid ecosystems the distribution of soil C  
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stocks will follow these vegetation trends that are modulated through feedbacks between  

insolation and soil moisture.   

We hypothesize that distribution of soil C in semi-arid systems will, for a given  

vegetation density, be inversely related to the magnitude of insolation and we propose this easily  

retrieved variable can be used to improve prediction of soil C in complex terrain. The objectives  

of this study were to: 1) quantify the spatial distribution of soil carbon in a topographically  

complex, semi-arid, watershed, 2) evaluate the degree to which readily available landscape  

metrics, inclusive of insolation, can be used to describe soil C occurrence, and 3) use these  

variables to develop models to predict soil C distributions across the landscape.   

  

2. Material and methods  

2.1. Study sites and land use history  

Dry Creek Experimental Watershed (DCEW) is located in the semi-arid southwestern region of  

Idaho, approximately 16 km northeast of the city of Boise, Idaho USA (Figure 1). The ~28-km
2
  

watershed is primarily northeastward trending from a lower elevation of 1,000 m (all elevations  

listed as ‘above mean sea level’) to 2,100 m at the summit of the watershed. Three  

meteorological stations located in the DCEW provide continuous monitoring of air temperature,  

precipitation, wind speed and direction, and radiation (DCEW, 2010). These weather stations  

range in elevations from 1,146 m to 1,850 m. Another meteorological station providing similar  

information is located at an elevation of 1,932 m just north of the DCEW boundary at the Bogus  

Basin SNOTEL Site, operated by the U.S. Department of Agriculture’s Natural Resources  

Conservation Service (NRCS, 2010). The dominant bedrock unit in the DCEW is biotite  

granodiorite (Lewis et al., 1987). In the lower elevations of the watershed, bedrock is overlain by  

Terteling Springs Formation sandstone (Burnham and Woods, 1992). Local soils are derived  

primarily from weathering of the Idaho Batholith and are divided into three general soil  

taxonomies – Argixerolls, Haploxerolls, and Haplocambids (Harkness, 1997). The depth and  

development of soils in DCEW correlates to the topographic and land cover attributes of DCEW  

with thicker soils found on northern aspects (Tesfa et al., 2009). Soils in DCEW are generally  

course-textured and well drained (Harkness, 1997; Williams, 2005; Tesfa et al., 2009; Gribb et  

al., 2009). Soils on northern aspects and at higher elevations have greater water storage capacity  

(Smith et al., 2011; Geroy et al., 2011) and provide a longer period of wet conditions into the  
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growing season (Smith et al., 2011); a likely contributor to the observed higher vegetation  

density on these slopes. At lower elevations, grass and sagebrush dominate both north and south  

aspects (DCEW, 2010). At middle elevations, southern facing aspects are characterized by grass  

and sagebrush with the northern facing aspects ranging from grass and deciduous shrubs to open  

forest communities of Ponderosa Pine and Douglas Fir (DCEW, 2010). At higher elevations,  

both north and south aspects are predominantly vegetated with Ponderosa Pine and Douglas Fir  

(DCEW, 2010). Portions of the upper elevations were logged in the mid 1970s and those areas  

are transitioning from deciduous shrubs to immature conifer forests, as evidenced by areas of  

sparse tree density in aerial photographs (outlined in Figure 1).  

  

2.2. Sample Collection and Laboratory Analysis Methods  

Soil cores were collected at 133 locations using an elevation-nested sampling approach from  

1120 to 1850 m across the watershed (Figure 1). Within each elevation increment, a series of  

samples was collected on opposing north and south-facing slopes. On each slope, six soil cores  

were sampled along an elevation contour (at 20 - 30 m spacing) to capture local variation in  

aspect. An additional soil core was taken in the upper elevation to capture an elevation/aspect  

combination not well represented in the primary sampling. Mid-slope locations were selected for  

sampling because previous work suggested that they are representative of average carbon (C)  

and nitrogen (N) values in a watershed (Franzmeier et al., 1969; Norton et al., 2004; Rhoton et  

al., 2006). Furthermore, in DCEW mid-slope C and N values are generally representative of  

hillslope-average values of C and N (Geroy et al., 2010).  

At each sampling site, a 5 cm diameter, 30 cm deep core, sectioned into six 5 cm  

increments, was collected and stored at -5°C in sealed bags until laboratory analysis. This  

approach yielded 798 samples. Field triplicates were collected at eight sites. All samples were  

dried in an oven at 105°C and then sieved to 2 mm. Soil fractions less than 2 mm were  

homogenized, sub-sampled and then powdered to less than 250 µm in preparation for analysis.   

 Total C and N concentrations were determined by dry combustion using a Thermo Flash  

EA 1112 Elemental Analyzer following section 4H2a1 of the Natural Resources Conservation  

Service (NRCS) Soil Survey Laboratory Methods Manual (2004). Analysis standardization was  

based upon aspartic acid standards; this material was analyzed as an internal standard.  

Laboratory replicates, both between runs and during runs quantified instrument drift. Instrument  
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drift averaged 1.1% for C with aspartic acid, while lab duplicates of soil samples varied by an  

average of 3.1% for C and field duplicates (generally collected within one meter of one another)  

varied by an average of 7.8% for C. Similarly, average instrument drift with aspartic acid,  

variation between lab duplicates, and variation for field duplicates was 3.6%, 6.9%, and 12.5%,  

respectively, for N. Organic/inorganic fractionation was performed by pre-treating 80  

representative samples with 2-3 drops of concentrated HCl or H3PO4 (NRCS, 2004), samples  

were allowed to air dry in a fume hood until effervescence ceased. After effervescence, organic  

C fraction was determined using the Thermo Flash EA 1112 Elemental Analyzer. Inorganic C  

content was then calculated as the difference between total C and the organic C. Inorganic C  

fraction was <1% of the total C detected in all analyzed samples. Based upon the fractionation  

analysis, the total C is considered equivalent to total organic C for all samples. C and N by  

weight, and stocks were calculated using Equation 1 (Batjes, 1996):  

   

         
 
                                                      (1)  

  

where Td is the total amount of C and N [Mg m
-2

] over depth, d, ρi is the bulk density (Mg m
-3

) of  

layer, i, Pi is the proportion of C and N [g C (N) g
-1

] in layer i, Di is the i
th

 layer thickness (m), Si  

is the volume of the fraction of fragments larger than 2 mm in layer i. To calculate C and N  

stocks, we used bulk density and particle size distribution values for the DCEW area published  

by the NRCS in its Soil Survey Geographic (SSURGO) dataset. Bulk densities and particle size  

distributions obtained from SSURGO compared favorably with quantities previously measured  

in DCEW (Smith et al., 2010; Geroy et al., 2010). C and N concentrations in each core were  

linearly aggregated to a depth of 30 cm and for comparison purposes converted to units of g C m
-

 

2
 or g N m

-2
.  

  

2.3 Predictor Variables  

2.3.1. Elevation and Precipitation  

Precipitation was considered as a predictor variable because it is the source of moisture for  

ecosystem productivity. The spatial distribution of mean annual precipitation in DCEW was  

determined by first establishing an elevation-based precipitation lapse rate for the watershed  

based on the 10-year average precipitation for the three weather stations in DCEW and the  
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Bogus Basin SNOTEL site. Mean annual precipitation increases from 37 cm at the bottom of  

DCEW to 89 cm at the top of the watershed. Both a linear model and a non-linear fit (Naoum  

and Tsanis, 2004; Ranhao et al., 2004) were performed and tested. The non-linear model  

produced a root mean square error in estimation of mean annual precipitation of 16.2 mm,  

compared with 34.3 mm for the linear model. The lapse rate model was then used with a  

hyposometric (area-elevation) function based on elevations from a 10 m digital elevation model  

(DEM) obtained from the United States Geological Survey (USGS) to predict mean annual  

precipitation throughout the watershed.  

  

2.3.2. Potential Insolation  

Potential insolation (incoming solar radiation) depends on aspect, slope gradient, and elevation,  

which can be estimated directly from DEMs making it attractive as a predictor variable. Total  

annual potential insolation was calculated for the DCEW area using the Solar Radiation tool in  

ESRI ® ArcMap 10.0 based on the USGS 10 m DEM. Potential insolation only changes on the  

scales of obliquity (Loutre et al., 2004), eliminating the need to calculate a long-term average for  

the area. Calculated insolation values compared favorably to annual values of measured solar  

insolation at two weather stations (shortwave) in DCEW, as well as the SNOTEL Bogus Basin  

station (total), reflecting the fact that this environment is relatively cloud-free during the  

summertime peak-insolation period. Annual potential insolation for the entire DCEW ranges  

from 1700 kWatt m
-2

 to 460 kWatt m
-2

, averaging 1300 kWatt m
-2 

(Table 1).  

  

2.3.3. NDVI/Vegetation  

Total standing biomass or vegetative cover reflects total ecosystem productivity and is often  

proportional to the C and N input to the soil. The Normalized Difference Vegetation Index  

(NDVI) is a commonly used, and easily calculated, satellite image-based proxy for vegetative  

cover (Jordan, 1969; Kriegler et al., 1969; Rouse et al., 1974; Jensen, 2000). All available  

Landsat-5 Thematic Mapper imagery (that covered the watershed) at 30 m spatial resolution  

(http://edcsns17.cr.usgs.gov/EarthExplorer/) was collected for calendar year 2008. This year was  

considered average with respect to air temperature, precipitation, and NDVI in DCEW (Smith,  

2010; DCEW, 2010). Temporal resolution of images is generally 16 days during cloud-free  

conditions. NDVI values were calculated in the ENVI software environment for each image on a  
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pixel-basis using the following previously developed formula (Jordon, 1969; Kriegler et al.,  

1969; Rouse et al., 1974; Jensen, 2000):  

  

                                                           
         

         
                  (2)  

  

where NIR is the reflectance signal in the near-infrared radiometric band and red is reflectance in  

the red band.   

Mean monthly NDVI values were obtained for each Landsat pixel within the DCEW. A  

corresponding raster representing the peak NDVI for 2008 was obtained by selecting the  

maximum monthly NDVI value within each pixel. This annual maximum monthly mean value  

was used in the statistical analysis and modeling for C and N. The maximum monthly average  

NDVI for DCEW ranged from 0.16 to 0.80 with an average of 0.49. NDVI values from pixels  

containing the field data collection sites largely reflect the larger scale variability in annual  

maximum monthly mean NDVI, ranging from 0.27 to 0.74 with an average of 0.49 (Table 1).  

Annual maximum NDVI follows an approximately log normal distribution throughout the  

watershed (Table 1), being generally lower at lower elevations and on southern aspects and  

higher at upper elevations and on northern aspects.   

  

2.4. Statistical Analysis and Modeling  

Statistical analysis and modeling was conducted using SAS 9.1. Descriptive statistics were  

computed to examine relationships between total C and N and potential predictor variables  

aspect, slope, elevation, precipitation, NDVI, and insolation (Table 1, Figure 2). Similar  

correlations were observed between predictor variables and N (data not shown). A Shapiro-Wilk  

(W) test for normality showed all the spatially distributed data to be positively skewed with a  

best fit to a lognormal distribution. We therefore log transformed this data to reduce the skew,  

and subsequently standardized each predictor and response variable by subtracting the sample  

mean and dividing by the sample standard deviation, so that each variable was zero mean and  

unit variance. Standardization was performed to compensate for the between-variable disparity in  

the magnitudes of untransformed predictor and response variables. This allowed assessment of  

the relative importance of individual predictor variables in the developed multivariate statistical  

models. Predicted values of C and N represent standardized quantities. Therefore, for the  
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developed predictive models to be broadly applicable some estimate of the regional mean and  

variance in soil C and N must be known or estimated. For this preliminary investigation into  

drivers of hillslope-scale variation in C and N and their relative importance in this semi-arid  

montane environment, however, the use of standardized quantities is appropriate because  

statistical models using the non-standardized data produced similar degrees of correlation.   

Least squares regression analysis was used to develop predictive models of C and N  

stocks, as well as assess the robustness of developed models to reproduce observed C and N  

excluded from model development through a k-fold cross-validation. This model development  

and cross-validation procedure was performed for each predictor variable individually and for  

every combination of predictor variables. As expected, given the direct co-dependence,  

calculated precipitation showed no improvement over elevation to predict C and N, and was  

excluded in further model building. Tables 3 and 4 show developed regression models  

performance in predicting observed C and N. Insolation and NDVI were the most powerful  

predictors of soil C and N.  

Utilizing these identified predictor relationships, models to predict the spatial distribution  

of soil C and N across the watershed were developed using both multiple linear regression and  

cokriging analysis. In the multiple linear regression model approach, developed equations,  

coupled with spatially distributed NDVI and potential insolation data, were used to predict the  

soil C and N content at each 10 x 10 m pixel in the modeling domain. In the second set of  

models, a simple cokriging analysis was performed (ESRI ® ArcMap 10.0 Geostatistical Analyst  

toolbox) to develop a predictive maps of soil C and N and estimation errors using insolation and  

NDVI as covariates. Simple cokriging is a widely used method of spatially interpolating a  

sparsely sampled variable (in this case C or N) to finer resolutions by using spatial information  

from more intensely measured quantities that are covariates of the predictand (in this case  

insolation and NDVI) (Webster and Oliver, 2007). Cokriging is a multivariate extension of  

kriging and relies on a linear model of co-regionalization that exploits not only the  

autocorrelation in the primary variable, but also the cross-correlation between the primary  

variable and secondary variables; because of these qualities, we expected that cokriging would  

represent the observed trends equally well if not better than the regression models.  

Because mid-slope C and N values may be different from those located away from mid  

slope positions, we calculated the Topographic Position Index (TPI) for each 10 m DEM pixel  
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using ESRI ® ArcMap 10.0 with the Land Facet Corridor Tools developed by CorridorDesigns  

(Majka et al., 2007). We combined the TPI with the slope position C and N relationships  

identified by Geroy (2010) to develop a slope adjustment index for the DCEW. This index was  

then applied to model output, similar to the approaches used by Florinsky et al. (2002) and  

Webster et al. (2011). As a final step, the standardized model values were then converted back to  

non-standardized values of C and N using the observed mean and standard deviation. Therefore,  

the values reported in all tables and figures are stock values (g C or N m
-2

).  

  

3. Results  

3.1. General Trends in Spatial Distribution of C and N.   

The average total carbon (C) and nitrogen (N) stock of the upper 30 cm of soil in the study area  

was 2100 (g m
-2

) and 190 (g m
-2

), respectively, with an average C:N ratio of 10.1 (Table 1), these  

observations are consistent with other semi-arid regions of the world (McClaran et al., 2008;  

Shrestha and Stahl., 2008). The C content increases with elevation and is higher on northern  

aspects. The average C content at lower elevations and on south-facing aspects is 930 g C m
-2

,  

versus an average of 2600 g C m
-2

 for north facing aspects at higher elevations (Table 2). At  

forested higher elevations, where vegetation distribution is more uniform, the difference in soil C  

with aspect is less pronounced. In general, these results agree with those from similar climatic  

regimes (Thompson and Kolka, 2005, Zushi et al., 2006). As is commonly observed, C and N  

stocks decline with depth (Figure 3). Trends in soil N closely follow trends in C. Further  

discussion will be limited to the spatial distribution of C, except where significant differences  

between C and N trends occur. Smaller C:N ratios are observed at the lower elevations and on  

southern aspects and C:N ratios also decline with depth (Figure 3).   

  

3.2. Predictors of Soil C and N  

Normalized Difference Vegetation Index (NDVI), potential insolation, elevation, aspect, and  

slope were identified as potential predictors of soil C distribution. Individually, aspect, slope, and  

elevation describe only a small amount of the variance in soil C stocks (Table 3). In contrast,  

potential insolation and NDVI each independently explain significantly more of the variance in  

soil C with notably larger R
2
 values (Table 3). As expected, NDVI is positively correlated to soil  

C content, reflecting the commonly observed relationship between above and below-ground C  
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reservoir sizes. Interestingly, potential insolation, exhibits a higher correlation than the combined  

variables of slope, aspect, and elevation. It is also noteworthy that potential insolation is  

inversely related to soil C content. It is recognized that there is likely some degree of colinearity  

between potential insolation and NDVI. The existence of this colinearity precludes quantitative  

evaluation of the relative influence of these two variables on any solution produced by multiple  

linear regression and compromises the uniqueness of fit; it does not diminish the value of the  

overall relationship.  

By allowing interaction in the predictive model between both potential insolation and  

NDVI, we achieved significant improvement in model performance, with an R
2
 of 0.62 for C and  

0.46 for N, statistically significant at p < 0.0001 (Tables 3 and 4). Equations 3 and 4 below  

represent the resulting multiple linear regression models for soil C and N as a function of NDVI  

and potential insolation:   

  

                                                                     (3)  

                                                                                (4)  

  

where,  

C=normalized carbon stock (g m
-2

),  

N= normalized nitrogen stock (g m
-2

),  

NDVI=normalized maximum annual NDVI ,   

I= normalized annual insolation   

  

Values of NDVI and potential insolation for each sample location are input to Equations (3) and  

(4) and the predicted values of C and N at those locations are compared with the respected  

observed quantities (Figure 4). When sites within the watershed recently disturbed by logging  

(n=25, see Figure 1) were removed from the dataset and the regression model was rebuilt using  

the entire dataset, the resulting performance improved to R
2
 equals 0.81 for C and R

2
 equals 0.66  

for N (Tables 3 and 4):   

  

                                                                            (5)  

                                                                                              (6)  
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3.3. Modeled Spatial Distribution of C and N  

The developed relationships between C and N and the predictor variables NDVI and insolation  

were used to model the spatial distribution of C and N across the watershed applying both linear  

regression and cokriging techniques. The two modeling approaches produced similar spatial  

distribution maps of C and N for the watershed (Figure 5) and these results are consistent with  

the empirically observed trends (Table 5). Both models exhibit strong differences in soil C with  

aspect; north-facing slopes typically exhibit 5 times the C of adjoining soils on south-facing  

aspects. Similarly, the two models produced generally higher C at higher elevations; increasing  

by nearly a factor of 10 times on south-facing slopes from the bottom to the top of the watershed.  

Modeled N follows similar trends.  

While the overall trends in the two modeling approaches are similar, there are notable  

differences. Perhaps the most evident difference is generally higher C values in the cokrigged  

results compared to those produced by linear regression. The mean C content in the cokrigged  

results is 2600 g C m
-2

, while the model-produced mean by regression is 1800 g C m
-2

. The  

minimum and maximum values also vary between the model methods. In accordance with the  

cokriging approach, wherein modeled data are generated by interpolation, the maximum and  

minimum values are identical to the observed dataset. In contrast, the regression-generated  

maximum and minimum values reflect the ability of the method to produce values outside the  

range of that found in the observed dataset. Because observed data is composed of discrete point  

values, this dataset does not necessarily share a mean with that produced by model results and  

the degree of similarity in the mean values between observed and modeled values is not  

necessarily a reflection of model accuracy. Nevertheless, it is reassuring that both the regression  

and cokriging results produce mean values of similar magnitude to the observed data. The  

standard deviation for both analysis methods decreased appreciably from the observed 1200 (g C  

m
-2

) to 880 for the regression and 960 for cokriging, reflecting the smoothing effect of both  

modeling approaches. Differences between modeling results for N follow those observed for C  

but are more pronounced. In particular, there is a strong deviation between model results for N  

values at high elevations; cokriging produces soil N contents that are nearly twice as high as  

those produced by the regression model.  
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A strength of the cokriging approach is that it produces a spatial distribution of percent  

error, computed as the ratio of the cokriging prediction standard error to the predicted value  

(Figures 5e and 5f). These error maps indicate that the error is not randomly distributed. In the  

case of both C and N, the error is generally highest where C is also high (higher elevation and  

north-facing slopes). Error in N estimates exhibits stronger elevation-based organization; error is  

higher at lower elevations compared to C.    

  

4. Discussion  

4.1 Underlying Controls on Soil Carbon Distribution  

While not an explicit goal of this work, some discussion of the causal relationship  

between the identified predictors and soil carbon (C) and nitrogen (N) distribution is warranted.  

The correlation between soil C contents and vegetation density (as measured by NDVI) in the  

DCEW suggests that, as in many other ecosystems, soil C content is strongly dependent the rate  

of C input from aboveground vegetation. The observed negative correlation with insolation in  

this semi-arid landscape likely reflects the important and limiting role that soil moisture plays on  

vegetation growth and subsequently input of C to soil reservoirs. South-facing slopes receive  

more insolation and soils dry more quickly than north-facing slopes (Smith et al., 2011). This  

likely contributes to higher vegetation densities on north-facing slopes where soil moisture  

limitation is reached later in the growing season. These aspect differences are overlain by a  

strong elevation gradient, which produces wetter and cooler conditions at higher elevations  

(Smith et al., 2011). In the DCEW this precipitation gradient translates into a vegetation gradient  

in which more biomass is supported at higher elevations. This presumes that positive the  

influence of wetter conditions outweighs the potentially suppressive influence of lower  

temperatures on productivity. Again, soil C closely follows vegetation, exhibiting higher values  

at higher elevations. While often linked to insolation, temperature can exert a distinct, and often  

complex, influence on the soil C reservoir. For example, less insolation on north-facing slopes  

may reduce soil temperatures and inhibit soil respiration, resulting in a higher soil C content  

(Miller et al., 2004; Kane et al., 2005). Alternatively, lower temperatures can depress ecological  

productivity, producing declines in the soil C reservoir (Garcia-Pausas et al., 2007). In this  

system, we observe more soil C where temperatures are generally lower, a trend consistent with  

the former mechanism. These preliminary observations suggest a complex interaction among  
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several biophysical and hydroclimatic processes, including the dynamics of soil moisture,  

insolation, and temperature. The ongoing study of these dynamics may better elucidate these  

relationships.  

  

4.2 Importance of Disturbance  

As mentioned above, four of the sampling sites at tree-covered higher elevations (comprising 25  

soil cores) were in areas deforested by logging in the 1970s (Figure 1). When we excluded the  

cores located in disturbed areas from regression modeling, we find a significant increase in the  

R
2
 to 0.81 at p < 0.0001 (Table 3). When we extrapolated the re-fit model to the 25 core sites in  

the logged areas, the model over-predicted C at each site by approximately 25%. A plausible  

interpretation of the regression model over-prediction is the previously documented time lag  

between vegetation regeneration and corresponding build-up of soil C stocks (Antos et al., 2003;  

Yanai et al., 2003; Slesak et al., 2009; Vedrova et al., 2010). Because NDVI is the most  

significant predictor of soil C, this over-prediction seems to suggest the association between  

NDVI and soil C is weaker at the disturbed sites versus undisturbed sites. This interpretation is  

based on the assumption that the relative rates of C cycling at undisturbed but forested sites at  

lower elevations approximately reflect the expected pre-disturbance relative rates of C cycling at  

the higher elevation forested sites. To confirm this explanation, future soil C sampling should be  

conducted in nearby undisturbed forests that exhibit vegetation and topographic characteristics  

that are similar to the disturbed sites in DCEW. Moreover, in the context of the previous studies  

noting the lag between aboveground and belowground C stocks, additional confirmation of this  

interpretation could arise through investigation of whether the amount of soil C observed  

contemporarily at the disturbed sites is consistent with the time since biomass removal.   

  

4.3 Comparison and Appropriateness of Modeling Approaches  

 Our primary study motivations were to: (1) understand the factors contributing to spatial  

variation in soil C in our semi-arid experimental watershed, (2) identify readily available  

landscape metrics that reflect these factors and (3) use these variables to develop models to  

predict soil C distribution across the landscape. In light of the objectives of this exploratory  

exercise, the two predictive modeling approaches used have similarities and differences that  

serve as useful guideposts for future studies.  
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 Multiple linear regression is a widely used, simple approach to develop predictive models  

from soil C observations and extrapolate predictions to locations without observations, in this  

case based on the spatial distribution of a surrogate measure of vegetation productivity and  

potential insolation. The regression model building exercise indicates that aboveground  

vegetation density (represented in the model as NDVI) and insolation (represented in the model  

as potential insolation) are good predictors of the spatial variation of soil C and N. Given the  

simplicity of the model building approach and the widespread availability of topographic and  

vegetation data, a multiple regression approach could more generally be applied to predict soil C  

distributions in semiarid regions at much broader scales. Unlike the cokriging approach, the  

linear regression method allows prediction where soil carbon data is not already available. As  

noted above, to better convey relative effects of predictor variables on soil C we constructed the  

regression models using standardized quantities for both predictor and response variables. As a  

result, the developed regression models require some estimate of the regional mean and variance  

in soil C to be used to predict the spatial distribution of soil C at broader scales. Predictive  

models developed using non-standardized quantities yield both similar structure and predictive  

power (not shown). However, developing algorithms to retrieve an estimate of soil C at similar  

resolutions and over large areas from remote sensing observations using a regression approach  

will require estimation of regional soil C statistics or the use of non-standardized predictor and  

response variables.   

 The cokriging approach is a slightly more complex method for developing predictive  

models, but is, nevertheless, a linear, variance-minimizing interpolation scheme. While the  

cokriging interpolation algorithm takes into consideration the covariates determined from the  

regression model building exercise, spatially distributed predictions are heavily weighted  

towards soil C observations. Moreover, in contrast to the regression approach, cokriging model  

development considers explicitly the spatial arrangement of observations in the development of  

predictive models. As a result, cokriging is better able to exploit spatial trends in the data itself to  

produce spatially distributed predictions of soil C. Another advantage of the cokriging approach  

is that it yields not only a spatially distributed prediction of soil C, but also a corresponding  

spatial distribution of prediction errors. Such a map is a particularly valuable asset for informing  

future soil C data collection.   
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4.4 Future modeling efforts  

The statistical models used in this study to develop spatial predictions of soil C in DCEW  

may not sufficiently represent nonlinearities governing biogeochemical cycling – and the  

coupling of biogeochemical and hydrologic processes – in this semi-arid region. As such, future  

effort to develop spatial predictions of soil C will be directed toward the use of physically based,  

distributed ecosystem and ecohydrology models (e.g., Running and Hunt, 1993; Moorcroft et al.,  

2001; Ivanov et al., 2008). One particular strength of the soil carbon dataset developed in this  

study is as a constraint of physically based models in a data assimilation context.  Data  

assimilation schemes, which combine uncertain model predictions with noisy observations, such  

as the ensemble Kalman Filter (EnKF) can leverage non-linear process models of  

biogeochemical cycling and be used to assimilate a broad suite of observations (Harmon and  

Challenor, 1997; Williams et al., 2005). Importantly, it has been previously demonstrated that  

inferences about nutrient cycling based on a modeling and data assimilation approach can be  

different from the conclusions reached using approaches using observations alone.  Williams et  

al. (2005) provide a particularly illustrative example, using the EnKF to assimilate a broad  

diversity of observations into an ecosystem model to constrain net ecosystem carbon exchange  

and the partitioning of carbon into aboveground and belowground C pools. They concluded that  

the interior Oregon forest under study was a net atmospheric C sink; an approach relying on  

observations alone suggested the forest was a small net source. Data assimilation frameworks  

can yield both the temporal dynamics of C cycling and partitioning, as well as measures of  

predictive uncertainty.  

  

4.5 Implications for Soil Carbon Management and Climate Change  

Interestingly, the models predict that nearly 44% of the total soil carbon (C) is found in  

the upper 1/3 of the watershed while the lower 1/3 of the watershed stores less than 19% of the  

watershed’s soil C. In the middle third of the watershed modeling indicates most of the soil C  

storage (72%) is on the north-facing slopes. In the context of preserving existing soil C  

reservoirs, these observations suggest that the impact of disturbance (via climate or land use  

changes) on existing soil C stores will be highly spatially variable. Furthermore, given the close  

relationship with vegetative cover, soil C contents are likely to be sensitive to predicted  

temperature induced (i.e. Mote and Salathé, 2010) declines in vegetative cover.  
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5. Conclusions  

The Dry Creek Experimental Watershed extends across a wide, elevation induced, precipitation  

and temperature range that produces steep gradients in above and below ground carbon (C) and  

nitrogen (N) pools. Even more dramatic variations in above and below ground C and N are  

observed with changes in aspect. Despite these large variations, a significant amount of the  

variance in the soil C distribution is explained by a combination of potential insolation and  

vegetation cover, as represented by NDVI. Both of these variables are easily calculated from  

widely available geospatial data, making this approach potentially useful for widespread  

application in complex, semi-arid landscapes. The use of these predictors to predict the  

distribution of soil C and N can facilitate better ecosystem management and rehabilitation  

practices at the local scale and improve understanding of the fate of soil C stores under the  

influence of a changing climate.  
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Figure 1: Dry Creek Experimental Watershed, 16 km NE of Boise Idaho, USA. General site  

locations are represented by solid red circles within the watershed. An example of core locations  

within a general site is shown in the subset photo (upper left).  Area of past disturbance (logging)  

outlined with a dashed red line in the upper watershed.  

  

Figure 2: Predictor variables plotted against carbon (C) stocks.  a) Aspect vs C,  b) Slope angle  

vs C,  c) Elevation vs C,  d) Precipitation vs C,  e)  Annual Potential Insolation [10
3
 kWatt m

-2
]  

vs C,  f) NDVI vs C.  

  

Figure 3: Carbon (C), nitrogen (N) and C:N ratio depth profiles. a) C depth profile by aspect, b)  

C depth profile by elevation, c) N depth profile by aspect, d) N depth profile by elevation, e)  

ratio profile by aspect, f) ratio profile by elevation.  

  

Figure 4: a) Observed  C stocks vs predicted C stocks using multiple linear regression with  

predictors of potential insolation and NDVI.   b) Observed N stocks vs predicted N stocks using  

multiple linear regression with predictors of potential insolation and NDVI.   

  

Figure 5: a) Multiple Linear Regression modeled C stocks in DCEW and surrounding areas. b)  

Multiple Linear Regression modeled N stocks in DCEW and surrounding areas. c) Map resulting  

from ordinary co-kriging of potential insolation and NDVI to predict C stocks in DCEW and  

surrounding areas. d) Map of the predicted percent of error (prediction standard error divided by  

the predicted value) associated with the co-kriging of potential insolation and NDVI to predict C  

stocks in DCEW. e) Map resulting from ordinary co-kriging of potential insolation and NDVI to  

predict N stocks in DCEW and surrounding areas. f) Map of the predicted percent of error  

(prediction standard error divided by the predicted value) associated with the co-kriging of  

potential insolation and NDVI to predict N stocks in DCEW. All C and N stock values are for m
2 

 

x 30 cm. All data symbolized as a natural breaks (Jenks) classification with 10 classes using  

ESRI ® ArcMap 10.0.  
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Table 1: Statistical results for all collected data in study.

 Mean Median Std Dev Maximum Minimum W Pr<W*

Carbon (g m
-2

) 2100 1800 1200 6100 430 0.9034 <0.0001

Nitrogen (g m
-2

) 190 170 100 630 60 0.8662 <0.0001

Ratio (C:N) 10.1 10.3 2.2 16.4 6.2 0.9723 0.0082

NDVI 0.49 0.47 0.13 0.74 0.27 0.9288 <0.0001

Insolation (10
3
 kWatt m

-2
) 1.26 1.34 0.24 1.61 0.75 0.9127 <0.0001

Precip (mm) 560 510 140 850 370 0.9135 <0.0001

Elevation (m) 1500 1400 230 1900 1100 0.9423 <0.0001

ASPECT (degrees) 200 190 100 360 0 0.9639 0.0013

Slope (%) 30 30 7 50 10 0.9836 0.1104

*  Pr < W indicates the probability the data is normally distributed.  If less than .05, the null hypothesis

   (of normality) is typically rejected.

1. Carbon, nitrogen and ratio data from collected/analyzed data.

2. NDVI calculated from Landsat 5 data (2008)

3. Insolation (potential) and elevation derived from USGS 10 m DEM.

4. Precipitation calculated from USGS 10 m DEM, using observed relationships within DCEW.

5. Aspect and slope values collected during field sampling.

Table 2: Contrasting differences in Carbon and Nitrogen

                by aspect and elevation. Units are g m
-2

.

Carbon Mean Range Std Dev

Lower * 1700 430 - 5600 1200

Upper** 2300 930 - 6100 1100

Lower South Facing* 930 500 -1800 340

Upper South Facing** 2100 930 - 4300 900

Lower North Facing* 2500 430 - 5600 1400

Upper North Facing** 2600 1100 - 6100 1300

Nitrogen

Lower* 170 60 - 480 100

Upper** 210 100 - 630 90

Lower South Facing* 120 80 - 190 30

Upper South Facing* 190 100 - 350 70

Lower North Facing* 230 60 - 480 110

Upper North Facing* 220 120 - 630 110
*  Lower elevation range: 1120 - 1450 m 

** Upper Elevation range: 1450 - 1850 m
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Table 3: Statistical results of linear regression models for predicting carbon distribution in

               DCEW.

Terms Regression Statistics

Aspect R
2
 = 0.00,    F(1,132) = 0.05,      p = .8261

Slope R
2
 = 0.02,    F(1,132) = 3.11,      p = .0803

Aspect, Slope R
2
 = 0.03,    F(2,131) = 1.64,      p = .1948

Elevation R
2
 = 0.17,    F(1,132) = 26.75,    p < .0001

Aspect, Elevation R
2
 = 0.17,    F(2,131) = 13.43,    p < .0001

Slope, Elevation R
2
 = 0.21,    F(2,131) =17.01,     p < .0001

Slope, Elevation, Aspect R
2
 = 0.21,    F(3,130) = 11.59,    p < .0001

Insolation R
2
 = 0.22,    F(1,132) = 32.95,    p < .0001

NDVI R
2
 = 0.54,    F(1,132) = 152.10,  p < .0001

NDVI,Aspect,Slope,Elevation R
2
 = 0.60,    F(4,129) = 48.32,    p < .0001

NDVI,Insolation (All data) R
2
 = 0.62,    F(2,131) = 108.49,  p < .0001

NDVI,Insolation (Final Model*) R
2
 = 0.81**, F(2,106) = 223.42,  p < .0001

* The final model (NDVI and Insolation), was built with data from the disturbed area (logged) removed.

** An R2  of 0.78 was achieved when the final model was applied to all observed data (including disturbed 

   area data which had been removed during modeling building).

Table 4: Statistical results of linear regression models for predicting nitrogen distribution in

               DCEW.

Terms Regression Statistics

Aspect R
2
 = 0.00,     F(1,132) = 0.00,      p = .9732

Slope R
2
 = 0.01,     F(1,132) = 1.38,      p = .2430

Aspect, Slope R
2
 = 0.01,     F(2,131) = 0.70,      p = .4972

Elevation R
2
 = 0.09,     F(1,132) = 13.06,    p = .0004

Aspect, Elevation R
2
 = 0.09,     F(2,131) = 6.51,      p = .0020

Slope, Elevation R
2
 = 0.11,     F(2,131) = 7.90,      p = .0006

Slope, Elevation, Aspect R
2
 = 0.11,     F(3,130) = 5.3,        p = .0018

Insolation R
2
 = 0.17,     F(1,132) = 27.89,    p < .0001

NDVI R
2
 = 0.37,     F(1,132) = 76.35,    p < .0001

NDVI,Aspect,Slope,Elevation R
2
 = 0.45,     F(4,129) = 25.91,    p < .0001

NDVI,Insolation (All data) R
2
 = 0.46,     F(2,131) =54.31,     p < .0001

NDVI,Insolation (Final Model*) R
2
 = 0.66**,  F(2,106) = 103.08,  p < .0001

*  The final model (NDVI and Insolation), was built with data from the disturbed area (logged) removed.

** An R2  of 0.62 was achieved when the final model was applied to all observed data (including disturbed 

   area data which had been removed during modeling building).
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Table 5: Observed and Modeled Soil Carbon Values (g C m
-2

)

                 Values1,2

Mean Maximum Minimum Std Dev

2100 6100 430 1200

Regression 1800 7800 320 880

Cokrigging 2600 6100 430 960

2. Observed are point values, Regression and Cokrigging are for entire modeled 

area and therefore are not expected to exhibit agreement.

Observed

Modeled

1. Data for the upper 30 cm of soil depth.
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